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Abstract. We consider aU(1)-invariant nonlinear Dirac equation, interacting with itself via the mean field mechanism. We analyze the long-

time asymptotics of solutions and prove that, under certain generic assumptions, each finite charge solution converges ast → ±∞ to the two-

dimensional set of all “nonlinear eigenfunctions” of the formφ(x)e−iωt . This global attraction is caused by the nonlinear energy transfer from

lower harmonics to the continuous spectrum and subsequent dispersive radiation. The research is inspired by Bohr’s postulate on quantum tran-

sitions and Schr̈odinger’s identification of the quantum stationary states to the nonlinear eigenfunctions of the coupledU(1)-invariant Maxwell-

Schr̈odinger and Maxwell-Dirac equations.
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1 Introduction. Bohr’s transitions as global attraction

In the present paper we continue our research on the global attraction tosolitary wave solutions inU(1)-invariant
dispersive nonlinear systems. Our aim is a dynamical interpretation of “quantum jumps” postulated by N. Bohr in 1913
to explain the stability of the Rutherford model of the atom (1911).

The long time asymptotics for nonlinear field theory equations, and in particularthe nonlinear Klein-Gordon equa-
tion, have been the subject of intensive research, starting with the pioneering papers by Segal [Seg63], Strauss [Str68],
and Morawetz and Strauss [MS72], where the nonlinear scattering and the local attraction to zero solution were con-
sidered. The orbital stability of solitary wave solutions of nonlinear Schrödinger and Klein-Gordon equations is well-
understood (see [GSS87]), and there is presently an active research on local attraction to solitary waves, orasymptotic
stability [BS03, Cuc08].

Traditionally, the Dirac equation has presented difficulties. The existence of solitary waves in the nonlinear Dirac
equation was proved in [CV86]. The existence of solitary waves in the Maxwell-Dirac system is proved in [EGS96].
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The stability of solitary waves with respect to a particular class of perturbations was analyzed in [SV86]. The spectral
stability of small amplitude solitary waves of a particular nonlinear Dirac equationin one dimension, known as the
massive Gross-Neveu model [GN74, LG75], has been confirmed numerically in [CP06]. Neither the orbital stability
nor asymptotic stability of solitary waves is presently understood in the contextof the Dirac equation.

The next question is related to the structure of a global attractor of all finite energy solutions. Global attraction
to static, stationary solutions in dispersive systemswithout U(1) symmetrywas first established in [Kom95, KSK97,
Kom99, KS00]. The attraction of any finite energy solution to the set of all solitary waves in the context of the Klein-
Gordon equation coupled to one and to several nonlinear oscillators was proved in [KK07, KK10]. In [KK10], we
generalized this result for the Klein-Gordon field coupled to several oscillators. In [KK08], a similar result was gen-
eralized to a higher dimensional setting for the Klein-Gordon equation with the mean field interaction. In the present
paper, we consider the structure of the attractor for the Dirac equation, inthe model with the mean field interaction. We
will show that under rather general assumptions the attractor coincides withthe set of all solitary waves.

According to Bohr’s postulates [Boh13], an unperturbed electron runs forever along certainstationary orbit, which
we denote|E〉 and callquantum stationary state. Once in such a state, the electron has a fixed value of energyE,
with the energy not being lost via emitted radiation. Under a perturbation, the electron can jump from one quantum
stationary state to another,|E−〉 7−→ |E+〉, radiating (or absorbing) a quantum of light. Bohr’s postulate suggests the
dynamical interpretation of Bohr’s transitions as a long-time asymptotics

ψ(t) −→ |E±〉, t →±∞ (1.1)

for any trajectoryψ(t) of the corresponding dynamical system, where the limiting states|E±〉 depend on the trajectory.
Then thequantum stationary statesshould be viewed as points of theglobal attractor.

At first glance, the global attraction (1.1) seems incompatible with the energy conservation and time reversibility
of Hamiltonian systems. We intend to verify that such asymptotics in principle are possible for nonlinear Hamiltonian
field equations. In this paper, we verify this asymptotics for equations of Dirac type.

Developing de Broglie’s ideas, Schrödinger identified quantum stationary states of energyE with the solutions of
type

ψ(x, t) = e−iEt/h−ψ(x), x∈ R
3. (1.2)

Then the Schr̈odinger equation

i~∂tψ = Hψ := − ~
2

2m
∆ψ+V(x)ψ, ψ = ψ(x, t) ∈ C, x∈ R

3, (1.3)

becomes theeigenvalue problem Eψ(x) = Hψ(x). One of the original Schrödinger’s ideas [Sch26a] was to identify the
integers in the Debye-Sommerfeld-Wilson quantum rules with the integers arising in the eigenvalue problems for PDEs.

For the case of thefree particles, this identification agrees with the de Broglies wave functionψ(x, t) = eip·x/h−e−iEt/h− ,
wherep∈ R

3 is the momentum of the particle. For thebound particlesin an external potential, the identification (1.2)
reflects the fact that the space is “twisted” by the external field, while the time remains “free”.

Thus, the reason for Schrödinger’s choice of quantum stationary states in the form (1.2) seems to be rather alge-
braic. At the same time, the attraction (1.1) suggests the dynamical interpretationof the quantum stationary states as
asymptotic states in the long time limit, that is,

ψ(x, t) ∼ φω±(x)e−iω±t , t →±∞. (1.4)

Such asymptotics should hold for each finite charge solution. The asymptoticsof type (1.4) are generally impossible
for the linear autonomous equation (1.3) because of the superposition principle. The asymptotics would mean that
the solitary waves (1.2) form the global attractor for the coupled nonlinearMaxwell-Schr̈odinger and Maxwell-Dirac
systems.

An adequate description of “quantum jumps” in an atom requires that we consider the equation for the electron
wave function (Schr̈odinger or Dirac equation) coupled to the Maxwell system which governs the time evolution of the
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four-potentialAµ(x, t) = (ϕ(x, t),A(x, t)). The corresponding Maxwell-Schrödinger system was initially introduced by
Schr̈odinger in [Sch26b]. Its global well-posedness was considered in [GNS95]. The results on local existence of solu-
tions to the Dirac-Maxwell system were obtained in [Bou96]. The coupled systems areU(1)-invariant with respect the
(global) gauge group

(

ψ(x),Aµ(x)
)

7→
(

φ(x)e−iθ,Aµ(x)
)

, θ ∈ R. Respectively, one might expect the following natural
generalization of asymptotics (1.4) for solutions to the coupled Maxwell-Schrödinger or Maxwell-Dirac equations:

(

ψ(x, t),Aµ(x, t)
)

∼
(

φ±(x)e−iω±t ,Aµ
±(x)

)

, t →±∞. (1.5)

The asymptotics (1.5) would mean that the set of all solitary waves forms a global attractor for the coupled system. The
asymptotics of this type are not available yet in the context of coupled systems.

2 Model and the result

In the present paper we consider the Dirac equation with the mean field interaction:

iψ̇(x, t) =
(

− iααα ·∇+βm
)

ψ+ρ(x)F(〈ρ,ψ(·, t)〉), ψ ∈ C
4, x∈ R

3, (2.1)

whereααα ·∇ = ∑3
j=1 α j∂ j , the Hermitian 4×4 matricesα j andβ satisfy{α j ,αk}= 2δ jkIII , {α j ,β}= 000, β2 = III . We write

〈ρ,ψ(·, t)〉 =
Z

R3
ρ†(x)ψ(x, t)d3x, whereρ is a spinor-valued coupling function from the Schwartz class:

ρ =
[ ρ1

. . .
ρ4

]

∈ S (R3,C4), ρ 6≡ 000, ρ† = [ρ̄1, . . . , ρ̄4].

Assumption 2.1. F(z) = a(|z|2)z, with a(s) =
p

∑
k=0

aksk, s≥ 0, whereak ∈ R, p≥ 2, andap 6= 0.

Since one hasF(eiθz) = eiθF(z) for θ ∈R, z∈C, equation (2.1) isU(1)-invariant, whereU(1) stands for the unitary
groupeiθ, θ ∈ R mod 2π. By the N̈other theorem, the charge functionalQ (ψ) =

R

R3 |ψ|2d3x is conserved.
Equation (2.1) is the simplest model sharing the following features with the Maxwell-Dirac system, which we

consider the key for global attraction to solitary waves: The model hasU(1)-symmetry; It is dispersive; It is nonlinear.
The first feature allows for solitary waves, while the last two features areresponsible for the “friction by dispersion”
mechanism: The nonlinearity moves the perturbations into the continuous spectrum of the linearized equation, and
thereafter the perturbations are dispersed to infinity. Let us also mention that the modelling of the interaction of the
matter with gauge fields in terms of local self-interaction takes its origin back to atleast as early as [Sch51], where the
Lorentz-invariant nonlinear Klein-Gordon equation originally appeared.

Definition 2.2. The space of states of finite charge isX = L2(R3,C4), with the standard norm denoted by‖ · ‖L2.

Equation (2.1) formally can be written as a Hamiltonian system with the phase space X , ψ̇(t) = J DH (ψ), where
DH is the variational derivative with respect to Reψµ, Imψµ, µ= 1, . . . , 4, of the Hamiltonian

H (ψ) =
1
2

Z

R3
ψ†(− iααα ·∇+βm

)

ψd3x+U(〈ρ,ψ〉), ψ† = [ψ̄1, . . . , ψ̄4].

Let D̂(ξ) = ααα · ξ + βm, ξ ∈ R
3. SinceD̂(ξ) is self-adjoint andD̂(ξ)2 = ξ2 + m2, its eigenvalues are±

√

ξ2 +m2.

Define the projectorsΠ±(ξ) = 1
2

(

1± D̂(ξ)√
ξ2+m2

)

onto the corresponding eigenspaces, and denoteρ̂±(ξ) := Π±(ξ)ρ̂(ξ).

Assumption 2.3. (i) For anyλ > 0, ρ̂+(ξ) andρ̂−(ξ) do not vanish identically on the sphere|ξ| = λ.
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(ii ) The function

σ(ω) =
Z

R3

ρ̂†(ξ)(ω+ααα ·ξ+βm)ρ̂(ξ)

ω2−ξ2−m2

d3ξ
(2π)3 (2.2)

is nonzero for allω ∈ [−m,m], except perhaps at one point which will be denotedωσ ∈ [−m,m].

Remark2.4. Note that limitsσ(m−0), σ(−m+0) exist.

Let us give examples of such functionsρ ∈ S (R3,C4). We take a spherically symmetric functionρ such that
ρ̂(ξ) 6= 0 for ξ 6= 0, with ρ̂(ξ) being an eigenvector ofβ (sinceβ is Hermitian andβ2 = 1, its eigenvalues are±1). Then
|ρ̂±(ξ)|2 = 1

2ρ̂†(ξ)
(

1± ααα·ξ+βm√
ξ2+m2

)

ρ̂(ξ), hence

Z

|ξ|=λ
|ρ̂±(ξ)|2d2Ω ≥

Z

|ξ|=λ
ρ̂(ξ)†(1− m

√

ξ2 +m2

)

ρ̂(ξ)d2Ω > 0, λ > 0.

The integral of the term withααα ·ξ dropped out sincêρ(ξ) is spherically symmetric.
Let us now considerσ(ω). Due toρ̂ being spherically symmetric,ααα · ξ-term cancels out from the integration in

(2.2). Since we require thatρ̂(ξ) be an eigenvector ofβ, one haŝρ(ξ)∗(ω + βm)ρ̂(ξ) = (ω±m)ρ̂(ξ)∗ρ̂(ξ), hence the
expression under the integral in (2.2) is sign-definite for allω ∈ [−m,m] except atω = m or at ω = −m. Therefore,
σ(ω) does not vanish on[−m,m] except at one of the endpoints.

Definition 2.5. The solitary waves of equation (2.1) are solutions of the formψ(x, t) = φω(x)e−iωt , whereω ∈ R,
φω(x) ∈ X . The solitary manifold is the setS=

{

φω: φω(x)e−iωt is a solitary wave
}

⊂ X .

For ω ∈ C
+ = {ω ∈ C: Imω > 0}, introduce

Σ̂(ξ,ω) =
(ω+ααα ·ξ+βm)ρ̂(ξ)

ω2−ξ2−m2 , Σ(x,ω) = F −1
ξ→x

[

Σ̂(·,ω)
]

. (2.3)

Σ(x,ω) is an analytic function ofω ∈ C
+ with the values inS (R3,C4). One can show that for anyx∈ R

3, Σ(x,ω) can
be extended to the real lineω ∈ R as the boundary trace (in the sense of tempered distributions):

Σ(x,ω) = lim
ε→0+

Σ(x,ω+ iε), ω ∈ R. (2.4)

One hasΣ(·,ω) ∈ X for ω ∈ (−m,m). Forω = ±m, Σ(·,ω) ∈ X only whenρ̂±(0) = 0.

Proposition 2.6. Let Assumptions 2.1 and 2.3 be satisfied. Then there are no nonzero solitary wave solutions to(2.1)
for ω /∈ [−m,m]. For ω ∈ (−m,m), there is a nonzero solitary waveφω(x)e−iωt if and only if there is C∈ C\0 such that

σ(ω)a(|Cσ(ω)|2) = 1, (2.5)

with a(·) from Assumption 2.1. One hasφω(x) = CΣ(x,ω). For ω = ±m,φω(x) ∈ X only whenρ̂±(0) = 0.

Remark2.7. Due to Assumption 2.1, the setS from Definition 2.5 is invariant under multiplication byeiθ, θ ∈ R.
Generically, the solitary manifoldS is two-dimensional. It may contain disconnected components.

Remark2.8. SinceF(0) = 0, the zero solitary wave is an element ofS, formally corresponding to anyω ∈ R.

Remark2.9. It is possible that for someω equation (2.5) has nonzero rootsCj ∈ C of different magnitude; then there
are solitary wave solutions corresponding to each of these roots.

Definition 2.10. Fix ε > 0 andχ∈C∞
comp(R

3), 0≤ χ≤ 1, χ(x)≡ 1 for |x|< 1, with suppχ in the ball of radius 2. Denote
byY the spaceX endowed with the metric‖ψ‖Y := ∑R∈N 2−R‖χ(x/R)ψ(x)‖H−ε , where the norm in the Sobolev space
Hs is given by‖ψ‖Hs = ‖(m2−∆)s/2ψ‖L2.
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The Sobolev Embedding Theorem implies that the embeddingX ⊂ Y is compact.

Theorem 2.11(Main Theorem). Assume that the nonlinearity F(z) is as in Assumption 2.1 and that the coupling
functionρ(x) satisfies Assumption 2.3. Then for anyψ0 ∈ X there is a global solutionψ(t) ∈ C(R,X ) to equation
(2.1), such thatψ|t=0 = ψ0, which converges toS in the spaceY :

lim
t→±∞

distY (ψ(t),S) = 0, where distY (ψ,S) := inf
sss∈S

‖ψ−sss‖Y .

S

ψ(t)

ψ|t→+∞
ψ|t→−∞

Figure 1. Fort →±∞, a finite charge solutionψ(t) approaches the global attractor which coincides with the set of all
solitary wavesS.

We work in theL2 setting because of the absence of existence results for finite energy solutions. As a result, the
convergence to the attractor holds just belowL2, in local H−ε-norm. The convergence toS is due to the “friction by
dispersion”: the nonlinearity carries the excess energy into the continuous spectrum, where it is subsequently dispersed
to infinity, and the remaining part of the solution settles to one of the nonlinear eigenstates (or zero). By the Titchmarsh
Convolution Theorem (see [Tit26] and [Yos80]), this process can onlystop when the time-spectrum of the solution
consists of the single frequency, that is, when the limiting solution coincides witha nonlinear solitary wave (a nonlinear
Schr̈odinger eigenstate). It is only for such states that the energy transfer from lower harmonics into the continuous
spectrum (thespectral inflation) is absent.

Let us comment on our methods. We follow the path developed in [KK07, KK08, KK10]: we prove the absolute
continuity of the spectral density for large frequencies, use the compactness argument to extract the omega-limit trajec-
tories, and show that these trajectories have the finite time spectrum. Then we use the Titchmarsh Convolution Theorem
to pinpoint the spectrum to a single frequency. Let us note that the Titchmarsh theorem is only applicable if we assume
thatF admits a real-valued polynomial potential (Assumption 2.1).

3 Conclusion

We demonstrated that in a particular nonlinear dispersive equation, whoselinearization is the Dirac equation, the conver-
gence to Schr̈odinger states for long positive and negative times takes place as a consequence of “friction by dispersion”,
so that the solution settles to one of the nonlinear eigenstates (or to zero). Weconjecture that a similar consideration will
allow to prove convergence to nonlinear eigenstates in systems such as coupled Maxwell-Dirac equations, providing a
dynamical description of Bohr’s “quantum jumps”.
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