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Abstract. We consider &J(1)-invariant nonlinear Dirac equation, interacting with itself via the mean fieldhaeism. We analyze the long-
time asymptotics of solutions and prove that, under certain generic agsaompeach finite charge solution converges as + to the two-
dimensional set of all “nonlinear eigenfunctions” of the fom(rx)e‘i‘*‘. This global attraction is caused by the nonlinear energy transfer from
lower harmonics to the continuous spectrum and subsequent digpeadiation. The research is inspired by Bohr's postulate on quantum tran
sitions and Sclidinger’s identification of the quantum stationary states to the nonlinearferggions of the couplet(1)-invariant Maxwell-
Schibdinger and Maxwell-Dirac equations.
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1 Introduction. Bohr’s transitions as global attraction

In the present paper we continue our research on the global attractemlitery wave solutions ifJ(1)-invariant
dispersive nonlinear systems. Our aim is a dynamical interpretation ofitagoejumps” postulated by N. Bohr in 1913
to explain the stability of the Rutherford model of the atom (1911).

The long time asymptotics for nonlinear field theory equations, and in partitidaronlinear Klein-Gordon equa-
tion, have been the subject of intensive research, starting with the piog@apers by Segal [Seg63], Strauss [Str68],
and Morawetz and Strauss [MS72], where the nonlinear scattering ardddl attraction to zero solution were con-
sidered. The orbital stability of solitary wave solutions of nonlinear &timger and Klein-Gordon equations is well-
understood (see [GSS87]), and there is presently an active resgalocal attraction to solitary waves, asymptotic
stability [BS03, Cuc08].

Traditionally, the Dirac equation has presented difficulties. The existenaaitary waves in the nonlinear Dirac
equation was proved in [CV86]. The existence of solitary waves in theadibDirac system is proved in [EGS96].
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The stability of solitary waves with respect to a particular class of perturimti@s analyzed in [SV86]. The spectral
stability of small amplitude solitary waves of a particular nonlinear Dirac equatiame dimension, known as the
massive Gross-Neveu model [GN74, LG75], has been confirmed imaihein [CP06]. Neither the orbital stability
nor asymptotic stability of solitary waves is presently understood in the cowitéx¢ Dirac equation.

The next question is related to the structure of a global attractor of all fingegg solutions. Global attraction
to static stationary solutions in dispersive systewithout U(1) symmetrywas first established in [Kom95, KSK97,
Kom99, KS00]. The attraction of any finite energy solution to the set of itbsp waves in the context of the Klein-
Gordon equation coupled to one and to several nonlinear oscillators asdpin [KKO7, KK10]. In [KK10], we
generalized this result for the Klein-Gordon field coupled to severallatecs. In [KK08], a similar result was gen-
eralized to a higher dimensional setting for the Klein-Gordon equation with tlaa ifireld interaction. In the present
paper, we consider the structure of the attractor for the Dirac equatitre model with the mean field interaction. We
will show that under rather general assumptions the attractor coincidetheisiet of all solitary waves.

According to Bohr’s postulates [Boh13], an unperturbed electros foirever along certaistationary orbit which
we denotelE) and callquantum stationary stateOnce in such a state, the electron has a fixed value of ergrgy
with the energy not being lost via emitted radiation. Under a perturbation lecr@ can jump from one quantum
stationary state to anotheE_) — |E. ), radiating (or absorbing) a quantum of light. Bohr’s postulate suggests the
dynamical interpretation of Bohr’s transitions as a long-time asymptotics

Pt) — [Ex), t—dfw (1.1)

for any trajectory(t) of the corresponding dynamical system, where the limiting st&tesdepend on the trajectory.
Then thequantum stationary stateshould be viewed as points of taéobal attractor.

At first glance, the global attraction (1.1) seems incompatible with the energecvation and time reversibility
of Hamiltonian systems. We intend to verify that such asymptotics in principlecasilge for nonlinear Hamiltonian
field equations. In this paper, we verify this asymptotics for equations aicype.

Developing de Broglie’s ideas, Sditinger identified quantum stationary states of en@&gyith the solutions of
type

Pixt) =e EMp(x),  xeRS. (1.2)

Then the Schirdinger equation

2
ihdW = HY = —%A¢+V(x)¢, W=y(xt) eC, xeR3 (1.3)

becomes theigenvalue problem #(x) = HY(x). One of the original Sclidinger’s ideas [Sch26a] was to identify the
integers in the Debye-Sommerfeld-Wilson quantum rules with the integersgairigime eigenvalue problems for PDESs.

For the case of thizee particles this identification agrees with the de Broglies wave functjgr,t) = ¢P>/e—Et/h
wherep € R3 is the momentum of the particle. For theund particlesn an external potential, the identification (1.2)
reflects the fact that the space is “twisted” by the external field, while the tmains “free”.

Thus, the reason for Sabdinger’s choice of quantum stationary states in the form (1.2) seems i@ mlge-
braic. At the same time, the attraction (1.1) suggests the dynamical interpreghtioen quantum stationary states as
asymptotic states in the long time limit, that is,

WX ) ~ @, (X)ET@ t— too, (1.4)

Such asymptotics should hold for each finite charge solution. The asymptbtigse (1.4) are generally impossible
for the linear autonomous equation (1.3) because of the superpositiaipfgin The asymptotics would mean that
the solitary waves (1.2) form the global attractor for the coupled nonlileamvell-Schibdinger and Maxwell-Dirac
systems.

An adequate description of “quantum jumps” in an atom requires that wadmmthe equation for the electron
wave function (Schirdinger or Dirac equation) coupled to the Maxwell system which govemgrtie evolution of the



four-potentialA¥(x,t) = (¢ (x,t),A(x,t)). The corresponding Maxwell-Sabtinger system was initially introduced by
Schiddinger in [Sch26b]. Its global well-posedness was considered irBESN The results on local existence of solu-
tions to the Dirac-Maxwell system were obtained in [Bou96]. The coupletems aréJ(1)-invariant with respect the
(global) gauge grougy(x),A(x)) — (@(x)e'®,A¥(x)), B € R. Respectively, one might expect the following natural
generalization of asymptotics (1.4) for solutions to the coupled Maxwellésiamger or Maxwell-Dirac equations:

(WX, 1), AH(x, 1)) ~ (pu(x)e L AL (X)),  t— o (1.5)

The asymptotics (1.5) would mean that the set of all solitary waves forms algltitactor for the coupled system. The
asymptotics of this type are not available yet in the context of coupled systems

2 Model and the result

In the present paper we consider the Dirac equation with the mean fieldciimera

iP(xt) = (—ia-O+pmy+pX)F((p,W(-1))), WeCh xeR3 (2.1)

wherea -0 = z?zlaja,-, the Hermitian 4x 4 matricest; andp satisfy{a;,ax} = 28jl, {aj,B} = 0, B2 = 1. We write

(p,W(-,1)) = /3 pT (X)W (x,t) d®x, wherep is a spinor-valued coupling function from the Schwartz class:
R

|er®ich),  pz0, P =lpr...Pl.

o[

P4
P
Assumption 2.1. F(2) = a(|z?)z, with a(s) = T as*, s> 0, wherea, € R, p > 2, anday, # 0.
k=0

Since one hak (€%2) = €°F (z) for 8 € R, ze C, equation (2.1) i&J(1)-invariant, whereJ(1) stands for the unitary
group€®, 8 ¢ R mod 2t By the Nother theorem, the charge functior@(W) = [s |W|?d3x is conserved.

Equation (2.1) is the simplest model sharing the following features with the Mi&kdirac system, which we
consider the key for global attraction to solitary waves: The modelttassymmetry; It is dispersive; It is nonlinear.
The first feature allows for solitary waves, while the last two featuresemgonsible for the “friction by dispersion”
mechanism: The nonlinearity moves the perturbations into the continuouswspeatithe linearized equation, and
thereafter the perturbations are dispersed to infinity. Let us also mentibthéhenodelling of the interaction of the
matter with gauge fields in terms of local self-interaction takes its origin backléasitas early as [Sch51], where the
Lorentz-invariant nonlinear Klein-Gordon equation originally appeared

Definition 2.2. The space of states of finite charge4s = L?(R3 C%), with the standard norm denoted fpy]|, 2.

Equation (2.1) formally can be written as a Hamiltonian system with the phase gpad(t) = JDH (W), where
DA is the variational derivative with respect to &g Imyy, p=1, ..., 4, of the Hamiltonian

MW =5 [ W(—ia-0+pmedxrU(e.u), W= . B

Let 7(§) = a-E+Pm, & € R3. Sinqe@(&) is self-adjoint andZ(£)2 = £2 4 n®, its eigenvalues are: /2 + ne.

Define the projectorBl, (§) = %(H: \/‘0:2(%) onto the corresponding eigenspaces, and dgnoté) := M. (§)p(§).

Assumption 2.3. (i) ForanyA > 0,p, (§) andp_(&) do not vanish identically on the spheég = A.
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(i) The function

[ AT (wta-E+Bm)PE) d¥
OW) = o™ _gz_nP (2n)? (2:2)

is nonzero for alto € [—m, m|, except perhaps at one point which will be denatgd= [—m, m].

Remark2.4. Note that limitso(m— 0), o(—m+-0) exist.

Let us give examples of such functiopss .7 (R3,C*%). We take a spherically symmetric functignsuch that
p(E) #£0 forE #£ 0, with p(€) being an eigenvector @ (since is Hermitian and3? = 1, its eigenvalues are1). Then

P+(8)[2=3p"(8) (1 f/?%)p(i), hence

[ J@PPa [ @ - —m)pEdes0 Ao

&[=A V&2 + P
The integral of the term witlx - § dropped out sincg(&) is spherically symmetric.

Let us now consideo(w). Due top being spherically symmetri@ - £-term cancels out from the integration in
(2.2). Since we require th@t &) be an eigenvector @, one ha()*(w+ Bm)p(E) = (w+m)p(&)*p(§), hence the
expression under the integral in (2.2) is sign-definite foradt [—m, m] except atw = m or atw = —m. Therefore,
o(w) does not vanish op-m, m| except at one of the endpoints.

Definition 2.5. The solitary waves of equation (2.1) are solutions of the far(r,t) = (X)€Y, wherew € R,
@y(X) € 2. The solitary manifold is the s&= {(pw: Qu(X)e'? is a solitary wavé cZ.

Forwe Ct ={we C: Imw > 0}, introduce

5(8,00) = (‘”tg'f;f??@, £(x,0) = L[5, 0)]. 2.3)

% (x,w) is an analytic function ofo € C* with the values in# (R3,C#). One can show that for anyc R3, 3(x, w) can
be extended to the real lirec R as the boundary trace (in the sense of tempered distributions):

Z(X,w) = lim Z(x,w+ig), weR. (2.4)

e—0+
One hag(,w) € Z forwe (—m,m). Forw=+m, (-,w) € 2 only whenp. (0) = 0.

Proposition 2.6. Let Assumptions 2.1 and 2.3 be satisfied. Then there are no nonzeroyselitee solutions t¢2.1)
for w ¢ [—-m,m]. For w € (—m,m), there is a nonzero solitary wawg,(x)e'®* if and only if there is G= C\0 such that

o(w)a(|Co(w)|?) =1, (2.5)
with a(-) from Assumption 2.1. One hag(x) = CZ(x,w). For w= +m, @,(x) € 2" only whenp. (0) = 0.
Remark2.7. Due to Assumption 2.1, the s&from Definition 2.5 is invariant under multiplication kg, 8 < R.
Generically, the solitary manifol8 is two-dimensional. It may contain disconnected components.
Remark2.8 SinceF (0) = 0, the zero solitary wave is an elementformally corresponding to any € R.
Remark2.9. It is possible that for some equation (2.5) has nonzero ro@s < C of different magnitude; then there
are solitary wave solutions corresponding to each of these roots.

Definition 2.10. Fix € > 0 andx € C Omp(R3 ), 0<x <1,x(x)=1for|x| <1, with supgx in the ball of radius 2. Denote
by % the space?” endowed with the metrigW||» = S ren 2~ R|X (X/R)W(X) ||-¢, where the norm in the Sobolev space
HSis given by|[y||ns = [[(mP — )%y 2.



The Sobolev Embedding Theorem implies that the embedding % is compact.

Theorem 2.11(Main Theorem) Assume that the nonlinearity(B) is as in Assumption 2.1 and that the coupling
functionp(x) satisfies Assumption 2.3. Then for almy< 2" there is a global solutionp(t) € C(R, .2") to equation
(2.1), such thatp|_, = Wo, which converges t8in the space?:

lim disty (Y(t),S) =0, where disty (Y,S) :=inf |[Q —§||» .
t—doo se€S

Figure 1. Fott — +oo, a finite charge solutioy(t) approaches the global attractor which coincides with the set of all
solitary wavesS.

We work in theL? setting because of the absence of existence results for finite energipsaluAs a result, the
convergence to the attractor holds just beldtyin local H~¢-norm. The convergence ®is due to the “friction by
dispersion”: the nonlinearity carries the excess energy into the consrapmectrum, where it is subsequently dispersed
to infinity, and the remaining part of the solution settles to one of the nonlineanstites (or zero). By the Titchmarsh
Convolution Theorem (see [Tit26] and [Yos80]), this process can stg when the time-spectrum of the solution
consists of the single frequency, that is, when the limiting solution coincidesawitimlinear solitary wave (a nonlinear
Schiddinger eigenstate). It is only for such states that the energy tramefarléwer harmonics into the continuous
spectrum (thespectral inflation is absent.

Let us comment on our methods. We follow the path developed in [KKO7, KKB&0]: we prove the absolute
continuity of the spectral density for large frequencies, use the comgsscamgument to extract the omega-limit trajec-
tories, and show that these trajectories have the finite time spectrum. Theseweuritchmarsh Convolution Theorem
to pinpoint the spectrum to a single frequency. Let us note that the Titchrtteesrem is only applicable if we assume
thatF admits a real-valued polynomial potential (Assumption 2.1).

3 Conclusion

We demonstrated that in a particular nonlinear dispersive equation, Whesezation is the Dirac equation, the conver-
gence to Sclidinger states for long positive and negative times takes place as a gense®f “friction by dispersion”,
so that the solution settles to one of the nonlinear eigenstates (or to zerodnyeture that a similar consideration will
allow to prove convergence to nonlinear eigenstates in systems suchphsccMaxwell-Dirac equations, providing a
dynamical description of Bohr’s “quantum jumps”.
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