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Accurate moving cast shadow suppression based on
local color constancy detection

Ariel Amato, Mikhail G. Mozerov, Andrew D. Bagdanov, and Jordi Gonzàlez

Abstract—This paper describes a novel framework for detec-
tion and suppression of properly shadowed regions for most
possible scenarios ocurring in real video sequences. Our approach
requires no prior knowledge about the scene, nor is it restricted to
specific scene structures. Furthermore, the technique can detect
both achromatic and chromatic shadows even in the presence
of camouflage that occurs when foreground regions are very
similar in color to shadowed regions. The method exploits local
color constancy properties due to reflectance suppression over
shadowed regions. To detect shadowed regions in a scene, the
values of the background image are divided by values of the
current frame in the RGB color space. We show how this lumi-
nance ratio can be used to identify segments with low gradient
constancy, which in turn distinguish shadows from foreground.
Experimental results on a collection of publicly available datasets
illustrates the superior performance of our method compared
with the most sophisticated, state-of-the-art shadow detection
algorithms. These results show that our approach is robust and
accurate over a broad range of shadow types and challenging
video conditions.

Index Terms—Shadow removal, motion detection, color con-
stancy.

I. INTRODUCTION

MOVING object detection plays an important role in
Computer Vision [1], [2]. It is a necessary pre-

processing step in applications such as tracking, video com-
pression and video surveillance. One of the most common
and effective approaches to moving object localization is
background subtraction, in which a model of the static scene
background is subtracted from each frame of a video se-
quence [3], [4], [5], [6]. The task of moving object detection
is strongly hindered by shadows cast by moving objects in the
scene. In practice, cast shadows cause problems such as shape
distortion, object merging, and even total failure of object
detection and segmentation. An effective shadow detection
algorithm is highly desirable for a wide range of applications
in computer vision, including all applications requiring robust
object segmentation.

Cast shadows are the areas projected on a surface due to an
object that partially, or totally blocks the direct light source.
The region where the direct light source is totally blocked
is called the umbra, while the region where it is partially
blocked is known as the penumbra. Obviously, an area affected
by cast shadow experiences a change of illumination. Often
this illumination change is considered only as a decrease
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in brightness, without significant variation in chromaticity.
However, the assumption that chromaticity is invariant to cast
shadows is not always correct. It is correct, in fact, only when
light sources are white and there is no color blending among
objects. This type of shadow is often called an achromatic
shadow, while those that are not achromatic are referred to as
chromatic shadows.

Removing chromatic shadows is a particularly challenging
task due to the fact that they are extremely difficult to
distinguish from the foreground because they have no clearly
defined pattern. Interactions between color and texture in the
background and shadows are highly variable and difficult to
characterize. This paper introduces a framework for detec-
tion and suppression of moving chromatic and achromatic
shadows. It does not require a priori knowledge about or
restriction of the scene and lighting conditions. First, the
proposed algorithm generates a mask of moving objects using
a standard background subtraction technique. Then, our pro-
posed method is used to detect cast shadow areas inside each
detected moving object segment. To do this, luminance values
of the background image are divided by the corresponding
luminance values of the current frame, thus suppressing the
reflectance component in shadow areas. Next, each object area
is partitioned into a set of segments using a simple graph-
based method. Finally, these sub-segments are classified as
foreground or shadow by analyzing the intrinsic parameters
of sub-segments.

This selective, region-based analysis is a distinguishing
feature our approach, as almost all previously developed
algorithms first use pixel-by-pixel (or small image patches)
to determine the presence of shadows and then extend these
pixel-wise solutions to neighboring areas. In the next section
we explain the drawbacks of such techniques. The other
important contribution of our method is its low computational
complexity. The complexity is proportional to O(n), where
n is the number of pixels in the ROI of the frame. We
achieve this by applying graph-based segmentation, where
the area expansion algorithm exploits local gradient values
instead global region analysis. This paper is organized as
follows. In Section II we discuss shadow handling and related
work. In Section III the framework of the proposed method is
introduced. Experimental results are discussed in Section IV
and finally concluding remarks are given in Section V.

II. SHADOW HANDLING

Many publications are devoted to the shadow suppression
techniques [7]. Some of them are extremely accurate [8], [9],
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but are not very useful in the background subtraction context.
In this section we consider papers that are directly related to
our work.

A. Related Work
Several moving cast shadow detection methods have been

reported in recent years. Many of them work at the pixel
level; for example: Horprasert et. al. [10] propose a color
model that compares intensity to the chromaticity component
at each pixel. Each pixel is classified as background, shaded,
highlighted or moving foreground through a combination of
three threshold values which are defined over a single Gaussian
distribution. Cucchiara et al. [11] used shadow properties in
the HSV color space to distinguish shadows from moving
objects. These properties show that cast shadows darken the
background in the luminance component, while the hue and
saturation components change within certain limits. McKenna
et al. [3] assume that cast shadows result in significant
change in intensity without much change in chromaticity. Pixel
chromaticity is modeled using its mean and variance, and the
first-order gradient of each background pixel modeled using
gradient means and magnitude variance. Moving shadows are
then classified as background if the chromaticity or gradient
information supports their classification as such. The major
limitation of these algorithms is that they are restricted essen-
tially to achromatic shadows, and they often require explicit
tuning of parameters for each scene.

Statistical learning-based approaches have been developed
to learn and remove cast shadows [12], [13], [14], [15]. For
example, in [14] was presented a nonparametric framework
to model surface behavior when shadows are cast on them.
Physical properties of light sources and surfaces are employed
in order to identify a direction in RGB space at which
background surface values under cast shadows are found.
However, these approaches are particularly affected by the
training phase. These methods require a longer training period.

Methods which exploit region-based and photometric
invariant color spaces are described in [16], [17], [18].
Stauder et al. [16] use a physics-based luminance model to
describe illumination changes. They assume a plain textured
background and a cast shadow is determined by combining
the results of change detection, static edge detection, shading
change detection and penumbra detection. Toth et al. [17]
proposed a shadow detection algorithm based on color and
shading information. They segment an image in to several
regions based on color information and the mean shift
algorithm. They consider that the intensity values of a shadow
pixel divided by the same pixel in the background image
should be constant over a small neighborhood. Yang et. al
[18] proposed a moving cast shadow detection algorithm that
combines shading, color, texture, neighborhoods and temporal
consistency in the scene. However, many of these kinds of
approaches may suffer from the composition of the scene
in term of the background-foreground texture, and these
methods cannot distinguish between shadows and foreground
in a flat and nontextured background when exist camouflage
in shadows.

The method presented in this paper is a selective, region-
based approach that exploits the properties of the color con-
stancy field which exists over shadowed regions due to the
effect of reflectance suppression. The proposed method does
not need any prior knowledge about scene and does not imply
any kind of restriction about the structure of the scene. Further-
more, the technique can detect both achromatic and chromatic
shadows even in the presence of shadow camouflage.

Table I summarizes and compares key features of the
shadow detection algorithms mentioned above. In the table,
“Texture constraint” indicates that the technique is limited
to detection of shadows moving across a specific type of
background: either textured or texture-less. The “Umbra &
Penumbra” column indicates whether the method is capable
of detecting both umbra and penumbra.

B. Drawbacks of pixel-wise analysis

When an object casts a shadow on a surface, it partially
or completely blocks the surface of direct illumination from
a light source, producing a change in its appearance. The
measurement of this change, between a pixel affected by
shadow and the same pixel in the absence of cast shadows,
is one of the main properties used to classify cast shadows in
background-foreground segmentation algorithms.

The earliest approaches to shadow suppression were based
on the assumption that the value of the surface under cast
shadows is just a linear scaling of its brightness component,
without significant variation in its chromaticity components.
This classification process can be done directly in chromaticity
space [3] or in RGB space by separating brightness from
the chromaticity components and introducing a color dis-
tortion term to separate shadow-foreground pixels [10]. The
most sophisticated algorithms assume that it is possible to
distinguish shadowed pixels from foreground pixels in RGB
space, measuring difference both in terms of the angular and
the intensity measure between two color vectors belonging
to the background and the current frame respectively. This
follows from the assumption that cast shadows do not produce
significant changes in the color vector direction [6]. This idea
has also been explored in the HSV color space to distinguish
between shadows and foreground pixels [11].

Unfortunately, these pixel-wise approaches are subject to
severe degradation in accuracy in many cases. Two of the most
problematic situations are:
• Shadow camouflage

Shadow-foreground discrimination fails when there is
no difference in chromaticity between foreground and
background (e.g. black car is moving in highway), hence
inducing a strong similarity between shadow-foreground
regions.

• Chromatic Shadows
All these methods fail in the presence of strong chromatic
shadows where the dominant illumination is not white or
there is color bleeding due to multiple light reflection.

These limitations are a direct result of the pixel-wise ap-
proach. These approaches are based on the assumption that
foreground and shadow pixels can be effectively clustered
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METHODS Chromatic shadow Texture constraint Shadows camouflage Umbra & Penumbra
Horpraset [10] No No No No
Cucchiara [11] No No No Yes

McKena [3] No No No No
Stauder [16] Yes Yes No Yes

Toth [17] Yes Yes No No
Yang [18] Yes No No Yes

Martel-Brisson [14] Yes No Yes Yes
Jia-Bin Huang [15] Yes No Yes Yes
Proposed method Yes No Yes Yes

TABLE I
COMPARISON OF DIFFERENT SHADOW DETECTION ALGORITHMS. EACH ROW REPRESENTS AN ALGORITHM FROM THE LITERATURE, AND THE COLUMNS

REPRESENT A RANGE OF CHARACTERISTICS OF SHADOW DETECTION METHODS.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Fig. 1. (a), (b) and (c) are the background image, current image and hand-labeled segmentation image, respectively. (d) Histogram in polar RGB space, (e)
Histogram in Delta Chromaticity Space, (f) Histogram in DHSV space. (g), (h) and (i) illustrate the result of the segmentation process based on an optimal
threshold from different color spaces.

using a global distribution of pixels in one of various color
spaces. In other words, that there exists a set of thresholds
that minimizes detection error for foreground-shadow segmen-
tation. In many specific cases these approaches do not work
properly, and below we illustrate these phenomena with three
examples. In Fig. 1, the achromatic shadow case is considered.
Fig. 2 also illustrates the achromatic shadow case, but in
this situation there are regions with similarity in chromaticity
components between foreground and background or shadow
camouflage. Finally, Fig. 3 illustrates a typical chromatic
shadows case.

The real distribution of the foreground and shadow pixels

based on a hand-labeled segmentation image is shown in
Fig. 1(d-f). Here three different histograms are accumulated in
the three color spaces. In Fig. 1(d) are shown the difference in
angle and magnitude of the compared color in the RGB color
space [6]; where the axis are computed as:

X̄ =
∣∣Ibg(x)− Iim(x)

∣∣ cos

(
cos−1

(
Ibg(x).Iim(x)

|Ibg(x)| |Iim(x)|

))
Ȳ =

∣∣Ibg(x)− Iim(x)
∣∣ sin(cos−1

(
Ibg(x).Iim(x)

|Ibg(x)| |Iim(x)|

))
Note that the hand-labeled segmentations of Figs. 1(c), 2(c),
and 3(c) are deliberately conservative in labeling pixels either
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foreground or shadow. This is done in order to minimize the
chance of falsely labeling pixels in the ambiguous region at
the boundary between object and shadow. These hand-labeled
segmentations should not be confused with the ground-truth
segmentations used for quantitative evaluation in IV.

Fig. 1(e) shows differences in the chromaticity space [3],
where the axis are:

X =

∣∣∣∣ Rbg

Rbg +Gbg +Bbg
− Rim

Rim +Gim +Bim

∣∣∣∣
Y =

∣∣∣∣ Gbg

Rbg +Gbg +Bbg
− Gim

Rim +Gim +Bim

∣∣∣∣
and in Fig. 1(f) differences in the modified HSV space
(DHSV) [11].

Using this prior distribution one can estimate a set of
optimal thresholds that minimize the global detection error.
These thresholds for each distribution are drawn in the related
plots in Fig. 1. The result of foreground-shadow classification
for the entire frame using different sets of thresholds is shown
in Fig. 1(g-i). We can see that for this achromatic shadow
case, pixel-wise approaches can yield satisfactory results.
Reconstruction in the case of shadows camouflage, however, as
illustrated in Fig 2(g-i) and for the case of chromatic shadow
in Fig 3(g-i)) is not satisfactory. To overcome the limitations
of the pixel-wise approach,we propose a technique based on
region analysis.

III. MOVING SHADOW DETECTION

In this section we present the framework of our method. Our
approach is able to detect and suppress moving cast shadow
regions for most possible scenarios that occur in real video
sequences. The approach is based on the assumption that in
the luminance ratio space, a low gradient constancy is present
in all shadowed regions due to a local color constancy effect
caused by reflectance suppression. In section III-B we give a
formal proof of this property.

Note that our method aims to detect only moving cast
shadows. In this case all pixels in the frame image must be
previously segmented into background and motion regions.
Our algorithm works only on the pixels in motion areas.

A. Motion Region Mask Formation

To obtain a binary mask of motion regions, we use a
standard background subtraction algorithm, one based on
differencing the current image frame and the background
model [3], [4], [5], [6]. Note that the shadow detection method
is not limited to any specific background model or algorithm.

The initial motion mask M(x) is shown in Fig. 4(c). For our
region-based approach this binary mask must be transformed
into a set of independent regions Φ = {o1, o2, ..., ok}, where
K is the number of motion regions in the current frame.
This can be achieved using strongly connected component
analysis [19]. Relatively small components are suppressed by
a simple morphological filter. Consequently, one component
segment in the label mask Fig. 4(d) corresponds to one motion
object in the set Φ.

B. Shadow Model and Reflectance Suppression

Assuming Lambertian reflectance, an image obtained from
a scene by a standard RGB camera can be analyzed using a
simple luminance model [16]:

L (x) = E (x)ρ (x) ,

where L (x) = [LR (x) , LG (x) , LB (x)]
T is the luminance

vector of the RGB color space in the image plane x ∈ X,
E (x) = [ER (x) , EG (x) , EB (x)]

T is the irradiance vector
of the input signal, and ρ (x) = [ρR (x) , ρG (x) , ρB (x)]

T is
the reflectance vector of the object surface reflected at the pixel
x. Though vectors E and ρ should properly be expressed by
diagonal matrices, we simplify our notation throughout the text
the product of two vectors indicates simple, component-wise
multiplication ab =aibi. Division is similarly indicated.

The irradiance component of the input signal for one light
source in shadows areas can now be expressed as:

E(x) = Ca + Cb cos(θ(x))ς(x), (1)

where Ca, Cb, θ(x), are the intensity of ambient light, the
intensity of the light source, and the angle between the light
source direction and a surface normal, respectively, ς(x) ∈
[0, 1] is a shadow parameter that represents the transition
inside the penumbra, which depends on the light source and
scene geometry. Generally it is characterized by slow spatial
variation [20]. When ς(x) is equal to 0, the quantity of light
reflected at pixel x is from ambient light alone and it belongs
to the umbra region. For 0 < ς(x) < 1, the pixel is located in
the penumbra and when ς(x) = 1 the pixel is outside of the
shadow region.

The appearance of an arbitrary pixel x in an image sequence
will vary according to illumination conditions and the configu-
ration of objects that may cast shadows. Letting Lim(x) denote
the pixels belonging to cast shadows in the current frame and
Lbg(x) those that do not. The luminance ratio of these pixels
can be written as:

D(x) =
Lbg(x)

Lim(x)
=

Ebg(x)ρbg(x)

Eim(x)ρim(x)
. (2)

If the point x belongs to the shadow region Rsh of the
current image Lim(x) then the two reflectances in equation (2)
are equal because the reflectance ρ(x) of the projected surface
point x does not changes with time.

Therefore, the result of the luminance ratio D is reduced
to:

D(x) =
Ebg(x)

Eim(x)
,∀x ∈ Rsh. (3)

After substituting (1) in (3) we have

D(x) =
Cbg
a + Cbg

b cos(θ(x))

Cim
a + Cim

b cos(θ(x))ς(x)
. (4)

Let ∆x represents the distance between two neighboring
pixels in the image plane. The difference between these two
luminance ratios can be written as:
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Fig. 2. (a), (b) and (c) are the background image, current image and hand-labeled segmentation, respectively. (d) Histogram in polar RGB space, (e)
Histogram in Delta Chromaticity Space, (f) Histogram in DHSV space. (g), (h) and (i) illustrate the result of the segmentation process based on an optimal
threshold from different color spaces.

D(x)−D(x + ∆x) =
Cbg
a + Cbg

b cos(θ(x))

Cim
a + Cim

b cos(θ(x))ς(x)
−

Cbg
a + Cbg

b cos(θ(x + ∆x))

Cim
a + Cim

b cos(θ(x + ∆x))ς(x + ∆x)
. (5)

Assuming that the scale factor ς and the angle θ are slowly
varying functions: ς(x) ≈ ς(x+ ∆x) and θ(x) ≈ θ(x+ ∆x),
we obtain

D(x)−D(x + ∆x) ≈ 0, (6)

which means that a local constancy exists for any pair of pixels
belonging to the shadow region. In contrast, local constancy
in equation (6) does not hold for foreground pixels because of
the inequality of the reflectance components in (2).

The local color constancy condition in equation (6) is
derived using a single light source model. However, the
assumption used will also hold when E(x) in equation (1) is
formed by a linear combination of multiple light sources. The
commonly used irradiance model of equation (1) from [16]
assumes that the intensity of ambient light Ca is constant
and that the intensity of the light source Cb is proportional
to ( 1

r2 ), where r is the distance between the object and light
source [21]. These assumptions are valid for a broad range of

imaging conditions, and for deriving our local color constancy
criterion it is reasonable to use a model where both Ca and Cb

are constants. This same, simplified lighting model has been
used in the derivation of several other shadow suppression
models [16], [17], [18].

Using the local constancy effect that exists in shadow
regions, our algorithm distinguishes between shadows and
foreground regions.

C. Regions with Local Color Constancy

To detect regions with local color constancy, we first cal-
culate the luminance ratio image. The luminance ratio for a
single pixel is written as:

D(x) =
Lbg(x) + ν

Lim(x) + ν
, (7)

where ν is a quantization constant, which is chosen to be unity
for the standard eight bit input signal. It is very important
to note that for our shadow detection algorithm it is more
essential to make fine segmentation in shadow-like pixels (i.e.
those with higher luminance values in background pixels than
the pixels in the current image). When the background image
is divided by the current image, the luminance ratio image
D is segmented into two types of regions: foreground regions
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Fig. 3. (a), (b) and (c) are the background image, current image and hand-labeled segmentation, respectively. (d) Histogram in polar RGB space, (e)
Histogram in Delta Chromaticity Space, (f) Histogram in DHSV space. (g), (h) and (i) illustrate the result of the segmentation process based on an optimal
threshold from different color spaces.

(a) (b) (c) (d)
Fig. 4. Background image (a), current frame (b), binary motion pixels mask (c) and object mask (d).

where 2−8 ≤ D(x) ≤ 1 and shadow like regions where 1 ≤
D(x) ≤ 28. It is easy to see that in the shadow-like regions,
measurement is more precise.

An example of the luminance ratio image in the RGB
color space is illustrated in Fig. 5(c), where Fig. 5(a) shows
the background model and Fig. 5(b) is a frame of the test
sequence.

Let us analyze the values of the luminance ratio D inside
each motion areas. As we explained before in (3), the value
of the function D(x) in the shadow area depends only on the
irradiance ratios between the background and current image,
and form regions (usually one shadows region per motion
segment) that are characterized by smooth spatial changes in

(6), which we call local color constancy. We stress that local
color constancy does not assume, in general, color constancy
in a full shadow region and a value of the luminance ratio
D(x1) can be considerably different from a value D(x2) if
the distance between two pixels |x1 − x2| is significant.

In contrast, in the foreground areas the value of the function
D(x) depends both on the irradiance ratios and on reflectance
ratios in (2) and, in general, do not form considerable regions
with local color constancy. In rare cases, when this assumption
in the foreground areas does not hold (i.e. poor texture), we
use additional features (extrinsic terminal points, which will
be explained later) to solve the problem. In this way, local
color constancy detection allows us to distinguish background
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(a) (b)

(c)
Fig. 5. (a) Background image, (b) current image, (c) luminance ratio image
in the RGB color space.

from foreground.
Thus, the main goal of our algorithm is to detect local

color constancy regions, which is classical segmentation task.
Segmentation problems can usually be solved by local neigh-
borhood analysis. Local neighborhood analysis is a widely
used technique in image processing. Most of them utilize
sliding windows with a fixed shape and size or with a locally
adaptive shape.

Other approaches work with neighborhoods that are the
result of an initial segmentation of the entire region of interest,
for example watershed [19] or mean shift segmentation [20].
But in our case, to detect shadow segments we have to
overcome the problem of gradual change. Therefore, we apply
a gradient-based segmentation technique. More precisely, our
algorithm forms a set of gradient space connected neighbor-
hoods (GSCN) or a set of nonoverlapping segments. In the
next section we explain this technique.

D. Gradient-space Connected Neighborhood Segmentation

A gradient-space connected neighborhood is defined as a
set of pixels in an image in which any two pixels are gradient
connected. That is, there exists a (four- or eight-connected)
path between any pair of pixels in the neighborhood. All pixels
of the path satisfy the following condition: |D(p)−D(q)| ≤ ∂,
where ∂ is a given threshold, {D(p), D(q)} are values in of
any pair of adjacent pixels {p,q} ∈ X on the path.

Figure 6(a) illustrates two paths between pixels (0, 2) −
(2, 0) and (0, 5) − (7, 0) of gradient-space connected neigh-
borhoods. Figure 6(b) shows two formed gradient adaptive
neighborhoods. The edges that separate these pixels, or cells,
may be represented as partitions or thin dams (see Fig. 6(b)).
The heights of these partitions are proportional to the differ-
ence between adjacent pixels. When any pixel of the image

is flooded by letting water rise to a fixed level ∂ then several
noncommunicating pools are formed, each with a unique levels
of water.

To form GSCNs we use a standard graph-based technique.
An undirected image cover graph is defined as G = (V,E),
where each pixel x of a segmented object ok ∈ Φ has a
corresponding node v(x), and to each pair of neighboring
pixels xi,xj ∈ ok corresponds one edge e(xi,xj) with weight:

w(e(xi,xj)) =
∏

c∈{R,G,B}

H(∂ − |Dc(xi)−Dc(xj)|), (8)

where H is the Heaviside step function:

H(y) =

{
0 if y < 0
1 otherwise

.

Then a new graph is formed G̃ = (V, Ẽ) such that G̃ ⊂
G,∀e ∈ E s.t. |e| 6= 0 ⇒ e ∈ G̃. In other words, this new
graph inherits all vertices of the graph G and only edges with
nonzero weight |e|. To reach a new subdivision of an object
ok, a forest of graph trees is formed with the aid of depth
first or breadth first search algorithms [19]. Finally, all vertices
(pixels) of a tree form a sub-segment inside a considered object
such that:

Lk⋃
l=1

skl = ok,

Lk⋂
l=1

skl = ∅,
K⋃
k=1

ok = Φ, (9)

where Lk is the number of trees, i.e. the number of sub-
segments skl of object ok, of the graph G̃.

Such segmentation is unique and depends only on a given
threshold ∂. Further, it permits us to classify as shadow or
foreground all pixels inside a sub-segment sl. In contrast,
approaches based on sliding windows must form a neigh-
borhood for each pixel separately, and consequently have
much higher computational complexity. However, we choose
gradient-space connected neighborhoods not only because of
the low computational complexity relative to similar seg-
mentation techniques, but also because for our method it
is very important to obtain a unique shadow segment for
every shadow region. The main reason for this requirement
is that sometimes shadows are formed by a large penumbra,
and therefore segmentation algorithms based on global pixel
analysis, such as mean shift and watershed segmentations, can
fail due to over- and/or under-segmentation. This is illustrated
in Fig. 7. For example, if a considered region must include
only the pixels with values in some fixed interval ∂ then the
segmentation process usually splits shadows region or merges
shadow and foreground pixels into one segment. This situation
is shown in Fig. 7(b), where ∂ is a small interval value that
results in three segments {s1, s2, s3}, while ∂̃ is a big interval
value that under-segments by merging SR ⊂ s̃. If there is no
penumbra region Fig. 7(a)), over-segmentation does not occur.

E. Classification Process

To classify each sub-segment skl of motion region ok as
shadow, we exploit local features of the region and apply three
classification criteria.
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(a) (b)
Fig. 6. (a) Illustration of the GSCN concept, (b) formed GSCNs.

(a)

(b)
Fig. 7. Illustration of shadow splitting and over-segmentation effects. (a)
Signal without penumbra effect. (b) Signal with penumbra that causes splitting
and over-segmentation.

The features used to perform this local classification are:
{µkl , |skl |, τkl }, where:

• µkl : Mean value in the region skl .

µkl =
∣∣skl ∣∣−1 ∑

x∈skl

D (x) .

• |skl |: Number of pixels that belong to a segment skl .∣∣skl ∣∣ =
∑
x∈ok

Mx∈skl
(x).

• τkl : Terminal pixel weight, where t̂kl
(
skl
)

is the number of
external terminal pixels of a sub-segment skl . This means,
the number of edge of sub-segment skl that are neighbor
to non-object parts of the image. Finally, tkl

(
skl
)

is the
number of all terminal pixels of the sub-segment skl . This
includes all internal and external pixels.

τkl =
t̂kl
(
skl
)

tkl
(
skl
) .

Sub-segments are classified based on the combination of
three decision rules:

1) Luminance difference criterion.
The first classification rule is based on the assumption
that in shadow regions the luminance of each RGB
component in the background image is greater than the
current frame. Following this concept we introduce the
shadow-like indicator function:

Shµ(µkl ) =
∏

c∈{R,G,B}

H(µc(s
k
l )− 1), (10)

where Sh(skl ) = 1 when the sub-segment skl can
belong to the shadow class. When Sh(skl ) = 0, the
sub-segment skl can be directly classify as foreground.

2) Segment size criterion.
The size classification rule is based on the assumption
that for each shadow region of an object ok, there is
just one shadow sub-segment (the ideal case), or that
there are a few relatively large shadow sub-segments. In
contrast, the object ok is generally formed by many fore-
ground sub-segments, but each of these sub-segments
contains few pixels as a result of superposition of
two topological structures: background and foreground.
Thus, the segment size criterion is represented by the
indicator function:

Sh|s|
(∣∣skl ∣∣) =

{
1, if

(∣∣skl ∣∣ > |ok|λ)
0, otherwise,

(11)

where λ is the relative size of the smallest sub-segment
in an object ok that can be shadow.

3) Extrinsic terminal point weight criterion.
This rule is based on the spatial topology of shadows.
Shadow regions are usually located around foreground
regions. Therefore any shadow sub-segment of an object
ok contains a considerable amount of extrinsic terminal
points of the region (see Fig. 8), relative to the total
number of terminal points in the region. In contrast,
foreground sub-segments typically have the weight of
the extrinsic terminal points equal to zero or have
an insignificant amount of such points. Therefore, the
extrinsic terminal point weight criterion is:

Shτ
(
τkl
)

=

{
1, if

(
τkl > τ0

)
0, otherwise,

(12)

where τ0 is an experimentally determined threshold.

Joint classification rule
The final shadow classification rule is based on the superpo-
sition of all previously described criteria (10), (11) and (12):

skl =

{
Shadow, if

(
Shµ

(
µkl
)
∩ Sh|s|

(∣∣skl ∣∣) ∩ Shτ (τkl ))
Foreground, otherwise

(13)



9

Fig. 8. Point-wise border representation: white borderlines represent end
points of the segment spatially connected with another object’s segments Black
borderlines represent extrinsic terminal points.

F. Edge Noise Correction

When motion regions ok ∈ {Φ} are detected using back-
ground subtraction techniques, the algorithm usually includes
outlier pixels in the object mask that form a bright, narrow
fringe between shadow and background regions in the image
plane. This edge effect can result from JPEG or similar
compression techniques and can also be the result of other
signal transmission artifacts. This outlier fringe can completely
spoil the result of classification based on the external terminal
point weight criterion. To overcome the negative consequences
of the “bright edge effect” we shrink each individual motion
region ok mask by a small, radius-5 morphological erosion.
Only then do we start the classification process described in
Section III-E. When the classification is finished we add all
unclassified pixels that belong to the edge region to the nearest
shadow or foreground sub-region of the motion region ok.

IV. EXPERIMENTAL RESULTS

In this section we explore the performance of our approach
and discuss the parameters which are involved in the method
and their estimation.

A. Parameter Analysis

Our algorithm relies on several parameters that must be set.
In this section we describe each parameter and how they may
each be estimated directly from data.

1) Minimum gradient threshold ∂.
For every motion object segment ok a specific ∂k must
be computed:

∂k = α |ok|−2
(∑

x∈ok

∣∣µbg (x)
∣∣)(∑

x∈ok

∣∣σbg (x)
∣∣) , (14)

where µbg (x) and σbg (x) (mean value and standard de-
viation) are the pixel-wise parameters of the background
image model described in Section III-A, and |ok| rep-
resents the number of pixels in region k. Because both
parameters are vectors in the RGB color space,

∣∣µbg (x)
∣∣

and
∣∣σbg (x)

∣∣ are the magnitude or grayscale value of a
color vector. So, the threshold ∂k is proportional to the
mean values of the background parameters over an entire

motion segment ok that must be sub-segmented into a
set ski ∈ {ok}. The experimental parameter α of (14) is
fortunately robust and can be considered as an intrinsic
constant of the method. At least for all tested sequences
the value of α = 0.00621 was optimal.

2) Relative size threshold λ.
The value of the relative size threshold λ has been
calculated on the basis of the optimization of two
criteria: true positive foreground (TPf) and false positive
foreground (FPf). The value of this threshold could be
optimized for each scene. However, a scene independent
value can be used, since the final result does not show a
big variation relative to optimal (less than 0.5%) with λ
equal to 0.04. Note that this parameter can be decreased
if image or scene conditions warrant. The segment size
criteria uses λ to quickly discard sub-segments formed
by a small number of pixels. In the case of extreme
situations where shadows are formed by few pixels, the
value of λ can be safely decreased – at the cost of
increasing the number of sub-segments to be classified
by the “Extrinsic terminal point wight criterion”.

3) Extrinsic terminal point weight threshold τ0.
The value of the threshold τ0 defined in equation (12) is
calculated using the same optimization process as in the
previous for λ. The value of this threshold could also be
optimized for each scene. However, a scene independent
value has been found, and this value guarantees even
more robustness than the value of λ (less than 0.1% of
error change) with τ0 equal 0.2.

B. Performance Evaluation

Here we provide qualitative and quantitative results of our
approach on publicly available sequences.

Qualitative results
Rows (a-i) in Fig. 9 illustrate all steps of our algorithm:
• (a) The image being segmented.
• (b) The binary motion detection binary mask (Sec-

tion III-A).
• (c) Object masks. (Section III-A).
• (d) Difference image plane (Section III-B).
• (e) Result of GSCN segmentation (Section III-D).
• (f) Edge noise correction (Section III-F).
• (g) Classification based on the luminance difference and

segment size criteria (Section III-E (1)-(2)).
• (h) Classification based on the terminal point weight

criterion (Section III-E (3)).
• (i) Final segmentation (Section III-E (Joint classification

rule)).
The three different columns of Fig. 9 represent three diverse

image scenes taken from sequences: (I) - Grass field #184,
(II) - Highway II #157, (III) Highway II #801. For scene (I)
the classification was done completely based on the segment
size criterion (I-g), in spite of that the scene has an irregular
background. The classification could be done directly with
segment size criterion because in this case the background
is rich in term of texture and the foreground is darker than
the background. In the scene (II) the luminance difference
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criterion also plays an important role since the big part of
the foreground is brighter than the background, but the final
decision was done by terminal point weight criterion. The
classification of the scene (III) can be done only with all three
proposed criteria.

The results of our method in different scenarios is illustrated
in Fig. 10. In the figure we include five different frames taken
from five diverse scenes: (I) - Hallway frame #163, (II) - Auto
frame #1143, (III) - Highway II frame #253, (IV) - Highway
I frame #353 and (V) - CVC outdoor #509. The columns in
Fig. 9 (a), (b) and (c) represent:

• (a) The image being segmented.
• (b) Motion object mask.
• (c) Final segmentation.

Scene (I) is an indoor scenario where shadows are projected
on the floor and on the wall it being a two disconnected
shadows patch. Scene (II) is also an indoor scenario, but
the environment contains multiple overlapping light sources
and a large penumbra region. Scene (III) shows an outdoor
scene with flat gray background which it is affected by severe
shadow camouflage and with chromatic shadow . Scene (IV)
is another outdoor scenario where multiple real objects are
combined in a single object mask. Finally scene (V) contains
a long chromatic shadow cast on an irregular background
surface.1

Quantitative results
The quantitative evaluation is based on two standard metrics
for evaluating the performance of cast shadow detection algo-
rithm introduced by Prati et al. [7]: shadow detection rate (η)
and shadow discrimination rate (ξ). These two metrics are as
follows:

η =
TPS

TPS + FNS
; ξ =

TPF
TPF + FNF

, (15)

where the subscript S stands for shadow and F for foreground.
TPF is the number of true positive foreground pixels detected
minus the number of points detected as shadows but belonging
to the foreground. The quantitative comparison was done with
the Martel-Brisson et. al method [14], and with the Jia-Bin
Huang et. al method [15] since these methods perform best
among current state-of-the-art techniques and are also robust
under many different scene conditions (see Table I). Note that
results of the other approaches are taken from [15] and [14].
Table II shows the quantitative results. Comparative results
are shown on the standard benchmark sequences: Highway I,
Highway II and Hallway (the first three rows of table II).

To provide further evidence of the performance of our
approach, we have ground-truthed an additional three se-
quences for the purpose of benchmarking shadow suppression
algorithms. These sequences and ground truth are publicly
available and were selected to contain a variety of imaging
scenarios and challenging background conditions. The new
sequences are Pets-2009 View 7, CVC-outdoor and Football

1In order to provide more qualitative information for our method, several
segmented sequences are available at http://www.cvc.uab.es/∼aamato/results/
Shadows Detection/

Sequences Methods
Our method Huang [15] M.Brisson [14]

Highway I η 0.81 0.70 0.70
ξ 0.85 0.82 0.84

Highway II η 0.72 0.76 0.68
ξ 0.75 0.74 0.71

Hallway η 0.84 0.82 0.72
ξ 0.91 0.90 0.86

Pets2009 V7 η 0.96 - -
ξ 0.95 - -

CVC Outdoor η 0.91 - -
ξ 0.96 - -

Football Match η 0.80 - -
ξ 0.95 - -

TABLE II
QUANTITATIVE RESULTS FOR DIFFERENT SEQUENCES

Match. 2 In the last three rows of table II we show the
performance of our approach on these three new sequences.
There is no publicly available source code or executables for
the two other reported methods, and for this reason we only
provide performance evaluation for our approach on the three
new sequences. All sequences and ground truth are publicly
available.

This comparison shows that our proposed technique sur-
passes the performance of known methods. We also note that
our approach is fast, needing just O(n) operations, where n
is the number of pixels in the frame.

V. CONCLUSION

This paper describes a novel approach to distinguishing
moving objects from their shadows. Our method exploits
the property of local color constancy for the shadow region
formed by reflectance suppression. The approach is uses image
ratios to coarsely segment a frame into motion regions, and
we show how these ratios can then be used to segment
foreground from shadows. All parameters in our algorithm can
be estimated directly from the data, and it deals efficiently and
accurately with the most difficult issues in the field, including
umbra/penumbra detection, chromatic shadows and shadow
camouflage.

The effectiveness of the proposed method was validated
by the higher recognition rates achieved over a collection of
publicly available sequences Our algorithm is fast and the
computational complexity is linear in the number of pixels
in the frame.
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(I)

(II)

(III)

(IV)

(V)
(a) (b) (c)

Fig. 10. The result of the implementation of our method in different scenarios: (I) Hallway #163, (II) Auto #1143, (III) Highway II #253, (IV) Highway I
#353, (V) CVC outdoor #509. The meaning of each column here is: (a) current image; (b) motion object mask; (c) final classification
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