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Abstract

We consider theU(1)-invariant Klein-Gordon equation in dimensionn ≥ 3, self-interacting via the mean field
mechanism in finitely many regions. We prove that, under certain generic assumptions, each solution converges as
t → ±∞ to the two-dimensional set of all “nonlinear eigenfunctions” of the formφ(x)e−iωt. The proof is based on the
analysis of omega-limit trajectories. The Titchmarsh Convolution Theoremallows us to prove that the time spectrum of
any omega-limit trajectory of each finite energy solution consists of a singlepoint. This proves the convergence to the
attractor in local sub-energy norms.

1 Introduction

The present paper continues the series of papers on the global attraction to solitary waves inU(1)-invariant dispersive
systems. In [1], we proved such an attraction for the Klein-Gordon field coupled to one nonlinear oscillator. In [3],
we generalized this result for the Klein-Gordon field coupled to several oscillators. In [2], we considered the higher-
dimensional model: the Klein-Gordon field with the nonlinear mean field interaction. The ultimate goal is to prove
the “soliton resolution conjecture”, which could be statedas follows: for large times, any finite energy solution can be
approximated by solitary waves and small dispersive waves. One expects this effect to take place in a generic nonlinear
dispersive system.

In this paper, we establish the global attraction to the set of all solitary waves for theU(1)-invariant Klein-Gordon
fieldψ(x, t) with the mean field self-interaction atN ∈ N different locations:

ψ̈(x, t) = ∆ψ(x, t) −m2ψ(x, t) +

N∑

I=1

ρI(x)FI(〈ρI , ψ(·, t)〉), x ∈ Rn, n ≥ 3, t ∈ R. (1.1)

Above,ρI(x) = ρ(x−XI), withXI ∈ Rn, 1 ≤ I ≤ N , andρ a smooth coupling function from the Schwartz class. We
will show that under rather mild assumptions any finite energy solution converges to the set of solitary wave solutions of
the formφ±(x)e−iω±t.

We follow the cairns of the approach we developed in [1, 2, 3].The main ideas are the absolute continuity of the
spectral density for large frequencies, compactness argument to extract the omega-limit trajectories, and then the usage
of the Titchmarsh Convolution Theorem to pinpoint the spectrum to just one frequency. The results are presented in
Section 2. The proof follows [2], where we proved convergence to solitary waves for the Klein-Gordon equation with
mean field self-interaction at just one location. Considering mean field interaction at several regions required substantial
modification in the proof of the absolute continuity of the time-spectrum for large frequencies (Section 3) and in the
application of the Titchmarsh Convolution Theorem (Section 4). For the completeness, we also give a proof of the local
energy decay for the free Klein-Gordon equation; see Appendix A.

The proof contains two new ideas, which allow to tackle (1.1): the local integrability of the Fourier transform of
finite energy solutions restricted onto the mass hypersurface ξ2 + m2 = ω2 (see Proposition 3.3 and Remark 3.5) and
the analytic continuation of the momentum into the complex domain (see the proof of Proposition 3.8). These ideas are
developed in Section 3.
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2 Main results

We consider theU(1)-invariant Klein-Gordon equation with the mean field self-interaction atN points:

ψ̈(x, t) = ∆ψ(x, t) −m2ψ(x, t) +

N∑

I=1

ρI(x)FI(〈ρI , ψ(·, t)〉), x ∈ Rn, n ≥ 3, t ∈ R, (2.1)

where

〈ρI , ψ(·, t)〉 =

∫

Rn

ρ̄I(x)ψ(x, t) dnx.

We assume thatρI(x) = ρ(x − XI), whereXI ∈ Rn, 1 ≤ I ≤ N , andρ(x) is a nonzero smooth real-valued function
from the Schwartz class:ρ ∈ S (Rn,R), ρ 6≡ 0.

Remark2.1. Assumptions onρ could be relaxed, but we will not do this for the sake of simplicity of proofs.

Remark2.2. In the higher-dimensional case, we need to couple the Klein-Gordon field to nonlinear oscillators using
the mean field mechanism. Contrary to the one-dimensional case considered in [1, 3], we can no longer use theδ-
function coupling, since the finite energy solutions to the Klein-Gordon equation in higher dimensions are not necessarily
continuous and cannot be considered at a particular point.

Assumption 2.3. We assume that for all1 ≤ I ≤ N one has

FI(z) = −∇Re z,Im zuI(|z|2) = −2u′I(|z|2)z, z ∈ C, 1 ≤ I ≤ N,

where

uI(s) =

pI∑

q=1

uI,qs
q, uI,q ∈ R, uI,pI

> 0, and pI ≥ 2. (2.2)

Under Assumption 2.3, equation (2.1) isU(1)-invariant since

FI(e
iθz) = eiθFI(z), z ∈ C, θ ∈ R, 1 ≤ I ≤ N,

and can formally can be written as a Hamiltonian system,Ψ̇(t) = J DH(Ψ), whereJ is a skew-symmetric matrix,
Ψ = (Reψ(x), Imψ(x),Reπ(x), Imπ(x)), with π = ∂tψ. DH = DReψ,Imψ,Reπ,ImπH is the Fŕechet derivative of the
Hamilton functional

H(Ψ) =
1

2

∫

Rn

(
|π|2 + |∇ψ|2 +m2|ψ|2

)
dnx+

N∑

I=1

uI(|〈ρI , ψ〉|2), Ψ =

[
ψ(x)

π(x)

]
. (2.3)

Let us introduce the phase space of finite energy states for equation (2.1).
We will use the weighted Sobolev spaces. Denote by‖ · ‖L2 the norm inL2(Rn). Let 〈x〉 = (1 + x2)1/2. Fors ∈ R,

σ ∈ R, denote

Hs
σ(R

n,C) = {u ∈ S
′(Rn,C): ‖〈x〉σ(m2 − ∆)

s
2u‖L2 <∞}; ‖u‖Hs

σ
= ‖〈x〉σ(m2 − ∆)

s
2u‖L2 . (2.4)

We will write Hs = Hs
0 , L2

σ = H0
σ.

Definition 2.4. For ε ≥ 0, σ ≥ 0 denote byX −ε
−σ the Banach space of statesΨ = (ψ, π) with the norm

‖Ψ‖2
X

−ε
−σ

= ‖ψ‖2
H1−ε

−σ

+ ‖π‖2
H−ε

−σ

. (2.5)

We will denoteX −ǫ = X
−ǫ
0 , X−σ = X 0

−σ, X = X 0
0 . ThenX = H1(Rn) × L2(Rn) is the Hilbert space of states

Ψ = (ψ, π), with the norm

‖Ψ‖2
X = ‖∇ψ‖2

L2 +m2‖ψ‖2
L2 + ‖π‖2

L2 = ‖ψ‖2
H1 + ‖π‖2

L2 .

We fix ε > 0 andσ > 0 and denote
Y = X

−ε
−σ . (2.6)



Andrew Comech:Klein-Gordon with mean field interaction at finitely many points 3

Equation (2.1) can formally be written as a Hamiltonian system with the phase spaceX introduced in Definition 2.4
and the HamiltonianH(ψ, π) from (2.3), which is a continuous functional onX .

Lemma 2.5. The embeddingX ⊂ Y = X
−ε
−σ is compact (for anyε > 0 andσ > 0).

Proof. Let Ψj ∈ X , j ∈ N be a sequence such that

‖Ψj‖X ≤ C <∞, j ∈ N. (2.7)

SinceX is a Hilbert space, we can choose a subsequence ofΨj which is weakly convergent inX to someΨ0 ∈ X .
Let BnR be an open ball of radiusR in Rn, centered in the origin. Pick a spherically symmetric function ̺ ∈ C∞

0 (Bn2 )
such that̺ (x) ≡ 1 for |x| ≤ 1 and monotonically decreasing to zero as|x| changes from1 to 2. Fix R ≥ 1; then
the sequence{̺(x/R)Ψj(x): j ∈ N} is bounded inX . By the Sobolev embedding theorem, the embedding{Ψ ∈
X : suppΨ ⊂ BnR} ⊂ X −ε is compact; hence we can choose a smaller subsequence ofΨj(x), denotedjk, k ∈ N, such
thatρ(x/R)Ψjk(x) converges in the metric‖ · ‖X −ε to ρ(x/R)Ψ0(x). Note that, for any1 ≤ r ≤ R, ρ(x/r)Ψjk(x)
converges toρ(x/r)Ψ0(x), also in the metric‖ · ‖X −ε . By the diagonalization process, we can choose a yet smaller
subsequence ofΨj , which we also denoteΨjk , k ∈ N, such that for anyR ≥ 1 the sequenceρ(x/R)Ψjk(x) converges to
ρ(x/R)Ψ0 in ‖ · ‖X −ε .

Let us show thatΨjk , k ∈ N, converges toΨ0 in X
−ε
−σ . Pickδ > 0. Due to the support properties of̺, one has

‖
(
1 − ̺(x/R)

)
(Ψjk − Ψ0)‖X−σ

≤ ‖〈x〉−σ
(
1 − ̺(x/R)

)
(Ψjk − Ψ0)‖X ≤ CR−σ‖Ψjk − Ψ0‖X , (2.8)

whereC only depends onσ and‖̺‖H1 . SinceΨj are uniformly bounded inX , one can chooseRδ ≥ 1 large enough
so that the right-hand side of (2.8) is bounded byδ/2. At the same time, since̺(x/R)Ψjk → ̺(x/R)Ψ0 in the norm of
X −ε, there iskδ ∈ N such that‖̺(x/Rδ)(Ψjk − Ψ0)‖X −ε < δ/2 for k ≥ kδ. Thus,

‖Ψjk − Ψ0‖X
−ε
−σ

≤ ‖(1 − ̺(x/Rδ))(Ψjk − Ψ0)‖X−σ
+ ‖̺(x/Rδ)(Ψjk − Ψ0)‖X −ε < δ, ∀k ≥ kδ.

Theorem 2.6(Global well-posedness). Assume that the nonlinearitiesFI(z), 1 ≤ I ≤ N , satisfy Assumption 2.3.

1. For everyΨ0 = (ψ0, π0) ∈ X , the Cauchy problem

{
ψ̈(x, t) = ∆ψ(x, t) −m2ψ(x, t) +

∑N
I=1 ρI(x)FI(〈ρI , ψ(·, t)〉),

(ψ, ψ̇)|
t=0

= (ψ0, π0),
(2.9)

has a unique solution such thatΨ = (ψ, ψ̇) ∈ C(R,X ).

2. The mapW (t) : Ψ0 7→ Ψ(t) = (ψ, ψ̇)|
t

is continuous as a mapX → X for eacht ∈ R.

3. The values of the energy functional are conserved:H(Ψ(t)) = H(Ψ0), t ∈ R.

4. The followinga prioribound holds:
‖Ψ(t)‖X ≤ C(Ψ0), t ∈ R. (2.10)

5. ForE ∈ R, denoteXE = {Ψ ∈ X : H(Ψ) ≤ E}. For anyE ∈ R andT > 0, the map

W (t) : XE → XE , (ψ0, π0) 7→ (ψ(t), ψ̇(t)),

is continuous in the topology ofX −ε
−σ , for anyε ≥ 0, σ ≥ 0, uniformly int ∈ [−T, T ].

Proof. The local existence is obtained by standard arguments from the contraction mapping principle. To achieve this,
we use the integral representation for the solutions to the Cauchy problem (2.9) fort ≥ 0:

Ψ(t) = W0(t)Ψ0 + N [Ψ](t),

whereΨ = (ψ, ψ̇) and

N [Ψ](t) :=

N∑

J=1

∫ t

0

W0(t− s)
[

0

ρJ FJ (〈ρJ , ψ(·, s)〉)

]
ds.
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Above,W0(t) is the dynamical group for the linear Klein-Gordon equationwhich is a unitary operator in the spaceX −ε

for anyε ≥ 0. For anyε ≥ 0, there existsCε <∞ such that there is a bound

‖N [Ψ1](t) −N [Ψ2](t)‖X −ε ≤ Cε|t| sup
s∈[0,t]

‖Ψ1(s) − Ψ2(s)‖X −ε , |t| ≤ 1, (2.11)

which holds for any two functionsΨ1, Ψ2 ∈ C(R,X ). This bound shows thatN [ψ] is a contraction operator in
Cb([0, t],X

−ε), ε ≥ 0, if t > 0 is sufficiently small. The contraction mapping theorem based on the bound (2.11) on the
nonlinear term allows us to prove the existence and uniqueness of a local solution inX , as well as the continuity of the
mapW (t) in X (continuity with respect to the initial data).

Now let us discuss the a priori bound (2.10). Due to Assumption 2.3, adding touJ(|z|2), 1 ≤ J ≤ N , constants if
necessary (this does not change equation (2.1)), we may assume that

inf
z∈C

uJ(|z|2) ≥ 0, 1 ≤ J ≤ N. (2.12)

The conservation of the values of the energy and functionalH is obtained by approximating the initial data inX with
smooth compactly supported initial data and using the continuity ofW (t) in X (which we already know for small times).
The a priori bound (2.10) follows from bounding the norm‖Ψ‖X in terms of the value of the Hamiltonian (2.3), with the
aid of (2.12):

‖Ψ‖2
X ≤ 2H(Ψ), Ψ ∈ X . (2.13)

This bound allows us to extend the existence results for all times, proving the global well-posedness of (2.9) in the energy
space. The continuity ofW (t) in the topology ofX −ε for ε ≥ 0, follows from the contraction mapping theorem (based
on the bound (2.11)). The continuity in the topology ofX

−ε
−σ for σ ≥ 0 follows from the finite speed of propagation.

More details are in [2].

Definition 2.7 (Solitary waves). 1. The solitary waves of equation (2.1) are solutions of the form

φω(x)e−iωt, where ω ∈ R, φω(x) ∈ H1(Rn). (2.14)

2. The solitary manifold is the setS = {(φω,−iωφω): ω ∈ R} , whereφω are the amplitudes of solitary waves.

Remark2.8. Due to theU(1)-invariance of equation (2.1), the setS is invariant under multiplication byeiθ, θ ∈ R. Let
us note that for anyω ∈ R there is a zero solitary wave,φω(x) ≡ 0.

Define

ΣI(x, ω) = Fξ→x

[
Σ̂I(ξ, ω)

]
,

Σ̂I(ξ, ω) =
e−iξ·XI ρ̂(ξ)

ξ2 +m2 − ω2
, x, ξ ∈ Rn, ω ∈ C+ ∪ (−m,m), (2.15)

whereC+ = {ω ∈ C: Imω > 0}. Note thatΣI(·, ω) is an analytic function ofω ∈ C+ with the values inS (Rn).

Lemma 2.9. There isc > 0 such that|ΣI(x, ω)| ≤ c|Imω|−1 for ω ∈ C+, x ∈ Rn.

Proof. Let us show that
|ξ2 +m2 − ω2| ≥ m|Imω| for all ξ ∈ Rn, ω ∈ C. (2.16)

Denotinga = Reω, b = Imω, we have:

|ξ2 +m2 − ω2|2 = |ξ2 +m2 − a2 + b2 − 2iab|2 = (ξ2 +m2 − a2 + b2)2 + 4a2b2. (2.17)

If a2 ≤ m2/2, (2.17) yields|ξ2 +m2 − ω2|2 ≥ (ξ2 +m2 − a2 + b2)2 ≥ (m2/2 + b2)2 ≥ m2b2; if insteada2 ≥ m2/2,
(2.17) yields|ξ2 +m2 − ω2|2 ≥ 4a2b2 ≥ 2m2b2. This proves the inequality (2.16). This inequality allows us to bound
(2.15) by

|ΣI(x, ω)| ≤
∫

Rn

∣∣∣
ρ̂(ξ)

ξ2 +m2 − ω2

∣∣∣
dnξ

(2π)n
≤

∫

Rn

|ρ̂(ξ)|
m|Imω|

dnξ

(2π)n
≤ c

|Imω| .



Andrew Comech:Klein-Gordon with mean field interaction at finitely many points 5

By Lemma 2.9, for anyx ∈ Rn, we can extend the functionΣI(x, ω) to the entire real lineω ∈ R as the boundary
trace:

ΣI(x, ω) = lim
ǫ→0+

ΣI(x, ω + iǫ), ω ∈ R, (2.18)

where the limit holds in the sense of tempered distributions.
Define

σIJ(ω) = 〈ρI , ΣJ (·, ω)〉 =

∫

Rn

ei(XI−XJ )·ξ|ρ̂(ξ)|2
ξ2 +m2 − (ω + i0)2

dnξ

(2π)n
, 1 ≤ I, J ≤ N. (2.19)

Denote
Zρ = {ω ∈ R\[−m,m]: ρ̂(ξ) = 0 for some ξ ∈ Rn such that m2 + ξ2 = ω2}. (2.20)

Proposition 2.10(Existence of solitary waves). Assume thatdetI,J σIJ (ω) 6= 0 for ω ∈ [−m,m]∪Zρ, whereσIJ(ω) is
from (2.19)andZρ is defined in(2.20).

Letω ∈ [−m,m] ∪ Zρ. Assume that there are constantsCI ∈ C, 1 ≤ I ≤ N , which satisfy

FI

( N∑

J=1

σIJ(ω)CJ

)
= CI . (2.21)

To have solitary waves with|ω| = m in dimensionn ≤ 4, additionally assume that

∫

Rn

|ρ̂(ξ)|2
ξ4

dnξ <∞. (2.22)

Then there is a solitary wave solutionφω(x)e−iωt to (2.1), withφω(x) such that

φ̂ω(ξ) =

∑N
I=1 CI ρ̂I(ξ)

ξ2 +m2 − ω2
. (2.23)

This describes all nonzero solitary wave solutions to(2.1).

Proof. Substituting the ansatzφω(x)e−iωt into (2.1), we get the following equation onφω:

−ω2φω(x) = ∆φω(x) −m2φω(x) +

N∑

I=1

ρI(x)FI(〈ρI , φω〉), x ∈ Rn.

Therefore, all solitary waves satisfy the relation

(ξ2 +m2 − ω2)φ̂ω(ξ) =

N∑

I=1

ρ̂I(ξ)FI(〈ρI , φω〉). (2.24)

Forω ∈ R\([−m,m] ∪ Zρ) the relation (2.24) leads toφω /∈ L2(Rn) (unlessφω ≡ 0). We conclude that there are no
nonzero solitary waves forω ∈ R\([−m,m] ∪ Zρ).

Let us consider the caseω ∈ [−m,m] ∪ Zρ. From (2.24), we see that

φ̂ω(ξ) =

N∑

I=1

ρ̂I(ξ)

ξ2 +m2 − ω2
FI(〈ρI , φω〉). (2.25)

Using the functionsΣI(x, ω) defined in (2.15), we can writeφω(x) =
∑N
I=1 CIΣI(x, ω), withCI ∈ C. Substituting this

ansatz into (2.25), we can write the condition onCI in the following form:

N∑

J=1

σIJ(ω)FJ

( N∑

K=1

σJK(ω)CK

)
=

N∑

J=1

σIJ(ω)CJ , (2.26)

whereσIJ (ω) is defined in (2.19). Since we assumed thatσIJ (ω) is nondegenerate forω ∈ [−m,m]∪Zρ, we can rewrite
(2.26) in the form (2.21).

Forn ≤ 4, the finiteness of the energy of solitons corresponding toω = ±m follows from the condition (2.22).
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Definition 2.11. ForσIJ(ω) from (2.19) and for1 ≤ N ′ ≤ N , define

ZN
′

σ =
{
ω ∈ R: ∃ I,J ⊂ {1, . . . , N}, |I| = |J | = N ′, det

I∈I, J∈J
σIJ(ω) = 0

}
.

Denote
Z∗
σ =

(
∪

1≤N ′≤N/2
ZN

′

σ

)
∪ ZNσ . (2.27)

Assumption 2.12.Z∗
σ is a discrete set of points, andZ∗

σ ∩ ([−m,m] ∪ Zρ) = ∅.

Above,Zρ is defined in (2.20) andZ∗
σ is defined in (2.27).

Theorem 2.13(Global attraction for Klein-Gordon with mean field interaction). Assume that the nonlinearitiesFI(z),
1 ≤ I ≤ N , satisfy Assumption 2.3. Assume that the coupling functionρ(x) and the pointsXI , 1 ≤ I ≤ N , are such
that Assumption 2.12 is satisfied. Then for any(ψ0, π0) ∈ X the solutionψ(t) to equation(2.1) with the initial data
(ψ, ψ̇)|

t=0
= (ψ0, π0) converges to the solitary manifoldS in the spaceY = X

−ε
−σ , for anyε > 0, σ > 0:

lim
t→±∞

dist Y ((ψ, ψ̇)|
t
,S) = 0, (2.28)

wheredist Y (Ψ,S) := inf
s∈S

‖Ψ − s‖Y , with ‖ · ‖Y = ‖ · ‖
X

−ε
−σ

introduced in(2.5).

Due to the time reversibility of the equation, it suffices to prove Theorem 2.13 fort→ +∞.
Let us construct examples for which Assumption 2.12 is satisfied.

Example2.1. Pick ρ̂(ξ) = Λ−n/2e−ξ
2/Λ2

with 0 < Λ ≪ 1, so thatZρ = ∅; to comply with Assumption 2.12, it suffices
to check thatZ∗

σ ∩ [−m,m] = ∅. For |ω| ≤ m, (2.19) yields:

σIJ(ω) ≈
∫

Rn

|ρ̂(ξ)|2
ξ2 +m2 − ω2

dnξ

(2π)n
− |XI −XJ |2

2

∫

Rn

1
n |ξ|2|ρ̂(ξ)|2
ξ2 +m2 − ω2

dnξ

(2π)n
+O

(∫

Rn

ξ4|ρ̂(ξ)|2 dnξ
ξ2 +m2 − ω2

)
,

where the factor of1/n is the mean value ofcos2 ϕ integrated over the sphere, withϕ the angle betweenξ andXI −XJ .
Then

σIJ (ω) ≈ aΛ(ω) + bΛ(ω)|XI −XJ |2 + cΛ(ω, |XI −XJ |),
where

aΛ(ω) = vol(Sn−1)

∫ ∞

0

e−η
2/Λ2

ηn−1dη

η2 +m2 − ω2
, bΛ(ω) = vol(Sn−1)

∫ ∞

0

e−η
2Λ2

ηn+1dη

η2 +m2 − ω2
.

Let us show that genericallydetσIJ(ω) 6= 0 for |ω| ≤ m, as long asΛ > 0 is sufficiently small. For all|ω| ≤ m one has
bΛ(ω)
aΛ(ω) = O(Λ2), cΛ(ω,|XI−XJ |)

aΛ(ω) = O(Λ4), uniformly inω ∈ [−m,m]. One has:

detσIJ (ω) = aΛ(ω)N det
(
UIJ +

bΛ(ω)

aΛ(ω)
∆2
IJ +

cΛ(ω,∆IJ )

aΛ(ω)

)
,

whereUIJ = 1 for all I, J between1 andN , and∆IJ = |XI − XJ |. If the number of oscillatorsN does not exceed
the dimensionn, then the quantities∆IJ for different pairs(I, J), with I 6= J , could be considered as independent
variables (once they satisfy the triangle inequalities∆IJ + ∆JK > ∆JK), and then it follows that|detσIJ(ω)| ∼
p(∆IJ )aΛ(ω)bΛ(ω)N−1(1+o(Λ)),wherep(∆IJ ) is a polynomial of∆IJ of degreeN−1, is nonzero for a generic choice
of∆IJ (satisfying the triangle inequalities). The same is true for all minors. We conclude that genericallyZ∗

σ∩[−m,m] =
∅, in agreement with Assumption 2.12.

Example2.2. Let us assume thatk > 0 andXI , 1 ≤ I ≤ N , are such that the matrix

SIJ = eike1·(XI−XJ ), e1 = (1, 0, . . . , 0) ∈ Sn−1,

is non-degenerate and all itsN ′ ×N ′ minors,1 ≤ N ′ ≤ N , are also non-zero. Let

ρ̂ǫ(ξ) =
1

ǫn/2
̺
(ξ1 − k

ǫ

) n∏

j=2

̺
(ξj
ǫ

)
+ ǫe−ξ

2

,
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where̺ ∈ C∞
comp([−1, 1]), ̺|

(−1,1)
> 0,

∫
R
̺(s) ds = 1. Sinceρ̂ǫ is strictly positive, one hasZρ = ∅; to comply with

Assumption 2.12, it suffices to ensure thatZ∗
σ ∩ [−m,m] = ∅. If ǫ > 0 is sufficiently small, then̂ρǫ(ξ) is concentrated in

a sufficiently small neighborhood ofξ = ke1, hence for|ω| ≤ m one has

σIJ (ω) =

∫

Rn

ei(XI−XJ )·ξ|ρ̂ǫ(ξ)|2
ξ2 +m2 − ω2

dnξ

(2π)n
= SIJ

∫

Rn

|ρ̂ǫ(ξ)|2
ξ2 +m2 − ω2

dnξ

(2π)n
+O(ǫ),

and thereforeZ∗
σ ∩ [−m,m] = ∅ if ǫ > 0 is sufficiently small.

Remark2.14. If Assumption 2.12 is not satisfied, then the attractor couldbe more complicated than the set of all solitary
waves of the form (2.14). In particular, there could be “multifrequency solitary waves” (solitary waves with several
discrete frequencies), which would also be points of the attractor. Such examples have been constructed in [2].

3 Absolute continuity for large frequencies

According to Theorem 2.6(1), for any pair(ψ0, π0) ∈ H1(Rn) × L2(Rn) there exists a global solutionψ(x, t), to the
Cauchy problem (2.1) with the initial data(ψ0, π0),

(ψ, ψ̇)|
t=0

= (ψ0, π0) ∈ H1(Rn) × L2(Rn). (3.1)

By Theorem 2.6(4),
sup
t∈R

‖(ψ, ψ̇)|
t
‖X <∞. (3.2)

Defineχ(x, t) as the solution to the following Cauchy problem:

χ̈(x, t) = ∆χ(x, t) −m2χ(x, t), (χ, χ̇)|
t=0 = (ψ0, π0), (3.3)

where(ψ0, π0) is the initial data from (3.1). Sinceχ(t) is a finite energy solution to the free Klein-Gordon equation,

sup
t∈R

‖(χ, χ̇)|
t
‖X <∞. (3.4)

Defineϕ(x, t) by

ϕ(x, t) =

{
0, t < 0,

ψ(x, t) − χ(x, t), t ≥ 0.
(3.5)

Thenϕ(x, t) satisfies

ϕ̈(x, t) = ∆ϕ(x, t) −m2ϕ(x, t) +

N∑

I=1

ρI(x)fI(t), (ϕ, ϕ̇)|
t≤0

= (0, 0), (3.6)

wherefI(t) := Θ(t)FI(〈ρI , ψ(·, t)〉). Note that〈ρI , ψ(·, t)〉 belongs toCb(R) by (3.2). Hence,

sup
t∈R

|fI(t)| <∞, 1 ≤ I ≤ N. (3.7)

By (3.2) and (3.4),ϕ(t) = Θ(t)(ψ(t) − χ(t)) satisfies

sup
t∈R

‖(ϕ, ϕ̇)|
t
‖X <∞. (3.8)

Let us consider the complex Fourier transform ofϕ(x, t):

ϕ̃(x, ω) = Ft→ω[ϕ(x, t)] :=

∫ ∞

0

eiωtϕ(x, t) dt, ω ∈ C+, x ∈ Rn, (3.9)

whereC+ := {z ∈ C : Im z > 0}. Due to (3.8),ϕ̃(·, ω) is anH1-valued analytic function ofω ∈ C+. Equation (3.6)
for ϕ implies that

−ω2ϕ̃(x, ω) = ∆ϕ̃(x, ω) −m2ϕ̃(x, ω) +

N∑

I=1

ρI(x)f̃I(ω), ω ∈ C+, x ∈ Rn,
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where

f̃I(ω) =

∫ ∞

0

eiωtfI(t) dt, ω ∈ C+. (3.10)

The solutionϕ̃(x, ω) is analytic forω ∈ C+ and can be represented by

ϕ̃(x, ω) =

N∑

I=1

ΣI(x, ω)f̃I(ω), ω ∈ C+, (3.11)

with ΣI(x, ω) from (2.15).

Lemma 3.1. 1. For anyω ∈ R and1 ≤ I ≤ N , there is the convergencẽfI(ω + iǫ)
S

′(R)
−−−−→
ǫ→0+

f̃I(ω);

2. For anyω ∈ R, ϕ̃(·, ω + iǫ)
S

′(R,H1(Rn))
−−−−−−−−−−→

ǫ→0+
ϕ̃(·, ω).

Proof. UsingfI |t<0
= 0, ϕ|

t<0
= 0, and the bounds (3.7) and (3.8), one concludes thate−ǫtfI(t)

S
′(R)

−−−−→
ǫ→0+

fI(t) and

e−ǫtϕ(·, t)
S

′(R,H1(Rn))
−−−−−−−−−−→

ǫ→0+
ϕ(·, t). This finishes the proof.

Now we can justify the representation (3.11) forω ∈ R, if the multiplication in (3.11) is understood in the sense of
distributions.

Lemma 3.2. There is the following identity, understood in the sense of distributions:

ϕ̃(x, ω) =

N∑

I=1

ΣI(x, ω)f̃I(ω), ω ∈ R. (3.12)

Proof. Since we assume thatn ≥ 3, for eachx ∈ Rn, the functionΣI(x, ω) =
∫

Rn

eiξ·xe−iξ·XI ρ̂(ξ)
ξ2+m2−(ω+i0)2

dnξ
(2π)n is a smooth

function ofω ∈ R, and hence is a multiplier in the space of tempered distributions in the variableω. The rest of the proof
is based on the relation (3.11) and the convergence stated inLemma 3.1.

Forω ∈ C+, let k(ω) denote the branch of
√
ω2 −m2 such thatIm

√
ω2 −m2 ≥ 0. The functionk(ω) is analytic

for ω ∈ C+. We extendk(ω) ontoC+ by continuity.

Proposition 3.3. For any finite open intervalW such thatW ∩ ([−m,m] ∪ Zρ) = ∅ there is a constantCW > 0 such
that ∫

Sn−1×W

∣∣∣
N∑

I=1

e−ik(ω)θ·XI f̃I(ω)
∣∣∣
2

dΩθ dω ≤ CW . (3.13)

Remark3.4. By Lemma 3.1,f̃I(ω) = f̃I(ω + i0).

Remark3.5. Proposition 3.3 essentially states that the restriction onto the mass hypersurfaceξ2 +m2 = ω2 of the space-
time Fourier transform of the source term

∑N
I=1 ρI(x)fI(t) from (3.6) is locally integrable. Note that this hypersurface

is locally parametrized byω ∈ R\[−m,m] andθ = ξ
|ξ| ∈ Sn−1.

Proof. The Parseval identity applied tõϕ(x, ω + iǫ) =
∫ ∞

0
ϕ(x, t)eiωt−ǫt dt, ǫ > 0, yields

∫ ∞

−∞

‖ϕ̃(·, ω + iǫ)‖2
L2

dω

2π
=

∫ ∞

0

‖ϕ(·, t)‖2
L2e−2ǫt dt, ǫ > 0.

Sincesupt≥0 ‖ϕ(·, t)‖H1 < ∞ by (3.8), we may bound the right-hand side byC1/ǫ, with someC1 > 0. Taking into
account (3.11), we arrive at the key inequality

∫ ∞

−∞

‖
N∑

I=1

ΣI(·, ω + iǫ)f̃I(ω + iǫ)‖2
L2 dω ≤ C1

ǫ
. (3.14)
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↓
↑
|
2ǫ

λ0

m
k(W )

W ǫ

ω2 = λ2 +m2

W

ω

Figure 1: DomainW ǫ and intervalsW andk(W ).

Noting thatΣ̂I(ξ, ω + iǫ) = e−iξ·XI Σ̂(ξ, ω + iǫ), with Σ̂(ξ, ω + iǫ) defined in (2.15), we rewrite (3.14) as

∫ ∞

−∞

ǫ‖
N∑

I=1

ΣI(·, ω + iǫ)f̃I(ω + iǫ)‖2
L2 dω =

∫

Rn×R

ǫ|Σ̂(ξ, ω + iǫ)|2
∣∣∣
N∑

I=1

e−iξ·XI f̃I(ω + iǫ)
∣∣∣
2 dnξ

(2π)n
dω ≤ C1. (3.15)

Fix a finite open intervalW such thatW ∩ ([−m,m] ∪ Zρ) = ∅. Denote

W
ǫ := {(λ, ω): λ > 0, ω ∈W, |ω −

√
λ2 +m2| < ǫ} ⊂ R+ × R, (3.16)

as on Fig. 1, and also denote

Ŵ
ǫ := {(ξ, ω) ∈ Rn × R: (|ξ|, ω) ∈ W

ǫ} ⊂ Rn × R. (3.17)

Due to the inequality (3.15), the following weaker inequality also takes place:

∫

cW ǫ

ǫ|Σ̂(ξ, ω + iǫ)|2
∣∣∣
N∑

I=1

e−iξ·XI f̃I(ω + iǫ)
∣∣∣
2 dnξ dω

(2π)n
≤ C1. (3.18)

Lemma 3.6. There exists a constantC2 > 0 such that for anyǫ ∈ (0, 1) there is the inequality

∫

cW ǫ

ǫ|Σ̂(ξ, ω + iǫ)|2
∣∣∣
N∑

I=1

e−ik(ω)θξ·XI f̃I(ω + iǫ)
∣∣∣
2 dnξ dω

(2π)n
≤ C2, (3.19)

whereθξ = ξ
|ξ| .

Proof. We are done if we can prove that the difference between (the square roots of) the left-hand sides of (3.18) and
(3.19) is bounded by a constant which depends onW but not onǫ ∈ (0, 1). For brevity, denotefI = f̃I(ω + iǫ). Using
the triangle inequality in the form|‖a‖ − ‖b‖| ≤ ‖a− b‖, we get:

∣∣∣∣∣∣∣∣




∫

cW ǫ

ǫ|Σ̂(ξ, ω + iǫ)|2
∣∣∣
N∑

I=1

e−iξ·XI fI

∣∣∣
2 dnξ dω

(2π)n




1
2

−




∫

cW ǫ

ǫ|Σ̂(ξ, ω + iǫ)|2
∣∣∣
N∑

I=1

e−ik(ω)θξ·XI fI

∣∣∣
2 dnξ dω

(2π)n




1
2

∣∣∣∣∣∣∣∣

≤




∫

cW ǫ

ǫ|Σ̂(ξ, ω + iǫ)|2
∣∣∣
N∑

I=1

e−ik(ω)θξ·XI (ei(k(ω)θξ−ξ)·XI − 1)fI

∣∣∣
2 dnξ dω

(2π)n




1
2

. (3.20)

According to (3.2),|fI(t)| = |FI(〈ρI , ψ(·, t)〉)| is bounded uniformly in time. By (3.10), we know that|fI | = |f̃I(ω +

iǫ)| ≤ Cǫ−1. We also have|ei(k(ω)θξ−ξ)·XI − 1| ≤ Cǫ for (ξ, ω) ∈ Ŵ ǫ, with someC ∈ R independent onǫ ∈ (0, 1).
Therefore, (3.20) is bounded by

∫

cW ǫ

ǫ|Σ̂(ξ, ω + iǫ)|2 dnξ

(2π)n
dω ≤

∫

cW ǫ

ǫ
|ρ̂(ξ)|2
4m2ǫ2

dnξ

(2π)n
dω ≤

∫

Rn

ǫ
|ρ̂(ξ)|2
4m2ǫ2

dnξ

(2π)n
2ǫ ≤ const , (3.21)
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whereconst depends onW but not onǫ. Above, we used the expression̂Σ(ξ, ω+ iǫ) = ρ̂(ξ)
ξ2+m2−(ω+iǫ)2 (see (2.15)) and

the bound
|ξ2 +m2 − (ω + iǫ)2|2 ≥ |Im (ξ2 +m2 − (ω + iǫ)2)|2 ≥ 4m2ǫ2, (ξ, ω) ∈ Ŵ

ǫ.

The integration inω contributed2ǫ, which is the thickness ofW ǫ in theω-direction (see Fig. 1). It follows that the
right-hand side in (3.20) is bounded by a constant independent onǫ ∈ (0, 1). This finishes the proof.

Lemma 3.7. There existǫW ∈ (0, 1) andC3 > 0 such that
∫

W ǫ∩(R+×{ω})

ǫ|Σ̂(λθ, ω + iǫ)|2 λn−1 dλ ≥ C3 for all ω ∈W, θ ∈ Sn−1, ǫ ∈ (0, ǫW ).

Proof. First, we note thatk(W ) is a finite open interval bounded away from0; see Fig. 1. Since the function|ρ̂(ξ)| is
continuous and strictly positive for|ξ| ∈ k(W ), there existǫW > 0 andcW > 0 such that|ρ̂(ξ)|2 ≥ cW for all ξ such
that(|ξ|, ω) ∈ W ǫ, ǫ ∈ (0, ǫW ) (cf. (3.16)). Hence, using (2.15),

∫

W ǫ∩(R+×{ω})

ǫ|Σ̂(λθ, ω + iǫ)|2 λn−1 dλ ≥ cW

∫

W ǫ∩(R+×{ω})

ǫ λn−1 dλ

|λ2 +m2 − (ω + iǫ)2|2 . (3.22)

PickδW < |k(W )|/2; then, forλ0 ∈ k(W ), either[λ0−δW , λ0] ⊂ k(W ), or [λ0, λ0 +δW ] ⊂ k(W ), or both. Therefore,
the integration inλ is over an interval of length at leastǫ2 minω∈W |k′(ω)|. Moreover, for|ω −

√
λ2 +m2| < ǫ, the

magnitude of the denominator is bounded from above:

|λ2 +m2 − (ω + iǫ)2|2 = (λ2 +m2 − ω2 + ǫ2)2 + 4ω2ǫ2

≤ (
√
λ2 +m2 − ω)2(

√
λ2 +m2 + ω)2 + const ǫ2 ≤ const ǫ2,

where the constant in the right-hand side depends onW but not onǫ. This shows that the right-hand side of (3.22) is
bounded from below by some constantC3 > 0 which depends onW (andǫW ) but not onω, ǫ, or θ.

Combining Lemmas 3.6 and 3.7, we get:

∫

Sn−1×W

∣∣∣
N∑

I=1

e−ik(ω)θ·XI f̃I(ω + iǫ)
∣∣∣
2 dΩθ dω

(2π)n
≤ C2

C3
, 0 < ǫ ≤ ǫW .

We conclude that the set of functions

gW,ǫ(θ, ω) =

N∑

I=1

e−ik(ω)θ·XI f̃I(ω + iǫ), 0 < ǫ ≤ ǫW ,

defined forθ ∈ Sn−1, ω ∈ W , is bounded in the Hilbert spaceL2(Sn−1 ×W ), and hence is weakly precompact. The
convergence of the distributions stated in Lemma 3.1 implies the weak convergencegW,ǫ−−−−⇁

ǫ→0+
gW in the Hilbert space

L2(Sn−1 ×W ). The limit functiongW ∈ L2(Sn−1 ×W ) coincides with the distribution
∑N
I=1 e

−ik(ω)θ·XI f̃I(ω) on
Sn−1 ×W . This proves the bound (3.13).

Proposition 3.8. The distributionsf̃I(ω + i0), 1 ≤ I ≤ N , are locallyL2 for ω ∈ R\([−m,m] ∪ Zρ).

Proof. We split the proof into four lemmas.

Lemma 3.9. Letk 6= 0. Assume that the vectorsXJ ∈ Rn, 1 ≤ J ≤ N , are pairwise different. Then there exist vectors
θI ∈ Sn−1, 1 ≤ I ≤ N , such that

det
1≤I,J≤N

e−ikθI ·XJ 6= 0.

Proof. Let us choose a (two-dimensional) planeA through the origin inRn such that the orthogonal projections ofXJ

ontoA, which we denote byYJ = PA(XJ ), are pairwise different. It suffices to show that we can chooseθJ ∈ Sn−1∩A

such that
det

1≤I,J≤N
e−ikθI ·YJ 6= 0. (3.23)
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It is enough to consider the case when allYJ are pairwise linearly independent and have different lengths. Indeed, since
YJ are pairwise different, there existsY0 ∈ A such thatY0 + YJ are pairwise linearly independent and have different
lengths; at the same time,

det
1≤I,J≤N

e−ikθI ·(Y0+YJ ) =
( N∏

I=1

e−ikθI ·Y0

)
det

1≤I,J≤N
e−ikθI ·YJ ,

with the factor
∏
I e

−ikθI ·Y0 different from zero.
We will prove (3.23) by induction inN , assuming that the verticesXJ are numbered so that

|Y1| < |Y2| < · · · < |YN |. (3.24)

The claim is true forN = 1 sincee−ikθ1·Y1 6= 0 for anyθ1 ∈ Sn−1 ∩ A. Assume that the statement is true for some
M ≥ 1,M < N : there exist vectorsθI ∈ Sn−1 ∩ A, 1 ≤ I ≤M , such that

det
1≤I,J≤M

e−ikθI ·YJ 6= 0. (3.25)

Then we need to check that the statement is also true forM + 1. That is, we need to show that there existsθM+1 ∈
Sn−1 ∩ A such that

det
1≤I,J≤M+1

e−ikθI ·YJ 6= 0. (3.26)

According to (3.25), there is a unique set of numbersaJ ∈ C, 1 ≤ J ≤M , such that

M∑

J=1

aJ




e−ikθ1·YJ

...

e−ikθM ·YJ


 +




e−ikθ1·YM+1

...

e−ikθM ·YM+1


 = 0. (3.27)

To prove (3.26), we need to show that the relation

M∑

J=1

aJe
−ikθ·YJ + e−ikθ·YM+1 = 0 (3.28)

cannot be valid for allθ ∈ Sn−1 ∩ A; this, in turn, will imply that there existsθM+1 ∈ Sn−1 ∩ A such that the columns


e−ikθ1·YJ

...

e−ikθM+1·YJ


, 1 ≤ J ≤M + 1, are linearly independent, leading to (3.26).

We parametrizeθ ∈ Sn−1 ∩ A = S1 by the angleϑ ∈ [0, 2π). Let γJ ∈ [0, 2π), 1 ≤ J ≤ M + 1, be the angles
corresponding to the directionsYJ/|YJ | ∈ S1. Note that sinceYJ are pairwise linearly independent, all the anglesγJ are
different. The relation (3.28) takes the form

f(ϑ) = 0, (3.29)

where

f(ϑ) =

M∑

J=1

aJe
−ik|YJ | cos(ϑ−γJ ) + e−ik|YM+1| cos(ϑ−γM+1). (3.30)

Forϑ ∈ C, the formula (3.30) defines an entire function; let us show thatf is not identically zero. Letϑ = u+ iv, where
u, v ∈ R. Since

cos(ϑ− γ) = cos(u+ iv − γ) = cos(u− γ) cosh v − i sin(u− γ) sinh v, γ ∈ R,

the definition (3.30) takes the form

f(ϑ) =

M∑

J=1

aJe
−k|YJ |(i cos(u−γJ ) cosh v+sin(u−γJ ) sinh v)

+e−k|YM+1|(i cos(u−γM+1) cosh v+sin(u−γM+1) sinh v). (3.31)
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Taking into account (3.24), we derive the following asymptotics along the lineReϑ = γM+1 − π
2 (that is, we take

u = γM+1 − π
2 andv ∈ R):

f
(
γM+1 −

π

2
+ iv

)
∼ ek|YM+1| sinh v, v → +∞. (3.32)

It follows that f(ϑ) is an entire function which is not identically equal to zero.Therefore, (3.29) can hold at no more
than finitely many valuesϑ ∈ [0, 2π). We pickθM+1 so that the corresponding angleϑ is not a root of (3.29). With this
particular value ofθM+1, (3.26) is satisfied. This finishes the induction argument.

Lemma 3.10. For any ω0 ∈ R\[−m,m], there is an open neighborhoodW ⊂ R\[−m,m] of ω0 and a family of
diffeomorphismsΘI : Bn−1 → ΩI ⊂ Sn−1, whereBn−1 is a unit open ball inRn−1 andΩI are open neighborhoods of
Sn−1, such that

det
1≤I,J≤N

e−ik(ω)ΘI(τ )·XJ 6= 0 for all ω ∈W , τ ∈ Bn−1.

Proof. According to Lemma 3.9, there areθI ∈ Sn−1, 1 ≤ I ≤ N , such that

det
1≤I,J≤N

e−ik(ω0)θI ·XJ 6= 0.

Therefore, there is an open neighborhoodW ⊂ R of ω0 and open neighborhoodsΩI ⊂ Sn−1 of θI , 1 ≤ I ≤ N , with
each ofΩI being diffeomorphic toBn−1, such that

det
1≤I,J≤N

e−ik(ω)θI ·XJ 6= 0 for all ω ∈W , θI ∈ ΩI .

After we denote the aforementioned diffeomorphismsBn−1
∼=−→ ΩI by ΘI , 1 ≤ I ≤ N , the lemma is proved.

Fix ω0 ∈ R\([−m,m] ∪ Zρ), and letW be an open neighborhood ofω0 from Lemma 3.10. TakingW smaller if
necessary, we may assume that

W ∩ ([−m,m] ∪ Zρ) = ∅. (3.33)

Pick a functionς ∈ C∞
0 (Bn−1) such that

∫
Bn−1 ς(τ ) dτ = 1. Let

RIJ(ω, τ ), ω ∈W, τ ∈ Bn−1, (3.34)

be the matrix inverse toAIJ (ω, τ ) = e−ik(ω)ΘI(τ )·XJ . Denote

RI(ω,θ) =

∫

Bn−1

N∑

J=1

RIJ (ω, τ )δΘJ (τ )(θ) ς(τ ) dτ , ω ∈W, θ ∈ Sn−1, (3.35)

whereδθ0
(θ) is a delta-function onSn−1 supported atθ0 ∈ Sn−1.

Lemma 3.11. For each1 ≤ I ≤ N , the operator

RI : u(ω,θ) 7→ RIu(ω) :=

∫

ΩI

RI(ω,θ)u(ω,θ) dΩθ (3.36)

acts continuously fromL2(W × Sn−1) toL2(W ).

Proof. For a given valueω ∈ W , let TI(θ) be the inverse function toΘI(τ ) which is defined on the neighborhood
{ΘI(τ ): τ ∈ Bn−1} ⊂ Sn−1. It suffices to notice that the functionRI(ω,θ) defined in (3.35) is smooth, since

δΘI(τ )(θ) ς(τ ) =
δ(τ − TI(θ))∣∣∣ det ∂ΘI(τ )

∂τ

∣∣∣
ς(τ ).

Lemma 3.12. For any functionsf̃I ∈ L2
loc(R), 1 ≤ I ≤ N , there is the identity

RI

( N∑

K=1

e−ik(ω)θ·XK f̃K(ω)
)∣∣∣∣

W

= f̃I |W .
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Proof. Using (3.34), (3.35) and (3.36), we derive:

RI

( N∑

K=1

e−ik(ω)θ·XK f̃K(ω)
)

=

N∑

K=1

∫

Sn−1

RI(ω,θ)e−ik(ω)θ·XK f̃K(ω) dΩθ

=

N∑

K=1

∫

Sn−1

∫

Bn−1

N∑

J=1

RIJ(ω, τ )δ(θ − ΘJ(τ )) ς(τ )e−ik(ω)θ·XK f̃K(ω) dτ dΩθ

=
N∑

K=1

∫

Bn−1

N∑

J=1

RIJ(ω, τ ) ς(τ )e−ik(ω)ΘJ (τ )·XK f̃K(ω) dτ

=

N∑

K=1

∫

Bn−1

δIK ς(τ )f̃K(ω) dτ = f̃I(ω).

In the last relation, we used the identity
∫

Bn−1 ς(τ ) dτ = 1.

By Proposition 3.3 and (3.33),

N∑

K=1

e−ik(ω)θ·XK f̃K(ω) ∈ L2(W × Sn−1).

SinceRI is continuous fromL2(W × Sn−1) to L2(W ) by Lemma 3.11, Lemma 3.12 proves thatf̃I ∈ L2(W ). This
finishes the proof of Proposition 3.8.

4 Spectral analysis of omega-limit trajectories

Let Sτ denote the time shift,Sτf(t) = f(t + τ). By (3.2) and Lemma 2.5, for any sequencetj → +∞, there exists a
subsequencetjk , k ∈ N, such that, for anyT > 0,

Stjk
(ψ, ψ̇)

Cb([−T,T ],Y )
−−−−−−−−−−→

k→∞
(ζ, ζ̇), (4.1)

for someζ ∈ C(R,H1(Rn)) such thatζ̇ ∈ C(R, L2(Rn)). The functionζ(x, t), which we callomega-limit trajectory,
satisfies equation (2.1),

ζ̈(x, t) = ∆ζ(x, t) −m2ζ(x, t) +
N∑

I=1

ρI(x)FI(〈ρI , ζ(·, t)〉), x ∈ Rn, t ∈ R, (4.2)

which is understood in the sense of distributions, and obeysthe following bound:

sup
t∈R

‖(ζ, ζ̇)|
t
‖X <∞. (4.3)

By the arguments from [2], the proof of Theorem 2.13 will follow if we check that every omega-limit trajectoryζ(x, t) is
one of the solitary waves, so thatζ(x, t) = φω⋆

(x)e−iω⋆t, with someω⋆ ∈ R.
For a particular omega-limit trajectoryζ(x, t) which appears in (4.1), we denote

ζI(t) = 〈ρI , ζ(·, t)〉; gI(t) = FI(〈ρI , ζ(·, t)〉) = FI(ζI(t)). (4.4)

Due to Assumption 2.3, we have
gI(t) = −2u′I(|ζI(t)|2)ζI(t) (4.5)

(cf. Assumption 2.3). According to the convergence (4.1), for anyT > 0 and any1 ≤ I ≤ N ,

fI(tjk + t) = FI(〈ρI , ψ(·, tjk + t)〉)
Cb([−T,T ])
−−−−→
k→∞

FI(〈ρI , ζ(·, t)〉) = gI(t). (4.6)
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Due to the well-known local energy decay for the free Klein-Gordon equation (see Proposition A.1 in Appendix A),
lim
t→∞

‖(χ, χ̇)|
t
‖Y = 0. Together with (4.1), this yields

Stjk
(ϕ, ϕ̇)

Cb([−T,T ],Y )
−−−−−−−−−−→

k→∞
(ζ, ζ̇). (4.7)

Lemma 4.1. There is the following identity, understood in the sense of distributions:

ζ̃(x, ω) =

N∑

I=1

ΣI(x, ω)g̃I(ω), x ∈ Rn, ω ∈ R. (4.8)

Proof. This follows from Lemma 3.2, (4.6), (4.7), and fromΣI(x, ω) being a multiplier inS ′(R) (see the proof of
Lemma 3.2).

Coupling (4.8) withρ, we deduce that

ζ̃I(ω) =

N∑

J=1

σIJ (ω)g̃J (ω), ω ∈ R. (4.9)

Lemma 4.2. Let u ∈ S ′(R) and let{tj : j ∈ N} be such thatlimj→∞ tj = ∞. If ei ωtju
S

′

−→ v ∈ S ′(R) and
u|

I
∈ L1

loc(I) for some open setI ⊂ R, thenv|
I

= 0.

Proof. This is an immediate consequence of the Riemann-Lebesgue lemma.

Lemma 4.3. For each1 ≤ I ≤ N , supp g̃I ⊂ [−m,m] ∪ Zρ, whereZρ is defined in(2.20).

Proof. By (4.6) and the continuity of the Fourier transform in the space of tempered distributions,

f̃I(ω)e−iωtjk

S
′

−−−−→
k→∞

g̃I(ω), 1 ≤ I ≤ N.

By Proposition 3.8,̃fI(ω) is locallyL2 for ω ∈ R\([−m,m] ∪ Zρ). Therefore, Lemma 4.2 completes the proof.

Proposition 4.4. There existsω⋆ ∈ Zρ ∪ [−m,m] such thatsupp ζ̃I ⊂ {ω⋆}, 1 ≤ I ≤ N .

Proof. Denote
ω− = min

1≤I≤N
inf supp ζ̃I , ω+ = max

1≤I≤N
sup supp ζ̃I . (4.10)

We claim that the assumptionω− < ω+ leads to a contradiction.

Lemma 4.5. For each1 ≤ I ≤ N , supp ζ̃I ⊂ [−m,m] ∪ Zρ, ω± ∈ [−m,m] ∪ Zρ.

Proof. This follows from Lemma 4.3, the relation (4.9), and the definition (4.10).

Lemma 4.6. For each1 ≤ I ≤ N ,

sup supp ζ̃I + (pI − 1)(sup supp ζ̃I − inf supp ζ̃I) ≤ ω+,

inf supp ζ̃I − (pI − 1)(sup supp ζ̃I − inf supp ζ̃I) ≥ ω−.

Remark4.7. In particular, Lemma 4.6 states that ifsup supp ζ̃I = ω+, thensupp ζ̃I = {ω+}; if inf supp ζ̃I = ω−, then
supp ζ̃I = {ω−}.

Proof. Let us assume that, on the contrary, there isI, 1 ≤ I ≤ N , such that

sup supp ζ̃I + (pI − 1)(sup supp ζ̃I − inf supp ζ̃I) > ω+. (4.11)

After the Fourier transform in time, (4.5) takes the form

g̃I = −2 ˜u′I(|ζI |2)ζI = −2

pI∑

q=1

q uI,q (ζ̃I ∗ ˜̄ζI) ∗ · · · ∗ (ζ̃I ∗ ˜̄ζI)︸ ︷︷ ︸
q

∗ζ̃I , (4.12)



Andrew Comech:Klein-Gordon with mean field interaction at finitely many points 15

where the coefficientsuI,q ∈ R are from (2.2).
The Titchmarsh Convolution Theorem [4] states that for any compactly supported distributionsf, g ∈ E ′(R), one has

inf supp f + inf supp g = inf supp f ∗ g, sup supp f + sup supp g = sup supp f ∗ g. (4.13)

In the case at hand, the Titchmarsh Convolution Theorem shows that the nonlinearity applied to a function with com-
pact spectrum always expands this spectrum unless the spectrum consists of a single point. Applying the Titchmarsh
Convolution Theorem (namely, we use the second equality from (4.13)) to (4.12), we get:

sup supp g̃I = sup supp ζ̃I + (pI − 1)(sup supp ζ̃I + sup supp ˜̄ζI)

= sup supp ζ̃I + (pI − 1)(sup supp ζ̃I − inf supp ζ̃I), (4.14)

where we used the mutual symmetry of the supportssupp ζ̃I andsupp ˜̄ζI with respect toω = 0. By (4.11) and (4.14),
sup supp g̃I > ω+. Then the right-hand side of (4.14) is strictly greater thansup supp ζ̃I , hence there exists

ω∗ > ω+ := max
1≤J≤N

sup supp ζ̃J (4.15)

such thatω∗ ∈ supp g̃I . By Lemma 4.3 and (4.9),

supp ζ̃I ⊂ Zρ ∪ [−m,m], supp g̃I ⊂ Zρ ∪ [−m,m].

By Assumption 2.12, det
1≤I,J≤N

σIJ (ω) 6= 0 for ω ∈ ∪I supp g̃I , hence (4.9) implies thatω∗ ∈ ∪I supp ζ̃I , contradicting

(4.15). Thus, our assumption (4.11) cannot be true.

Lemma 4.8. If I is such thatω+ ∈ supp ζ̃I , thensupp ζ̃I = {ω+}. Similarly, ifω− ∈ supp ζ̃I , thensupp ζ̃I = {ω−}.

Proof. The statement of the lemma immediately follows from Lemma 4.6.

Lemma 4.9. If the pointω+ belongs to the support of̃gI(ω), then it is an isolated point of the support. The same
conclusion takes place forω−.

Proof. One can make the desired conclusion on the support of distributionsg̃I using the relation (4.9), Lemma 4.8, and
recalling that, by Assumption 2.12, det

1≤I,J≤N
σIJ (ω) vanishes only at a discrete set of points, which we denotedZNσ .

Let us give a detailed proof. By Lemma 4.8, there is an open neighborhoodO of ω+ such thatO ∩ supp ζ̃I ⊂ {ω+},
1 ≤ I ≤ N . We may assume thatO is so small that it does not contain a single point from the discrete setZNσ , except
perhapsω+ (if it itself belongs toZNσ ). LetO′ be an open neighborhood such thatO′ ⊂ O\{ω+}. Then, by the choice
of O andO′, ζ̃I(ω) =

∑
J σIJ(ω)g̃J (ω) = 0 in O′ and det

1≤I,J≤N
σIJ(ω) 6= 0 for ω ∈ O′. Let rIJ (ω) be the matrix

inverse toσIJ(ω), ω ∈ O′. For any test function̺ ∈ C∞
0 (O′) and any1 ≤ K ≤ N , using the properties of multipliers

in S ′(R), one has:

0 =
N∑

I=1

〈
̺ rKI ,

∑

J

σIJ g̃J

〉
=

∑

I,J

〈̺ rKIσIJ , g̃J 〉 =
∑

J

〈̺ δKJ , g̃J 〉 = 〈̺, g̃K〉.

Due to the arbitrariness of the choice of̺, one concludes that̃gK |
O′ = 0, 1 ≤ K ≤ N . We are done.

By Lemma 4.8 and Lemma 4.9, there exist disjoint open neighborhoodsO− andO+ of ω = ω− andω = ω+,
respectively, so that

O± ∩ supp ζ̃I ⊂ {ω±}, O± ∩ supp g̃I ⊂ {ω±}; 1 ≤ I ≤ N.

Let η± ∈ C∞
0 (R) be such thatsupp η± ⊂ O±.

Lemma 4.10. There existB±
I ,G±

I ∈ C, 1 ≤ I ≤ N , such that

η±(ω)ζ̃I(ω) = 2πB±
I δ(ω − ω±), η±(ω)g̃I(ω) = 2πG±

I δ(ω − ω±), 1 ≤ I ≤ N.

Proof. One uses the inclusionssupp η±ζ̃I ⊂ {ω±}, supp η±g̃I ⊂ {ω±}, and argues that the expressions forη±(ω)ζ̃I(ω)
andη±(ω)g̃I(ω) in terms ofδ(ω − ω±) and its derivatives cannot contain terms withδ(k)(ω − ω±), k ≥ 1, due to the
boundedness of(η̌± ∗ ζI)(t) and(η̌± ∗ gI)(t), whereη̌±(t) is the inverse Fourier transform ofη±. This boundedness
takes place in view of the definition (4.4) and the bound (4.3).
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Now let us finish the proof of Proposition 4.4. Introduce the sets

I− = {I: supp ζ̃I = {ω−}} ⊂ N, I+ = {I: supp ζ̃I = {ω+}} ⊂ N. (4.16)

Due to the assumption thatω− < ω+ and Lemma 4.8, one hasI− ∩ I+ = ∅. This implies that at least one of the sets
I−, I+ contains no more thanN/2 points:

min(|I−|, |I+|) ≤ N/2. (4.17)

Let us assume that|I−| ≤ |I+| (the other case is treated similarly). Multiplying (4.9) byη−(ω) (and factoring out
δ(ω − ω−)), we obtain the following relations:

B−
I =

N∑

J=1

σIJ (ω−)G−
J . (4.18)

For I ∈ I+, by Lemma 4.8, one hassupp ζ̃I = {ω+}; by (4.5), this leads to the inclusionsupp g̃I ⊂ {ω+}, hence
B−
I = G−

I = 0. Therefore, (4.18) yields

B−
I =

∑

J∈{1, ..., N}\I+

σIJ (ω−)G−
J . (4.19)

Since|I−| ≤ |I+|, and, by (4.17),|I−| ≤ N/2, there exists a setI1 ⊂ {1, . . . , N}\I− such that|I1| = N − |I+|.
Therefore, considering the relations (4.19) withI ∈ I1 (whenB−

I = 0 due toI1 ∩ I− = ∅), we conclude that

0 = B−
I =

∑

J∈{1, ..., N}\I+

σIJ (ω−)G−
J , I ∈ I1. (4.20)

We know from (4.18) that not allG−
I , I ∈ {1, . . . , N}\I+, are equal to zero; hence, (4.20) implies that

det
I∈I1,J∈{1, ..., N}\I+

σIJ(ω−) = 0. (4.21)

Thus, according to Definition 2.11, one hasω− ∈ Z∗
σ. On the other hand, by Lemma 4.5,ω− ∈ [−m,m] ∩ Zρ,

contradicting Assumption 2.12.
The case|I−| > |I+| is treated similarly; in that case, the conclusion is thatω+ ∈ Z∗

σ, again leading to a contradiction
with Assumption 2.12.

Thus, the assumption thatω− < ω+ cannot be true. It follows that there isω⋆ = ω− = ω+ such thatSpec ζI ⊂ {ω⋆}
for 1 ≤ I ≤ N , finishing the proof of Proposition 4.4.

Due to Proposition 4.4,̃ζI(ω) are finite linear combinations ofδ(ω−ω⋆) and its derivatives. As the matter of fact, the
derivatives could not be present because of the boundednessof ζI(t) := 〈ρI , ζ(·, t)〉 which follows from (4.3). Therefore,
ζ̃I = 2πCIδ(ω − ω⋆), with someCI ∈ C. This implies that

ζI(t) = CIe
−iω⋆t, CI ∈ C, t ∈ R. (4.22)

It follows thatgI(t) = F (CI)e
−iω⋆t, g̃I(ω) = 2πF (CI)δ(ω − ω⋆). By Lemma 4.1,

ζ̃(x, ω) = 2πδ(ω − ω⋆)

N∑

I=1

ΣI(x, ω⋆)F (CI),

henceζ(x, t) = φ(x)e−iω⋆t with φ(x) =
∑N
I=1ΣI(x, ω⋆)F (CI). Therefore, equation (4.2) and the bound (4.3) imply

thatζ(x, t) is a solitary wave. By the arguments from [2], this completesthe proof of Theorem 2.13.
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A Local energy decay

Proposition A.1 (Local energy decay). Letn ∈ N,m > 0. If χ solves

χ̈ = ∆χ−m2χ, x ∈ Rn, (χ, χ̇)|
t=0

= (ψ0, π0) ∈ H1(Rn) × L2(Rn),

then, for anyσ > 0, lim
t→∞

(
‖χ(t)‖H1

−σ
+ ‖χ̇(t))‖L2

−σ

)
= 0.

Proof. For the Fourier transform ofχ(x, t) in x, we have:

χ̂(ξ, t) = ψ̂0(ξ) cos(ω(ξ)t) + π̂0(ξ)
sin(ω(ξ)t)

ω(ξ)
, ω(ξ) =

√
m2 + ξ2.

We will only prove that lim
t→∞

‖χ(t)‖H1
−σ

= 0; the limit lim
t→∞

‖χ̇(t)‖L2
−σ

= 0 is computed similarly.

Pick ǫ > 0. We split the initial dataψ0 andπ0 intoψ0 = u1 + u2, π0 = v1 + v2, so that

‖u1‖H1 + ‖v1‖L2 < ǫ/3 (A.1)

and
û2, v̂2 ∈ S (Rn), supp û2 ∪ supp v̂2 ⊂ {ξ ∈ Rn: |ξ| ≥ λ}, (A.2)

for someλ > 0. Letχ1 andχ2 be the solutions to the linear Klein-Gordon equation with the initial data

(χ1, χ̇1)|t=0
= (u1, v1), (χ2, χ̇2)|t=0

= (u2, v2).

Due to (A.1) and the energy conservation,‖χ1(t)‖H1 ≤ ǫ/3 for t ∈ R.
Let ρ1 ∈ C∞

0 (Bn2 ), ρ1|Bn
1
≡ 1. ForR ≥ 1, denoteρ(x) = ρ1(x/R). Since‖χ2(t)‖H1 remains uniformly bounded,

while ‖〈x〉(1 − ρ(x))‖C1
b
(Rn) → 0 asR→ ∞, one can chooseR ≥ 1 large enough so that

‖(1 − ρ(·))χ2(·, t)‖H1
−σ

≤ ǫ/3, t ≥ 0. (A.3)

It suffices to show that
lim
t→∞

‖ρ(·)χ2(·, t)‖H1
−σ

= 0. (A.4)

We have:
‖ρχ2(·, t)‖2

L2 ≤ ‖ρ‖L2‖χ2(·, t)‖L2‖ρχ2(·, t)‖L∞ . (A.5)

The first two factors in the right-hand side of (A.5) are bounded uniformly in time. For the last factor in the right-hand
side of (A.5), we have:

‖ρ(·)χ2(·, t)‖L∞ ≤
∥∥∥ρ̂ ∗

(
û2(·) cos(ω(·)t) + v̂2(·)

sin(ω(·)t)
ω(·)

)∥∥∥
L1
. (A.6)

Lemma A.2. Letf , g ∈ S (Rn), and0 /∈ supp g. Then, for anyN ∈ N, there isCN > 0 so that

‖f ∗
(
g(·)eiω(·)t

)
‖L1 ≤ CN (1 + |t|)−N , t ∈ R.

Proof. Since0 /∈ supp g, |∇ηω(η)| is bounded away from zero on the support ofg. Therefore, the expression

‖f ∗
(
g(·)eiω(·)t

)
‖L1 =

∫ ∣∣∣
∫
f(ξ − η)g(η)eiω(η)t dη

∣∣∣ dξ (A.7)

decays faster than any negative power oft due to the stationary phase method. Namely, one can place theoperator
L = 1

i|∇ω(η)|2t∇ηω · ∇η in front of the exponential factoreiω(η)t under the inner integral in the right-hand side of (A.7),

and then integrate by parts inη. This gives a factor oft−1. The procedure could be repeated arbitrarily many times.

By (A.2), û2 and v̂2 vanish in the vicinity ofξ = 0, thus we can apply Lemma A.2 to the right-hand side of (A.6),
getting lim

t→∞
‖ρχ2(·, t)‖L∞ = 0. Now (A.5) yields

lim
t→∞

‖ρχ2‖2
L2 = 0. (A.8)
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Similarly, one proves that
lim
t→∞

‖∇x(ρχ2(·, t))‖2
L2 = 0. (A.9)

Indeed, we notice that each of the terms in the right-hand side of (A.5) could accommodate a derivative inx: ‖∇ρ‖L2

is bounded,‖∇χ2(·, t)‖L2 is bounded uniformly in time, while‖∇(ρχ2(·, t))‖L∞ is sent to zero by the stationary phase
method of Lemma A.2. By (A.8) and (A.9),lim

t→∞
‖ρ(·)χ2(·, t)‖H1 = 0; (A.4) follows, finishing the proof.
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