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Abstract. This paper addresses the problem of constructing a multiple access sys-
tem for a disjunctive vector channel, similar to multiuser channel without intensity
information, as described in [1]. To solve this problem a signal-code construction
based on the q-ary codes is proposed. It is shown that the proposed signal-code con-
struction allows to obtain the asymptotic value of the total relative rate arbitrarily
close to ln 2.

1 Introduction

In [1] a multiuser channel model without intensity information (A-channel) was
introduced. In this model it is assumed that the channel consists of a q in-
dependent non-overlapping frequency subchannels. In addition, it is assumed
that multiple users can simultaneously transmit information over this channel
(we denote the number of users by S and as the authors [1] assume that S > 2).
At each time a user selects one of the frequency subchannels for transmission.
The output of this channel is a list of all the frequencies at which the transfer
was carried out. Note that the information about how many users are trans-
mitting at a frequency is not available at the output of the channel (the value
is referred as the intensity information). In addition, the channel is assumed to
be noiseless.

Note that this channel model allows a broader interpretation. The channel
inputs can be viewed as binary vectors of length q, where each element of the
vector can be associated with a certain frequency (as is done in [1]) or with a
time slot. The value of each element of the vector associated with a certain
user, depends on whether the user transmits in this subchannel. In this case,
the channel output can be viewed as an elementwise disjunction of the vectors
at input. Thus, A-channel is in fact a disjunctive vector channel.

In [1] there were suggested some examples of signal-code constructions for
identification. In [2–5] estimates of the capacity of A-channel were derrived. In
the paper we introduce a signal-code sequence using a channel described above
and study the properties of multiple access system, built on the basis of this
construction.
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2 A multiple access model description

Assume that all the users use the same alphabet – symbols of GF (q).
Transmission. Each user encodes the information transmitted by q-ary

(n, k, d) code C (all users use the same code). Consider the process of sending
the message by i-th user. Let us denote the transmitted codeword by ci, each
character ci is associated with a binary vector of length q and weight 1, the unit
is in a position corresponding to the element of GF (q) to be transmitted (we
assume that the elements of the vector indexed by elements of the field, and
this order fixed and equal for all users). We denote the matrix constructed in
this way by bfCi. Transmission occurs character by character. Before sending
a binary vector a random permutation is performed. The permutations used
are selected with equal probability and independently.

Reception. The base station sequentially receives messages from all users.
Let us consider the process of receiving a message from the i-th user. We assume
that the base station synchronized with a transmitter of each user. This means
that n columns that correspond to the codeword passed i-th user are known at
the receiver. At receiving of each column the reverse permutation is performed.
Thus, we obtain the matrix

Yi = Ci ∨





∨

m=1:S,m6=i

Xm



 ,

where Ci is a matrix corresponding to ci and matrixes Xm,m = 1 : S,m 6= i
are the results of another users activity.

Consider the codeword ct ∈ C. We need to construct a matrix Ct cor-
responding to ct in the manner described above. Since the system uses the
disjunctive multiple access channel all the elements of the channel output cor-
responding to the codeword of the i-th will be nonzero. Therefore, the assump-
tion that the codeword ct ∈ C was transmitted by i-th user is true only if the
condition follows

Ct ∧Yi = Ct. (1)

We need to check the condition (1) for all the codewords of C and create a
list of possible codewords. In case of only one word in the list we output the
word, else we output denial of decoding.

Remark 1. Note that we do not assume a block synchronization.

Remark 2. In a real system it is advisable to use pseudorandom number gen-
erators to create pseudorandom permutations (the generators are a part of any
system with frequency hopping [7]).
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3 An upper bound for the probability of denial

Let us estimate the probability of denial (p∗) for i-th user.

Theorem 1.

p∗ 6

n
∑

W=d



A (W )

(

1−

(

1−
1

q

)S−1
)W



 <

< qk

(

1−

(

1−
1

q

)S−1
)d

, (2)

where A(W ) is a number of codewords of weight W in a code C.

Corollary 1. Let q, k, S and pr be fixed, than if the condition

d >
k − logqpr

β
, (3)

follows, where β = −logq

(

1−
(

1− 1

q

)S−1
)

, than p∗ < pr

4 The choice of the code length

Statement 1. If the condition

n >
log2q

log2q − 1

(

k + d∗logq (q − 1)
)

,

follows than there is a code C such that d(C) > d∗.

Proof. We need to use the Varshamov–Gilbert bound

n > k + logq

[

d∗−2
∑

i=0

(

n− 1

i

)

(q − 1)i

]

.

Loosen this inequality, we obtain

n >
log2q

log2q − 1

(

k + d∗logq (q − 1)
)

.

Let us choose the length in the following way

n (q, S, k, pr) =

⌈

log2q

log2q − 1

(

k +

⌈

k − logqpr

β

⌉

logq (q − 1)

)⌉

. (4)
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Figure 1: q = 211, pr = 10−10
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Figure 2: q = 213, pr = 10−10

5 An asymptotic estimate of the relative group rate

The transmission rate for one user can be calculated as follows

Ri(q, S, k, pr) =
k

n (q, S, k, pr)
log2q

Group rate can be calculated as follows

RΣ(q, S, k, pr) =

S
∑

i=1

Ri(q, S, k, pr) = S
k

n (q, S, k, pr)
log2q

In Fig. 1 and 2 the dependencies of RΣ/q on S, plotted with q = 211 and
q = 213 respectively. At each figure we see a family of dependencies with
different k, pr = 10−10.

Let S = γq, pr = 2−cn, c > 0, if c < −log2 (1− e−γ) and q → ∞ we obtain

n ∼
klog2q

−log2 (1− e−γ)− c
. (5)

Let us introduce a notion

ρ(γ, k, c) = lim
q→∞

RΣ (q, γq, k, 2−cn)

q
, (6)

Theorem 2. If γ < − ln (1− 2−c) than the following inequality follows

ρ (γ, k, c) > γ

(

log2

(

1

1− e−γ

)

− c

)

. (7)
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Figure 3: ρ∗(c)

Remark 3. Let us denote a lower bound on ρ(γ, k, c) obtained by ρ(γ, c). Note
that it does not depend on k.

Let us introduce a notion

ρ∗(c) = max
γ

[

ρ(γ, c)
]

.

In Fig. 3 the dependency of ρ∗(c) on c is shown.

Remark 4. Note that
ρ∗(ε) > ln 2(1− ε),

we just need to substitute γ = ln 2 to (7).

Remark 5. In [2] it is shown that in the case of uncoordinated transfer and in
case of a uniform probability distribution at the input ρ(γ, k, c) 6 −γlog2 (1− e−γ).
The signal-code sequence introduce allows us to provide ρ(γ, k, c) very close to
the upper bound when c = ε.

6 Conclusion

Hereinafter a novel multiple access system for for disjunctive vector channel
has been introduced. The analysis of the obtained results has shown that the
system under consideration has a great potential (it enables to adapt a very
great number of users enabling at the same time to maintain relatively high
rates and a very low probability of erasure) and flexibility (the length of the
code in use can be changed in order to either keep the probability of erasure at
the desired level (if the system load increases) or increase the transmission rate
(if the system load decreases)). Therefore the proposed system model can be
considered as a promising candidate for future investigation and possible basis
for the development of a whole class of new standards for real-life applications.
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