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Membrane proteins perform a number of crucial functions as transporters, receptors, and
components of enzyme complexes. Identification of membrane proteins and prediction
of their topology is thus an important part of genome annotation. We present here an
overview of transmembrane segments in protein sequences, summarize data from large-
scale genome studies, and report results of benchmarking of several popular internet
servers.
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1. Introduction

Membrane proteins constitute 15–30% of a typical organism’s proteome1–3 and
include important functional classes such as transporters,4 ion channels,5–7

receptors,8 components of respiration chains,9 etc. They can be roughly divided into
three classes: globular proteins anchored to the membrane via a single hydrophobic
alpha-helix, proteins located in the membrane and containing several membrane-
spanning alpha-helices, and beta-structural membrane proteins. The latter are rel-
atively rare, although they also include numerous important representatives, e.g.
outer membrane porins.4

Much less is known about the structure of transmembrane (TM) domains than
that of globular domains. The MPtopo database (last updated May 17, 2005) con-
tains a total of 167 proteins with 1028 TM segments.10 The entire TM section of
PDB, PDB TM, contains 482 proteins (as of April 2005), which is less than 2% of
all PDB entries.11–13

This is mainly due to technical difficulties: membrane proteins are usually
present at low levels in biological membranes, and most membrane proteins cannot
be readily obtained in sufficient amounts from their native environments. Further-
more, they are difficult to overexpress14 and to crystallize.15–17

Properties of membrane proteins are quite different from those of globular
proteins,17 and generic algorithms for prediction of protein secondary structure
do not work well when applied to membrane proteins.18 Although recently a
major international project has been launched that aims at large-scale determi-
nation of TM-protein structures (http://www.utoronto.ca/AlEdwardsLab/memb-
rane proteomics index.html), it still has not produced sufficient amount of data to
cover all structural classes of membrane proteins. Moreover, in several cases, there is
discrepancy in experimental evidence about the secondary structure of TM-protein,
in particular, the number of TM-segments.19–23

2. Statistical Properties of TM-Segments

The need to identify and characterize TM-proteins yielded numerous algorithms for
identification of alpha-helical TM-segments. They differ in features of TM-segments
taken into account and in algorithmic techniques. The most important distinguish-
ing feature of TM-helices is the amino acid composition. As these segments span the
lipid bilayer, they predominantly contain hydrophobic residues. Most TM-helices
have length between 12 and 35 residues,3 with the average being 21 residues.24 How-
ever, these numbers should be considered with due caution.25 Indeed, boundaries
of alpha-helices are difficult to define rigorously,26 and no experimental methods
can exactly map the boundary between membrane-embedded and external residues
in a TM-helix. The ends of TM-helices, the so-called caps, can be recognized by
specific amino acid composition.27,28 Due to the special mechanism of membrane
translocation of TM-proteins, the amino acid composition of inner and outer loops
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is different: short non translocated (cytoplasmic side) loops contain many positively
charged residues (Arg, His, Lys, Glu, and Asp), whereas translocated loops con-
tain few such residues.28–36 Inside and outside caps of TM-helices also differ in the
amino acid composition;27,28 specifically, these regions are abundant in polar and
aromatic residues (Lys, Arg, Trp, His, Glu, Gln, and Tyr).37,38 Globular regions and
loops between TM-helices are usually shorter than 60 residues.1 Finally, topologi-
cal constraints put natural restrictions on the order of TM-helices and inside and
outside loops that can also be taken into account.39,40 There are also differences
in the amino acid composition of inside/outside domains and TM-caps between
single-TM-helix and multiple-TM-helix proteins.27,28

An additional complication in the analysis of single-TM-helix membrane-
anchored proteins is to distinguish them from secreted proteins containing an N -
terminal signal peptide. There are specific programs for recognition of signal pep-
tides that take into account not only amino acid composition of the signal peptide,
but also the positional residue frequencies around the cleavage sites.41,42 These
programs are, in particular:

SignalP41,43 (http://www.cbs.dtu.dk/services/SignalP/),
PrediSi44 (http://www.predisi.de/),
SIGSEQ45 (ftp://ftp.ebi.ac.uk/pub/software/unix/sigseq.tar.Z),
SPEPlip46 (http://gpcr.biocomp.unibo.it/predictors/).

On the other hand, there exist specific methods for prediction of single TM-
helices.47

A special case is that of TM-proteins that have the antiparallel beta-barrel fold,
such as bacterial porins.48 The amino acid composition of TM-beta-strands is dif-
ferent from both TM-alpha-helices35,49 and beta-strands of globular proteins.50,51

Although there exist several methods for prediction of transmembrane beta-
strands,52–68 only 12 of them are available over the internet (Table 1). We do
not consider them here.

Table 1. Servers for the prediction of transmembrane beta strands.

Server References URL

Omp topo predict 61 http://turn18.biologie.uni-konstanz.de/test/
om topo predict2b.html

B2TMPRED 66 http://gpcr.biocomp.unibo.it/cgi/predictors/
outer/pred outercgi.cgi

TRAMPLE 59 http://gpcr.biocomp.unibo.it/biodec/
HMM-B2TMR,B2TMR 66, 69 http://gpcr.biocomp.unibo.it/predictors/
PRED-TMBB 64 http://bioinformatics.biol.uoa.gr/PRED-TMBB
ConBBPRED 68 http://bioinformatics.biol.uoa.gr/ConBBPRED/
PROFtmb 65 http://www.rostlab.org/services/PROFtmb/
TBBpred 62 http://www.imtech.res.in/raghava/tbbpred
TMBETA-NET 60 http://psfs.cbrc.jp/tmbeta-net/
TMBETA-SVM 67 http://tmbeta-svm.cbrc.jp
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3. Algorithmic Approaches to the Identification of TM-Segments

The simplest technique for identification of TM-segments is the computation of
a hydrophobicity score in a sliding window. Many different hydrophobicity scales
have been suggested based on physical characteristics of amino acid residues.38,70–78

Alternatively, one can use statistical approaches, comparing residue frequencies in
TM-segments, inner and outer loops, and calculating residue propensity toward
these regions.27,79,80 For that, one score may be computed in a sliding window;70 or a
combined score may be computed by merging several physiochemical indices charac-
terizing TM-segments, caps of TM-segments, and loops.37,79,81 A similar technique
is to predict conformation/location of each residue with subsequent averaging at
adjacent positions.80

Instead of simple statistical procedures, windows can be classified into TM-
segments and nonmembrane ones using more complicated pattern recognition tech-
niques such as logical rules,36 k-nearest neighbor analysis,82 classification,83 and
neural networks.84,85 However, isolated prediction of TM-segments and their ori-
entation is less reliable than an analysis of the entire protein. One approach to
that problem is to use greedy algorithms,86 dynamic programming,27 or other
algorithms87 to reconcile individually characterized TM-segments with additional
constraints. A more consistent approach is to use Hidden Markov Models (HMMs)
with states corresponding to TM-segments, inner and outer caps, inner and outer
loops, and globular domains.88,89 Residue frequencies in different regions and seg-
ment lengths (symbol probabilities and duration of states, respectively, in the HMM
terminology) are learned from training samples, and then each new sequence is
decomposed into the most probable sequence of hidden states, satisfying natural
topology constraints.

Thus, although some algorithms predict only TM-segments,25,37,38,79,84,90 most
current methods predict the entire protein topology30,40,61,88,89,91–93 (Table 2).
Some methods allow the user to constrain the prediction by available experimental
or comparative data, so that particular regions of a protein are set into a user-
defined state.94

In addition to prediction of topology of TM-proteins with multiple TM-helices,
especially transporters, it is important to perform rotational positioning of these
helices. Indeed, substrates may interact with sites within a TM-domain; and these
sites may define the specificity and kinetics of transport.108 This analysis is based on
the assumption that the side of a TM-helix that contacts the membrane is hydropho-
bic, whereas the side facing the channel may contain hydrophilic residues. Indeed,
TM-segments in transporters demonstrate periodicity in positions of hydrophilic
residues.109 In densely packed proteins, there are differences in the composition of
lipid-exposed and buried helix sides.110–112 However, this statistical trend is too
weak to analyze relatively short TM-segments; and such an analysis requires addi-
tional data.80 One possible complication obscuring the simple channel side versus
membrane side picture above comes from helix–helix interactions. Specific indices
were developed for the analysis of such interactions.113–115
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An important feature of many methods is that they do not make isolated pre-
dictions, but place them in context. There are three different approaches to that.
One approach is to predict TM-segments in aligned homologous proteins. The basic
assumption here is that the number and positions of TM-segments in homologous
proteins are the same; and taking that into account decreases the noise. This tech-
nique was used in Refs. 24, 84, 86, 91, 95, and 106. However, alignment of TM-
proteins is not trivial, as they consist of segments with clearly different statistical
properties, and different amino acid substitution matrices may be needed in these
segments, while boundaries are unknown.116 MEMSAT uses host-slave-type mul-
tiple alignments generated by PSI-BLAST,117 and averages the predictions across
the alignment.101 The use of homology increased the fraction of correctly predicted
topologies from 78% to 93%. An alignment algorithm based on averaging of dot-
plots is more robust as regards the level of sequence identity;77 and the DAS algo-
rithm for prediction of TM-segments is based on matching of the query protein to
all TM-proteins in the database.25 This is an indirect way of computing residue
propensities to TM-helical regions.

Another approach is to consider all possible structural assignments for a pro-
tein at once. This is especially important for proteins with one TM-helix and
for the analysis of N -terminal TM-helices. Indeed, one of the problems is to dis-
tinguish between TM-segments and predicted signal peptides;89 and some meth-
ods even require prior prediction and removal of signal peptides.93 To avoid
this, PSORT predicts TM-segments and various signals for cellular localization
of proteins.82 Finally, several servers map TM-segments by averaging predictions
of other servers. For example, a simple voting can be done separately for each
residue102 or for sliding windows,118 or a Bayesian decision procedure can be
implemented.104

Overall success rate for the predictions of TM-protein topology was claimed
to be 95% for bacterial and 83% for eukaryotic proteins by TopPred II,95 86% by
PHDhtm,86 85% by HMMTOP,88 93% by MEMSAT 2,101 87% to 97% for prokary-
otic and 94% to 97% for eukaryotic proteins by OrienTM,40 78% by TMHMM,89

and 75% by SPLIT.93

It was been shown that the use of taxonomy-specific parameters may improve the
performance on bacterial,34 eukaryotic,30,33 mitochondrial,119 and chloroplast120

proteins. Some structural families may present specific problems, e.g. G-coupled
receptors containing seven TM-helices.24

4. Neural Networks and Hidden Markov Models for Identification
of TM-Segments

We describe in this section two of the most successful algorithmic techniques imple-
mented in three programs.

The most successful application of the neural network methodology to the TM-
segment prediction is PHDhtm. Initially created as an algorithm for the prediction
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of the protein secondary structure,18 it was then specifically re-designed for the
identification and analysis of TM-proteins.84,86

PHDthm consists of two successive neural networks and a number of pre-
processing and post-processing filters. The first, a sequence-to-structure network,
processes overlapping sliding windows of length 13 and estimates the probability of
TM localization for the residue in the middle of the window taking into account the
identity of all 13 residues and also global parameters such as the protein length, the
window distance to the N - and C-termini, and the protein amino acid composition.
The network consists of an input layer, a hidden layer with three units, and an out-
put layer that produces measures of TM-propensity and non-TM-propensity, that is,
the preferences of the central residue to be in a TM helix or in a non-TM loop.
The feed-forward network with a complete set of connections and a sigmoid trigger
function is trained using the gradient descent procedure. The technical details are
described in Ref. 18.

Then one more neural network is applied. This second network, a structure-
to-structure network, takes into account the context of predictions, e.g. to filter
out TM-segments that are too short. Its input is the output of the first network
in 21-residue windows supplemented with global information, and its hidden layer
contains 15 units.

At the next step, a decision is made on whether the considered protein is a TM-
protein. This is done by computing the total TM-propensity of sliding windows of
length 18: if no such window passes a threshold, the protein is predicted to be a
non-TM one.

For a predicted TM-protein, a dynamic programming-based procedure is used
to reconcile conflicting predictions and to determine the optimal TM-segment
boundaries.86 A set of possible TM-segments is compiled by considering all windows
of length 18 through 25. The average TM-propensity is calculated for each window.
An optimal path through all windows is constructed using a dynamic programming
procedure, with a restriction that the TM-segments should be separated by loops
of the minimal length 4. This path represents the optimal decomposition of the
protein into TM-segments and non-TM-loops.

Finally, for a given set of TM-segments, the topology (that is, the protein orien-
tation relative the membrane) is predicted.86 This is done by computing the overall
charge of each non-TM-segment, and then taking the difference between the total
charge of odd and even non-TM-regions. The set with the more positive charge
should reside on the cytoplasmic side, based on the so-called “positive-inside rule”.

Although quite powerful, to perform well, any neural network-based approach
needs to involve a considerable number of ad hoc filters and procedures (cf. the evo-
lution of post-processing filtering/reconciliation steps in the three papers describ-
ing PHDthm18,84,86), and thus lacks conceptual clarity. A uniform language for the
description of symbol sequences containing segments of different statistical proper-
ties is the HMMs.121
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A HMM is defined by a set of transition probabilities Q(S → T ) between states
(here, the probability to move into state T if the current state is S) and a set of
emission probabilities R(A|S) for each state (here, the probability to observe an
outcome, that is, residue A if the current state is S). Each realization (A1, . . . , An;
S1, . . . , Sn) of a HMM is a set of observable outcomes and hidden states, and its
probability is defined as

P (A1, . . . , An;S1, . . . , Sn)= q(S1) · r(A1|S1) · Πk =2,...,nQ(Sk−1 → Sk)R(Ak|Sk)
where q(S) and r(A|S) are the vectors of initial probabilities to be in the state S

and generate in this state the outcome A, respectively.
This simplest definition can be easily generalized for Markov chains of higher

order for states. It is also simple to require that an outcome depends not only
on the state, but also on the previous outcome, thus introducing the Markovian
dependence to the sequence of outcomes.

These general definitions are applied to the recognition of TM-segments as fol-
lows. The protein is assumed to represent a sequence of outcomes, and the aim
is to reconstruct the most likely sequence of hidden states, so that P (A1, . . . , An;
S1, . . . , Sn) is maximized over all state sequences S1, . . . , Sn.

The hidden states may be TM-segment, external loop, internal loop, external
cap (region of transition between the membrane and non membrane surroundings),
cytoplasmic cap, N -terminus, C-terminus, external globular domain, internal glob-
ular domain etc., dependent on the architecture of the HMM. The natural restric-
tions (e.g. an external loop should follow an external cap, etc.) are easily taken
into account by allowing only certain transitions (Fig. 1(a)); to take into account
the length distribution in TM-segments, loops and caps, these states are multiplied
(Fig. 1(b)) and the transition probabilities are set according to the distribution.
The transition and emission probabilities are learned at the training step.

The reconstruction of the most likely sequence of hidden states is done
via a dynamic programming-like technique called the Baum-Welch (or forward-
backward) algorithm.

This approach was implemented, in particular, in HMMTOP88,94 and
TMHMM.89,100 These two algorithms differ in minor details of their HMM archi-
tecture, cf. Fig. 3 of Ref. 88 and Fig. 1 of Ref. 89.

Finally, it should be noted that both neural network and HMM algorithms
can be easily modified to accept as input not single sequences, but multiple
alignments.84,121

5. Applications to Genomic Analysis

Large-scale analyses of ORFs in complete genomes by various algorithms, in partic-
ular JTT2,122 TopPred,1 SOSUI,2 MEMSAT,28 PHDhtm,3,84,86 TMHMM,89 pro-
duced a consistent estimate of about 25% and seemed to show no difference in the
TM-protein fraction in bacterial, archaeal, and eukaryotic genomes, although an
increase of the TM-proteins fraction with the genome complexity was reported.1
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Fig. 1. (a) Architecture of a Hidden Markov Model for identification of TM-segments. (b) Module
with multiplied steps, allowing for exact modeling of length distribution.

In individual genomes, this fraction ranges from 19% through 30% (Table 3). The
difference between individual predictors was only a few percent points (Table 3).

However, there exists a controversy about the existence of preferred TM-protein
topologies. Several studies observed simple monotonic decrease in the fraction
of TM-proteins as the number of TM-segments increased,123–125 whereas over-
representation of proteins with seven TM-segments was observed in multicellular
eukaryotes, and over-representation of proteins with 6 and 12 TM-segments, in
prokaryotes.3 Membrane proteins seem to come in two basic varieties: those with
many TM-segments and short connecting loops, and those with few TM-segments
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and large extra-membrane domains, whereas proteins with multiple TM-segments
and large extra-membrane domains are relatively rare.1 Further, if the orientation
relative to the membrane is taken into account, all organisms excluding C. elegans
(but including some other multicellular eukaryotes) prefer the topology with an
even number of TM-segments and the N -terminus in the cytoplasmic side, whereas
C. elegans has more proteins with an odd number of TM-segments, external N -
terminus and internal C-terminus.89 A more detailed analysis in Ref. 28 showed
that bacterial TM-proteins with an even number of TM-segments (4, 6, 10, 12, 14)
tend to have the topology with the N -terminus in the internal side of the mem-
brane (nontranslocated), whereas the proteins with 5 TM-segments tend to have
external N -termini. In yeast, the preferred topologies are almost the same (even
with N -termini inside), whereas in multicellular eukaryotes the preferred topologies
are 4-TM and 12-TM with the internal N -terminus, and 7-TM with the external
N -terminus. The latter are likely due to the large family of G protein-coupled
receptors,126 whereas 12-TM proteins are mainly permeases and TM-components
of ABC-transporters.4

6. Benchmarking

Benchmarking of algorithms for prediction of TM-segments is complicated by
a relatively small number of resolved TM-protein structures and the low rate
of newly arising structures, leading to difficulty in finding examples new for
each particular method. The same datasets have been used over and over
again, e.g. the 64 TM-protein dataset in Refs. 27, 79, 84, and 90. Several
hydrophobicity scales were compared in Ref. 75, and benchmarking of several
popular methods (TMHMM 1.0, 2.089,100 and a retrained version of 2.0,127

MEMSAT,27 Eisenberg,128 Kyte/Doolittle,70 TMAP,107 DAS,25 HMMTOP,88

SOSUI,37 PHD,129 TMpred,105 KKD,29 ALOM236 and Topred II95) was done in
Ref. 127 using a newly compiled database of about 188 TM-protein topologies
obtained by low-resolution experiments such as C-terminal fusions with indica-
tor proteins and antibody binding.130 A commonly used database of TM-protein
structures is MP-topo.10 A combined database of structures and topologies sup-
plemented by proteins whose structural similarity could be inferred from sequence
comparison131 was used for comprehensive benchmarking in Refs. 132 and 133.
This database also serves as an automated benchmark server for evaluation of
new algorithms (http://cubic.bioc.columbia.edu/services/tmh benchmark/). How-
ever, despite specific attempts to perform benchmarking on new data samples or to
apply bootstrapping approaches, it has been repeatedly noted that it is difficult to
compile a clearly independent sample. Thus, the performance of all methods tends
to be over-estimated.132,134 The results of these benchmarks are discussed below.

Here we tried to benchmark TM-segment prediction algorithms using a compar-
ative approach. It is based on the assumption that homologous proteins have the
same number of TM-helices, and these TM-helices can be aligned. Thus instead of
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matching predictions to experimental data, we measure the server’s reliability using
the consistency of its predictions on a group of aligned homologs. This approach is
complementary to the experimental data-based benchmarking.

It is clear that this approach has limitations. Firstly, a consistently wrong algo-
rithm would get a high score. However, we feel that such possibility is unlikely, and
the results presented below seem to confirm this assumption. Secondly, algorithms
using multiple alignments as input cannot be considered, as they use the same type
of data and thus the consistency approach would be based on a circular argument.
Thirdly, protein families having an intermediate level of similarity should be ana-
lyzed. Indeed, the proteins should be sufficiently similar to each other to satisfy the
assumption of the conserved topology and, moreover, to allow for reliable align-
ment. On the other hand, it is useless to consider proteins that are too similar, as
they would provide no independent data.

7. Data and Methods

Initially, all representatives of bacterial transporters from class TC.2A were con-
sidered, downloaded from TCDB databases http://www-biology.ucsd.edu/∼msaier
/transport/4,135 and TransportDB http://www.membranetransport.org/.136 This
sample consisted of 1312 proteins from 101 families. The majority of sequences were
from four families from the MFS superfamily (438 proteins), five families from the
APC family (103 sequences), and four families from the RND family (114 proteins).
The CPA3 and NFE families, consisting of subunits of multicomponent systems,
were not considered.

Then each sequence from the initial sample was used to scan the ERGO database
(http://ergo.integratedgenomics.com/ERGO/)137 using BLAST.138 Only relatively
complete genomes were considered, such that at least 500 genes were sequenced
as not more than 10 contigs. It produced 860 additional proteins homologous to
proteins from the initial sample.

The obtained sample was divided into clusters using the single linkage proce-
dure, with the BLAST identity value serving as the similarity measure. Clusters
with identity 40% to 49% and 50% to 59% were considered. Clusters larger than
50 proteins were further subdivided by increasing the identity threshold. Each clus-
ter was aligned using CLUSTALW.139 The comparisons were done for all pairs of
proteins belonging to one cluster with pairwise alignment induced by the multiple
alignment. Overall, 2356 pairs of proteins from the first group (40% to 49%) and
909 pairs of proteins from the second group (50% to 59%) were considered.

For each pair, TM-segments were predicted independently, and the consistency
indices between the predictions by one method were computed as follows. Over-
lapping or immediately adjacent (with zero size loop) TM-segments were merged
and considered as one TM-segment. The overlap index Q compared predictions at
the residue level. For each pair it was equal to the size of the intersection divided
by the size of the union of the segment projections. More formally, let S be the
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number of aligned residue pairs where both members were predicted to belong to
TM-segments, and let U be the number of aligned residue pairs where at least one
member is predicted to belong to a TM-segment. Then

Q = S/U. (1)

Another measure, the segment consistency index C, measured the fraction of
common TM-segments in two proteins. Let n1 and n2 be the numbers of TM-
segments in the first and second protein, respectively. Let i =1, . . . , n1, j = 1, . . . , n2

be TM-segments in the first and second proteins, respectively, and consider all pairs
ij of TM-segments whose projections intersect by at least one residue pair. Define
the indicator value, the local overlap Vij , for segment i with respect to segment j.
By definition,Vij = 1, if at least half of segment i intersects with segment j, and
Vij = 0 otherwise (more exactly, intersection of projections is considered). Formally,
let Li be the size of segment i, let Mj be the size of segment j, and let Kij be the
size of intersection of (projections of) segments i and j. Then,

Vij = 1, if Kij/Li ≥ 0.5,

Vij = 0, if Kij/Lj < 0.5, (2)

and, symmetrically, the local overlap of segment j with respect to segment i is

Wji = 1, if Kij/Mj ≥ 0.5,

Wji = 0, if Kij/Mj < 0.5. (3)

The total segment consistency C is the sum of local overlaps for all pairs of
TM-segments whose projections intersect:

C = Σij(Vij + Wji)/(n1 + n2). (4)

For similar predictions, both Q and C are close to 1. If the same numbers of
TM-segments are predicted in two aligned proteins and these segments roughly
correspond to each other (have more than half of each segment in common), but
positions of the TM-segment termini differ, then Q < 1, but still C = 1. On the
other hand, if a single TM-segment in one protein often corresponds to two segments
in the other protein (broken segments), Q ≈ 1 and C < 1. Thus, these two indices
capture two different aspects of the prediction consistency.

The following ten servers were considered: DAS, HMMTOP, PHDhtm, PRED-
TMR, PSORT, SOSUI, TMAP, TMHMM 2.0, TMpred, and TopPred II. This
choice depended on server’s availability and popularity, possibility to make multiple
queries, and possibility to make predictions for single proteins (not only multiple
alignments).

8. Results and Discussion

Here we have analyzed ten advanced methods for the analysis of single sequences.
The URLs of the considered servers are listed in Table 2. The average values of the
consistency indices Q and C and standard deviations (σ) are listed in Table 4.
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Table 4. The Q and C consistency indices and standard deviation (σ) in different ID
intervals. Proteins are divided into several groups according to their identity level.

ID 40–49% 40–49% 50–59% 50–59%

C±σ Q± σ C± σ Q± σ
PHDhtm 0.88± 0.12 0.94± 0.11 0.89± 0.12 0.94± 0.11
HMMTOP 2.0 0.73± 0.12 0.93± 0.12 0.76± 0.13 0.94± 0.13
TMHMM 2.0 0.72± 0.13 0.92± 0.12 0.76± 0.11 0.93± 0.12
TMpred 0.70± 0.10 0.91 ±0.08 0.74± 0.10 0.93± 0.08
TopPred II 0.71± 0.12 0.89± 0.10 0.76± 0.13 0.91± 0.09
PRED-TMR 0.69± 0.13 0.89± 0.12 0.73 ±0.13 0.90± 012
SOSUI 0.69± 0.11 0.88± 0.13 0.72± 0.11 0.89± 0.13
TMAP 0.64± 0.10 0.85± 0.11 0.67 ±0.11 0.87± 0.10
DAS 0.64± 0.11 0.83± 0.10 0.69± 0.10 0.87± 0.09
PSORT 0.63± 0.14 0.84± 0.14 0.69± 0.14 0.86± 0.14

The most consistent predictions were made by PHDhtm, closely followed by
HMMTOP and TMHMM. It is instructive to compare these results with bench-
marks that used test sets. Among six hydrophobicity scales and eight advanced
methods considered in Ref. 127, the best results were demonstrated by TMHMM;
the predictions by PHDhtm and HMMTOP were considerably worse.

Eight internet servers and 19 hydrophobicity scales were compared in Ref. 132.
The results depend on the details of the procedure used to evaluate the predic-
tions. HMMTOP and PHDhtm usually were among the leaders, whereas TMHMM
produced average results.

TopPred and TMpred consistently occupy the middle of the list. This was
observed in our study as well as Ref. 127. The last group of servers is PSORT,
DAS, and TMAP. DAS demonstrated average performance in Refs. 127 and 132;
TMAP was in the middle in Ref. 127; the remaining servers were not considered
in the cited papers. The four methods shown to be consistently performing well in
Ref. 140 are SPLIT4, TMHMM, HMMTOP, and TMAP.

Thus, we can see that the results obtained in several benchmark studies are
largely similar, despite the use of different criteria. Most successful methods use
the HMM technique. That seems to be the best technique for capturing various
statistical properties of membrane-spanning proteins. An alternative, the use of the
sliding windows approach, suffers from various problems ranging from insufficient
specificity127,134 to inexact definition of TM-segment boundaries and spurious merg-
ing of adjacent segments, requiring introduction of ad hoc fine-tuning procedures.84

One specific problem, not addressed here, is the initial identification of
membrane-spanning proteins. Indeed, no single method but DAS could identify all
such protein in Ref. 132; but it was rather non specific and predicted TM-segments
in globular proteins.

Two more technical but important points, whose detailed analysis is beyond
the scope of this study, are the fact that advantages and disadvantages of differ-
ent methods balance each other, and thus averaging over methods improves the
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reliability of predictions.134 Indeed, this observation has been exploited by a num-
ber of successful programs (Table 2).102,104,118,141 However, these programs require
reliable alignments, and the next generation of methods probably will combine mul-
tiple alignment and TM-segment identification using the HMM language common
to these two problems.142

Finally, as signal peptides are often taken for TM-segments by the TM-
recognition software, identification of TM-segments should be combined with the
analysis of signal peptides either manually or algorithmically.134,143

Overall, if one single server is to be recommended, it is probably TMHMM
followed by PHDhtm and HMMTOP. However, in important cases, it is clearly
advisable to submit a query to several servers; and also to analyze not one protein,
but an entire family of homologs.
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