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Abstract

We consider thdJ(1)-invariant Klein-Gordon equation in dimension > 3, self-interacting via the mean field
mechanism in finitely many regions. We prove that, under certain genssim#ptions, each solution converges as
t — oo to the two-dimensional set of all “nonlinear eigenfunctions” of the fgrfm)e™““*. The proof is based on the
analysis of omega-limit trajectories. The Titchmarsh Convolution The@lws us to prove that the time spectrum of
any omega-limit trajectory of each finite energy solution consists of a spwjteé. This proves the convergence to the
attractor in local sub-energy norms.

1 Introduction

The present paper continues the series of papers on the ghtdaetion to solitary waves ifJ(1)-invariant dispersive
systems. In [1], we proved such an attraction for the Kleorddn field coupled to one nonlinear oscillator. In [3],
we generalized this result for the Klein-Gordon field codple several oscillators. In [2], we considered the higher-
dimensional model: the Klein-Gordon field with the nonlin@aean field interaction. The ultimate goal is to prove
the “soliton resolution conjecture”, which could be stagedfollows: for large times, any finite energy solution can be
approximated by solitary waves and small dispersive wa@age expects this effect to take place in a generic nonlinear
dispersive system.

In this paper, we establish the global attraction to the &atlsolitary waves for thdJ(1)-invariant Klein-Gordon
field ¢ (z, t) with the mean field self-interaction &t € N different locations:

N

P(x,t) = Ap(x,t) — m2(x, t) + pr(x)FI((pI,w(~,t)>), xr€R™ n>3, teR. (1.1)
=1

Above, p;(x) = p(z — X7), with X; € R™, 1 < I < N, andp a smooth coupling function from the Schwartz class. We
will show that under rather mild assumptions any finite epeigution converges to the set of solitary wave solutions of
the form¢ (x)e~#w+t,

We follow the cairns of the approach we developed in [1, 2, T¥e main ideas are the absolute continuity of the
spectral density for large frequencies, compactness aguta extract the omega-limit trajectories, and then treges
of the Titchmarsh Convolution Theorem to pinpoint the speuntto just one frequency. The results are presented in
Section 2. The proof follows [2], where we proved convergeta solitary waves for the Klein-Gordon equation with
mean field self-interaction at just one location. Consitigrmean field interaction at several regions required sobata
modification in the proof of the absolute continuity of thenéi-spectrum for large frequencies (Section 3) and in the
application of the Titchmarsh Convolution Theorem (Sat#d. For the completeness, we also give a proof of the local
energy decay for the free Klein-Gordon equation; see Appehd

The proof contains two new ideas, which allow to tackle (1the local integrability of the Fourier transform of
finite energy solutions restricted onto the mass hypersefa+ m? = w? (see Proposition 3.3 and Remark 3.5) and
the analytic continuation of the momentum into the complemdin (see the proof of Proposition 3.8). These ideas are
developed in Section 3.
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2 Main results

We consider th&J(1)-invariant Klein-Gordon equation with the mean field selferaction atV points:

N
’(Z}.(x?t) = Al/)(x»t) - me(x7t> + ZPI(@FI(@IJ/J('J»% HAES Rn» n>=3, te R7 (21)
I=1

where

(p1,9 (1)) =/ pr(x)y(x,t) d .

n

We assume thai;(z) = p(z — X;), whereX; € R", 1 < I < N, andp(x) is a nonzero smooth real-valued function
from the Schwartz clasgi € .7 (R™,R), p # 0.

Remark2.1 Assumptions om could be relaxed, but we will not do this for the sake of simipfi of proofs.

Remark2.2. In the higher-dimensional case, we need to couple the Kisirdon field to nonlinear oscillators using
the mean field mechanism. Contrary to the one-dimensiorsd cansidered in [1, 3], we can no longer use dhe
function coupling, since the finite energy solutions to theilkcGordon equation in higher dimensions are not necigsar
continuous and cannot be considered at a particular point.

Assumption 2.3. We assume that for all < I < N one has
Fr(2) = —VRez1mur(|2]*) = —2u}(|2]?)z, zeC, 1<I<N,

where
Pr
ur(s) = Zu;ﬂqsq, urq € R, urp, >0, and pr>2. (2.2)
q=1

Under Assumption 2.3, equation (2.1)UK1)-invariant since
Fr(e2) = e Fy(2), zeC, 6eR, 1<I<N,

and can formally can be written as a Hamiltonian systérft) = J DH(¥), whereJ is a skew-symmetric matrix,
U = (Rey)(z),Imv(z), Rem(x), Im 7 (z)), with m = 9,¢0. DH = DRe y Im »,Re r,Im = H iS the FEchet derivative of the
Hamilton functional

1

N
HW) =3 / (Inf* + [Vl + m2?) de + 3w ([(pr0)), @ =
I=1

: (2.3)

Let us introduce the phase space of finite energy states fatieq (2.1).
We will use the weighted Sobolev spaces. Denoté b, - the norm inL?(R"). Let (z) = (1 + 22)'/2. Fors € R,
o € R, denote

H3(R",C) = {u € &' (R",C): |[{x)”(m® = A)Zulr2 < oo}; ullmy = (@) (m® — A)2ul[r2.  (2.4)
We will write H® = H§, L2 = HY.
Definition 2.4. Fore > 0, ¢ > 0 denote by2 " © the Banach space of statés= (i), ) with the norm

191, e = 12 + . (2.5)

We will denote2”~¢ = 2,7, 2, = 2°,, 2 = 2. ThenZ = H'(R") x L*(R") is the Hilbert space of states
U = (3, ), with the norm

121% = IVelZe +m? L2 + lImllZe = 117 + 7]z

We fixe > 0 ando > 0 and denote
Y =27 (2.6)
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Equation (2.1) can formally be written as a Hamiltonian sgstith the phase spac®” introduced in Definition 2.4
and the Hamiltoniark (), ) from (2.3), which is a continuous functional c#i.

Lemma 2.5. The embedding?” C % = 2" is compact (for any > 0 ando > 0).

Proof. Let¥; € 27, j € N be a sequence such that
1T ]l < C < oo, jeN. 2.7)

Since 2" is a Hilbert space, we can choose a subsequendg efhich is weakly convergent it®” to some¥, € 2.
Let B%, be an open ball of radiug in R™, centered in the origin. Pick a spherically symmetric fiocth € C3°(BY)
such thate(z) = 1 for || < 1 and monotonically decreasing to zero|as changes froml to 2. Fix R > 1; then
the sequencg¢o(z/R)¥;(x): j € N} is bounded inZ". By the Sobolev embedding theorem, the embeddifige
2 supp ¥ C BEL} C 2 ¢ is compact; hence we can choose a smaller subsequelcgof, denotedjy, k£ € N, such
that p(z/R)¥;, (x) converges in the metrig - || o--- to p(z/R)¥o(x). Note that, for anyl < r < R, p(z/r)¥;, (x)
converges te(x/r)¥o(z), also in the metrid| - || o---. By the diagonalization process, we can choose a yet smaller
subsequence df ;, which we also denot& ;, , k € N, such that for any? > 1 the sequence(z/R)¥ , (x) converges to
plz/R)Woin || - [ o--.

Let us show thafl';, , k € N, converges tdl; in 2. Pickd > 0. Due to the support properties @fone has

I(X = o(2/R)) (¥, — Wo)||2—, < [{z)7 (1 = o(x/R))(T), — Po)ll2 < CR™||T;), — Tollr,  (28)

whereC only depends om and||g||:. SinceV; are uniformly bounded i2”, one can choos&; > 1 large enough
so that the right-hand side of (2.8) is boundedg. At the same time, since(xz/R)¥;, — o(z/R)¥, in the norm of
Z ¢, there isks € N such that|o(x/Rs) (¥, — ¥o)|lo-- < §/2for k > ks. Thus,

W5 = Woll - < (1= o(x/Rs)) (W), — o)l 2, + llo(/Rs)(Vj, — Wo)llor-e <6, Vk >ks.

O
Theorem 2.6(Global well-posedness)Assume that the nonlinearitidg (z), 1 < I < N, satisfy Assumption 2.3.
1. For every¥y = (g, o) € £, the Cauchy problem
{ la ) = A, t) = m(a,1) + il pr(@) Fr((pr (1), 2.9)
(1, ¥)],—o = (0, m0),
has a unique solution such thét= (1, 1)) € C(R, 2").
2. The magh' (t) : W, — U(t) = (¥,)|, is continuous as a mag” — 2 for eacht € R.
3. The values of the energy functional are conserdé@¥ (¢)) = H(¥q), t € R.
4. The followinga priori bound holds:
[Tz <C(Yo), teR. (2.10)

5. ForE € R, denoteZy = {V € 2: H(¥) < E}. ForanyE € RandT > 0, the map
W(t): 25— Ze, (Yo, m) = ($(t),9(1)),
is continuous in the topology o "7, for anye > 0, o > 0, uniformly int € [T, T).

Proof. The local existence is obtained by standard arguments fnencantraction mapping principle. To achieve this,
we use the integral representation for the solutions to #nec@By problem (2.9) fot > 0:

U(t) = Wo(t)Po + N[P](2),

where¥ = (1, 1)) and

NOJ(t) =" | Wolt—s) L,, F.,<<p.?,w<-,s>>>} ds.
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Above, W (t) is the dynamical group for the linear Klein-Gordon equatidrich is a unitary operator in the spagé—¢
for anye > 0. For anys > 0, there exist€’. < oo such that there is a bound

INT®](8) = N W] ()] 2= < Celt| sup [[¥1(s) — Wa(s)[la—e, [t <1, (2.11)

s€[0,t]

which holds for any two function®,, ¥, € C(R, 2"). This bound shows tha¥/[¢] is a contraction operator in
Cy([0,t], Z~¢),e > 0, if t > 0 is sufficiently small. The contraction mapping theorem basethe bound (2.11) on the
nonlinear term allows us to prove the existence and unicgseoka local solution 2", as well as the continuity of the
mapW (¢) in 2" (continuity with respect to the initial data).

Now let us discuss the a priori bound (2.10). Due to Assump®@, adding ta.;(]z|?), 1 < J < N, constants if
necessary (this does not change equation (2.1)), we magnagbat

in(f-:uJ(\z|2) >0, 1<J<N. (2.12)
zE

The conservation of the values of the energy and functidh& obtained by approximating the initial data # with
smooth compactly supported initial data and using the oaitsi of W (¢) in 2~ (which we already know for small times).
The a priori bound (2.10) follows from bounding the nojf|| o~ in terms of the value of the Hamiltonian (2.3), with the
aid of (2.12):

1|2 < 2H(V), WeZ. (2.13)

This bound allows us to extend the existence results foinadld, proving the global well-posedness of (2.9) in the gper

space. The continuity d/(¢) in the topology of2"~¢ for ¢ > 0, follows from the contraction mapping theorem (based

on the bound (2.11)). The continuity in the topology®T® for ¢ > 0 follows from the finite speed of propagation.
More details are in [2]. O

Definition 2.7 (Solitary waves) 1. The solitary waves of equation (2.1) are solutions of trenf

bo(x)e™ ™, where w € R, ¢,,(z) € H(R"). (2.14)

2. The solitary manifold is the s& = {(¢., —iw¢,): w € R}, whereg,, are the amplitudes of solitary waves.

Remark2.8. Due to theU(1)-invariance of equation (2.1), the s&tis invariant under multiplication by’ § € R. Let
us note that for any € R there is a zero solitary wave,, (x) = 0.

Define
Pz, w) = Fen [ﬁl(faw)}v

) —i&- X1 A
S w) = M, 2, E€R", weCTU(—m,m), (2.15)

whereCt = {w € C: Imw > 0}. Note that™;(-,w) is an analytic function of> € C* with the values in# (R™).
Lemma 2.9. There isc > 0 such thai X} (z,w)| < ¢[Imw|~! forw € CT, z € R™.

Proof. Let us show that
€2 +m? —W?| > m|Imw| forall £¢€R", weC. (2.16)

Denotinga = Rew, b = Imw, we have:
€2+ m? — W2 = €2+ m? — a® + b% — 2iab|® = (€2 + m? — a® + b*)% + 4ab°. (2.17)

If a2 < m?/2, (2.17) yields|¢2 + m? — w?|? > (€2 + m? — a® + b?)? > (m?/2 + b?)? > m?2b?; if insteada?® > m?/2,
(2.17) yields|€? + m? — w?|? > 4a?b? > 2m?b?. This proves the inequality (2.16). This inequality allovesta bound

(2.15) by
p(§) d"§ </ Ip)|  d"¢ < ¢
R

£2 4+ m?2 — w? ‘ 2m)" = Jgn m|Imw| (2m)" ~ [Imw|’

12, w)| g/

n
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By Lemma 2.9, for any: € R™, we can extend the functiab; (z,w) to the entire real linev € R as the boundary
trace:
Yr(z,w) = 11%1Jr Yz, w +ie), weR, (2.18)

where the limit holds in the sense of tempered distributions

Define (X1 X0t ,
eI pE dg
= (p1, Ty (-w)) = 1<I,J<N. 2.1
71s@) = (o Zyw) = [ et PR S 1<r < (2.19)
Denote
Z, = {w € R\[-m,m]: p(£) = 0 for some ¢ € R" such that m? + &% = w?}. (2.20)

Proposition 2.10(Existence of solitary wavesAssume thadet; ; o7 (w) # 0 forw € [—m, m] U Z,,, whereo ;(w) is
from(2.19)and Z,, is defined in2.20)
Letw € [-m,m] U Z,. Assume that there are constants € C, 1 < I < N, which satisfy

N
£ ( 3 o—U(w)CJ) — . (2.21)
J=1

To have solitary waves witlv| = m in dimensiom < 4, additionally assume that

/n "’(54” A€ < 0o (2.22)
Then there is a solitary wave solutien, (z)e =% to (2.1), with ¢, (z) such that
N ~
bo(€) = 2= Crpr() (2.23)

62 + m2 _ w2 :
This describes all nonzero solitary wave solution§2d ).

Proof. Substituting the ansatz, (x)e~** into (2.1), we get the following equation @#;:
N
—0 9o () = Adu(x) —m*éu(2) + Y pr(@)Fi((pr, du)),  x €R™
I=1
Therefore, all solitary waves satisfy the relation

(€ +m® —wh) (&) = Y 1) Fi({pr, du)). (2.24)

] =

~
Il

1

Forw € R\([-m,m] U Z,) the relation (2.24) leads tg,, ¢ L?(R") (unlessp,, = 0). We conclude that there are no
nonzero solitary waves fas € R\ ([—m, m|U Z,).
Let us consider the casee [—m,m] U Z,. From (2.24), we see that

Z 52 —|—m2 2 Fr({p1, dw))- (2.25)

Using the functions; (z, w) defined in (2.15), we can writg,, (z) = Z?[:l C1 X (z,w), with C; € C. Substituting this
ansatz into (2.25), we can write the condition@nin the following form:

N N N
S o @Fs( 3 ok @)Ci) = 3 o)y, (2.26)
J=1 K=1 J=1

whereo;;(w) is defined in (2.19). Since we assumed that(w) is nondegenerate far € [—m, m|U Z,, we can rewrite
(2.26) in the form (2.21).
Forn < 4, the finiteness of the energy of solitons corresponding e +m follows from the condition (2.22). O
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Definition 2.11. Foro;;(w) from (2.19) and fol < N’ < N, define
N _ . _ _ ! _
ZJ—{weRHLJC{L”Jﬂﬁﬂ_mﬂ—Ahmgﬁj@ﬂm—O}

Denote

o

* N’ N
L—hg%mZ)U%. (2.27)

Assumption 2.12. Z* is a discrete set of points, autf N ([—m,m]U Z,) = 0.
Above, Z, is defined in (2.20) and’; is defined in (2.27).

Theorem 2.13(Global attraction for Klein-Gordon with mean field intetian). Assume that the nonlinearitids (z),
1 < I < N, satisfy Assumption 2.3. Assume that the coupling funetion and the pointsX;, 1 < I < N, are such
that Assumption 2.12 is satisfied. Then for &y, 7o) € £ the solutiom)(t) to equation(2.1) with the initial data
(1, )],_, = (10, 7o) converges to the solitary manifolglin the space? = 2" ¢, for anye > 0, ¢ > 0:

Jimdist o ((1,9)],,8) =0, (2.28)
wheredist o (¥, S) := Helg | W — sz, with || - [|2 = || - || 5 introduced in(2.5).

Due to the time reversibility of the equation, it suffices toye Theorem 2.13 far — +oo0.
Let us construct examples for which Assumption 2.12 is Batis

Example2.1 Pick p(¢) = A—/2e=5/A with0 < A < 1, so thatZ, = 0; to comply with Assumption 2.12, it suffices
to check thatZ* N [—m,m] = (). For|w| < m, (2.19) yields:

N 1p(&)I? dne | X — X, HEPIpO?  dne §Hp(e)1? dng
o17(w) ~ /Rn &2 +m?2 —w? (2m)" B 2 /Rn &2 +m?2 —w? (2m)" +0 (/Rn 52—|—m2—w2> ’

where the factor of /n is the mean value afos? ¢ integrated over the sphere, withthe angle betweefiand X; — X ;.
Then

o15(w) & ap(w) 4+ ba(w)| X1 — Xy* + ealw, [ X1 — X1),

where Y s .
0 =1 /A T]nfldn 0 o1 A nn+1dn

arw) =vols™ ) [

)
o 772_|_m2_w2

o n—1
bA(CU) = VOI(S )A m
Let us show that genericalljet o7 7 (w) # 0 for |w| < m, as long as\ > 0 is sufficiently small. For aljw| < m one has
balw) — (A2), allX=XsD) — O(A%), uniformly inw € [—m,m]. One has:

ap(w) ap (w)

_ ba(w) ca(w, Ary)
det o1y (w) = an(w)” det (UU * ai(w)AfJ T AaA(w)U )»

whereU;; = 1 for all I, J betweenl and N, andA;; = | X; — X;|. If the number of oscillatorgV does not exceed
the dimensiom, then the quantitieg\;; for different pairs(Z, J), with I # J, could be considered as independent
variables (once they satisfy the triangle inequalitits; + A;x > A;k), and then it follows thafdet o;(w)| ~
p(Arg)an(w)ba(w)N=1(1+0(A)), wherep(A; ;) is a polynomial ofA; ; of degreeN —1, is nonzero for a generic choice
of Ay (satisfying the triangle inequalities). The same is trueafbminors. We conclude that genericalfy N[—m, m] =

(, in agreement with Assumption 2.12.

Example2.2 Let us assume thét> 0 andX;, 1 < I < N, are such that the matrix
Sjjzeikeli(XI_X‘]), e :(1,0,...,0) ESn_l,

is non-degenerate and all d' x N’ minors,1 < N’ < N, are also non-zero. Let

pu(©) = () jﬁf(ij) b€
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wherep € C5,,,([=1,1]), ol _,,, > 0, [ o(s)ds = 1. Sincep, is strictly positive, one ha&, = (); to comply with

Assumption 2.12, it suffices to ensure thgtn [—m, m] = 0. If ¢ > 0 is sufficiently small, ther.(£) is concentrated in
a sufficiently small neighborhood ¢f= ke;, hence forlw| < m one has

L[ KX ()R dne p©I*  d"¢
O'IJ(UJ) = /n 2+ m?—w? (27‘(‘)” =51 /]R” &2 +m? —w? (27-()n +O(E)a

and therefore&Z* N [—m, m] = 0 if € > 0 is sufficiently small.

Remark2.14 If Assumption 2.12 is not satisfied, then the attractor ctnédanore complicated than the set of all solitary
waves of the form (2.14). In particular, there could be “nftdtjuency solitary waves” (solitary waves with several
discrete frequencies), which would also be points of thaetibr. Such examples have been constructed in [2].

3 Absolute continuity for large frequencies

According to Theorem 2.6L), for any pair(vo, 7o) € H*(R™) x L*(R™) there exists a global solution(z, t), to the
Cauchy problem (2.1) with the initial datay, 7o),

(¥, ¥),_o = (tho,m0) € H'(R™) x L*(R™). (3.1)

By Theorem 2.64), .
sup 1%, )], |2 < oo (3.2)
€

Definex(z,t) as the solution to the following Cauchy problem:

X(xvt) = AX(CL‘J) - m2X(x7t)v (X’X)|t:0 = (%ﬂfo)» (3-3)

where(vy, mo) is the initial data from (3.1). Sincg(¢) is a finite energy solution to the free Klein-Gordon equation

sup [|(x, X)|, |2 < oc. (3.4)
teR
Definep(x,t) by
0, t <0,
Hlet) = { bat) ~x(@ ), 20 @9
Theny(z, t) satisfies
N
B, t) = Ap(x,t) —mPo(z,t) + Y pr(@) fi(t),  (£,9)],2o = (0,0), (3.6)
I=1

wheref;(t) := O(t)Fr({ps,¥(-,t))). Note that(p;, 1 (-, t)) belongs taC,(R) by (3.2). Hence,
sup |fi(t)] < o0, 1<T<N. 3.7)
teR
By (3.2) and (3.4)p(t) = O(t)(v(t) — x(¢)) satisfies
sup [|(, @)1, | 2 < o0 3.8)
teR
Let us consider the complex Fourier transformegi:, ¢):
Pz, w) = Fiowle(x, t)] = / e“to(r,t)dt, weCr, xeR" (3.9
0

whereC* := {z € C: Imz > 0}. Due to (3.8)5(-,w) is an H!-valued analytic function ab € C*. Equation (3.6)
for ¢ implies that

N
_w2¢(xaw) = A(ﬁ(JE,(JJ) - m2¢(x7w) + pr(x)fl(w)7 w € CJF, S Rna
I=1
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where -
Filw) = / GOl () dt,  weCt, (3.10)
0

The solution(z, w) is analytic forw € C* and can be represented by

N
@(va) :ZEI(I,w)f](W), w e CJF, (311)

I=1

with X7 (z,w) from (2.15).
. - SR
Lemma3.1. 1. Foranyw € Randl < I < N, there is the convergengg(w + ie) —— fr(w);
e—0+
&' (R,H(R™))
2. Foranyw € R, ¢(-,w + ie) ; &+, w).
e—0+
7' (R)

Proof. Using f7|,_, = 0, ¢|,., = 0, and the bounds (3.7) and (3.8), one concludesdhétf;(t) o fi(t) and
e—0+

. 7 (R, H"(R™))

€ 30('7t)

. ©(+, t). This finishes the proof. O
e— 04+

Now we can justify the representation (3.11) forc R, if the multiplication in (3.11) is understood in the sen$e o
distributions.

Lemma 3.2. There is the following identity, understood in the sensdsifidutions:

N
oz, w) = Z iz, w) fr(w), weR. (3.12)
I=1

i n i [ ST XIpe) dre
Proof. Since we assume that > 3, for eachz € R", the functionX;(z,w) fRn TrmI (ot} oy 1S a smooth

function ofw € R, and hence is a multiplier in the space of tempered distdhstin the variables. The rest of the proof
is based on the relation (3.11) and the convergence stateshima 3.1. O

Forw e C*, let k(w) denote the branch af w? — m? such thafim vw? —m?2 > 0. The functionk(w) is analytic
forw € C*. We extend:(w) ontoC+ by continuity.

Proposition 3.3. For any finite open interval’’ such thatW’ N ([—m,m] U Z,) = () there is a constant, > 0 such
that

N
. ~ 2
/ ‘ Y e RO fi(w)| dQe dw < Ci. (3.13)
Sn=1xW

I=1

Remark3.4. By Lemma 3.1,f;(w) = f1(w + i0).

Remark3.5. Proposition 3.3 essentially states that the restrictido thre mass hypersurfaéé + m? = w? of the space-
time Fourier transform of the source te@f,\[:1 pr(z) fr(t) from (3.6) is locally integrable. Note that this hyperseda
is locally parametrized by € R\[—m, m] and@ = é—l e s

Proof. The Parseval identity applied &z, w + ic) = [~ ¢(z, t)e™! =< dt, e > 0, yields

o0 B ) dw oo Y
| et riitge = [ letolke . e>o.

Sincesup, [l¢(- )|z < oo by (3.8), we may bound the right-hand side @y/¢, with someC; > 0. Taking into
account (3.11), we arrive at the key inequality

N

/OO I ZE{(',W +i€) fr(w +ie)||22 dw < % (3.14)

- I=1
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Figure 1: DomairW¥ € and intervald? andk (V).

Noting that®; (&, w + ie) = e~ 4 X1 5(¢, w + i€), with £ (€, w + i€) defined in (2.15), we rewrite (3.14) as

/ T i&w +i€) i (w + ie)||22 dw = / (1 SEw+ie) ie*’“%(w +i€) é’ﬂf dw < C. (3.15)
- I=1 R7XR I=1
Fix a finite open interval’’ such that¥ N ([—m, m] U Z,) = 0. Denote
We={(Aw):A>0, weW, |w— VA2 +m?| < e} C Ry xR, (3.16)
as on Fig. 1, and also denote
We = {(£,w) € R" x R: (|¢],w) € W CR" x R. (3.17)
Due to the inequality (3.15), the following weaker ineqtyadilso takes place:
N
/we €|2(& w4+ ie)|2‘ ; e IEX1 F (W de) i ‘gfr;iw < 0. (3.18)

Lemma 3.6. There exists a constanl, > 0 such that for any € (0, 1) there is the inequality

2dn¢ dw
< .
2o < Co, (3.19)

N
/A 6|2(§,W+Z’6)‘2‘Ze_ik(w)eg'XIfI(w—"_ie)‘
we I=1

whered; = .

Proof. We are done if we can prove that the difference between (tharsqoots of) the left-hand sides of (3.18) and
(3.19) is bounded by a constant which depend$idibut not one € (0, 1). For brevity, denoté; = f;(w + i€). Using

the triangle inequality in the forfa|| — ||b]|] < ||a — b]|, we get:
1 1
N ’ N ’
~ . i angdw . ) . X 2d"§dw
6\2(§,w+ze)|2‘ e i XIf[‘ - / e|2(§,w+ze)|2‘ e RO Xip | Z 5 7
/ T e | | > @y
We we
1
N 2
. . . 2dn¢ d,
< / | 2(€,w+ i€)|2‘ Z e~k (w)0e- X1 (ez(k(w)ﬂgff)-XI _ 1)f1’ (25):} ) (3.20)
71'

= I=1

We
According to (3.2)f1(t)] = |F1({pr,(-,t)))| is bounded uniformly in time. By (3.10), we know thét| = |f;(w +
i€)] < Ce~!'. We also havee!(F(«)0c—8)-X1 _ 1| < C¢ for (¢,w) € W*, with someC' € R independent om € (0, 1).
Therefore, (3.20) is bounded by

g dwg//\ e‘ﬁ(§)|2 de dwg/. e|ﬁ(€)|2 d"e 2¢ < const, (3.21)
W n

(2m)m « 4m2e2 (2m)n dm?2e2 (2m)"

/A | E(E,w + i)



Andrew Comech:Klein-Gordon with mean field interaction at finitely many points 10

whereconst depends o but not one. Above, we used the express@(f ,w—+ie) = @rmz”(ﬁ (see (2.15)) and
the bound —~
€% +m® — (w+i€)*]* > [Im (€% +m® — (w+i€)?)]* > 4m?e®,  (Lw) e W

The integration inv contributed2e, which is the thickness oW ¢ in the w-direction (see Fig. 1). It follows that the
right-hand side in (3.20) is bounded by a constant indeparate: € (0, 1). This finishes the proof. O

Lemma 3.7. There existy, € (0,1) andC3 > 0 such that
/ 6|§:’(/\9,w +ie) 2 A"l aN > Cs forall weWW, 0cS" ' ec(0,ew).
Wen(Ry x{w})

Proof. First, we note thak (W) is a finite open interval bounded away framsee Fig. 1. Since the functidp(¢)| is
continuous and strictly positive fo¢| € k(W ), there existy, > 0 andcy, > 0 such thatp(€)|? > ey for all € such
that(|¢],w) € W€, e € (0,ew) (cf. (3.16)). Hence, using (2.15),

1500w + i )P AL dA > / A"\ (3.22)
€ ,w i€ > cw T2 — (L :
Wen(Ry x{w}) Wen(Ey x{w})

Pickdw < [k(W)|/2; then, forhg € k(WW), either[Ag — dw, Ao] C (W), or [Ag, Ao+ dw] C k(WW), or both. Therefore,
the integration in\ is over an interval of length at lea§tmin 3 |k’ (w)|. Moreover, forjw — VA2 +m?| < ¢, the
magnitude of the denominator is bounded from above:

N +m? — (wHie)?? = (AW +m? —w? + )2 + dw?e?
< (VA2 +m? —w)? (VA2 +m2 4+ w)? + const €? < const €2,

where the constant in the right-hand side depend&/ohut not one. This shows that the right-hand side of (3.22) is
bounded from below by some constdrt > 0 which depends ol (andey) but not onw, €, or 6. O

Combining Lemmas 3.6 and 3.7, we get:

2dQedw  C
—ik(w)0-X1 0 2
e fr(w +ie < =, 0<e<ew
(D> wrio] G <
We conclude that the set of functions

N

gWEHw:Ze lk(“’ex’f (w + ie), 0<e<ew,
I=1

defined for@ € S"~!, w € W, is bounded in the Hilbert spade?(S*~! x W), and hence is weakly precompact. The
convergence of the distributions stated in Lemma 3.1 irsghe weak convergenggy, o gw in the Hilbert space

L2(S"! x W). The limit functiongyy € L2(S"~! x W) coincides with the distributioy Y, e=#(=)0-X1 £, () on
Sn=1 x W. This proves the bound (3.13). O

Proposition 3.8. The distributionsf; (w +i0), 1 < I < N, are locally L? for w € R\([—m,m] U Z,,).
Proof. We split the proof into four lemmas.

Lemma 3.9. Letk # 0. Assume that the vecto’s; € R™, 1 < J < N, are pairwise different. Then there exist vectors
6; € S*1,1 < I < N, such that
det e 01Xy £,
1<I,J<N
Proof. Let us choose a (two-dimensional) pladethrough the origin inR™ such that the orthogonal projections Xf;
onto A, which we denote by; = P4 (X ), are pairwise different. It suffices to show that we can ce@gsc S~ 1N A
such that

—ikO@1-Yy
et e £ 0. (3.23)
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It is enough to consider the case when¥jlare pairwise linearly independent and have different lesagindeed, since
Y; are pairwise different, there existy € A such thatYy + Y are pairwise linearly independent and have different
lengths; at the same time,

N
det  e—ikOr-(Yo+Ys) _ (H efikBI-Yo) det e~ kO1Ys,
1<I,J<N it 1<I,J<N

with the factor] [, e~**¢r-Yo different from zero.
We will prove (3.23) by induction irlV, assuming that the vertice§; are numbered so that

Y| <[Yz| <--- <|¥nl. (3.24)

The claim is true forN = 1 sincee~#91'Y1 £ ( for any @, € S"~! N A. Assume that the statement is true for some
M > 1, M < N: there exist vector8; € S*"' N A, 1 < I < M, such that

—ikOr-Yy
det e # 0. (3.25)

Then we need to check that the statement is also trudffor 1. That is, we need to show that there exiBig,; €
S™=! N A such that

—ik0;-Y,
1519%M+1e #0. (3.26)

According to (3.25), there is a unique set of numherss C, 1 < J < M, such that

e~ 1k01-Y e~ k01 Y1

M
E ay + =0. (3.27)
J=1 e~ kO Yy e~ kOn Y41

To prove (3.26), we need to show that the relation

M
Z aJefik:HYJ + efike'YMJrl =0 (328)
J=1

cannot be valid for ald € S*~! N A; this, in turn, will imply that there exist8,; .1 € S"~! N A such that the columns
67’”(591'}/.]

,1 < J < M +1, are linearly independent, leading to (3.26).
e~ thkOn11-Yy
We parametrizéd € S*~! N A = S! by the angled € [0,2n). Lety; € [0,27), 1 < J < M + 1, be the angles
corresponding to the direction§ /|Y;| € S'. Note that sinc&’; are pairwise linearly independent, all the angjgsare

different. The relation (3.28) takes the form
fW) =0, (3.29)

where
M

F(9) = Z age kIYslcos(0=r7) 4 o=ik[Yari1]cos(I—ynrt1), (3.30)
J=1

For¢ € C, the formula (3.30) defines an entire function; let us shat fHs not identically zero. Let? = u + iv, where
u, v € R. Since

cos(¥ — v) = cos(u + iv — ) = cos(u — ) coshv — isin(u — ) sinh v, v eR,

the definition (3.30) takes the form

M
f(ﬁ) _ § aJefk\YJKi cos(u—=y) cosh v+sin(u—~y) sinh v)
J=1
+67k|YM+1\(i cos(u—ya+1) coshv+sin(u—vyar41) sinh v) ) (331)
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Taking into account (3.24), we derive the following asyntig along the lineRe = yy,11 — 5 (that is, we take
u="Yp41 — 5 andv € R):

F(nan = 5 Fiv) ~ bty o, (3.32)

It follows that f(+9) is an entire function which is not identically equal to zeficherefore, (3.29) can hold at no more
than finitely many valueg € [0, 27). We pick8,,.; so that the corresponding anglés not a root of (3.29). With this
particular value 0B, (3.26) is satisfied. This finishes the induction argument. O

Lemma 3.10. For anywy € R\[—m,m], there is an open neighborhod® < R\[—m,m] of wy and a family of
diffeomorphism®; : B"~! — ; c S*~!, whereB" ! is a unit open ball inrR"~! and (2; are open neighborhoods of
Sn—1, such that
det e *@OI(MXs £ forall we W, 7B L
1<I,J<N
Proof. According to Lemma 3.9, there afg € S*~1,1 < I < N, such that

det e h(wo)br X, #0.
1<I,J<N

Therefore, there is an open neighborhd®dc R of wy and open neighborhood2; ¢ S~ ! of 87,1 < I < N, with
each of(2; being diffeomorphic t®™ !, such that

1<513t<Ne"'k(“)9"XJ #0 forall we W, 6;¢€ ;.

After we denote the aforementioned diffeomorphidifis ! =, Qrby®;,1<I<N,thelemmais proved. O

Fix wg € R\([-m,m] U Z,), and letiW be an open neighborhood of, from Lemma 3.10. TakingV" smaller if
necessary, we may assume that
Wn([—m,mlUZz,) =0. (3.33)

Pick a functions € C5°(B™~') such thatfy, , <(7) dr = 1. Let
Ryj(w,T), w e W, T € anl’ (3.34)

be the matrix inverse td ;(w, 7) = e~ *(«)®@1(7)-Xs Denote

N
Ri(w,0) = / E Rry(w,T)0e,(+)(0)c(T)dT, weW, 6ecs (3.35)
Bn—1 J=1

wheredg, () is a delta-function o™~ supported af, € S*~*.
Lemma 3.11. For eachl < I < N, the operator
Xy u(w,0) — Zru(w) == Ri(w,0)u(w, 8) dg (3.36)
02
acts continuously fronk?(W x S*~1) to L2(W).

Proof. For a given values € W, let T;(0) be the inverse function t®;(7) which is defined on the neighborhood
{@;(1): 7 € B"~1} c S"~ 1. It suffices to notice that the functiai; (w, ) defined in (3.35) is smooth, since

6(r —T1())
b, (0)s(T) = =7

(7).

loc

Lemma 3.12. For any functionsf; e L2 (R), 1 < I < N, there is the identity

(3 )

K=1 ’W

= fI|W‘
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Proof. Using (3.34), (3.35) and (3.36), we derive:

1( Z o~ ()0 Xk fK(a))>

K=1

2

¥

R; (w, 9)6_“6(“))9')(K fK (w) dQg
§n—1

N
/ / » Z Rij(w,7)8(8 — @ (7)) g(1)e H*WOXk fr(w) dr dQ

(ﬁ

I
M= 10 1=

N

Kz_j/wlam (W) dr = fi(w).

=
&

In the last relation, we used the iden%(“,1 ¢(r)dr =1. O

By Proposition 3.3 and (3.33),

N
Ze ik w)OXKf ( )EL2(WXSn71).

K=1

SinceZ; is continuous fromL2(W x S*~1) to L?(W) by Lemma 3.11, Lemma 3.12 proves thate L?(W). This
finishes the proof of Proposition 3.8. O

4 Spectral analysis of omega-limit trajectories

Let S; denote the time shiftg f(t) = f(t + 7). By (3.2) and Lemma 2.5, for any sequerige— +oo, there exists a
subsequencs, , k € N, such that, for an{’ > 0,
. Gu([-T\T),2) .
St]‘k (7/177/’) - (CaC)a (41)

k—oo

for some¢ € C(R, H!(R")) such that’ € C(R, L2(R™)). The function((z, ¢), which we callomega-limit trajectory
satisfies equation (2.1),

N
{(x,t) = Al(x,t) = m*C(w, ) + Y pr(@)Fr((pr,¢(-, 1)), = €R", tER, (4.2)
I=1

which is understood in the sense of distributions, and otiey$ollowing bound:

sup [[(¢, Q)] | 2 < o0. (4.3)
teR

By the arguments from [2], the proof of Theorem 2.13 will ¥l if we check that every omega-limit trajectafyz, ¢) is
one of the solitary waves, so th@tz, t) = ¢, (z)e~ ¢, with somew, € R.
For a particular omega-limit trajectoty{x, ) which appears in (4.1), we denote

Cr(t) = (pr, ¢ 1)) gr(t) = Fr({pr, (1)) = Fr(Cr(t)). (4.4)
Due to Assumption 2.3, we have
g1(t) = =2up (|G (H)*) Cr (1) (4.5)
(cf. Assumption 2.3). According to the convergence (4d)ainy7 > 0and anyl < I < N,
Cy([-T.T1)

Fi(ti +1) = Fi((pr, v (ot +1))) ——— Fr({pr,¢( 1)) = g1(t). (4.6)

— 00
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Due to the well-known local energy decay for the free Kleior@n equation (see Proposition A.1 in Appendix A),
tlim Il(x, %), |l = 0. Together with (4.1), this yields

Cy([-T,T],%) .

k—oo

Lemma 4.1. There is the following identity, understood in the sensdsifidutions:
_ N
¢(z,w) =ZEI(x,w)§I(w), x € R", weR. (4.8)
I=1
Proof. This follows from Lemma 3.2, (4.6), (4.7), and frofy; (z,w) being a multiplier in.”’(R) (see the proof of

Lemma 3.2). O

Coupling (4.8) withp, we deduce that
_ N
Uw) =) owisw), weR (4.9)
J=1

Lemma 4.2. Letu € ./(R) and let{t;: j € N} be such thalim; ... t; = co. If e!“tiy Zove <'(R) and
u|, € L},.(T) for some open sék C R, thenv|, = 0.

Proof. This is an immediate consequence of the Riemann-Lebesguade O
Lemma 4.3. Foreachl < I < N, suppg; C [-m,m] U Z,, whereZ, is defined in2.20)

Proof. By (4.6) and the continuity of the Fourier transform in thasp of tempered distributions,

~ . 7!
frw)e @t ——— gr(w), 1<I<N.

k—o0
By Proposition 3.8f;(w) is locally L? for w € R\ ([~m, m] U Z,). Therefore, Lemma 4.2 completes the proof. [J
Proposition 4.4. There exists, € Z, U [~m,m] such thasupp {; C {w,},1 < T < N.
Proof. Denote

T = in infs ( T = max sups (r. 4.10
w™ = min in upp (7, w | nax, sup upp G1 (4.10)

We claim that the assumptiasm < w™ leads to a contradiction.
Lemma4.5. Foreachl < I < N, supp(; C [-m,m]U Z,, wt € [-m,m] U Zp.
Proof. This follows from Lemma 4.3, the relation (4.9), and the d&bn (4.10). O
Lemma 4.6. Foreachl <1 < N,

supsupp (s + (pr — 1)(supsupp {; — inf supp {;) < w,

inf supp (; — (pr — 1)(sup supp (; — inf supp ZI) > w.
Remarkd.7. In particular, Lemma 4.6 states thasifp supp {; = w', thensupp {; = {w*}; if inf supp {; =w, then
supp ¢; = {w™ }.

Proof. Let us assume that, on the contrary, therg is < I < N, such that
sup supp (7 + (pr — 1)(sup supp {; — inf supp 51) > wT. (4.11)
After the Fourier transform in time, (4.5) takes the form

p1 _ B - B
gr = —2uf (| ?) 0 = -2 unl,q (T Cp) ek (Cp o 8p) +, (4.12)

q=1

q
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where the coefficients; , € R are from (2.2).
The Titchmarsh Convolution Theorem [4] states that for ammjgactly supported distributionfs g € &’(R), one has

inf supp f + inf supp g = inf supp f * g, sup supp f + supsupp g = supsupp f * g. (4.13)

In the case at hand, the Titchmarsh Convolution Theorem shbat the nonlinearity applied to a function with com-
pact spectrum always expands this spectrum unless thersmecbnsists of a single point. Applying the Titchmarsh
Convolution Theorem (namely, we use the second equality fra13)) to (4.12), we get:

sup supp g7 = supsupp (7 + (pr — 1)(supsupp &7 + supsupp (7)
= supsupp {7 + (pr — 1)(sup supp {; — inf supp (y), (4.14)

where we used the mutual symmetry of the supperts (; andsupp 21 with respect tav = 0. By (4.11) and (4.14),
sup supp gr > w™. Then the right-hand side of (4.14) is strictly greater thamsupp (;, hence there exists

we >wt =  ax supsupp Oy (4.15)

such thatv, € supp g;. By Lemma 4.3 and (4.9),

supp {1 C Zy U [—m,m], supp §r C Z, U [-m,m].
By Assumption 2.1Zi<g3t<NaIJ(w) # 0 for w € Uy supp §r, hence (4.9) implies that, € U; supp (;, contradicting
(4.15). Thus, our assumption (4.11) cannot be true. O
Lemma 4.8. If T is such thatv™ € supp (;, thensupp ¢; = {w*}. Similarly, ifw™ € supp {7, thensupp ¢; = {w™}.
Proof. The statement of the lemma immediately follows from Lemnta 4. O

Lemma 4.9. If the pointw™ belongs to the support df;(w), then it is an isolated point of the support. The same
conclusion takes place far—.

Proof. One can make the desired conclusion on the support of diftiits §; using the relation (4.9), Lemma 4.8, and
recalling that, by Assumption 2.1%,<§13'5<N o1;(w) vanishes only at a discrete set of points, which we dendtfd

Let us give a detailed proof. By Lemma 4.8, there is an opeghbeirhood® of w* such that® N supp {; C {wt},

1 < I < N. We may assume th&? is so small that it does not contain a single point from therei® setZ, except
perhapss™ (if it itself belongs toZ2Y). Let O’ be an open neighborhood such ti@tc O\{w*}. Then, by the choice
of O and @', {;(w) = 3, 015 (w)ds(w) = 0in O and1<§i(3t<NaU(w) # 0forw € O'. Letr;;(w) be the matrix

inverse too; s (w), w € O'. For any test functiom € C5°(0’) and anyl < K < N, using the properties of multipliers
in.#’(R), one has:

N
0=>" <97'K17201J§J> = (orkro1s,37) = Y _(06k.1,37) = (0,9x)-

I=1 J 1,J J
Due to the arbitrariness of the choicegfone concludes thatc |, = 0,1 < K < N. We are done. O

By Lemma 4.8 and Lemma 4.9, there exist disjoint open neididmls O~ and Ot of w = w™ andw = wT,
respectively, so that R
OFfnsuppl; C{w¥},  OFnsuppg; C {w*}; 1<I<N.

Letn* € C5°(R) be such thasupp n™ ¢ O*.
Lemma 4.10. There exisBBf, G¥ € C,1 < I < N, such that

7 (W) (w) = 2rBE§(w — w?h), nE(W)gr(w) = 2rGEs(w — wt), 1<IT<N.

Proof. One uses the inclusiosspp n*(; C {w*},suppn*§; C {w*}, and argues that the expressionsiféfw)(;(w)
andn® (w)gs(w) in terms of§(w — w*) and its derivatives cannot contain terms with) (w — w®), k > 1, due to the
boundedness dfii* * ¢;)(¢) and (7F * gr)(t), where®(¢) is the inverse Fourier transform gf-. This boundedness
takes place in view of the definition (4.4) and the bound (4.3) O
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Now let us finish the proof of Proposition 4.4. Introduce thess
I-={L:supp(; ={w }} CN, ZIT={I:suppl; ={wt}} CN. (4.16)

Due to the assumption that™ < w* and Lemma 4.8, one h& N Z* = (. This implies that at least one of the sets
Z-,Z% contains no more thaiV/2 points:

min(|Z7|, |ZF]) < N/2. (4.17)

Let us assume thaf —| < |Z7| (the other case is treated similarly). Multiplying (4.9) by (w) (and factoring out
0(w —w™)), we obtain the following relations:

N
By =Y o1(w)G;. (4.18)
J=1

ForI € Z*, by Lemma 4.8, one hasipp {; = {w'}; by (4.5), this leads to the inclusiompp j; C {w*}, hence
B; = G = 0. Therefore, (4.18) yields

By = > o7 (w )G, (4.19)
Je{l,..., N)\Z+

Since|Z~| < |Z7|, and, by (4.17)|Z~| < N/2, there exists aséf; C {1, ..., N}\Z~ such thalZ;| = N — |ZT].
Therefore, considering the relations (4.19) witk Z; (whenB; = 0 due toZ; N Z~ = (), we conclude that

0=B; = > ouw)Gy,  IeTy. (4.20)
Je{l, ..., N\Z+

We know from (4.18) that not a7, I € {1, ..., N}\Z™, are equal to zero; hence, (4.20) implies that

det -)=0. 4.21
IeZI,Je{f...,N}\ﬁU”(w ) ( )

Thus, according to Definition 2.11, one has € Z}. On the other hand, by Lemma 4.5, € [-m,m] N Z,,
contradicting Assumption 2.12.

The caséZ | > |Z1|is treated similarly; in that case, the conclusion is thate Z*, again leading to a contradiction
with Assumption 2.12.

Thus, the assumption that™ < w™ cannot be true. It follows that thereds = w™ = w™ such thaSpec ¢; C {w.}
for 1 < I < N, finishing the proof of Proposition 4.4. O

Due to Proposition 4.4,;(w) are finite linear combinations éfw — w, ) and its derivatives. As the matter of fact, the
derivatives could not be present because of the boundedhéss) := (pr, ((-,t)) which follows from (4.3). Therefore,
C; = 27Cré(w — wy), with someC; € C. This implies that

(r(t) = Cre ™t Cr eC, t e R. (4.22)
It follows thatg; (t) = F(Cr)e= ¢, g (w) = 2 F(Cr)6(w — wy). By Lemma 4.1,
B N
((z,w) = 2m0(w — wy) > Zy(x,w,)F(Cy),
I=1

hence((x,t) = ¢(x)e~ ! with ¢(z) = ZL Y1(z,we)F(Cr). Therefore, equation (4.2) and the bound (4.3) imply
that((z, t) is a solitary wave. By the arguments from [2], this complelesproof of Theorem 2.13.
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A Local energy decay
Proposition A.1 (Local energy decay)Letn € N, m > 0. If x solves

X=Ax-m’x, w€eR", (x,X)|.— = (Y0,m0) € H'(R") x L*(R"),
then, for anyr > 0, lim (|[x(®)]|:, + [1%(5)]z2 ) = 0.

Proof. For the Fourier transform of(z, t) in , we have:
) N R sin(w(&)t) 5 5
X, t) :¢0(§)COS(W(f)t)+WO(§)T§)7 w(§) = v/m?+ €.
We will only prove thattlim Ix(#)llz2 = 0; the limit tlim [X(t)||lz2 = 0is computed similarly.
Pick e > 0. We split the initial data)y andmg into ¢y = uy + us, 79 = v + v, SO that
urllms + lorlle < €/3 (A.1)

and
lia, U2 € L (R™), suppis Usuppds C {€ € R™: [£] > A}, (A.2)

for some\ > 0. Let x; andy- be the solutions to the linear Klein-Gordon equation with ithitial data
(X1, X1)|,—o = (w1, v1), (x25X2)],—0 = (u2,v2).

Due to (A.1) and the energy conservatidn, (¢)||z: < e¢/3fort e R.
Letp; € C5°(BY), p1 sp = 1. FOrR > 1, denotep(x) = p1(z/R). Sincel|x2(t)|| g1 remains uniformly bounded,
while [[{z)(1 — p(z)) ¢ n) — 0 @SR — oo, one can choos& > 1 large enough so that

(L= p()x2 (D)l <€/3, =0, (A.3)
It suffices to show that
A ([p()x2 (5 Ol =0 (A4)
We have:
lox2 ()72 < llollezllxz( Ol pzlloxa (s )] e (A.5)

The first two factors in the right-hand side of (A.5) are boeshdiniformly in time. For the last factor in the right-hand
side of (A.5), we have:

sin(w(-)t)) ‘ (A6)

w(-)
LemmaA.2. Letf, g € Z(R™), and0 ¢ supp g. Then, for anyNV € N, there isCy > 0 so that

)y )lle < [+ (2() cos(w()t) + b ()
1 * (g()e™“ M) 2 < Cn (L + Jt))7Y, teR.

Proof. Since0 ¢ supp g, |V,w(n)| is bounded away from zero on the supporyof herefore, the expression

1 (OO s = [[] [ 6 = mgtmer=" an]ae (A7)

decays faster than any negative powert @fue to the stationary phase method. Namely, one can placepémator
L= anw - V,, in front of the exponential factar®(™* under the inner integral in the right-hand side of (A.7),

and then integrate by partsin This gives a factor of ~*. The procedure could be repeated arbitrarily many time§J

By (A.2), 4y andv. vanish in the vicinity of¢ = 0, thus we can apply Lemma A.2 to the right-hand side of (A.6),
gettingtlim lox2(-,t)|| L=~ = 0. Now (A.5) yields

Jim [lpxa72 = 0. (A.8)
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Similarly, one proves that
Jim [V (pxa(, )32 = 0. (A.9)

Indeed, we notice that each of the terms in the right-hanel sfdA.5) could accommodate a derivativedin ||V p|| 1.2
is bounded||Vx2(-, )| 2 is bounded uniformly in time, whiléV (px2(-,t))| - is sent to zero by the stationary phase
method of Lemma A.2. By (A.8) and (A.9}im llo()x2(-, )|l = 05 (A.4) follows, finishing the proof. O
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