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The problem of universal sequential investment in stock markets is considered.
We construct an algorithmic trading strategy that is asymptotically at least as
good as any trading strategy that is not excessively complex and that computes
the investment at each step using a fixed continuous function of the side infor-
mation. This strategy uses predictions of stock prices computed using the theory
of well-calibrated forecasting. Unlike in statistical theory, no stochastic assump-
tions are made about stock prices. The empirical results obtained on historical
markets provide strong evidence that this type of technical trading can “beat”
some generally accepted trading strategies if transaction costs are ignored.

1 INTRODUCTION

We study the problem of universal sequential investment in a stock market with
side information. We consider a trading method called algorithmic trading, or sys-
tematic quantitative trading. This method is used in financial industrial applications
and involves rule-based automatic trading strategies, usually implemented using
computer-based trading systems.

The problem of algorithmic trading is considered in a machine learning framework,
where algorithms that are adaptive to input data are designed and their performance
is evaluated.

There are three common types of analysis for adaptive algorithms: average case
analysis, which requires a statistical model of input data; worst-case analysis, which
is noninformative because, for any trading algorithm, we can present a sequence of
stock prices moving in the opposite direction to the trader’s decisions; and competitive
analysis, which is popular in the “prediction with expert advice” framework.

A nontraditional objective (in computational finance) is to develop algorithmic
trading strategies that are, in some sense, always guaranteed to perform well. In
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competitive analysis, the performance of an algorithm is measured against any trading
algorithm from a broad class. We only ask that an algorithm performs well in the worst
case, ie, relative to the input data of any type. Given a particular performance measure,
an adaptive algorithm is strongly competitive against a class of trading algorithms if
it achieves the maximum possible regret over all input sequences. Unlike in statistical
theory, no stochastic assumptions are made about the stock prices.

This line of research in finance was pioneered by Cover (see Cover and Gluss
(1986); Cover (1991); and Cover and Ordentlich (1996)), who designed universal
portfolio selection algorithms that are proven to perform well (in terms of their total
return) with respect to some adaptive online or offline benchmark algorithms. Such
algorithms are called universal.

In this framework we consider a universal trading for one stock. We construct a
“universal” strategy for algorithmic trading in the stock market that performs at least
as well as any trading strategy that is not excessively complex. By “performance” we
mean the return per unit of currency on an investment.

The process proceeds as follows. Observing a sequence of past prices of a stock
and the side information, a forecaster assigns a subjective estimate to a future price.
Then, using this forecast, a trader makes a decision on whether to buy or sell shares
of the stock.

The forecasting method is based on Dawid’s notion of calibration with more general
checking rules and on a modification of Kakade and Foster’s randomized algorithm
for computing well-calibrated forecasts (Dawid (1982); Foster and Vohra (1998)).

Asymptotic calibration is an area of intensive research where several algorithms
for computing well-calibrated forecasts have been developed. Several applications of
well-calibrated forecasting have been proposed, including convergence to correlated
equilibrium (Kakade and Foster (2008)), recovering unknown functional dependen-
cies (Vovk (2006)) and predictions with expert advice (Chernov et al (2010)).

We present a new application: a universal trading strategy based on well-calibrated
forecasts.

A minimal requirement for testing any prediction algorithm is that it should be
calibrated. Dawid (1982) gave the following informal explanation of calibration for
binary outcomes. Let a sequence !1; !2; : : : ; !n�1 of binary outcomes be observed
by a forecaster whose task is to give a probability pn of a future event !n D 1. In
a typical example, pn is interpreted as the probability that it will rain. The forecast
is said to be well-calibrated if it rains as often as the forecaster leads us to expect. It
should rain about 80% of the days for which pn D 0:8, and so on.

A more precise definition is as follows. Let I.p/ denote the characteristic function
of a subinterval I � Œ0; 1�, ie, I.p/ D 1 ifp 2 I , and I.p/ D 0 otherwise. An infinite
sequence of forecasts p1; p2; : : : is calibrated for an infinite sequence of outcomes
!1; !2; : : : (binary or real) if, for a characteristic function I.p/ of any subinterval of
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Œ0; 1�, the calibration error tends to zero, ie:

1

n

nX
iD1

I.pi /.!i � pi /! 0 as n!1

The indicator function I.pi / determines some “checking rule” that selects indices i ,
where we compute the deviation between forecasts pi and outcomes !i .

If the weather acts adversatively, then, as shown by Oakes (1985) and Dawid (1985),
any deterministic forecasting algorithm will not always be calibrated.

Foster and Vohra (1998) show that calibration is almost surely guaranteed with a
randomizing forecasting rule, ie, where the forecasts pi are chosen using internal ran-
domization and the forecasts are hidden from the weather until it makes its “decision”
whether to rain or not.

Unlike elsewhere in the literature, we consider real-valued outcomes !i (for exam-
ple, scaled prices of a stock). In this case, predictions can be interpreted as mean
values of future outcomes under some probability distributions that are unknown to
us. We do not need to know the precise form of such distributions – we should only
predict future means.

We use the forecasting method of Kakade and Foster (2008), where an “almost
deterministic” randomized rounding universal forecasting algorithm is presented. For
any sequence of real outcomes !1; !2; : : : , an observer can simply randomly round
the deterministic forecast pi up to some precision bound to a random forecast Qpi in
order to calibrate for this sequence, with probability 1:

lim
n!1

1

n

nX
iD1

I. Qpi /.!i � Qpi / D 0 (1.1)

where I.p/ is the characteristic function of any subinterval of Œ0; 1�.
In this paper a forecast is a single number from the unit interval Œ0; 1� (which can

be the output of a random variable), whereas Kakade and Foster considered a finite
outcome space and a probability distribution on this space as a forecast.

We show that, using well-calibrated forecasts, it is possible to construct a universal
trading strategy for the stock market that performs asymptotically at least as well as any
trading strategy presented by a continuous function. The learning process is as follows.
At each step, a forecaster makes a prediction of a future price of the stock. A trader
randomizes this prediction and the past price of the stock and takes the best response
in terms of these randomized values. He chooses a strategy: going long or going short,
or skips the step. In finance, a long position in a security, such as a stock or a bond, or
equivalently to be long in a security, means the holder of the position owns the security
and will profit if the price of the security goes up. Short selling (also known as shorting
or going short) is the practice of selling securities or other financial instruments,
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with the intention of subsequently repurchasing them (“covering”) at a lower price
price. The forecaster uses a randomized algorithm for computing the well-calibrated
forecasts. Our main result, Theorem 2.1, says that this trading strategy is universal –
it performs asymptotically at least as well as any trading strategy presented by any
continuous function. To achieve this result, in Theorem 4.1 we extend Kakade and
Foster’s forecasting algorithm for arbitrary real-valued outcomes to a more general
notion of calibration with changing checking rules. We combine it with the Vovk et al
(2005) defensive forecasting method in a reproducing kernel Hilbert space (RKHS)
(see Vovk (2006)).

In Section 6 we present the results of our numerical experiments. Our empirical
results on historical markets provide strong evidence that this type of technical trading
can “beat the market” if transaction costs are ignored.

2 UNIVERSAL TRADING STRATEGY

We consider a trading process in a stock market with one stock. Suppose that prices
S1; S2; : : : of the stock are bounded and rescaled such that 0 6 Si 6 1 for all i . We
present the process of trading in a stock market in the form of the perfect information
protocol of a game with two traders. Trader M uses the randomized strategy QMi ,
Trader D uses an arbitrary stationary trading strategyD that is a real function defined
on Œ0; 1�.

In this paper, a forecast is a single number from the unit interval Œ0; 1� (which can
be the output of a random variable). We could interpret the forecast pi as the mean
value of a future price Si under some probability distribution in Œ0; 1� that is unknown
to us.

In the perfect-information protocol, every player can see the other players’ moves
so far. At the beginning of each step i , traders are given some data xi that is relevant
to predicting a future price Si of the stock. We call xi a signal or a piece of side
information. The real number xi belongs to Œ0; 1� and can encode any information.
For example, it could even be the future price Si .

Past prices, signals and predictions are also known to traders in the perfect-
information protocol. For example, at any step i , past prices and predictions can
be encoded in the signal xi and used by Trader D.

Define a universal trading strategy as a random variable QMi . To construct such a
strategy, at each step i , compute a forecast pi of a future price Si and randomize
it to Qpi . We also randomize the past price Si�1 of the stock to QSi�1. Details of this
computation and sequential randomization will be given in Section 4. Define:

QMi D

(
1 if Qpi > QSi�1

�1 otherwise
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TABLE 1 Protocol of the trading game.

FOR i D 1; 2 : : :

Stock market announces a signal xi 2 Œ0; 1�.

Trader M bets by buying or selling the random number QMi of shares of the stock
by Si�1 each.

Trader D bets by buying or selling a number D.xi / of shares of the stock
by Si�1 each.

Stock market reveals a price Si of the stock.

Trader M updates his total gain (loss):

KM
i DKM

i�1 C
QMi .Si � Si�1/. We get KM

0 D 0.

Trader D updates his total gain (loss):

KD
i DKD

i�1 CD.xi /.Si � Si�1/. We get KD
0 D 0.

ENDFOR

In case QMi > 0 Trader M goes long, and goes short otherwise. The same holds
for Trader D. We suppose that traders can borrow money for buying shares and can
incur debt. The core of the universal strategy is the algorithm for computing the
well-calibrated forecasts Qpi . This algorithm is presented in Section 4.

Recall the norm kDk1 D sup06x61 jD.x/j, where D is a continuous function.
Assume that S1; S2; : : : 2 Œ0; 1� and x1; x2; : : : 2 Œ0; 1� are given sequentially accord-
ing to the protocol presented in Table 1.

The main theoretical result of this paper is presented in the following theorem. It
says that, with probability one, the average gain of the universal trading strategy is
asymptotically not less than the average gain of stationary trading strategy from one
share of the stock.

Theorem 2.1 An algorithm for computing forecasts and a sequential method of
randomization can be constructed such that, for any continuous nonzero functionD:

lim inf
n!1

1

n
.KM

n � kDk
�1
1KD

n / > 0 (2.1)

holds almost surely with respect to a probability distribution generated by the corre-
sponding sequential randomization.

The proof of this theorem is given in Section 5, where we construct the corre-
sponding optimal trading strategy based on the well-calibrated forecasts defined in
Section 4.
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3 REPRODUCING KERNEL HILBERT SPACES

First, we will prove in Section 5 that the trading strategy QMi defined in Section 2 is
universal with respect to all stationary trading strategies from any benchmark class
called an RKHS. After that, using a universal RKHS, we extend the universality
property to the class of all continuous stationary trading strategies.

A Hilbert space F of real-valued functions on a compact set X is called an RKHS
onX if the evaluation functional f ! f .x/ is continuous for each x 2 X . Let k � kF
be a norm on F and let:

cF .x/ D sup
kf kF 61

jf .x/j

The embedding constant of F is defined as cF D supx cF .x/.
We consider an RKHS F on X D Œ0; 1� with cF < 1. An example of such an

RKHS is the Sobolev space F D H 1.Œ0; 1�/, which consists of absolutely continuous
functions f W Œ0; 1�! R with kf kF <1, where:

kf kF D

sZ 1

0

.f .t//2 dt C
Z 1

0

.f 0.t//2 dt

For this space, cF D
p

coth 1 (see Vovk (2006)).
Let F be an RKHS on X with the dot product .f � g/ for f; g 2 F . By the Riesz–

Fisher theorem, for each x 2 X there exists kx 2 F such that f .x/ D .kx � f /. The
reproduced kernel is defined as K.x; y/ D .kx � ky/.

Conversely, any kernel K.x; y/ defines some canonical RKHS F and a mapping
˚ W X ! F such that K.x; y/ D .˚.x/ � ˚.y//. For other examples and details of
kernel theory, see Scholkopf and Smola (2002).

4 WELL-CALIBRATED FORECASTING WITH SIDE INFORMATION

In this section we define an algorithm for computing well-calibrated forecasts, which
is a core of the investment strategy QMi defined in Section 2.

We consider checking rules of a more general type than those used by Kakade and
Foster (2008). For any measurable subset S � Œ0; 1� � Œ0; 1�, define:

IS .p; x/ D

(
1; if .p; x/ 2 S

0; otherwise

where p; x 2 Œ0; 1�. In Section 5 we obtain S D f.p; x/ W p > xg.
Some special kernel corresponds to the method of randomization defined below. A

random variable Qy is called a randomization of a real number y 2 Œ0; 1� ifE. Qy/ D y,
where E is the symbol of mathematical expectation with respect to the probability
distribution corresponding to Qy.
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We use a specific method of randomization of real numbers from the unit interval
proposed by Kakade and Foster (2008). Given a positive integer numberK, divide the
interval Œ0; 1� into subintervals of length� D 1=K with rational endpoints vi D i�,
where i D 0; 1; : : : ; K. Let V denote the set of these points. Any number p 2 Œ0; 1�
can be represented as a linear combination of two neighboring endpoints ofV defining
the subinterval containing p:

p D
X
v2V

wv.p/v D wvi�1.p/vi�1 C wvi .p/vi (4.1)

where:

p 2 Œvi�1; vi �; i D bp1=�C 1c;

wvi�1.p/ D 1 � .p � vi�1/=�; wvi .p/ D 1 � .vi � p/=�

Define wv.p/ D 0 for all other v 2 V . Define a random variable:

Qp D

(
vi�1 with probability wvi�1.p/

vi with probability wvi .p/

Let Nw.p/ D .wv.p/ W v 2 V / be a vector of probabilities of rounding. For z; z0 2
Œ0; 1�, define the dot product K.z; z0/ D . Nw.z/ � Nw.z0//, which is a kernel function.1

In what follows, given a sequence �1 > �2 > � � � ! 0 of rational numbers, we
will define the corresponding randomizations Qp1; Qp2; : : : of reals p1; p2; : : : 2 Œ0; 1�
such that Ei . Qpi / D pi and the standard deviation �i D

p
Ei . Qpi � pi /2 6 �i for

all i , where Ei is the symbol of the mathematical expectation with respect to the
random rounding up to�i . Similarly, a sequence of random variables Qz1; Qz2; : : : will
be defined as randomizations of real numbers z1; z2; : : : , where zi D Si�1 is the past
outcomes, i D 1; 2; : : : (setting S0 D 0). We call this the sequential method of
randomization. Let Pr be an overall probability distribution generated by a sequential
method of randomization.

The following theorem is the main tool used in the analysis presented in Section 5.
Let F be an RKHS on Œ0; 1� with a finite embedding constant cF , let k � kF be the

norm and let M.x; x0/ be the kernel on Œ0; 1�.
Suppose thatS1; S2; : : : 2 Œ0; 1� is a sequence of real numbers and that x1; x2; : : : 2

Œ0; 1� is a sequence of signals given sequentially according to the protocol presented
in Table 1 on page 67.

Theorem 4.1 Given � > 0, an algorithm for computing forecasts p1; p2; : : : and
a sequential method of randomization can be constructed such that the following two
conditions hold.

1 Many other methods of randomization also work.
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(i) For the characteristic function IS of any subset S � Œ0:1�2 and for any ı > 0,
with Pr at least 1 � ı:

ˇ̌̌
ˇ
nX
iD1

IS . Qpi ; Qzi /.Si� Qpi /

ˇ̌̌
ˇ D O

�
n.3=4/C�.c2FC1/

1=4C

�
n ln

�
1

ı

��1=2�
(4.2)

as n ! 1, where Qp1; Qp2; : : : are the corresponding randomizations of
p1; p2; : : : and Qz1; Qz2; : : : are randomizations of reals z1; z2; : : : , where zi D
Si�1, i D 1; 2; : : : .

(ii) For any D 2 F :

ˇ̌̌
ˇ
nX
iD1

D.xi /.Si � pi /

ˇ̌̌
ˇ 6 kDkF

q
.c2F C 1/n (4.3)

for all n.

Proof At first, given� > 0, we modify a randomized rounding algorithm of Kakade
and Foster (2008) to construct some forecasting algorithm calibrated up to a precision
�, and combine it with the Vovk (2006) defensive forecasting algorithm. After that,
we apply a “doubling trick” argument to this algorithm so that (4.2) will hold.

Under the assumption of Theorem 4.1, an algorithm for computing forecasts and
a method of randomization can be constructed such that inequality (4.3) holds for all
D from the RKHS F and for all n. Also, for any ı > 0with probability at least 1� ı:

ˇ̌̌
ˇ
nX
iD1

I. Qpi ; Qzi /.Si � Qpi /

ˇ̌̌
ˇ 6 �nC 2

s
n.c2F C 1/

�
C

r
n

2
ln
2

ı

holds for all n, where I is the characteristic function of any measurable subset of
Œ0; 1� � Œ0; 1�.

We define a deterministic forecast pi and after that we randomize it to Qpi .
The partition V D fv0; : : : ; vKg and probabilities of rounding were defined above

by (4.1). In what follows, we round some deterministic forecast pn to vi�1 with
probability wvi�1.pn/ and to vi with probability wvi .pn/. We also randomly round
zn to vs�1 with probability wvs�1.zn/ and to vs with probability wvs .zn/, where
zn 2 Œvs�1; vs�.

Let Wv.pn; zn/ D wv1.pn/wv2.zn/, where v D .v1; v2/ and v1; v2 2 V , and let
W.pn; zn/ D .Wv.pn; zn/ W v 2 V

2/ be a vector of probability distribution in V 2.
Define the corresponding kernel K.p; z; p0; z0/ D .W.p; z/ �W.p0; z0//.
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Let the deterministic forecastsp1; : : : ; pn�1 be as defined previously (setp1 D 1
2

).
We want to define a deterministic forecast pn.

By definition, the kernel M.x; x0/ can be represented as a dot product in some
feature space M.x; x0/ D .˚.x/ � ˚.x0//. Consider the function:

Un.p/ D

n�1X
iD1

.K.p; zn; pi ; zi /CM.xn; xi //.Si � pi / (4.4)

The following lemma presents a general method for computing deterministic fore-
casts.

Lemma 4.2 (Vovk et al (2005)) A sequence of forecasts p1; p2; : : : can be com-
puted such that Mn 6 Mn�1 for all n, where M0 D 1 and Mn D Mn�1 C

Un.pn/.Sn � pn/ for all n.

Proof Indeed, if Un.p/ > 0 for all p 2 Œ0; 1�, then define pn D 1; if Un.p/ < 0

for all p 2 Œ0; 1�, then define pn D 0. Otherwise, define pn to be some root of the
equationUn.p/ D 0 (some root exists by the intermediate value theorem). Evidently,
Mn 6Mn�1 for all n.

Let forecasts p1; p2; : : : be computed using the method in Lemma 4.2. Then, for
any N :

0 >MN �M0

D

NX
nD1

Un.pn/.Sn � pn/

D

NX
nD1

n�1X
iD1

.K.pn; zn; pi ; zi /CM.xn; xi //.Si � pi /.Sn � pn/

D
1

2

NX
nD1

NX
iD1

K.pn; zn; pi ; zi /.Si � pi /.Sn � pn/

�
1

2

NX
nD1

.K.pn; zn; pn; zn/.Sn � pn//
2

C
1

2

NX
nD1

NX
iD1

M.xn; xi /.Si � pi /.Sn � pn/

�
1

2

NX
nD1

.M.xn; xn/.Sn � pn//
2 (4.5)
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D
1

2

����
NX
nD1

W.pn; zn/.Sn � pn/

����
2

�
1

2

NX
nD1

kW.pn; zn/k
2.Sn � pn/

2 (4.6)

C 1
2

����
NX
nD1

˚.xn/.Sn � pn/

����
2

F

�
1

2

NX
nD1

k˚.xn/k
2
F .Sn � pn/

2 (4.7)

In (4.6), k � k is the Euclidean norm, and in (4.7), k � kF is a norm in the RKHS F .
Since .Sn � pn/2 6 1 for all n and:

kW.pn; zn/k
2 D

X
v2V 2

.Wv.pn; zn//
2

6
X
v2V 2

Wv.pn; zn/ D 1

the subtracted sum of (4.6) is upper bounded by N .
Since k˚.xn/kF D cF .xn/ and cF .x/ 6 cF for all x, the subtracted sum of (4.7)

is upper bounded by c2FN . As a result, we obtain:

����
NX
nD1

W.pn; zn/.Sn � pn/

���� 6
q
.c2F C 1/N (4.8)

����
NX
nD1

˚.xn/.Sn � pn/

����
F

6
q
.c2F C 1/N (4.9)

for all N . Let us define:

N�n D

nX
iD1

W.pi ; zi /.Si � pi /

By (4.8), k N�nk 6
p
.c2F C 1/n for all n.

Let N�n D f�n.v/ W v 2 V 2g. By definition, for any v:

�n.v/ D

nX
iD1

Wv.pi ; zi /.Si � pi / (4.10)

Insert the term I.v/ into the sum (4.10), where I is the characteristic function of
an arbitrary set S � Œ0; 1� � Œ0; 1�, sum by v 2 V 2 and exchange the order of
summation. Using the Cauchy–Schwarz inequality for vectors NI D .I.v/ W v 2 V 2/,
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N�n D .�n.v/ W v 2 V
2/ and the Euclidean norm, we obtain:ˇ̌̌

ˇ
nX
iD1

X
v2V 2

Wv.pi ; zi /I.v/.Si � pi /

ˇ̌̌
ˇ D

ˇ̌̌
ˇ X
v2V 2

I.v/

nX
iD1

Wv.pi ; zi /.Si � pi /

ˇ̌̌
ˇ

D . NI � N�n/ 6 k NIk � k N�nk

6
q
jV 2j.c2F C 1/n (4.11)

for all n, where jV 2j D .1=�C 1/2 6 4=�2 is the cardinality of the partition.
Let Qpi be a random variable taking values v 2 V with probabilitieswv.pi /. Recall

that Qzi is a random variable taking values v 2 V with probabilities wv.zi /.
Let S � Œ0; 1��Œ0; 1�, and let I be its indicator function. For any i , the mathematical

expectation of a random variable I. Qpi ; Qzi /.Si � Qpi / is equal to:

E.I. Qpi ; Qzi /.Si � Qpi // D
X
v2V 2

Wv.pi ; zi /I.v/.Si � v
1/ (4.12)

where v D .v1; v2/. By the Azuma–Hoeffding inequality (see (4.20) below), for any
ı > 0, with probability 1 � ı:

ˇ̌̌
ˇ
nX
iD1

I. Qpi ; Qzi /.Si � Qpi / �

nX
iD1

E.I. Qpi ; Qzi /.Si � Qpi //

ˇ̌̌
ˇ 6

r
n

2
ln
2

ı
(4.13)

By definition of the deterministic forecast, the sums:X
v2V 2

Wv.pi ; zi /I.v/.Si � pi / and
X
v2V 2

Wv.pi ; zi /I.v/.Si � v
1/

differ at most by � for all i , where v D .v1; v2/. Summing (4.12) over i D 1; : : : ; n
and using inequality (4.11), we obtain:

ˇ̌̌
ˇ
nX
iD1

E.I. Qpi ; Qzi /.Si � Qpi //

ˇ̌̌
ˇ D

ˇ̌̌
ˇ
nX
iD1

X
v2V 2

Wv.pi ; zi /I.v/.Si � v
1/

ˇ̌̌
ˇ

6 �nC 2

s
.c2F C 1/n

�2
(4.14)

for all n.
By (4.13) and (4.14), with probability 1 � ı:

ˇ̌̌
ˇ
nX
iD1

I. Qpi ; Qzi /.Si � Qpi /

ˇ̌̌
ˇ 6 �nC 2

s
.c2F C 1/n

�2
C

r
n

2
ln
2

ı
(4.15)
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By the Cauchy–Schwarz inequality:ˇ̌̌
ˇ
NX
nD1

D.xn/.Sn � pn/

ˇ̌̌
ˇ D

ˇ̌̌
ˇ
NX
nD1

.Sn � pn/.D � ˚.xn//

ˇ̌̌
ˇ

D

ˇ̌̌
ˇ
� NX
nD1

.Sn � pn/˚.xn/ �D

�ˇ̌̌
ˇ

6
����
NX
nD1

.Sn � pn/˚.xn/

���� � kDkF
6 kDkF

q
.c2F C 1/N

�

Now we complete the proof of Theorem 4.1.
The expression �nC 2

p
.c2F C 1/n=�

2 from (4.14) and (4.15) takes its minimal
value for � D

p
2.c2F C 1/

1=4n�1=4. In this case, the right-hand side of inequal-
ity (4.14) is equal to:

�nC 2

s
n.c2F C 1/

�2
D 2�n

D 2
p
2.c2F C 1/

1=4n3=4 (4.16)

We prove the bound (4.2) using the doubling trick argument. Let � > 0 and
h D d2=�e, where dre is the smallest integer number greater than or equal to r .
Define an increasing sequence of natural numbers ns D .s C h/h, s D 1; 2; : : : , and
�s D

p
2.c2F C 1/

1=4n
�1=4
s .

It can be proved by mathematical induction on s that:ˇ̌̌
ˇ
nX
iD1

E.I. Qpi ; Qzi /.Si � Qpi //

ˇ̌̌
ˇ 6 4s�s�1n (4.17)

holds for all ns�1 6 n 6 ns , and the inequality:ˇ̌̌
ˇ
nsX
iD1

E.I. Qpi ; Qzi /.Si � Qpi //

ˇ̌̌
ˇ 6 4s�sns (4.18)

also holds. Therefore, we obtain:ˇ̌̌
ˇ
nX
iD1

E.I. Qpi ; Qzi /.Si � Qpi //

ˇ̌̌
ˇ 6 18.c2F C 1/1=4n.3=4/C� (4.19)

for all n.2

2 Here and in what follows we omit details of the calculation of constants in the bounds.
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The Azuma–Hoeffding inequality states that, for any � > 0:

Pr

� ˇ̌̌
ˇ1n

nX
iD1

Vi

ˇ̌̌
ˇ > �

�
6 2e�2n�

2

(4.20)

for all n, where Vi are martingale differences.
We define:

Vi D I. Qpi ; Qzi /.Si � Qpi / �E.I. Qpi ; Qzi /.Si � Qpi // and � D

r
1

2n
ln
2

ı

where ı > 0.
Combining (4.19) with (4.20), we obtain, for any ı > 0 with probability 1 � ı:

ˇ̌̌
ˇ
nX
iD1

I. Qpi ; Qzi /.Si � Qpi /

ˇ̌̌
ˇ 6 18.c2F C 1/1=4n.3=4/C� C

r
n

2
ln
2

ı

for all n. Theorem 4.1 is proved. �

5 PROOF OF THEOREM 2.1

At any step i we compute the deterministic forecast pi defined in Section 4 and its
randomization to Qpi using parameters � D �s D

p
2.cF C 1/

1=4.s C h/�h=4 and
ns D .s C h/

h, where ns 6 i < nsC1. Also, let QSi�1 be a randomization of the past
price Si�1. In Theorem 4.1, zi D Si�1 and Qzi D QSi�1.

The following upper bound directly follows from the method of discretization:

ˇ̌̌
ˇ
nX
iD1

I. Qpi > QSi�1/. QSi�1 � Si�1/

ˇ̌̌
ˇ 6

sX
tD0

.ntC1 � nt /�t

6 4.c2F C 1/1=4n.3=4/C�s

6 4.c2F C 1/1=4n.3=4/C� (5.1)

LetD.x/ be an arbitrary trading strategy from the RKHS F . Clearly, the bound (5.1)
holds if we replace I. Qpi > QSi�1/ on kDk�11D.xi /.

For simplicity, we give the proof for the case of going long, where D.x/ > 0 for
all x and:

QMi D

(
1 if Qpi > QSi�1

0 otherwise
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We use abbreviations:

�1.n/ D 4.c
2
F C 1/

1=4n.3=4/C� (5.2)

�2.n/ D 18n
.3=4/C�.c2F C 1/

1=4 C

r
n

2
ln
2

ı
(5.3)

�3.n/ D

q
.c2F C 1/n (5.4)

The following sums are for i D 1; : : : n. We use the Azuma–Hoeffding inequality
(4.20). For any ı > 0 with probability 1 � ı, the following chain of equalities and
inequalities is valid:

nX
iD1

QMi .Si � Si�1/

D
X
Qpi> QSi�1

.Si � Si�1/

D
X
Qpi> QSi�1

.Si � Qpi /C
X
Qpi> QSi�1

. Qpi � QSi�1/C
X
Qpi> QSi�1

. QSi�1 � Si�1/

(5.5)

>
X
Qpi> QSi�1

. Qpi � QSi�1/ � �1.n/ � �2.n/ (5.6)

> kDk�11
nX
iD1

D.xi /. Qpi � QSi�1/ � �1.n/ � �2.n/

D kDk�11

nX
iD1

D.xi /.pi � Si�1/C kDk
�1
1

nX
iD1

D.xi /. Qpi � pi /

� kDk�11

nX
iD1

D.xi /. QSi�1 � Si�1/ � �1.n/ � �2.n/ (5.7)

> kDk�11
nX
iD1

D.xi /.pi � Si�1/ � 3�1.n/ � �2.n/ (5.8)

> kDk�11
nX
iD1

D.xi /.Si � Si�1/ � kDk
�1
1

nX
iD1

D.xi /.Si � pi /

� 4�1.n/ � �2.n/ � kDk
�1
1 kDkF �3.n/ (5.9)

D kDk�11

nX
iD1

D.xi /.Si � Si�1/

� 4�1.n/ � �2.n/ � kDk
�1
1 kDkF �3.n/
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In transition from (5.5) to (5.6), the inequality (4.2) of Theorem 4.1 and the bound
(5.1) were used, so terms (5.2) and (5.3) were subtracted. In transition from (5.7) to
(5.8), the bound (5.1) was applied twice to intermediate terms, so the term (5.1) was
subtracted twice. In transition from (5.8) to (5.9), the inequality (4.3) of Theorem 4.1
was used, so the term (5.4) was subtracted.

Therefore, with probability 1 � ı:

KM
n > kDk�1KD

n �O

�
n.3=4/C� C

�
n ln

�
1

ı

��1=2�
(5.10)

The inequality (2.1) follows from (5.10). Theorem 2.1 is proved for any D 2 F .
Using a universal kernel and the corresponding canonical universal RKHS, we can

extend our asymptotic results for all continuous stationary trading strategies D.
An RKHS F onX is universal ifX is a compact metric space and every continuous

function f on X can be arbitrarily well approximated in the metric k � k1 by a
function from F . For any � > 0, there exists D 2 F such that (see Steinwart (2001,
Definition 4)):

sup
x2X

jf .x/ �D.x/j 6 �

We use X D Œ0; 1�. The Sobolev space F D H 1.Œ0; 1�/ is the universal RKHS
(see Steinwart (2001) and Vovk (2006)).

The existence of the universal RKHS on Œ0; 1� implies the full version of Theo-
rem 2.1.

An algorithm for computing forecastspi and a sequential method of randomization
can be constructed such that the randomized trading strategy QMi defined in Section 2
performs at least as well as any nontrivial continuous trading strategy f :

lim inf
n!1

1

n
.KM

n � kf k
�1
1Kf

n / > 0 (5.11)

holds almost surely with respect to a probability distribution generated by the corre-
sponding sequential randomization.

This result directly follows from the inequality (5.10) and the possibility of approx-
imating arbitrarily closely any continuous function f on Œ0; 1� by a function D from
the universal RKHS F .

Any trading strategy QMi satisfying (5.11) is called universally consistent.The notion
of the universal trading strategy for the minimax case was first studied by Cover
(1991).

The property of universal consistency (5.11) is strictly asymptotic and does not tell
us anything about finite data sequences. We have obtained the convergence bound
(5.10) for more narrow classes of functions like the RKHS.
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6 NUMERICAL EXPERIMENTS

6.1 Computer technology

In the numerical experiments we used historical data in the form of per-minute time
series of prices of arbitrarily chosen stocks.

The computation scheme defined in the proof of Theorem 4.1 was essentially sim-
plified. Since the kernels K.p; zn; pi ; zi / and M.xn; xi / from the proof of Theo-
rem 4.1 have a similar form in most practical applications, we approximate them
with one smooth kernel function K.p; pn/ D cos.�.p � pn/=2/ also used by Vovk
(2007). We do not include signals in the kernel. Indeed, the impact of signals is taken
into account when we use the decision rules Qpi > QSi�1.

The time characteristics are crucial in any short-term trading algorithm. The greatest
time cost is associated with the calculation of sums (4.4) and finding roots of the
corresponding equation. The experiments carried out show that the computation time
of calculating any forecast increases in a linear way with the length of the history. To
optimize this time, the computation has been parallelized on overlapping processes
performed for a time series of fixed length L1. The first L2 < L1 time points of any
series are only used for scaling the stock prices, defining the size of randomization
grid and initial learning of the forecasting algorithm. Trading is not performed at the
first L2 time points of such series. When a previous process terminates, we switch to
the next process. The results of this parallel computing are accumulated into a single
overall forecasting series.

The prices of a stock are scaled such that Si 2 Œ0; 1� for all i . The scaling is
performed for the time series of each process separately. The first L2 time points of
any process are used for computing a scaling constant. The forecasting algorithm is
performed for the scaled prices Si .

We implement this computer technology for two forecasting algorithms: the uni-
versal strategy constructed in Section 2 (UN model) and the autoregressive moving
average (ARMA) algorithm model (see Peng and Aston (2011)).3 We also use the
buy-and-hold trading strategy. With this strategy, we buy a holding of shares at the
starting point of trading and sell them at the end of the trading period.

6.2 Results of numerical experiments

In the numerical experiments we used historical data in the form of per-minute time
series of prices of seventeen arbitrarily chosen stocks (eleven US stocks and six
Russian stocks) and of one simulated stock, TEST. The data was downloaded from

3 See also the state space models toolbox for Matlab. URL: http://sourceforge.net/projects/ss
models/.
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the FINAM website.4 The number n of trading points in each time series is from
88 000 to 116 000. The period of the game is from March 26, 2010 to March 25, 2011
and is divided on one-minute intervals.

The artificial stock TEST is simulated as Si D Si�1 C 	i , i D 1; 2; : : : ; N , where
	i is the Gaussian random variable with mean 0 and a variance equal to the variance
of the scaled GAZP stock.

We implement the trading strategy defined in Section 2. Two series of numerical
experiments are performed.

In the first series, at each step, starting from initial capital KR
0 D KF

0 D K0 D

KS0, where S0 is the price of a stock at the first time point, the strategy QMi performs
by going long or going short with K shares of the stock.

At each step i , in the case of going long, we buy a holding of K shares at the
beginning and sell them at the end of this step. In the case of going short, we sell a
holding of K shares at the beginning and buy them at the end of this step. We take
K D 5 in our experiments.

We calculate the capital separately for each trading style. In the case of going long,
the capital changes at any step i as KR

i DKR
i�1 CK.Si � Si�1/ if Qpi > QSi�1, and

KR
i DKR

i�1 otherwise.5

In the case of going short, KF
i DKF

i�1 �K.Si � Si�1/ if Qpi 6 QSi�1, and
KF
i DKF

i�1 otherwise, where i D 1; 2; : : : ; N .
The results of the numerical experiments are shown in Table 2 on the next page.

In the first column, the ticker symbols of the stocks are shown. The second column
shows the profit of the buy-and-hold trading strategy. With this strategy, we buy a
holding of shares using capital K0 and sell them for KN at the end of the trading
period.

In the third and fourth columns, the results of one run of trading based on the
universal (UN) randomized forecasting strategy are shown. In the third column, a
relative return, percentage-wise, to the initial capital .KN �K0/=K0100% is shown
for the going long case. In the fourth column, the same relative return is shown for
the going short case. In the fifth and sixth columns, the same results are shown for
trading using ARMA forecasts.

According to the results for the trades using the UN strategy, all stocks can be
divided into two groups. For the first group of stocks, both UN strategies (going
long and going short) essentially outperform the buy-and-hold strategy and receive a
positive relative return during the whole period of trading. The evolution of the capital
of typical stocks from this group (GOOG and KOCO) is shown in Figure 1 on page 81

4 See www.finam.ru/analysis/profile041CA00007/default.asp.
5 Because of the discretization there is a difference between rules Qpi > QSi�1 and Qpi > QSi�1. This
difference may be the subject of further study.
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TABLE 2 Universal trading.

Buy and UN going UN going ARMA going ARMA going
hold long short long short

Ticker (profit %) (profit %) (profit %) (profit %) (profit %)

TEST 6.85 �1.39 �8.19 9.88 3.08
AT-T 7.71 137.40 129.70 30.73 23.02
CTGR 15.04 1594.34 1579.34 1167.22 1152.53
KOCO 16.55 62.66 46.15 2.90 �13.61
GOOG 10.25 114.85 104.62 12.85 2.62
InBM 24.28 85.38 61.09 29.31 5.02
INTL 4.29 111.70 107.50 25.86 21.66
MSD 10.71 58.32 47.60 18.66 7.95
US1.AMT 22.01 22.74 0.77 28.46 6.49
US1.IP 2.40 19.83 17.47 9.36 7.00
US2.BRCM 25.30 53.62 28.28 20.06 �5.27
US2.FSLR 40.15 143.92 103.61 �9.86 �50.16
SIBN �6.54 732.87 739.33 357.74 364.20
GAZP 22.75 101.20 78.45 31.75 9.00
LKOH 19.39 261.84 242.45 87.08 67.68
MTSI �1.61 669.16 670.68 326.12 327.64
ROSN 9.69 188.89 179.12 34.40 24.63
SBER 14.21 108.97 94.90 37.53 23.46

and Figure 2 on the facing page.We note an unusually high relative return when trading
with the CTGR stock.

For the second group of stocks (TEST, US1.AMT, US1.IP, US2.BRCM and MCD),
UN going long and going short does not outperform the buy-and-hold strategy at most
points during the trading period (through it does outperform it at the end of this period).
Also, UN trading strategies receive a negative relative return at some intermediate
points of the trading period. The evolution of the capital of typical stocks from this
group (TEST, US1.IP and US2.BRCM) is shown on Figure 3 on page 82, Figure 4
on page 82 and Figure 5 on page 83.

It was found that Ki > 0 for i D 1; 2; : : : ; N , ie, we never lose all initial capital
K0.

The results presented in Table 3 on page 84 show that trading based on the UN
model using universal forecasting performs at least as well as the trading based on
the ARMA forecasting model and essentially outperforms it for some stocks.

For each stock, we perform ten runs of UN- and ARMA-based algorithms. The
evolution of capital for ten runs of the UN strategy using well-calibrated forecasts of
the US1.IP stock for a grid of size 0:2� is shown on Figure 6 on page 85. The results
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FIGURE 1 Evolution of capital of the three trading strategies (GOOG stock).
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Solid black line: buy and hold. Dotted black line: going long. Dashed gray line: going short. One run of trading is
performed with the GOOG stock (see Table 2 on the facing page).

FIGURE 2 Evolution of capital of the three trading strategies (KOCO stock).
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Solid black line: buy and hold. Dotted black line: going long. Dashed gray line: going short. One run of trading is
performed with the KOCO stock (see Table 2 on the facing page).
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FIGURE 3 Evolution of capital of the three trading strategies (TEST stock).
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Solid black line: buy and hold. Dotted black line: going long. Dashed gray line: going short. One run of trading is
performed with the simulated stock TEST (see Table 2 on page 80). Horizontal axis: rounds of trading. Vertical axis:
return in the currency.

FIGURE 4 Evolution of capital of the three trading strategies (US1.IP stock).
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Solid black line: buy and hold. Dotted black line: going long. Dashed gray line: going short. One run of trading is
performed with the US1.IP stock (see Table 2 on page 80).
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FIGURE 5 Evolution of capital of the three trading strategies (US2.BRCM stock).
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Solid black line: buy and hold. Dotted black line: going long. Dashed gray line: going short. One run of trading is
performed with the US2.BRCM stock (see Table 2 on page 80).

for the trading strategy using ARMA forecasts are shown in Figure 7 on page 85.
Here, � is the empirical standard deviation of stock prices computed on the basis of
the initial subseries L2 of each series.

These results show that the UN strategy is stable with respect to randomization.
The ARMA-based strategy is much more unstable with respect to randomization.

We also study the dependence of results of trading on the precision of random
rounding of past prices and forecasts. Ten runs were performed for each stock and
for each size of grid: 0:5� , 0:2� , 0:1� , 0:05� , 0:02� and 0:001� . The means of the
capital curves of UN trading with the US1.IP stock for these randomization grids are
shown in Figure 8 on page 86. The result corresponding to 0:1� precision is the best
one.

The second series of experiments is closer to a real short-term trading strategy.
The trading strategy has a defense guarantee. Starting with the same initial capital
K0 D KS0, where S0 is the initial price of a stock, and K D 5, we only carry out
the going long case using a “defensive” trading strategy. At any step i , our working
capital is Li�1 D minfK0;Ki�1g. In this way we can set aside the extra income.

If our current portfolio is empty at the beginning of any step i , then, using this
capital, we buy Mi D Li�1=Si�1 shares of the stock if Qpi > QSi�1 and Li�1 > 0.
We stop trading as soon as Li�1 6 0. If our portfolio is nonempty at the begin-
ning of step i and Qpi > QSi�1, we skip the step: Mi D 0. We sell all shares
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TABLE 3 Defensive trading.

Buy
and UN UN ARMA ARMA
hold profit profit profit profit UN ARMA UN ARMA

Ticker (%) (%) (�0.01%) (%) (�0.01%) (in) (in) (D) (D)

TEST 6.85 3.58 �80.93 3.58 �80.90 0.232 0.163 1.453 1.890
AT-T 7.71 69.01 �79.19 29.86 �79.19 0.218 0.205 1.611 1.576
CTGR 15.04 1030.12 658.13 937.46 540.18 0.238 0.253 1.654 1.479
KOCO 16.55 36.47 �78.62 15.69 �78.55 0.216 0.198 1.604 1.502
GOOG 10.25 46.54 �80.57 3.53 �82.68 0.231 0.211 1.462 1.474
InBM 24.28 54.79 �78.53 34.66 �78.10 0.219 0.187 1.514 1.517
INTL 4.29 43.06 �76.60 5.63 �76.28 0.220 0.179 1.630 1.585
MCD 10.71 34.22 �78.56 19.21 �78.41 0.222 0.190 1.571 1.876
AMT 22.01 16.47 �77.01 24.04 �77.09 0.212 0.183 1.654 1.758
IP 2.40 4.45 �82.78 �14.79 �81.06 0.213 0.181 1.657 1.760
BRCM 25.30 11.40 �80.47 23.98 �76.10 0.216 0.172 1.585 1.876
FLSR 40.15 21.02 �80.04 �27.50 �80.03 0.227 0.196 1.499 1.506
SIBN �6.54 600.62 249.87 287.48 �58.55 0.169 0.179 2.460 2.292
GAZP 22.75 51.29 �82.04 4.34 �82.16 0.224 0.210 1.539 1.526
LKOH 19.39 149.03 �79.91 46.44 �80.62 0.230 0.244 1.527 1.501
MTSI �1.61 482.83 79.23 275.13 �69.36 0.188 0.195 2.174 1.959
ROSN 9.69 101.15 �83.14 �0.53 �83.54 0.228 0.240 1.549 1.499
SBER 14.21 51.56 �82.52 �14.47 �82.73 0.225 0.196 1.559 1.674

from the portfolio if Qpi 6 QSi�1. At each step i we update the cumulative capital,
Ki DKi�1 CMi .Si � Si�1/. At the end of the trading period we sell all shares
from the portfolio.

The results of the second series of numerical experiments are shown in Table 3.
In the first column, the ticker symbols of the stocks are shown. The second column
contains the relative return of the buy-and-hold trading strategy. In the set of columns
called “UN” the relative returns of one run of randomized trading, percentage-wise, for
the initial capital are presented for the case with no transaction costs and for the case
where a transaction cost at the rate 0:01% is subtracted. We compute the forecast of a
future stock price using the method of calibration and universal forecasting presented
in Theorem 4.1.

The two columns with the “ARMA” heading show the same results when using the
ARMA forecasting model for computing forecasts. The frequencies of market entry
steps i , where Qpi > QSi�1, are given in the next two columns marked “in” (for UN and
ARMA). The average time spent in the market is shown in the two columns marked
“D” (for UN and ARMA).
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FIGURE 6 Evolution of capital for ten runs of UN strategy (going long) using well-calibrated
forecasts of the US1.IP stock for the period March 26, 2010 to March 25, 2011.
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The size of the grid for randomization is 0.2� .

FIGURE 7 Evolution of capital for ten runs of trading strategy (going long) using ARMA
forecasts of the US1.IP stock for the period March 26, 2010 to March 25, 2011.
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The size of the grid for randomization is 0.2� .
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FIGURE 8 Means of capital curves of UN trading (going long) with stock US1.IP for
randomization grid 0.5� (G2), 0.2� (G5), 0.1� (G10), 0.05� (G20), 0.02� (G50), 0.01�
(G100).
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7 CONCLUSION

We have presented a universal algorithmic strategy that is shown to perform at least
as well as any stationary trading strategy that computes the investment at each step
using a fixed continuous function of the side information.

The idea of universality in financial mathematics was proposed by Cover (1991) for
the problem of universal portfolio selection. Unlike in statistical theory, no stochastic
assumptions are made about stock prices in Cover’s approach.

The core of our universal investment strategy is the method of universal prediction –
the randomized algorithm for computing well-calibrated forecasts.

Asymptotic calibration is an area of intensive research where several algorithms
for computing well-calibrated forecasts have been developed. Several applications of
well-calibrated forecasting have been proposed (for example, convergence to corre-
lated equilibrium in game theory by Kakade and Foster (2008), universal methods of
recovering unknown functional dependencies by Vovk (2006) and predictions with
expert advice by Chernov et al (2010)). We present a new application of the calibration
method.

Our strategy is based on the randomized forecasting algorithm of Kakade and
Foster (2008) and the Vovk (2007) method of defensive forecasting in an RKHS.
We show that the universal trading strategy can be constructed using well-calibrated
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forecasts. We prove that this strategy is at least as good as any stationary trading
strategy presented using a rule from any RKHS with regret O.n.3=4/C�/. Using the
universal kernel, we prove that this strategy asymptotically performs at least as well
as any stationary continuous trading strategy.

We considered trading with one stock. It would be helpful to extend these results
to the problem of universal portfolio selection.

The theoretical results are supplemented by the corresponding numerical experi-
ments. Our empirical results on historical markets provide strong evidence that this
type of technical trading can “beat the market” if transaction costs are ignored. Numer-
ical experiments show a positive return for all chosen stocks, and for some of them
we receive a positive return even when transaction costs are subtracted. Results of
this type can be useful for technical analysis in finance.

We consider our experimental results as a preliminary verification of the theory. In
order to use them in practice it is necessary to refine strategies and to test them. It is
also necessary to clarify a number of technical details.

In the numerical experiments we used historical data about previous transactions of
purchase and sale of shares, ignoring the process of market order execution. In high-
frequency trading, the bid–ask spread is essential. The size of the spread from one
asset to another will differ mainly because of the difference in liquidity of each asset.
Accounting for this difference would reduce the income of our strategies. A more
profound study of the influence of stock liquidity is possible using actual financial
experiments. Another, more simple, way to integrate liquidity is to add additional
value to transaction costs.

The obvious drawback of a universal strategy is that it uses high-frequency trad-
ing, which prevents it from practical application when transaction costs apply. The
frequency of market entry can be reduced by using rules of the type Qpi > QSi�1 C �,
where � > 0.

Several unresolved issues remain. The role of randomization is unclear. Random-
ization is necessary to obtain the theoretical results. However, we have not obtained
convincing examples confirming the necessity of randomization in the experimental
calculations. Randomization seems to be necessary for cases where the behavior of
prices is similar to that of an “adaptive adversary”. The behavior of the time series
exhibiting high volatility is most similar to this. In this case, randomization will protect
us against big losses.

One possible improvement in our algorithm would be preprocessing of input data.
Uniformly splitting the time series into one-minute intervals does not reflect the
movement of prices in the best way.

The idea of a universal strategy presented in this paper could serve as a basis for
further attempts to find universal methods of trading and for developing more effective
practical trading strategies for use in financial markets.
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