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Abstract

We derive certain estimates and asymptotics for oscillatory integral oper-

ators with degenerate phase functions, concentrating our attention on the si-

tuation when one of the projections from the associated canonical relation is a

Whitney fold. We discuss related topics: convexity, higher order degeneracy of

canonical relations, and almost orthogonality.

In the second part of the paper, we apply the developed technique to the

Radon Transform of Melrose-Taylor, a particular degenerate Fourier integral

operator which arises in the theory of scattering. We obtain its regularity prop-

erties for the scattering on a convex compact domain with a smooth boundary.

The result is formulated in terms of the highest order of contact of lines with

the boundary.

1 Oscillatory integral operators with singularities

1.1 Introduction

Let us consider the oscillatory integral operator Tλ , given by

Tλu(x) =

∫

IRn
R

eiλS(x,ϑ)ψ(x, ϑ)u(ϑ) dϑ, x ∈ IRn
L
, ϑ ∈ IRn

R
, (1)

where ψ is some smooth compactly supported function. We study the rate of high-
frequency decay of the operator norm ‖Tλ‖L2→L2 for large λ. This problem is intrinsi-
cally related to the regularity properties of Fourier integral operators and generalized
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Radon transforms; see D.H. Phong and E.M. Stein [1991], [1994], D.H. Phong [1994],
and A. Greenleaf and A. Seeger [1994]. We will discuss two particular cases in Section
1.2.

The classical result by L. Hörmander [1971] is the estimate for the case when the
mixed Hessian Sxϑ =

[

∂xi∂ϑjS
]

, i, j = 1, ..., n, is non-degenerate:

detSxϑ 6= 0. (2)

Then Tλ is bounded from L2 to L2, with the norm

‖Tλ‖ ≤ const λ−
n
2 . (3)

According to K. Asada and D. Fujiwara [1978], this estimate is also valid without
the assumption that ψ(x, ϑ) is compactly supported.

The canonical relation associated to the operator (1) is given by

C ≡ {(x, Sx; ϑ, Sϑ)} ⊂ T ∗IRn
L
× T ∗IRn

R
. (4)

The condition (2) implies that the projections π
L
, π

R
from C onto the first and second

factor of T ∗IRn
L
× T ∗IRn

R
are local diffeomorphisms, so that C is locally a graph of a

symplectomorphism from T ∗IRn
L

to T ∗IRn
R
.

η

θ

T* Rn
R

T* n
LR dx S,x

=0det x,θ)

S

(S"θx

πR

πL

ξ

x

θ, x, θdθ

Fig. 1. Canonical relation which is locally a graph of a symplectomorphism.

In general, there is no guarantee that the inequality (2) is satisfied. We will
be interested in the situation when the projections from the canonical relation are
degenerate.
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Using the parameterization

(x, ϑ)
ı7−→ (x, Sx; ϑ, Sϑ)

of the canonical relation C, we will consider π
L
, π

R
as lifted by ı∗ onto IRn

L
× IRn

R
:

π
L
: (x, ϑ) 7→ (x, Sx), π

R
: (x, ϑ) 7→ (ϑ, Sϑ).

The differentials of these maps,

dπ
L
: (dx, dϑ) 7→ (dx, Sxxdx+ Sxϑdϑ), (5)

dπ
R
: (dx, dϑ) 7→ (dϑ, Sϑxdx+ Sϑϑdϑ), (6)

are both degenerate on the critical variety

Σ0 ≡ { (x, ϑ) | h(x, ϑ) = 0} ; (7)

h(x, ϑ) stays for the determinant of the mixed Hessian, h(x, ϑ) ≡ detSxϑ.
We will be assuming that one of the projections (for definiteness, π

L
) is a Whitney

fold: the kernel of dπ
L
is one-dimensional and transversal to the critical variety Σ0,

and the determinant h(x, ϑ) = detSxϑ(x, ϑ) of the mixed Hessian vanishes of order
1 in the direction of Ker dπ

L
.

According to Y. Pan and C. Sogge [1990], who used the results of R.B. Melrose
and M.E. Taylor [1985], if both projections from the canonical relation C are Whitney
folds, then the decay of the norm of Tλ is given by

‖Tλ‖ ≤ const λ−
n
2 +

1
6 . (8)

An independent analytical proof of this result was obtained by S. Cuccagna in [1995].

T* n
LR

T* Rn
R

η

θ

ξ

x

S"θxdet x,θ)( =0

πL

S"θxdet x,θ)( =0
πR πRKer

Ker πL

d

d

Fig. 2. Both projections from the canonical relation are Whitney folds.
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The singular behavior of π
R
could be quite different from that of π

L
. In general,

dxh(x, ϑ) could vanish somewhere on the critical variety, or Ker dπ
R

may be not
transversal to Σ0. A. Greenleaf and A. Seeger [1994] gave the a priori estimate for
the case when only one of the projections is a Whitney fold; then Tλ is a continuous
operator from L2 to L2 with the norm

‖Tλ‖ ≤ const λ−
n
2 +

1
4 . (9)
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T* Rn
R
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θ
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πL

πR πR

πL

Ker

Ker
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d

Fig. 3. The projection π
L
is a Whitney fold; no assumptions on π

R
.

We will concentrate our attention on the intermediate situation, when one of the
projections (π

L
) is a Whitney fold, and when something is also known about the

other projection.

Dyadic decomposition with respect to h(x, ϑ). We will use the dyadic decom-
position with respect to the values of the determinant of the mixed Hessian, which
could be viewed as the distance to the critical variety Σ0 ≡ {h(x, ϑ) = 0}.

We choose the symmetric function β̄ ∈ C∞comp([−2, 2]) such that







β̄(t) = 1, |t| ≤ 1,

β̄(t) = 0, |t| ≥ 2.
(10)

Let β+(t) ∈ C∞comp([1/2, 2]) be given by







β+(t) = β̄(t)− β̄(2t), t ≥ 0,

β+(t) = 0, t ≤ 0,

and let β−(t) be its reflection, β−(t) ≡ β+(−t) ∈ C∞comp([−2,−1/2]).
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We use the partition of 1,

1 =
∑

±

∑

N<No

β±(2
Nh(x, ϑ)) + β̄(2Noh(x, ϑ)), N, No ∈ Z, (11)

to define

T h̄±u(x) =

∫

eiλS(x,ϑ) ψ(x, ϑ)β±(h̄
−1h(x, ϑ))u(ϑ) dϑ, (12)

T̄ h̄u(x) =

∫

eiλS(x,ϑ) ψ(x, ϑ) β̄(h̄−1h(x, ϑ))u(ϑ) dϑ, (13)

where h̄ = 2−N , and decompose the operator (1) into a finite sum

Tλ =
∑

±

h̄≤Λ
∑

h̄>h̄o

T h̄± + T̄ h̄o , h̄ = 2−N , h̄o = 2−No , N, No ∈ Z. (14)

Here Λ ≡ 2N1 ≥ sup |h(x, ϑ)|. The cut-off value h̄o = 2−No is to be chosen later.

We will not write ±-subscripts of the functions β± and of the operators T h̄±.

The operators T h̄ are localized away from the critical variety Σ0, and therefore
Hörmander’s estimate is applicable:

∥

∥T h̄
∥

∥ ≤ C(h̄)λ−n/2. Apparently, this estimate
blows up when h̄ tends to zero. From the informal rescaling argument one can see

that ‖T‖ ∼ | detSxϑ|−1/2, hence the best we could count on is C(h̄) ≤ const h̄−1/2,
so that

∥

∥T h̄
∥

∥ ≤ const λ−n
2 h̄−

1
2 . (15)

We will justify (15) in the case when one of the projections from the associated
canonical relation is a Whitney fold, while the other satisfies some very weak finite
type condition.

The concept of pseudoconvexity is introduced in Section 1.3, and finite type con-
ditions are discussed in Section 1.4. The proof of (15) is contained in Section 1.6
(Theorem 1.6.1).

The estimate (15) also suggests that if the integral kernel of Tλ vanishes on the
critical variety Σ0, then ‖T h̄‖ → 0 for small values of h̄, and ‖Tλ‖ satisfies the
estimate ‖Tλ‖ ≤ const λ−

n
2 on operators with non-degenerate phase functions. This

is the statement of Theorem 1.6.2.

The support of the operator T̄ h̄o contains the critical variety Σ0. Since the rank
of the mixed Hessian could only drop to n− 1, we can use Hörmander’s estimate (3)
in the lower dimension (choosing the axes x1, . . . , xn−1 and thetas ϑ1, . . . , ϑn−1 in
the non-critical directions of the mixed Hessian):

∥

∥T̄ h̄o
∥

∥ ≤ c(h̄o)λ−(n−1)/2.
We expect that the support of T̄ h̄o is asymptotically small in the critical directions,

xn and ϑn. If one of these projections is a Whitney fold, then the support of T̄ h̄o in
the corresponding critical direction (ϑn for the projection π

L
) is of size ∆ϑn ∼ h̄o.
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This could be seen on Fig. 2 and Fig. 3. According to Young’s inequality, we expect
that this contributes a factor h̄1/2o to c(h̄o):

∥

∥T̄ h̄o
∥

∥ ≤ const λ−n−1
2 h̄

1
2
o . (16)

If the other projection from the canonical relation is a Whitney fold, too, then
∆xn ∼ h̄o (see Fig. 2), and c(h̄o) contains one more factor h̄1/2o :

∥

∥T̄ h̄o
∥

∥ ≤ const λ−n−1
2 h̄

1
2
o h̄

1
2
o . (17)

We can find the value of h̄o when this estimate meets the estimate (15) on T h̄; it
happens when h̄o = λ−1/3. If we substitute this value of h̄o into (14) and then use the
estimates (15) and (17), we arrive at the estimate (8):

‖Tλ‖ ≤ const λ−
n
2 +

1
6 .

The rigorous proof of this estimate can be obtained via the almost orthogonal
decomposition (S. Cuccagna [1995]). See Theorem 1.6.1 and Remarks 3 and 4 in
Section 1.6.

In the second part of the paper, Sections 2.1 – 2.6, we will approach a particular
degenerate integral operator from the paper of R.B. Melrose and M.E. Taylor [1985],
which we call the Radon Transform of Melrose-Taylor:

F : E ′(IR× Sn)→ D′(IR×B),

Fu(t, r) =

∫

IR×Sn

δ(t− s− r · ω)u(s, ω) ds dΩω. (18)

Here r is a vector in IRn+1, pointing to the boundary B of a compact domain (obstacle)
K ⊂ IRn+1. This is an excellent example of a Fourier integral operator associated to
a canonical relation which is not a local graph.

We will derive the regularity properties of (18) for the scattering on an arbitrary
convex compact domain with a smooth boundary. The smoothness becomes worse
when the principal curvatures of the boundary vanish of higher order.

Roughly, if the principal curvature vanishes of order k − 1, then there is a loss of
1
2

k
2k+1 derivatives in the regularity properties (comparing to non-degenerate Fourier

integral operators). This expression plays the role of the interpolation between 1/6
for two-sided Whitney folds and 1/4 for one-sided Whitney folds.

Indeed, one of the projections from the canonical relation determined by the phase
function S = r · ω is basically the orthogonal projection from a sphere, and thus is a
Whitney fold.

The other projection is basically the orthogonal projection from the boundary of
an obstacle. The value k = 1 corresponds to non-vanishing principal curvature, when



Integral Operators with Singular Canonical Relations 7

the orthogonal projection from the boundary is a Whitney fold. This was the case
originally considered by Melrose and Taylor.

The limit k →∞ means that the second projection from the canonical relation has
a singularity of an arbitrarily high order. According to Greenleaf and Seeger [1994],
there is a loss of up to 1/4 derivatives, which is the limit of 1

2
k

2k+1 .

The loss of 1
2

k
2k+1 derivatives in the regularity properties seems to be a general

result for the Fourier integral operators such that one of the projections from the
associated canonical relation is a Whitney fold and the other has degeneracies of
order not greater than k (see Definition 1.4.1).

Let us now mention two results which we do not prove in the paper.

Asymptotic estimates for oscillatory integral operators. It is useful to con-
sider the asymptotic situation, when both π

L
and π

R
are Whitney folds, but one of

them (π
R
) is asymptotically degenerating (in the sense that in proper local coordi-

nates it is given by ηi′ = xi′ for i
′ = 1, . . . , n− 1, and ηn = σx2n/2, with 0 < σ ¿ 1).

We would like to state the corresponding asymptotics of the estimates on the oscilla-
tory integral operators, together with the asymptotics corresponding to infinitesimally
small localization of the integral kernel.

We consider the oscillatory integral operator localized near some point (xo, ϑo):

Tλδεu(x) =

∫

IRn
R

ρ((x− xo)/δ) %((ϑ− ϑo)/ε) eiλS(x,ϑ) ψ(x, ϑ)u(ϑ) dϑ, (19)

here ρ(x) and %(ϑ) are smooth functions supported near the origin; δ and ε are two
asymptotically small parameters. For simplicity, we assume that (xo, ϑo) is shifted to
the origin in IRn

L
×IRn

R
. We will use the notationWδε ≡ supp ρ((x−xo)/δ)%((ϑ−ϑo)/ε).

The local coordinates x = (x′, xn) and ϑ = (ϑ′, ϑn) are chosen so that the vectors
∂ϑn and ∂xn are transversal to Σ0, while Sx′ϑ′ is a non-degenerate matrix.

Theorem 1.1.1 Let S(x, ϑ) ∈ C2n+3(Wδε) and let ψ(x, ϑ) ∈ C2n+1(Wδε).
Let the mixed Hessian Sxϑ be of rank at least n− 1, with its non-degenerate part

given by Sx′ϑ′ , | detSx′ϑ′ | ≥ const > 0. There is the following estimate on the norm
of Tλδε in (19):

‖Tλδε‖ ≤ const λ−
n−1

2 (δε)
1
2 . (20)

If π
L
is a Whitney fold, so that detSxϑ vanishes of the first order in ϑn,

|∂ϑn detSxϑ| ≥ const > 0, (21)

then there is also the following estimate on the norm of Tλδε:

‖Tλδε‖ ≤ const λ−
n
2 +

1
4 δ

1
4 . (22)
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If, in addition, π
R
is a degenerating Whitney fold,

σ ≡ inf
Wδε

|∂xn detSxϑ| > 0, σ ¿ 1, (23)

and if

sup
Wδε

(

‖S−1x′ϑ′‖ ‖Sxnϑ′‖
)

sup
Wδε

‖∇x′ detSxϑ‖

inf
Wδε

|∂xn detSxϑ|
≤ const < 1, (24)

then also

‖Tλδε‖ ≤ const λ−
n
2 +

1
6σ−

1
6 . (25)

The constants in (20), (22), and (25) do not depend on λ, δ, ε, and σ.

The estimate (20) is apparent: the factor λ−
n−1

2 is L. Hörmander’s estimate (3)

in n−1 dimensions, and the factor (δε)
1
2 appears from Young’s inequality, due to the

size of the support of Tλδε in the critical directions.
The estimate (22) is a counterpart of the estimate (9) due to A. Greenleaf and A.

Seeger for the case when π
L
is a Whitney fold. No assumption on π

R
is needed. The

asymptotically small support in x contributes δ
1
4 to the estimate.

The estimate (25) is a counterpart of the estimate (8), and it gives the asymptote
corresponding to infinitesimally small principal curvature (23) of the Whitney fold
π
R
. The geometrical meaning of the condition (24) is that the kernel of dπ

R
is within

a certain conic neighborhood of the direction of ∇x detSxϑ. This estimate can be
derived with the methods similar to those in Section 1.6. We refer to the paper [1997]
of the author.

Operators associated to canonical relations with stable singularities. This
is still an open question how to relate the rate of decay of oscillatory integral operators
with the singularities of the projections from the canonical relation, for topologically
stable classes of singularities. Similar problem for oscillatory integrals was solved by
A.N. Varchenko in [1976]; see the book of V.I. Arnold, S.M. Gusein-Zade, and A.N.
Varchenko [1985].

So far, we know the estimate (8) for the operators associated to two-sided Whitney
folds. We can also prove the following result for the topologically stable canonical
relations with one of the projections being a Whitney fold and the other one being a
cusp:

Theorem 1.1.2 (Operators associated to fold& cusp) Let Tλ be an oscillatory
integral operator associated to the canonical relation with the fold×cusp singularity.
Then there is the following estimate on Tλ:

‖Tλ‖ ≤ const λ−
n
2 +

1
5 . (26)



Integral Operators with Singular Canonical Relations 9

The proof basically uses the methods described in the paper; the details will appear
elsewhere.

We believe that, in the general case, the operators associated to canonical relations
with topologically stable singularities could be considered by combining the theory
of V.P. Maslov (see, for example, V.P. Maslov and V.E. Nazaikinskii [1988]) with the
Catastrophe Theory of V.I. Arnold. We also hope that this could give an alternative
proof of the results stated in this paper.

1.2 Relation with Fourier integral operators

Littlewood-Paley theory allows to relate the rate of decay of oscillatory integral ope-
rators to the regularity properties of Fourier integral operators. The details for the
general case can be found in the papers of A. Seeger [1993] and A. Greenleaf and A.
Seeger [1994]. We are going to illustrate this relation in two particular situations.

Let F be a compactly supported Fourier integral operator

Fu(x) =
∫

IRN×IRn

eiφ(x,θ,y)a(x, θ)u(y) dθ dy, (27)

x, y ∈ IRn, θ ∈ IRN , N = n, with the symbol a(x, θ) ∈ Sd1,0 (compactly supported in
x), and with the phase function

φ(x, θ, y) = S(x, θ)− θ · y, (28)

where S is homogeneous of degree 1 in θ. We assume that dxφ = dxS 6= 0 on the
support of a(x, ϑ) as long as θ 6= 0.

The associated canonical relation

C = {(x, dxφ)× (y,−dyφ) | dθφ = 0} = {(x, dxS)× (dθS, θ)}

is parameterized by x and θ.

Proposition 1.2.1 (Continuity of Fourier integral operators) If for any den-
sity ψ ∈ C∞comp(IR

n × IRn) the oscillatory integral operator

Tλu(x) =

∫

IRn
eiλS(x,ϑ)ψ(x, ϑ)u(ϑ)dϑ (29)

is continuous from L2(IRn) to L2(IRn) with the norm ‖Tλ‖ ≤ Cψλ−
n
2 +r, with r inde-

pendent of ψ, and if dxS(x, ϑ) 6= 0 as long as ϑ 6= 0, then for any real s the operator
F in (27) defines a continuous map

F : Hs(IRn)→ Hs−d−r(IRn). (30)
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Proof. It suffices to prove that for d + r ≤ 0 the operator F is continuous from L2

to L2.
We employ the dyadic partition

1 =
∑

λ=2N , N∈IN

β

(‖θ‖
λ

)

+ β0(‖θ‖), β0 ∈ C∞comp([−2, 2]), β ∈ C∞comp([1/2, 2])

(31)
to decompose F into

∑

λ=2N , N∈IN

Fλ + F0, (32)

with F0 being infinitely smoothing.
According to the assumptions of the Proposition, the L2-norm of the function

Fλu(x) =
∫

eiS(x,θ)a(x, θ)β(‖θ‖ /λ)û(θ)dθ

= λn+d
∫

eiλS(x,ϑ)
[

a(x, λϑ)

λd
β(‖ϑ‖)

]

û(λϑ)dϑ (33)

is bounded by

‖Fλu(x)‖L2 ≤ const λn+dλ−
n
2 +r ‖û(λϑ)‖L2 ≤ const λd+r ‖û(θ)‖L2 . (34)

This shows that the operators Fλ are uniformly bounded from L2 to L2 if d + r is
less than or equal to zero.

Now it suffices to prove that the operators with different lambdas, λ1 = 2N1 and
λ2 = 2N2 , are almost orthogonal (see Section 1.5). The composition Fλ1

F∗λ2
is simply

equal to zero (if |N1 −N2| ≥ 2), since the functions β(θ/λ1) and β(θ/λ2) have no
common support. When considering the composition F∗λ1

Fλ2
, we concentrate the

attention on the exponential in the expression for the integral kernel of F ∗λ1
Fλ2

:

K(F∗λ1
Fλ2

)(ϑ,w) =

∫

IRn
dx e−iλ(S(x,ϑ)−S(x,w)) × . . . . (35)

We have:

‖Sx(x, θ)− Sx(x,w)‖ ≥ const |λ1 − λ2| , (36)

if |N1 −N2| is larger than some constant (here we need the condition dxS(x, ϑ) 6= 0
when ϑ 6= 0). Therefore, we can integrate by parts in (35), gaining arbitrarily large
negative powers of |λ1 − λ2|. This proves the almost orthogonality of the operators
Fλ, λ = 2N , and completes the argument. 2

Another theme is the regularity properties of generalized Radon Transforms. We
follow the idea of D.H. Phong and E.M. Stein [1991].
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Let us consider the Radon Transform

Rψ : C∞comp(IR× Y )→ C∞(IR×X),

such that Rψu(t, x) is obtained by integrating the function u(s, ϑ) with some density
ψ over the hypersurfaceMt,x ⊂ IR×Y , described by the condition t−s−S(x, ϑ) = 0.

Thus, let the Radon Transform Rψ be given by

Rψu(t, x) =
∫

IR×Y

δ(t− s− S(x, ϑ))ψ(x, ϑ)u(s, ϑ) ds dϑ. (37)

The density ψ ∈ C∞comp(X × Y ) is assumed to have a compact support; then X and
Y can be viewed as Euclidean spaces (possibly, of different dimensions nX and nY ).

We rewrite the integral transform (37) as a Fourier integral operator with N = 1,

Rψu(t, x) =
∫

IR×IR×Y

e−iλ(t−s−S(x,ϑ)) ψ(x, ϑ)u(s, ϑ)
dλ

2π
ds dϑ. (38)

Let us interpret (38) as a pseudodifferential operator, in the following way: One first
performs the Fourier transform with respect to s, u(s, ϑ)→ û(λ, ϑ), then applies the
symbol aψ(λ) which acts according to

aψ(λ) û (λ, x) =

∫

Y

eiλS(x,ϑ) ψ(x, ϑ) û(λ, ϑ) dϑ, (39)

and then one takes the inverse Fourier transform (from λ to t).
In other words, we can write the partial Fourier transform of (38) as

Ft7→λ (Rψu) (λ, x) =
∫

Y

eiλ(S(x,ϑ)) ψ(x, ϑ) û(λ, ϑ) dϑ = aψ(λ) û (λ, x).

The following lemma is transparent:

Lemma 1.2.1 If there is the estimate ‖aψ(λ)‖ ≤ Cψλ−d when λ > 1, for some d > 0,
on the L2(Y ) → L2(X)-action of the operator-valued symbol aψ(λ), then the Radon
Transform Rψ in (37) is continuous from Hs(IR) ⊗ L2(Y ) to Hs+d(IR) ⊗ L2(X),
s ∈ IR, with the norm bounded by ‖Rψ‖ ≤ Cψ.

We would like to study the resulting regularity properties of Rψ in more detail.
Let us note that differentiation of (37) with respect to x can be represented, in a
certain way, as differentiation with respect to t, allowing one to take off the derivatives
with respect to x, thus “improving” Sobolev properties of Rψ in x-directions. This
approach can be used for a wider class of averaging operators. E.M. Stein has proposed
for this the term “trading the derivatives”.



12 Andrew Comech

Lemma 1.2.2 Let the Radon Transform Rψ in (37) be continuous from some Banach
space B(IR × Y ) to Ha(IR) ⊗ Hb(X), for any density ψ ∈ C∞comp(X × Y ), with the
norm ‖Rψ‖ ≤ Cψ.

Then
Rψ : B(IR× Y )→ Ha−µ(IR)⊗Hb+µ(X),

for any µ ≥ 0, with the norm ‖Rψ‖ ≤ Cψ,µ.

Proof. Let us consider the identity

Rψ = (1−∆x)
−1 ◦ (Rψ −∆x ◦ Rψ), (40)

where the operator ∆x ◦ Rψ acts on functions according to

∆x (Rψu(t, x)) =
∫

IR×Y

∆x (δ(t− s− S(x, ϑ))ψ(x, ϑ)) u(s, ϑ) ds dϑ. (41)

We rewrite the integral in the right-hand side as
∫

IR×Y

[

{ψ S2
x} δ′′ − {ψ∆xS + 2ψx · Sx} δ′ + {∆xψ} δ

]

u(s, ϑ) ds dϑ

= ∂2t (R1u(t, x))− ∂t (R2u(t, x)) +R3u(t, x), (42)

where R1 ≡ RψS2
x
, R2 ≡ Rψ∆xS+2ψx·Sx , and R3 ≡ R∆xψ are the Radon Transforms

of the form (37), with the specified densities. Therefore, according to the assumption
of the Lemma, all these Radon Transforms are continuous from B(IR×Y ) to Ha(IR)⊗
Hb(X). Hence, the operator

Rψ −∆x ◦ Rψ = Rψ − ∂2t ◦ R1 + ∂t ◦ R2 −R3

is continuous from B(IR× Y ) to Ha−2(IR)⊗Hb(X), and then

Rψ = (1−∆x)
−1 ◦ (Rψ −∆x ◦ Rψ)

is continuous from B(IR× Y ) to Ha−2(IR)⊗Hb+2(X).
In the same way one proves that Rψ is continuous from B(IR×Y ) to Ha−2k(IR)⊗

Hb+2k(X), for any natural k, with the norm depending on k.
This means that for any function v(t, x) ∈ Rψ(B(IR× Y )), its Fourier transform

v̂(τ, ξ) has a bounded L2-norm when integrated with the weight

(1 + τ2)a−2k(1 + ‖ξ‖2)b+2k, (43)

for any integer k. Then v̂(τ, ξ) also has a bounded L2-norm when integrated with the

weight (1 + τ2)a−µ(1 + ‖ξ‖2)b+µ, for any non-negative µ, and therefore

v(t, x) ∈ Ha−µ(IR)⊗Hb+µ(X). 2
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Note that the norm on the action from B(IR×X) to Ha−µ(IR)⊗Hb+µ(Y ) depends
on µ. This dependence is due to the appearance of the derivatives of S(x, ϑ) and of
ψ(x, ϑ) in (41). Of course, this is inevitable if we want the image ofRψ to be smoother
in x.

Proposition 1.2.2 Let the Radon Transform Rψ in (37) define the continuous action

Hs(IR)⊗ L2(Y )
Rψ−→ Hs+d(IR)⊗ L2(X), s ∈ IR, (44)

for any density ψ ∈ C∞comp(X × Y ), with the norm ‖Rψ‖ ≤ Cψ <∞.
Then the following action is also continuous:

Hs+ν(IR)⊗H−ν(Y )
Rψ−→ Hs+d−µ(IR)⊗Hµ(X), (45)

for any non-negative µ and ν, with the norm ‖Rψ‖ = Cψ,µ,ν depending on the values
of µ and ν.

The statement of this Proposition follows from the application of Lemma 1.2.2 to
R and then also to its adjoint,

H−s(IR)⊗ L2(Y )
R∗
ψ←− H−s−d+µ(IR)⊗H−µ(X). (46)

Corollary 1.2.1 Under the assumptions of Proposition 1.2.2, the following action of
Rψ is continuous:

Hs(IR× Y )
Rψ−→ Hs+d(IR×X), (47)

with the norm ‖Rψ‖ ≤ Cψ,s depending on the value of s.

This Corollary follows from the inclusion

{

Hs(IR)⊗H0(X)
}

∩
{

H0(IR)⊗Hs(X)
}

⊂ Hs(IR×X). (48)

1.3 Pseudoconvexity

Most approaches to the integral operators of Fourier type are based on the following
procedure. Given the operator Tλ,

Tλu(x) =

∫

IRn

eiλS(x,ϑ)ψ(x, ϑ)u(ϑ) dϑ,

we consider the integral kernel of the convolution TλT
∗
λ ,

K(TλT
∗
λ )(x, y) =

∫

IRn

eiλ(S(x,ϑ)−S(y,ϑ))ψ(x, ϑ)ψ(y, ϑ) dϑ,
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and integrate by parts with the aid of the operator

Lϑ ≡ −
1

iλ
· (Sϑ(y, ϑ)− Sϑ(x, ϑ)) · ∇ϑ
|Sϑ(y, ϑ)− Sϑ(x, ϑ)|2

;

this gives certain bounds on |K(TλT
∗
λ )(x, y)|, and we may apply Young’s inequality.

The main ingredient of this approach is the estimate from below for the expression
in the denominator of Lϑ. The usual approximation

|Sϑ(y, ϑ)− Sϑ(x, ϑ)| = Sxϑ(x, ϑ) · (y − x) + o (‖y − x‖) ≈ Sxϑ(x, ϑ) · (y − x)

is applicable if we use the fine localization of the integral kernel of Tλ with the step
∼ | detSxϑ|, so that ‖y − x‖ ≤ const |detSxϑ|. In the non-degenerate case, this
approximation gives

|Sϑ(y, ϑ)− Sϑ(x, ϑ)| ≥ const | detSxϑ| ‖y − x‖ ≥ const ‖y − x‖ . (49)

If Sxϑ becomes degenerate, then we can not count on (49) any more. Still, we
could continue with the argument if we had something like

|Sϑ(y, ϑ)− Sϑ(x, ϑ)| ≥ const ‖y − x‖ inf
U
| detSxϑ| , (50)

for any connected set U ⊂ IRn × IRn and for any (x, ϑ), (y, ϑ) ∈ U .
Unfortunately, if we use the fine localization of the integral kernel of the operator

T h̄ from Section 1.1 with the step ∆x ∼ | detSxϑ| ≈ h̄, then the number of pieces
of T h̄ grows up like some power of h̄−1 when h̄ → 0. Each of these pieces satisfies
certain estimates, but the almost orthogonality of these operators occurs only if π

R

is a Whitney fold (see the paper of S. Cuccagna [1995]).
The inequality (50) could be viewed as a certain convexity property (pseudocon-

vexity) of the map π
R
|
ϑ
: x 7→ Sϑ(x, ϑ). To legitimate this idea, let us define the

notion of a pseudoconvex map.
First, for a real N ×N -matrix A, we define the bound from below on its action:

min(A) ≡ inf
‖u‖=1

‖Au‖ . (51)

If A is degenerate, then min(A) = 0; otherwise, min(A) =
∥

∥A−1
∥

∥

−1
.

There is the inequality

min(A) ≥ m(A) ≡ | detA|
‖A‖N−1End(IRN )

, (52)

which gives a useful estimate for min(A) if A is of rank not less than N − 1.
Let µ be a map which acts from (a subset of) IRN to IRN . Then the Mean Value

Theorem states that for any two points x, y ∈ IRN ,

‖µ(y)− µ(x)‖ ≤ ‖y − x‖ · sup
z∈l
‖Jz(µ)‖End(IRN ) , (53)
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here Jz(µ) is the Jacobian ∇µ of the change of variables x 7→ µ(x) at the point x = z,
z ∈ l; l is the line segment from x to y (which is assumed to be in the domain of µ).

We would like to have a similar bound from below for ‖µ(y)− µ(x)‖.
If the map µ is a bijection and if its range is convex, then we can apply the Mean

Value Theorem (53) to the function µ−1:

‖y − x‖ ≤ ‖µ(y)− µ(x)‖ · sup
w∈L

∥

∥Jw(µ
−1)
∥

∥

End(IRN )
.

Here L is a line segment from µ(x) to µ(y).
Since

∥

∥J(µ−1)
∥

∥ =
∥

∥J(µ)−1
∥

∥ = min(J(µ))−1, we can rewrite the previous inequal-
ity as

‖µ(y)− µ(x)‖ ≥ ‖y − x‖ · inf
z∈γ

min(Jz(µ)), (54)

here the path γ is the preimage of the line segment L.
We use the inequality (54) to define the notion of a pseudoconvex map:

Definition 1.3.1 (c-pseudoconvexity) Let µ be a map from IRN to IRN . Given
c > 0, the map µ is called c-pseudoconvex on a path connected subset U ⊂ IRN if for
any x, y ∈ U

‖µ(y)− µ(x)‖ ≥ c ‖y − x‖ · inf
z∈γ

min(Jz(µ)), (55)

for any path γ ∈ U from x to y.
If (55) is satisfied for some constant c > 0, we will simply say that the map µ is

pseudoconvex.

Any function f : IR→ IR is automatically pseudoconvex, with c = 1.
The property of maps to be pseudoconvex is preserved under compositions.
A change of coordinates can be considered as a bijection from U ⊂ IRN to U ′ ⊂ IRN

(which is pseudoconvex). Therefore, the property of a map to be pseudoconvex is
retained under the changes of local coordinates in U and V (only a particular value
of c changes).

The most apparent example of a non-pseudoconvex map is a local diffeomorphism
which is not a bijection. Still, if U is compact and if min(J(µ)) ≥ const , then for
any c < 1 there is a finite covering U = ∪Uj , such that µ is c-pseudoconvex on each
Uj . We will consider such maps as being pseudoconvex, not specifying each time that
we must have used some finite localization.

The condition (55) is non-trivial if J(µ) becomes degenerate. For example, a map
with the fold singularity is pseudoconvex, while a map with the cusp singularity is
not.

Remark. An important example of a pseudoconvex map (which also explains the
origin of the definition) is the orthogonal projection from the boundary ∂K of a convex
compact domainK ⊂ IRN+1 onto a hyperplane. An elementary geometrical argument
shows that this map satisfies the pseudoconvexity condition (55) (see Section 2.3
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below). Moreover, the domain K is convex if and only if the orthogonal projections
from its boundary onto all hyperplanes are pseudoconvex.

In the following section we will show that the projections from the canonical
relation could be considered as being pseudoconvex in a very general situation, when
they only satisfy certain finite type condition.

1.4 Geometry of the canonical relation

Let us show the way to exploit the geometrical properties of the canonical relation.
We assume that on the critical variety

Σ0 = {(x, ϑ) | h(x, ϑ) = 0},

where h(x, ϑ) = detSxϑ, the rank of maps

π
L
: (x, ϑ) 7→ (x, Sx), π

R
: (x, ϑ) 7→ (ϑ, Sϑ)

is at least n − 1, and choose local coordinates so that the directions xi′ and ϑi′ ,
i′ = 1, . . . , n− 1, are non-degenerate:

detSx′ϑ′ ≥ c0 > 0. (56)

The kernel of the differentials dπ
L
and dπ

R
are then generated by the vectors

k
L
= ∂ϑn − Sϑ

′x′Sx′ϑn · ∇ϑ′ , k
R
= ∂xn − Sϑ

′x′Sxnϑ′∇x′ , (x, ϑ) ∈ Σ0. (57)

Here Sϑ
′x′ is the inverse matrix to Sx′ϑ′ . The summation with respect to the indices

of repeating lower and upper variables is assumed.
We define the vector fields K

L
and K

R
on IRn

L
× IRn

R
by the same right-hand sides:

K
L
= ∂ϑn − Sϑ

′x′Sx′ϑn · ∇ϑ′ , K
R
= ∂xn − Sϑ

′x′Sxnϑ′∇x′ . (58)

The capital letters are used to emphasize that the vectors are defined everywhere.
This definition depends on the choice of local coordinates. In different local coor-

dinates (y, w) the vector fields

K ′
L
= ∂wn − Sw

′y′Sy′wn · ∇w′ , K ′
R
= ∂yn − Sw

′y′Synw′∇y′ (59)

are different from K
L
and K

R
. Note that Sw

′y′ , the inverse to the matrix Sy′w′ , is

not expressed in terms of Sϑ
′x′ .

Since we know that on the critical variety Σ0 = {h(x, ϑ) = 0} the directions of
K
L
and K

R
are determined by Ker dπ

L
and Ker dπ

R
, we expect that locally

K ′
L
= a

L
(x, ϑ)K

L
+ h(x, ϑ) b i

L
(x, ϑ) ∂ϑi , (60)

K ′
R
= a

R
(x, ϑ)K

R
+ h(x, ϑ) b i

R
(x, ϑ) ∂xi , (61)
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where a
L
(x, ϑ) and a

R
(x, ϑ) are different from zero. Fortunately, we will not need the

precise relations, which look as follows:

K ′
L
=

(

∂ϑn
∂wn

− Sw′y′Sy′wn∂w′ϑn

)[

K
L
+

(

detSyϑ
detSy′ϑ′

)

Sϑ
′x′∂x′yn ∂ϑ′

]

,

K ′
R
=

(

∂xn
∂yn

− Sw′y′Synw′∂y′xn

)[

K
R
+

(

detSxw
detSx′w′

)

Sϑ
′x′∂ϑ′wn ∂x′

]

.

Note that detSyϑ ∼ detSxw ∼ detSxϑ = h(x, ϑ).
The vector fields K

L
and K

R
have a very simple realization. Let us fix x and

consider the map π
L
|
x
: ϑ 7→ η ≡ Sx(x, ϑ) as the composition

ϑ
π ′

L7−→ (ξ′ ≡ Sx′ , ϑn)
π s
L7−→ (ξ′, ξn ≡ Sxn).

The map π ′
L
is a diffeomorphism, since detSx′ϑ′ 6= 0; hence, the singular behavior of

π
L
is encoded in the map π s

L
.

The kernel of the differential dπ s
L
is generated by

(

∂
∂ϑn

)

ξ′
. The relation

(

∂

∂ϑn

)

ξ′
= K

L
= ∂ϑn − Sϑ

′x′Sx′ϑn∇ϑ′ (62)

is valid not only on the critical variety. Indeed, K
L
ϑn = 1, and

K
L
ξ′ = K

L
Sx′ = Sx′ϑn − Sϑi′xj′Sxj′ϑnSx′ϑi′ = Sx′ϑn − Sx′ϑn = 0.

Analogously,
(

∂

∂xn

)

η′
= K

R
, (63)

where η′ = Sϑ′(x, ϑ).

Whitney folds. The map µ : IRN → IRN is said to be a Whitney fold (a map with
the singularity of the type Σ1,0) if in proper local coordinates it is represented by

yi′ = xi′ , i′ = 1, . . . , N − 1,

y
N
=
x2
N

2
, (64)

with the determinant of the Jacobian being equal to x
N

and with the kernel of the
differential generated by k = ∂/∂x

N
, so that kdet J(µ) 6= 0.

The map π
L
is thus a Whitney fold in an open neighborhoodW of a point po ∈ Σ0

if
k
L
h(x, ϑ) 6= 0 in Σ0 ∩W.
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We substitute k
L
by K

L
and exercise the condition that π

L
is a Whitney fold near

po assuming that
|K

L
h(x, ϑ)| ≥ c

L
> 0, (65)

for some positive constant c
L
, as long as (x, ϑ) ∈W . Due to (60), this condition does

not depend on the choice of local coordinates (only a particular value of the constant
c
L
depends).
If π

R
is also a Whitney fold, then we can assume that there is some constant

c
R
> 0 such that K

R
h(x, ϑ) ≥ c

R
. The estimate on the associated oscillatory integral

operators is given by (8).

Cusps. Another stable class of singularities of differentiable maps is a cusp (type
Σ1,1,0). The map µ : IRN → IRN has a stable singularity of this type if in proper
local coordinates it can be represented by

yi′ = xi′ , i′ = 1, . . . , N − 1,

y
N
=
x3
N

3
− x

N
x
N−1

. (66)

The critical variety is determined by the condition

det J(µ) = x2
N
− x

N−1
= 0.

The kernel of this map is generated by the vector k = ∂/∂xN , which has a contact of
order at most k = 2 with the graph of the map µ in IRN × IRN :

k2 det J(µ) 6= 0.

Thus, if π
R
has a cusp singularity at po, then

h(po) = 0, K
R
|
po
h = 0, K2

R
|
po
h 6= 0. (67)

The first two conditions do not depend on the choice of local coordinates.
Let us show that the third condition is also coordinate-independent. Indeed, in

different local coordinates (y, w), we need to check that

(

K ′
R

)2
h|
po

=
(

a
R
K
R
+ h b i

R
∂xi
)2
h|
po

(68)

is different from zero. Recalling that at the cusp point h = 0 andK
R
h = 0, we obtain:

(

K ′
R

)2
h|
po

= a2
R
K2
R
h|
po
6= 0. (69)

When we consider π
R
to be a cusp, we can assume that in an open neighborhood

W of a cusp point po we have:
∣

∣K2
R
h(x, ϑ)

∣

∣ ≥ c (2)
R

> 0, (70)
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with the value of c (2)
R

depending on the choice of local coordinates. This condition
implies that the varieties

Γ
R
(σ) ≡ {K

R
h = σ}

are smooth hypersurfaces in IRn
L
× IRn

R
, with the vector field K

R
being transversal to

all of them (as long as σ is small).
Together with K

R
, these hypersurfaces depend on the choice of local coordinates.

Since at the cusp points K
R
∈ TΣ0, we know that Σ0 and Γ

R
(σ = 0) intersect

transversally, and thus the cusp variety

Σ 1
R
= Σ0 ∩ Γ

R
(0)

is a smooth submanifold of IRn
L
×IRn

R
(of codimension 2). This submanifold could also

be characterized as a subset of Σ0 where the restriction π
R
|
Σ0 becomes degenerate. See

D.H. Phong and E.M. Stein [1991] and D.H. Phong [1994] for further generalizations.
Since π

R
is a cusp, the restriction of π

R
onto Σ 1

R
is a diffeomorphism onto its

image (in an agreement with (70)).

Degeneracies of higher order. Let us generalize what we have learned about
Whitney folds and cusps.

Definition 1.4.1 (Degeneracy of order k) We will say that the map π
R
has de-

generacy of order k ∈ IN at the point po ∈ Σ0 if

Kk′

R
h(x, ϑ)|

po
= 0, ∀ k′ ∈ IN, k′ < k, (71)

Kk
R
h(x, ϑ)|

po
6= 0. (72)

We will say that the determinant of the mixed Hessian vanishes of order not greater
than k in the direction of Ker dπ

R
if the map π

R
has degeneracies of order less than

or equal to k, for some k < ∞, at all points of Σ0. Then we will also say that the
map π

R
is of finite type.

Similarly for π
L
.

This definition does not depend on the choice of local coordinates. The argument
is the same as for the cusp: the relation (69) now becomes

(

K ′
R

)k
h|
po

= ak
R
(K

R
)
k
h|
po
6= 0.

In general, the orders of degeneracies are not preserved under the deformations
of the canonical relation, but they are well-defined for the projections with stable
singularities: for the Whitney fold the order of degeneracy is equal to k = 1, for the
cusp k = 2 at the cusp point and k = 1 otherwise.

Formally, we also assume that at non-singular points (p /∈ Σ0) the map has de-
generacy of order k = 0, since K0

R
h(x, ϑ)|

p
= h(x, ϑ)|

p
6= 0.
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Pseudoconvexity of projections from the canonical relation. It turns out that
π
R
being of finite type is a sufficient condition for π

R
to be treated as pseudoconvex.

We recall the dyadic decomposition (14), Tλ =
∑

h̄>h̄o
T h̄ + T̄ h̄o , where

T h̄u(x) =

∫

eiλS(x,ϑ) ψ(x, ϑ)β(h̄−1h(x, ϑ))u(ϑ) dϑ, β ∈ C∞comp([1/2, 2]).

We will show that the support of the integral kernel of each operator T h̄, which we
denote by

suppK(T h̄) ≡ suppψ(x, ϑ) ∩ suppβ(h̄−1h(x, ϑ)),

can be split into several pieces so that π
R
is pseudoconvex on each piece.

Proposition 1.4.1 If the projection π
R
is of finite type, then there is a finite partition

of 1, 1 =
∑

σ ρ
h̄
σ(x, ϑ), with the functions ρh̄σ satisfying the uniform estimates

∣

∣

∣∂αx ∂
β
ϑρ

h̄
σ(x, ϑ)

∣

∣

∣ ≤ cαβ h̄−|α|−|β|, (73)

with cαβ independent of h̄, so that π
R
restricted to

suppK(T h̄) ∩ supp ρh̄j (x, ϑ)

is pseudoconvex.
The same is true for π

L
.

It suffices to show that such a partition of 1 exists in some open neighborhood of
a point po where the projection π

R
has degeneracy of order k, where we thus have

Kk
R
h(x, ϑ)|

po
6= 0. (74)

We can assume that
Kk
R
h(x, ϑ)|

po
≥ 0 (75)

in some open neighborhood W of this point (later we will impose some additional
restrictions on W and on its size).

Choose ρ ∈ C∞(IR) so that ρ(t) = 1 for t ≥ 1, ρ(t) = 0 for t ≤ −1, and

ρ(t) + ρ(−t) = 1.

The mentioned partition of 1 is given for k > 1 by

1 =
∑

σ

(

k−1
∏

k′=1

ρ(σk′ h̄
−1Kk′

R
h(x, ϑ))

)

≡
∑

σ

ρh̄σ(x, ϑ), (76)

where σ = (σ1, . . . , σk−1), σk′ = ±1.
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For k = 1 (Whitney fold), we do not need any partition, and we claim that the
map π

R
is pseudoconvex on the entire suppK(T h̄) ∩W.

Let us denote

W h̄
σ ≡ suppK(T h̄) ∩W ∩ supp ρh̄σ(x, ϑ). (77)

We claim that π
R
is pseudoconvex on W h̄

σ for each σ = (σ1, . . . , σk−1).
Let us fix ϑ, and let (x, ϑ) and (y, ϑ) be two points in W h̄

σ . We need to show that

‖η(y)− η(x)‖ ≥ const h̄ ‖y − x‖ , (78)

here η(x) = Sϑ(x, ϑ).
We consider the images of x and y in the (η′, xn)-space: π ′

R
(x) = (η′(x), xn),

π ′
R
(y) = (η′(y), yn). We also denote by Ωh̄σ the image of W h̄

σ .
Let A be the line segment between the points π ′

R
(x) and π ′

R
(y). Its length is

bounded from below by

‖A‖ ≥ const ‖y − x‖ , (79)

for some const > 0.
We treat separately two cases:

• If A is outside of the conic neighborhood of magnitude ch̄ of either of the directions
of the axis xn in (η′, xn)-space, (the value of the constant c is to be chosen later),
then we are done:

‖η(y)− η(x)‖ ≥ ‖η′(y)− η′(x)‖ ≥ ‖y − x‖ sin ch̄ ≈ ch̄ ‖y − x‖ . (80)

• Now let A be inside the conic neighborhood of magnitude ch̄ of the axis xn:

‖η′(y)− η′(x)‖ ≤ |yn − xn| tan ch̄. (81)

We have:

|ηn(y)− ηn(x)| ≥ |yn − xn| inf
A

∣

∣

∣

∣

∣

(

∂

∂xn

)

η′
ηn

∣

∣

∣

∣

∣

− ‖η′(y)− η′(x)‖ sup
A
‖∇η′ηn‖

≥ |yn − xn|
(

inf
A

∣

∣

∣

∣

∣

(

∂

∂xn

)

η′
ηn

∣

∣

∣

∣

∣

− tan ch̄ sup
A
‖∇η′ηn‖

)

. (82)

Since ‖y − x‖ ∼ ‖A‖ ≈ |yn − xn|, we only need to show that the factor at |yn − xn|
in the right-hand side of (82) is of magnitude h̄, and then the inequality (78) follows.

We will show below (Lemmas 1.4.1 and 1.4.2) that

∣

∣

∣

∣

(

∂
∂xn

)

η′
ηn

∣

∣

∣

∣

∼ h̄, as long as

(η′, xn) is on the line segment A. Therefore, (82) is greater than const h̄ |yn − xn| if
we choose the constant c small enough.

This justifies (78) and concludes the proof of the Proposition.
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Lemma 1.4.1 There is the relation
(

∂
∂xn

)

η′
ηn = h(x,ϑ)

detSx′ϑ′
.

The value of the derivative
(

∂
∂xn

)

η′
ηn can be determined from the decomposition

π
R
|
ϑ
= π s

R
◦ π ′

R
,

x
π ′

R7−→ (η′ ≡ Sϑ′ , xn)
π s
R7−→ (η′, ηn ≡ Sxn),

which leads to the following relation of the Jacoby matrices:

J(π s
R
) · J(π ′

R
) = J(π

R
|
ϑ
). (83)

This relation is written explicitly as



















1 0
. . .

...

1 0

∇η′ηn
(

∂
∂xn
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∇x′η′ ∂xnη
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= Sxϑ, (84)

where ∇x′η′ = Sx′ϑ′ . Therefore,
(

∂
∂xn

)

η′
ηn · detSx′ϑ′ = h(x, ϑ), i.e.,

(

∂

∂xn

)

η′
ηn =

h(x, ϑ)

detSx′ϑ′
. 2 (85)

Now we need to check that on the line segment A the value of h(x, ϑ) is of mag-
nitude h̄.

Lemma 1.4.2 If ‖A‖ ≤ 1/12 and if c is small, then everywhere on A

|h(x, ϑ)| ≥ h̄

4
. (86)

Here we assume that A could be not entirely on the support of the integral kernel of
T h̄, where |h| ≥ h̄/2.
Proof. Since both π ′

R
(x) and π ′

R
(y) are on Ωh̄σ ≡ π ′

R
(W h̄

σ ), we know that at both
these points

|h| ≥ h̄/2, (87)

σk′ ·
(

∂

∂xn

)k′

η′
h ≥ −h̄, ∀ k′ ∈ IN, k′ < k. (88)
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We can also assume that
(

∂

∂xn

)k

η′
h ≥ 0 (89)

everywhere on A, since the neighborhood W can be chosen so that π ′
R
(W ) is convex

(so that A ⊂ π ′
R
(W )), while

(

∂

∂xn

)k

η′
h|
π ′
R

(W )
= Kk

R
h|
W
≥ 0.

Let t be a parameter on the line segment A, changing from t = 0 at the point
π ′
R
(x) to t = ‖A‖ at the point π ′

R
(y). We can consider h(x, ϑ) as a function of t.

Since A is within the ch̄-cone of ( ∂
∂xn

)η′ , we know that

∣

∣

∣

∣

∣

(

d

dt

)j

h−
(

∂

∂xn

)j

η′
h

∣

∣

∣

∣

∣

≤ ch̄ Const , ∀ j ≤ k,

where Const is determined by the bounds on partial derivatives of h(x, ϑ), up to order
k. Choosing c small enough we can rewrite the condition (88) as

σk′ ·
(

d

dt

)k′

h(t) ≥ −2h̄ for t = 0 or t = ‖A‖ , (90)

and the condition (89) as

(

d

dt

)k

h(t) ≥ −3h̄ for all t between 0 and ‖A‖ . (91)

We choose the right-hand side to be −3h̄ for the sake of convenience.

Let us analyze (90) and (91). The latter inequality says that
(

d
dt

)k−1
h(t) is almost

monotone. An elementary calculation shows that since at t = 0 and at t = ‖A‖ the
values of σk−1 ·

(

d
dt

)k−1
h are not less than −2h̄, the values of this “almost monotone”

function do not drop below −3h̄ on A, as long as ‖A‖ is bounded by some constant:

σk−1

(

d

dt

)k−1

h(t) ≥ −3h̄ for all t between 0 and ‖A‖ . (92)

Precisely, since
(

d
dt

)k
h(t) ≥ −3h̄, the smallest value of σk−1 ·

(

d
dt

)k−1
h(t) is not less

than −2h̄− ‖A‖ · 3h̄; we thus need ‖A‖ ≤ 1/3.

Analogously, σk−2 ·
(

d
dt

)k−2
h is not less than −3h̄ on the entire A; we descend to

σ1 ·
(

d
dt

)

h and conclude that it is also not less than −3h̄ on the entire A, so that h(t)
is “almost monotone” in t.
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Since h(x, ϑ) and h(y, ϑ) are both between h̄/2 and 2h̄, the absolute value of h
on A is between h̄

2 − h̄
4 and 2h̄ + h̄

4 (again, if ‖A‖ is bounded from above; now the
requirement is ‖A‖ ≤ 1/12). 2

Weak finite type condition. The main assumption which we needed in the proof
of Proposition 1.4.1 was the inequality (75). Hence, we can prove the statement of
the Proposition if the map π

R
satisfies the following weak finite type condition:

Definition 1.4.2 We will say that the map π
R
is of a weak finite type if in an open

neighborhood Wpo of each point po ∈ Σ0 we can choose some local coordinates (x′, xn)
and (ϑ′, ϑn) so that Sx′ϑ′ is non-degenerate and

Kk
R
h(x, ϑ)|

Wpo
≥ 0 (or instead ≤ 0), for some k ∈ IN. (93)

Similarly for π
L
.

We do not even need to assume anything about lower order derivatives (except the
uniform boundedness).

The condition (93) is useful as long as in the neighborhood of each point we can
choose proper local coordinates. Unlike the system of inequalities (71) − (72), this
inequality is not coordinate-independent.

A finite type condition (93) is almost tautological and holds for a general type of
a canonical relation (except maybe some sophisticated counterexamples).

Let us also mention that the support of ψ(x, ϑ) is compact, so that there is a finite
covering of suppK(T ) with appropriate neighborhoods.

1.5 Cotlar-Stein Almost Orthogonality

When deriving the estimates on integral operators one often uses the Almost Orthog-
onality principle of M. Cotlar and E.M. Stein, first formulated by M. Cotlar in [1955].
This result is fairly classical; our excuse for formulating it once again is its special
weighted form which sometimes allows to reduce the number of integrations by parts
in half (hereby weakening smoothness requirements).

Let E and F be Hilbert spaces, and let T be a linear operator which acts from E
to F . An often situation is that one can decompose the operator T into an infinite
sum of operators T =

∑

i Ti, which satisfy certain estimates, and the question is,
under which assumptions on Ti one can deduce an adequate estimate on T .

Definition 1.5.1 (Almost orthogonal operators) We will call a family of con-
tinuous operators

{Ti | i ∈ Z}
almost orthogonal if they satisfy the following conditions:

‖T ∗i Tj‖ ≤ a(i, j),
∥

∥TiT
∗
j

∥

∥ ≤ b(i, j), (94)
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where a(i, j) and b(i, j) are non-negative symmetric functions on Z×Z which satisfy

sup
i

∑

j

a1/2(i, j) ≡ A <∞, sup
i

∑

j

b1/2(i, j) ≡ B <∞, (95)

or, more generally,

sup
i

∑

j

aµ(i, j) ≡ A <∞, sup
i

∑

j

bν(i, j) ≡ B <∞, (96)

with some non-negative weights 0 ≤ µ, ν ≤ 1, µ+ ν = 1.

Lemma 1.5.1 (Cotlar-Stein) Let {Ti : E → F | i ∈ Z} be a family of almost
orthogonal operators satisfying (94) and (95), or, more generally, (94) and (96).

Then the formal sum
∑

i Ti converges weakly to a continuous linear operator

T : E → F,

which is bounded by

‖T‖ ≤ A1/2B1/2 =



 sup
i

∑

j

aµ(i, j)





1
2


 sup
i

∑

j

bν(i, j)





1
2

. (97)

The proof is based on two propositions below.
Of course, a finite sum of continuous operators defines a continuous operator from

E to F . The important result is that the sum of any finite number of operators has
the same bound (97).

Proposition 1.5.1 Let {Ti | i ∈ Z} be a family of almost orthogonal operators, with
some constants A and B in (95) or in (96). For any finite subset I ⊂ Z, the operator
given by the finite sum TI ≡

∑

i∈I Ti is bounded by ‖TI‖ ≤ A1/2B1/2.

One can easily adapt the elegant proof from the book of E.M. Stein [1993].

Now we need to know in what sense we can draw the conclusion about the norm
of T which consists of infinite number of almost orthogonal pieces Ti.

Proposition 1.5.2 Let {Ti : E → F | i ∈ Z} be a family of continuous operators
such that any finite sum of them is bounded by C. Then the series

∑

i∈Z Ti weakly
converges to a continuous linear operator T : E → F , also bounded by C.

Proof of Proposition 1.5.2. We notice that for any u ∈ E, v ∈ F , the formal series
of numbers (real or complex)

∑

i∈Z

〈v, Tiu〉 (98)
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converges.
If it were not the case, we would be able to pick some finite subset I ⊂ Z, so

that |∑i∈I〈v, Tiu〉| would be arbitrarily large. But then the finite sum of operators
∑

i∈I Ti would not be bounded, contradicting our assumptions.
In the same manner one can prove that the limit of the series (98) is bounded in

the absolute value by C ‖u‖ ‖v‖.
The convergence of the series (98), for any u ∈ E, v ∈ F , implies that the operator

series
∑

i∈Z Ti converges in the weak operator topology. 2

This Proposition concludes the proof of Lemma 1.5.1.

1.6 Operators with one-sided Whitney fold

To give a self-contained derivation of the regularity properties of the Radon Transform
of Melrose-Taylor (see below) and to illustrate the technical methods, we will derive
the asymptotics (15) for the oscillatory integral operators such that one of the projec-
tions from the canonical relation is a Whitney fold, while the other is pseudoconvex
(or of finite type).

Let β be a smooth function supported on the interval [1/2, 2], and let us localize
the operator Tλ to the variety where the determinant h(x, ϑ) of the mixed Hessian
Sxϑ is of some infinitesimally small magnitude ∼ h̄, as in (12):

T h̄u(x) ≡
∫

IRn
R

eiλS(x,ϑ) ψ(x, ϑ)β(h̄−1h(x, ϑ))u(ϑ) dϑ; x ∈ IRn
L
, ϑ ∈ IRn

R
. (99)

Theorem 1.6.1 (Operators with asymptotically degenerate phase) If one of
the projections from the canonical relation is a Whitney fold and if the other one is
pseudoconvex, then, as long as

h̄ ≥ λ− 1
2+ε, (100)

for some ε > 0, there is the following estimate:

∥

∥T h̄
∥

∥ ≤ const λ−n
2 h̄−

1
2 . (101)

We assume that π
L
is a Whitney fold and π

R
is pseudoconvex.

Remark 1. According to Proposition 1.4.1, the statement of the theorem is valid
if, instead of being pseudoconvex, the map π

R
is of finite type (Definition 1.4.1), or

even of weak finite type (Definition 1.4.2). In this case, we use the finite partition of
1 given by (76) and continue the proof for each piece of T h̄. We need to keep in mind
that the functions ρh̄σ(x, ϑ) from the partition satisfy the bounds (73).

For example, the theorem is applicable when π
R
is a cusp.

Remark 2. When we use this Theorem to derive estimates of the type

‖Tλ‖ ≤ const λ−
n
2 +r,
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we would not allow h̄ to drop below λ−2r. Since the loss of r = 1/4 is the a priori
result of A. Greenleaf and A. Seeger [1994] (for oscillatory integral operators with
one-sided Whitney folds), we will only consider h̄ ≥ λ−2r with r < 1/4. Hence, the
condition (100) is not restrictive.

Let us choose some local coordinates (x1, . . . , xn) and (ϑ1, . . . , ϑn), so that Sx′ϑ′

is non-degenerate.

We will use the almost orthogonal decomposition with respect to ϑ: we take sets
of integers, Θ ∈ Zn, and localize the integral kernel of T h̄, multiplying it by

χ(h̄−1ϑ−Θ) ≡
n
∏

i=1

χ(h̄−1ϑi −Θi).

We decompose T h̄ into T h̄ =
∑

Θ∈Zn
T h̄Θ , where T

h̄
Θ = T h̄ ◦ χ(h̄−1ϑ−Θ).

To prove the Theorem formulated above, we need to prove that (a) each T h̄Θ is
bounded by the right-hand side of (101), and that (b) the operators corresponding to
different Θ’s are almost orthogonal. These statements are proved in two propositions
below.

Proposition 1.6.1 The estimate (101) holds for each individual T h̄Θ.

Proof. For the sake of convenience, we will write τ for T h̄Θ :

τu(x) =

∫

eiλS(x,ϑ) ψ(x, ϑ)β(h̄−1h)χ(h̄−1ϑ−Θ)u(ϑ) dϑ.

Let us consider the integral kernel of ττ ∗:

K(ττ∗)(x, y) =

∫

dnϑ eiλ(S(x,ϑ)−S(y,ϑ))ψ2χ2(h̄−1ϑ−Θ)β2(h̄−1h(x, ϑ)). (102)

We insert into (102) the operator

Lϑ = − 1

iλ
· (Sϑ(y, ϑ)− Sϑ(x, ϑ)) · ∇ϑ
‖Sϑ(y, ϑ)− Sϑ(x, ϑ)‖2

, (103)

which is the identity when acting on the exponential, and integrate by parts.

When acting on cut-offs, ∇ϑ gives a factor bounded by h̄−1. The derivative ∇ϑ
can act on the denominator of Lϑ itself, also giving a factor bounded by const h̄−1:

‖Sxϑ(x, ϑ)− Sxϑ(y, ϑ)‖
‖Sϑ(x, ϑ)− Sϑ(y, ϑ)‖

≤ const ‖x− y‖
h̄ ‖x− y‖ ≤ const h̄

−1. (104)
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The bound ‖Sϑ(x, ϑ)− Sϑ(y, ϑ)‖ ≥ const h̄ ‖x− y‖ which we have used in (104) is
due to the assumption that the map π

R
(and hence π

R
|
ϑ
: x 7→ Sϑ) is pseudoconvex,

while on the support of T h̄

min(J(π
R
)|
ϑ
) = min(Sxϑ) ≥

detSxϑ

‖Sx′ϑ′‖n−1
∼ h̄.

Integration by parts n+ 1 times is thus equivalent to adding the following factor
to the integral kernel (102) of ττ ∗:

const
1

1 + |λh̄ ‖Sϑ(x, ϑ)− Sϑ(y, ϑ)‖|n+1 . (105)

To apply Young’s inequality, we integrate the absolute value of (102), with the
extra factor (105), with respect to x. We change the order of integration with respect
to x and ϑ and also change the variables, x 7→ η = Sϑ(x, ϑ):

∫

dx |K(ττ∗)(x, y)| ≤
∫

dϑ · dη

| detSxϑ|
· χ

2(h̄−1ϑ−Θ)h2(h̄−1h)

1 + |λh̄ ‖η − Sϑ(y, ϑ)‖|

≤ const

∫

dϑχ2(h̄−1ϑ−Θ) · 1
h̄
· 1

λnh̄n

≤ const λ−nh̄−1. (106)

We conclude that ‖τ‖2 = ‖ττ∗‖ ≤ const λ−nh̄−1. 2

Proposition 1.6.2 The operators T h̄Θ, Θ ∈ Zn, are almost orthogonal.

Proof. First, let us consider the composition T h̄Θ T
h̄
W
∗. If ‖W −Θ‖ ≥ 2

√
n, then

χ(h̄−1ϑ−Θ)χ(h̄−1ϑ−W ) ≡ 0,

and therefore T h̄ΘT
h̄
W
∗ ≡ 0. (Hence, we can take ν = 0 in (96), so that µ = 1− ν = 1).

Now let us consider the composition T h̄Θ
∗T h̄W . Its integral kernel is given by

K(T h̄Θ
∗T h̄W )(ϑ,w) =

∫

dnx e−iλ(S(x,ϑ)−S(x,w))ψ(x, ϑ)ψ(x,w)

×β(h̄−1h(x, ϑ))β(h̄−1h(x,w))χ(h̄−1ϑ−Θ)χ(h̄−1w −W ). (107)

We consider the decomposition of the map π
L
|
x
,

ϑ
π ′

L7−→ (ξ′ ≡ Sx′ , ϑn)
π s
L7−→ (ξ′, ξn ≡ Sxn).
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Since detSx′ϑ′ 6= 0, the map π ′
L
is a diffeomorphism, and we can assume that the

length of the line segment A from (ξ′(x, ϑ), ϑn) to (ξ′(x,w), wn), in (ξ′, ϑn)-space, is
not less than const ‖w − ϑ‖ ≈ const h̄ ‖W −Θ‖, for some const > 0.

Let us consider two cases.
• If the line segment A is within the conic neighborhood of magnitude α (to be chosen)

of the directions ±
(

∂
∂ϑn

)

ξ′
, then

|h(x,w)− h(x, ϑ)| ≥ ‖A‖ cosα
(

∂

∂ϑn

)

ξ′
h− ‖A‖ sinα ‖∇ξ′h‖

≈ ‖A‖
(

∂

∂ϑn

)

ξ′
h− Const · α ‖A‖ , (108)

here ‖A‖ ≥ const h̄ ‖W −Θ‖ is the length of the line segment A.
Since π

L
is a Whitney fold,

(

∂
∂ϑn

)

ξ′
= K

L
h ≥ c

L
, for some c

L
> 0. Therefore,

the right-hand side of (108) is greater than 4h̄ if α is chosen sufficiently small and if
‖W −Θ‖ is large enough. Then

β(h̄−1h(x, ϑ))β(h̄−1h(x,w)) ≡ 0,

and therefore K(T h̄Θ
∗T h̄W )(ϑ,w) ≡ 0.

• Thus, we conclude that if ‖W −Θ‖ is sufficiently large, then the line segment A is

outside α-cone of ±
(

∂
∂ϑn

)

ξ′
:

‖ξ′(x,w)− ξ′(x, ϑ)‖ ≥ sinα ‖A‖ ≥ sinα const h̄ ‖W −Θ‖ . (109)

Each integration by parts in the expression (107) for the integral kernel of T h̄Θ
∗T h̄W ,

with the aid of the operator

Lx =
1

iλ
· (Sx(x,w)− Sx(x, ϑ)) · ∇x
‖Sx(x,w)− Sx(x, ϑ)‖2

, (110)

adds the factor bounded by

const
∣

∣λh̄2 ‖W −Θ‖
∣

∣

−N
.

Indeed, each derivative ∇x contributes at most h̄−1, and due to (109),

‖Sx(x,w)− Sx(x, ϑ)‖ ≥ sinα const ‖w − ϑ‖ ≈ α const h̄ ‖W −Θ‖ ,

giving the necessary bound from below for the denominator of (110).
Since, according to (103), we are only interested in the values of h̄ not less than

λ−
1
2+ε, we have: λh̄2 ≥ λ2ε. Young’s inequality yields

∥

∥T h̄Θ
∗T h̄W

∥

∥ ≤
∫

dϑ
∣

∣K(T h̄Θ
∗T h̄W )(ϑ,w)

∣

∣ ≤ const h̄n
(

λ2ε ‖W −Θ‖
)−N

, (111)
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here the factor h̄n is due to integration in ϑ.
The required almost orthogonality follows from (111) if we only choose N large

enough, so that N ≥ n+ 1 and h̄nλ−2εN ≤ λ−nh̄. This proves Proposition 1.6.2 and
concludes the proof of Theorem 1.6.1. 2

Remark 3. In the Almost Orthogonality part of the proof (Proposition 1.6.2) we
did not need the non-degeneracy of the mixed Hessian (the condition |h(x, ϑ)| ≥ h̄/2,
which is satisfied on the support of T h̄). Therefore, the same fine localization is
applicable to the operator T̄ h̄: the operators T̄ h̄Θ ≡ T̄ h̄ ◦ χ(h̄−1ϑ − Θ) are almost

orthogonal (again, as long as h̄ ≥ λ− 1
2+ε).

It is easy to show that the estimate for each T̄ h̄Θ is const λ−
n−1

2 h̄
1
2 (where λ−

n−1
2

is Hörmander’s estimate in x′ and ϑ′, and h̄
1
2 is due to the size of the support in ϑn).

This justifies the estimate (16) on T̄ h̄.

Remark 4. If the associated canonical relation is a two-sided Whitney fold, then
one can also use the spatial localization with respect to x, with the same step h̄. The
resulting pieces

T̄ h̄XΘ ≡ χ(h̄−1x−X) ◦ T̄ h̄ ◦ χ(h̄−1ϑ−Θ), X ∈ Zn, Θ ∈ Zn,

are almost orthogonal (we now have to take non-zero weights µ and ν in (96)), and

each piece is bounded by const λ−
n−1

2 h̄
1
2 h̄

1
2 . This proves the estimate (17) on T̄ h̄,

and hence the estimate ‖Tλ‖ ≤ const λ−
n
2 +

1
6 for the oscillatory integral operators

associated to canonical relations with two-sided Whitney folds.

Theorem 1.6.1 gives the estimate on T h̄ if the operator Tλ is of a rather general
type. Still, to draw a conclusion about the norm of Tλ, we need to know the asymptotic
behavior of the operator T̄ h̄ which is responsible for the very small neighborhood of
the critical variety Σ0.

In fact, we expect that if the integral kernel of Tλ vanishes at Σ0, then the con-
tribution of T̄ h̄ into the estimate on Tλ becomes negligible. Let us formulate this
result.

Let Uλ be the oscillatory integral operator with its symbol vanishing on the critical
variety Σ0 as the first (or higher) power of h(x, ϑ) = detSxϑ:

Uλu(x) =

∫

IRn
R

eiλS(x,ϑ) ψ(x, ϑ)h(x, ϑ)u(ϑ) dϑ, x ∈ IRn
L
, ϑ ∈ IRn

R
, (112)

where ψ ∈ C∞comp(IR
n
L
× IRn

R
).

Theorem 1.6.2 (Operators with symbol vanishing on Σ0) If one of the pro-
jections from the canonical relation is a Whitney fold and the other one is pseudocon-
vex or at least of finite type, then

‖Uλ‖ ≤ const λ−
n
2 . (113)
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According to C.D. Sogge and E.M. Stein [1986], the estimate (113) is also valid
in the case when no assumptions on π

L
and π

R
are made, if the integral kernel of Uλ

vanishes at Σ0 as |h|
5n
2 .

Let us also mention the paper of D.H. Phong and E.M. Stein [1994], where the

estimate const λ−
1
2 is given for the case n = 1 for the operators with polynomial

phases, under the assumption that the density vanishes on Σ0 as |h|
1
2 .

We can not consider the densities vanishing as fractional powers of |h(x, ϑ)| because
of the smoothness restrictions.

Remark 5. Together with the results from Section 1.2, Theorem 1.6.2 implies that
Fourier integral operators associated to the canonical relations with one-sided Whit-
ney fold, with the symbol vanishing on the critical variety, have the same smoothness
properties as the operators associated to local graphs.

Proof. We use the dyadic decomposition,

Uλ =
∑

±

h̄≤Λ
∑

h̄>h̄o

U h̄± + Ū h̄o , h̄ = 2−N , h̄o = 2−No , N, No ∈ Z, (114)

where Λ ≡ 2N1 ≥ sup |h(x, ϑ)|, and h̄o = 2−No is to be chosen appropriately.

The operators U h̄± and Ū h̄ are given by

U h̄±u(x) =

∫

eiλS(x,ϑ) ψ(x, ϑ)h(x, ϑ)β±(h̄
−1h(x, ϑ))u(ϑ) dϑ, (115)

Ū h̄u(x) =

∫

eiλS(x,ϑ) ψ(x, ϑ)h(x, ϑ) β̄(h̄−1h(x, ϑ))u(ϑ) dϑ. (116)

According to Theorem 1.6.1,

∥

∥U h̄
∥

∥ ≤ const λ−n
2 h̄−

1
2 · h̄. (117)

The extra factor h̄ is due to the presence of h(x, ϑ) ∼ h̄ in the integral kernel of U h̄.

The estimate (117) only becomes better when h̄ tends to zero. Still, we need to

remember the restriction h̄ ≥ λ− 1
2+ε from the conditions of Theorem 1.6.1.

Recalling the estimate (16) from Section 1.1, we conclude that the operator Ū h̄ is
bounded by

∥

∥Ū h̄
∥

∥ ≤ const λ−n−1
2 h̄

1
2 · h̄. (118)

Again, the extra factor of h̄ is due to the vanishing of the integral kernel on Σ0. Since
we want to prove the bound ‖Uλ‖ ≤ const λ−

n
2 , we can take h̄o = λ−

1
3 (satisfying the

condition h̄o ≥ λ−
1
2+ε). 2
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2 Radon Transform of Melrose -Taylor

2.1 Background from Scattering Theory

We are going to apply the developed technique to a particular integral operator which
arises in the scattering theory: the Radon Transform of Melrose and Taylor. Let
us first give the necessary background from the scattering theory. We follow the
fundamental paper of R.B. Melrose and M.E. Taylor [1985] and the book of R.B.
Melrose [1995].

We consider the wave equation in the exterior of the convex compact domain
K ⊂ IRn+1, with the Dirichlet conditions on B = ∂K:

(

∂2

∂t2
−∆

)

û = 0 on IR× Ω, Ω = IRn+1\K, (119)

û|
IR×B

= 0. (120)

We specify that for t¿ 0 the solution has the form of the plane wave,

û(t, x) = δ(t− r · ω) for t¿ 0, (121)

with ω being a unit vector in IRn+1. We decompose the solution û as

û(t, r) = δ(t− r · ω) + ŵ(t, r),

and define the Fourier transforms of û and ŵ with respect to t:

u(λ, r, ω) =

∫

eiλtû(t, r) dt, w(λ, r, ω) =

∫

eiλtŵ(t, r) dt.

Since u(λ, r, ω) = eiλr·ω + w(λ, r, ω), w satisfies the following system:

(

∆+ λ2
)

w = 0 on Ω, (122)

w|
IR×B

= −eiλr·ω. (123)

The initial data (121) gives rise to the Sommerfeld radiation condition:

w = O(r−n/2),

(

∂

∂r
− iλ

)

w = o(r−n/2), as r →∞. (124)

The function w has the following asymptotic behavior for large values of r:

w = as(θ, ω, λ)r
−n/2eiλr + o(r−n/2), (125)

here θ is a unit vector in the direction of r.
The coefficient as(θ, ω, λ) represents the scattering amplitude.
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We consider the inverse Fourier transform of as with respect to λ,

kA(θ, ω, t) =

∫

e−iλtas(θ, ω, λ)
dλ

2π
. (126)

The scattering operator of Lax and Phillips [1971] is given by

S = Id +D
n/2
t A, (127)

where A : E ′(IR× Sn)→ D′(IR× Sn) has Schwartz kernel kA(θ, ω, t− t′).
The Kirchhoff integral formula expresses w in terms of its behavior on the bound-

ary:

w(r) =

∫

B

{

w(r′)
∂Gλ
∂nr′

(r− r′)− ∂w

∂nr′
(r′)Gλ(r− r′)

}

dSr′ . (128)

Here Gλ(r) is the fundamental solution to the wave equation,

(∆ + λ2)Gλ(r) = −δ(r).

Gλ is chosen so that it satisfies the Sommerfeld radiation condition. For the scattering
in three dimensions (n = 2), Gλ(r) = (4πr)−1eiλr.

We can use the representation (128) as long as we have a sufficient knowledge of
the normal derivative of w on the boundary B.

The Kirchhoff approximation is

∂w

∂nr

≈ −iλ |nr · ω| eiλr·ω. (129)

The idea behind (129) is to approximate the scattering at a point in the illuminated
region of B by the scattering on the tangent plane at this point, and to assume that
in the shadow region behind the obstacle eiλr·ω + w(λ, r, ω) ≈ 0.

The approximation (129) is not adequate near the shadow boundary, nr · ω = 0.
The value of the normal derivative on the boundary ∂ŵ

∂nr
corresponding to the

system

(∂2t −∆)ŵ(t, r) = 0,

ŵ(t, r)|
IR×B

= f(t, r), ŵ(t, r) = 0 for t¿ 0 (130)

is denoted by the action of the forward Neumann operator N
+
on f(t, r):

N
+
: E ′(IR×B)→ D′(IR×B),

N
+
f(t, r) ≡ ∂ŵ

∂nr

(t, r), r ∈ B. (131)
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We are going to rewrite the integral kernel of A in (127) in terms of the Neumann
operator N+ .

Given the boundary value problem (130) with

f(t, r) = −δ(t− r · ω),

we consider the partial Fourier transform of ŵ, which is w(λ, r, ω), with the cor-
responding boundary value problem given by (122)-(124). We express the normal
derivative in terms of the Neumann operator,

∂w

∂nr

(λ, r, ω) =

∫

dt eiλtN
+
(−δ(t− r · ω)), (132)

and substitute this expression into the Kirchhoff integral formula (128):

w(λ, r, ω) =

∫

IR×B

ds dSr′ e
iλs

{

−∂Gλ
∂nr′

+Gλ(r− r′)N+

}

δ(s− r′ · ω). (133)

Now we express the scattering amplitude as(θ, ω, λ) from the relation (125) and
obtain kA(θ, ω, t):

kA(θ, ω, t) =

∫

dλ

2π
e−iλtas(θ, ω, λ) = lim

r→∞

1

2π

∫

dλ ds

IR×IR×B

dSr′

×e−iλ(t−s)rn/2e−iλr
{

−∂Gλ
∂nr′

+Gλ(r− r′)N+

}

δ(s− r′ · ω). (134)

For our convenience, we restrict our attention to the classical scattering in n+1 = 3
dimensions:

Gλ(r) =
eiλr

4πr
,

∂Gλ
∂nr

= iλ
r · nr

r

eiλr

4πr
+ o

(

1

r

)

. (135)

Then we can rewrite (134) as

lim
r→∞

1

8π2

∫

dλ ds

IR×IR×B

dSr′ e
−iλ(r+t−s)eiλ‖r−r′‖

{

iλ
(r− r′) · nr′

‖r− r′‖ +N+

}

δ(s− r′ · ω).

Now, since r = rθ and r À, we substitute (r − r′) · nr′/ ‖r− r′‖ ≈ nr′ · θ and
r − ‖r− r′‖ ≈ r′ · θ, obtaining

1

8π2

∫

dλ ds

IR×IR×B

dSr′ e
−iλ(t−s)−iλr′·θ

{

iλnr′ · θ +N+

}

δ(s− r′ · ω)

=
1

8π2

∫

dλ ds

IR×IR×B

dSr′ e
−iλ(t−s)−iλr′·θ

{

−iλnr′ · ω +N
+

}

δ(s− r′ · ω). (136)
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Shifting the variable s, we have:

kA(θ, ω, t− t′)

=
1

8π2

∫

dλ ds

IR×IR×B

dSr′ e
−iλ(t−s)−iλr′·θ

{

−iλnr′ · ω +N+

}

δ(s− t′ − r′ · ω)

=
1

4π

∫

ds

IR×B

dSr′ δ(t− s+ r′ · θ)
{

(nr′ · ω)Ds +N
+

}

δ(s− t′ − r′ · ω). (137)

In larger dimensions, n ≥ 3, the integral kernel of A in (127) has the same form
as (137), with some factor cn instead of 1/4π.

The integral kernel δ(t− s− r · ω) defines the following Radon Transform:

F : E ′(IR× Sn)→ D′(IR×B),

Fu(t, r) =

∫

IR×Sn

δ(t− s− r · ω)u(s, ω) ds dΩω. (138)

Here r is a vector in IRn+1, pointing to the boundary B of an obstacle K ⊂ IRn+1.
We call (138) the Radon Transform of Melrose and Taylor, denoting F by R

MT
.

We rewrite (137) as

A = cnR∗MT · (N+
· R

MT
+ ∂tF̃ ), (139)

where the operator F̃ : E ′(IR× Sn)→ D′(IR×B) has the kernel

kF̃ (r, ω, t− s) = (nr · ω) δ(t− s− r · ω). (140)

The expression (139) of the scattering operator A in terms of R
MT

allows to relate
important characteristics of scattering with the properties of R

MT
(we refer the reader

to the original paper of Melrose and Taylor [1985]).

2.2 Regularity properties of R
MT

In this section, we are going to formulate the continuity properties of the Radon
Transform of Melrose and Taylor.

According to R.B. Melrose and M.E. Taylor, R
MT

is a Fourier integral operator
with a degenerate canonical relation. In [1985], they showed that if the boundary B is
strictly convex (with strictly positive Gaussian curvature), then there is a reduction
of the canonical relation associated to R

MT
to the normal form, and the problem
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reduces to finding estimates on Fourier integral operators of Airy type. Then one can
show that there is a loss of µ = 1/6 derivatives in

R
MT

: Hs(IR× Sn)→ Hs+n
2−µ(IR×B).

Let us formulate the following general result.

Theorem 2.2.1 Let K be a compact convex domain in IRn+1, with the smooth bound-
ary B. If B admits tangent lines with contact of order not greater than k, then the
Radon Transform (138) is smoothing of order n

2 − 1
2

k
2k+1 with respect to t:

R
MT

: Hs(IR)⊗ L2(Sn)→ Hs+n
2−

1
2

k
2k+1 (IR)⊗ L2(B), for any real s. (141)

Using the particular form of the operator (138), one can show (see Corollary 1.2.1)
that the smoothing with respect to time-variables implies the same smoothing with
respect to space-variables. This results in the following continuity of R

MT
in the

Sobolev spaces:

Corollary 2.2.1 Under the assumptions of Theorem 2.2.1, the operator R
MT

also
extends to a continuous operator

Hs(IR× Sn) RMT−→ Hs+n
2−

1
2

k
2k+1 (IR×B), for any real s.

Contact of order not greater than k. Let the boundary B of an obstacle near
the point r ∈ B be a graph of some function br. We consider br as defined on the
tangent plane TrB, and taking values in the direction of the inner normal nr ∈ IRn+1.

The tangent plane TrB is the Euclidean space, with the metric endowed from
IRn+1, and with the origin at the point r.

We say that at some point r the boundary B admits tangent lines with contact of
order not greater than k, if there is a constant κ such that for any V ∈ TrB, ‖V‖ = 1,
and small values of t ∈ IR,

br(tV) ≥ κ |t|k+1
. (142)

When we say that B admits tangent lines with contact of order not greater than
k, we assume that for all points r ∈ B the constants κr are uniformly bounded from
below:

κr ≥ κ > 0.

Let us illustrate this in one-dimensional case.

Lemma 2.2.1 Let D be an interval in IR. If the graph of a concave (convex down)
function b ∈ C1(D) admits tangent lines with contact of order not greater than k,
k > 0, with the constants κr in (142) being bounded from below by some κ > 0, then
the following inequalities hold in D:

b(y)− b(x)− (y − x)b′(x) ≥ κ |y − x|k+1
, (143)
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|b′(y)− b′(x)| ≥ 2κ |y − x|k . (144)

Here x and y are any two points in D.

The case of non-vanishing curvature corresponds to k = 1.
The inequality (143) follows immediately from the definition (142) of contact of

order not greater than k (at the point x).
To obtain (144), we rewrite (143), interchanging x and y:

b(x)− b(y)− (x− y)b′(y) ≥ κ |y − x|k+1
. (145)

Then the inequality (144) is the sum of (143) and (145). 2

Now let us formulate a similar result in the multi-dimensional case.

Lemma 2.2.2 Let B be a boundary of a convex compact domain in IRn+1, with the
function bro ∈ C1(TroB) defining the boundary B in the vicinity of the point ro ∈ B.

If B admits tangent lines with contact of order not greater than k, with the con-
stants κr in (142) being bounded from below by some κ > 0, then for any two points
x, y ∈ TroB in the domain of bro the following inequalities hold:

bro(y)− bro(x)− ‖y − x‖Vbro(x) ≥ κ ‖y − x‖
k+1

, (146)

|Vbro(y)−Vbro(x)| ≥ 2κ ‖y − x‖k . (147)

Here V = y−x
‖y−x‖ ∈ TroB, Vbro = dbro(V).

The inequality (147) contains all the information about the geometry of B which
will be important for our purposes (this inequality enables us to control the size of a
certain neighborhood of the critical variety).

Let us formulate the regularity properties of the operator

F̃ : E ′(IR× Sn)→ D′(IR×B)

with the kernel (140): kF̃ (r, ω, t− s) = (nr · ω) δ(t− s− r · ω). It turns out that this
operator behaves similarly to a non-degenerate Fourier integral operator:

Theorem 2.2.2 (Continuity properties of F̃ ) Under the assumptions of Theo-
rem 2.2.1, the operator F̃ in (139) extends to a continuous operator

Hs(IR× Sn) F̃−→ Hs+n
2 (IR×B), for any real s. (148)

There is no dependence on a particular value of the maximal order of contact, k.
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2.3 Associated canonical relation

According to the results in Section 1.2, Theorem 2.2.1 would follow from the following
proposition:

Proposition 2.3.1 Under the assumptions of Theorem 2.2.1, the oscillatory integral
operator Tλ : D′(Sn)→ D′(B),

Tλu(r) =

∫

Sn

eiλ〈r,ω〉u(ω) (149)

has the following decay of its L2 operator norm:

‖Tλ‖ ≤ const λ−
n
2 +

1
2

k
2k+1 . (150)

Let us analyze the canonical relation corresponding to the phase function in (149),
S(x, ϑ) = 〈r(x), ω(ϑ)〉 (here x and ϑ are some local coordinates on B and Sn, re-
spectively). The cotangent space T ∗rB can be identified (via the standard scalar
product) with the tangent plane at the same point r. This shows that the differen-
tial dx〈r(x), ω(ϑ)〉 is represented by the orthogonal projection of ω(ϑ) onto Tr(x)B.
Therefore, the singular part of the map

π
L
: (x, ϑ) 7→ (x, dx〈r(x), ω(ϑ)〉)

corresponds to the orthogonal projection from Sn onto the hyperplane TrB. This
projection has a Whitney fold at the points ω such that 〈nr, ω〉 = 0, here nr is the
unit normal to B at the point r. We conclude that both dπ

L
and dπ

R
are degenerate

on the critical variety

Σ0 = {(x, ϑ) | 〈nr(x), ω(ϑ)〉 = 0}. (151)

Considering the orthogonal projection from Tr(x)B onto Tω(ϑ)S
n, we conclude that

〈nr(x), ω(ϑ)〉 ∼ h(x, ϑ) (152)

in an agreement with (151). Intuitively, if TrB and TωS
n are not orthogonal, then

the oscillatory integral operator (149) is basically the Fourier transform and has no
critical points: ‖Tλ‖ ≤ const λ−

n
2 .

Now we need to consider the other projection from C. The singular part of the
map

π
R
: (x, ϑ) 7→ (ϑ, −dϑ〈r(x), ω(ϑ)〉)

corresponds to the orthogonal projection from B onto Tω(ϑ)S
n. This projection is

a Whitney fold at (x, ϑ) if and only if the principal curvature at r(x) ∈ B in the
direction of ω(ϑ) is different from zero.
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Convexity of the map π
R
. Let us show that the map π

R
is pseudoconvex. For

this, we need to show the convexity of

π
R
|
ϑ
: x 7→ ∇ϑS(x, ϑ) = ∇ϑ〈r(x), ω(ϑ)〉.

If we use the standard scalar product 〈 , 〉 in IRn+1 to identify the tangent and
cotangent fibers, Tω(ϑ)S

n ∼= T ∗ω(ϑ)S
n, then π

R
is given geometrically by the orthogonal

projection Πω(ϑ) from B in the direction of ω(ϑ), onto Tω(ϑ)S
n:

B
Πω(ϑ)−→ Tω(ϑ)S

n, r(x) 7→ r(x)− ω(ϑ)〈r(x), ω(ϑ)〉.

If the hypersurface B is convex (not necessarily strictly convex), then for any
r1, r2,

‖Πω(r2 − r1)‖TωSn ≥ ‖r2 − r1‖IRn+1 inf
r∈γ
|〈nr, ω〉| , (153)

here γ is a path from r1 to r2.
This is the key inequality. Since Πω is the orthogonal projection, min(Πω) is equal

to |〈nr, ω〉|, and (153) suggests that the map Πω is pseudoconvex.
This justifies pseudoconvexity of the map π

R
.

Local coordinates. Now let us rewrite our results introducing appropriate local
coordinates on B and on Sn. We would like to restrict our attention to the vicinity
of some critical point (ro, ωo), such that

〈nro , ωo〉 = 0. (154)

We consider B and Sn as parameterized by the Euclidean coordinates (x1, . . . , xn)
and (ϑ1, . . . , ϑn) in TroB and TωoS

n. We choose the axis xn in TroB in the direction
of the vector ωo (this is possible due to the condition (154)). Then, we choose the axis
ϑn in the direction of the inner normal nro . The directions of the axes xi′ are chosen
to coincide with the directions of ϑi′ , i

′ = 1, . . . , n − 1. We will use the notations
x′ = (x1, . . . , xn−1), ϑ

′ = (ϑ1, . . . , ϑn−1).
We can assume that ro = r(0) and ωo = ω(0) are both in the origin of IRn+1. Such

a shift changes the value of the phase S(x, ϑ) = 〈r(x), ω(ϑ)〉; still, it is irrelevant, since
the values of mixed derivatives of S(x, ϑ) (which are the only “observable” quantities)
remain unchanged.

The phase function S in (149) is given by

S(x, ϑ) = 〈r(x), ω(ϑ)〉 = ϑnbro(x)− xng(ϑ) + x′ · ϑ′, (155)

modulo terms which depend only on either x or ϑ. We have used the function

g(ϑ) = 1−
√

1− ‖ϑ‖2 ∈ C∞loc(TωoSn),

which locally represents the sphere Sn.
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Later on, we assume that the point ro is fixed, and use the notation b(x) for the
function bro(x) which defines the boundary near ro.

The mixed Hessian corresponding to the phase function (155) is given by

Sxϑ =









IIn−1 bx′(x)
t

−gϑ′(ϑ) bxn(x)− gϑn(ϑ)









, (156)

with its determinant being equal to

h(x, ϑ) = bxn(x)− gϑn(ϑ) + bx′(x) · gϑ′(ϑ). (157)

Note that this expression vanishes at (x, ϑ) = (0, 0), which corresponds to the critical
point (ro, ωo).

The non-degenerate part of the mixed Hessian is given by the unit matrix:

Sx′ϑ′(x, ϑ) = IIn−1. (158)

Hence, the rank of Sxϑ is at least n − 1, and the kernels of the differentials π
L
and

π
R
are at most one-dimensional.
The kernel of the differential dπ

L
is generated by the vector

K
L
(x, ϑ) = −bx′(x) · ∇ϑ′ + ∂ϑn ∈ TxIRn

L
× TϑIRn

R
, (x, ϑ) ∈ Σ0. (159)

The vectorK
L
(x, ϑ) is also well-defined by (159) away from the critical variety. More-

over, we have a convenient relation

h(x, ϑ) = bxn(x)−KL
g(ϑ).

This yields
K
L
h(x, ϑ) = −K

L

2g(ϑ) ≤ −1,
and we conclude that the kernel of the differential dπ

L
is transversal to the critical

variety Σ0.
Hence, the projection π

L
is a Whitney fold.

This is not necessarily true for the map π
R
, since the kernel of its differential is

generated by
K
R
= gϑ′ · ∇x′ + ∂xn ,

and therefore
K
R
h(x, ϑ) = K2

R
b(x) ≥ 0.

The latter expression is non-negative since we assume that the boundary B is convex.
At the same time, K

R
h can vanish if the curvature of B is not strictly positive. In

this case the projection π
R
has a worse singularity than a Whitney fold does.

In the language of Section 1.4, the inequality K
R
h(x, ϑ) = K2

R
b(x) ≥ 0 shows that

the projection π
R
satisfies a weak finite type condition (Definition 1.4.2).
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2.4 Isolated precise points

We are going to show that the asymptotics of the estimates for oscillatory integral
operators (Theorem 1.1.1) easily yield the continuity properties of R

MT
in a particular

situation, when the curvature of a boundary vanishes at isolated points where the
tangent planes have precise contacts of finite order with the boundary (in the sense
specified after the theorem). This result and the derivation are taken from the paper
of the author [1997].

Theorem 2.4.1 Let B be a smooth hypersurface in IRn+1, and let its Gaussian cur-
vature vanish at an isolated point ro. If the tangent plane at ro has a precise contact
of order k > 1 with B, then the Radon Transform R

MT
localized near ro extends to a

continuous operator

Hs(IR)⊗ L2(Sn)
R
MT−→ Hs+n

2−
1
2

k
2k+1 (IR)⊗ L2

loc(B), for any real s.

Precise contact of finite order. Let the hypersurface B in IRn+1 be locally given
by the graph xn+1 = b(x1, . . . , xn) of some smooth function b ∈ C∞(IRn), defined in
the neighborhood of the origin in IRn. We assume that b(0) = 0, b′(0) = 0.

Definition 2.4.1 (Precise contact of order k) We say that the hyperplane given
by {xn+1 = 0} has a precise contact of order k > 1 with the graph {xn+1 = b(x)}
of the function b ∈ C2(IRn), if b(0) = 0, b′(0) = 0, and if the Hessian [∂xi∂xj b]
is isotropic and vanishes uniformly of order k − 1. That is, for any unit vectors
u, v ∈ IRn,

uiuj
∂2b(x)

∂xi∂xj
≥ c ‖x‖k−1 ,

∣

∣

∣

∣

uivj
∂2b(x)

∂xi∂xj

∣

∣

∣

∣

≤ C ‖x‖k−1 , (160)

where c and C are some positive numbers, and ‖x‖2 ≡ x21 + . . .+ x2n.
We will call the point (0, . . . , 0) a precise point of the hyperplane.

The first condition defines the contact of order at most k, while the second con-
dition defines the contact of order at least k. Of course, the conditions (160) do not
depend on the choice of Euclidean coordinates (x1, . . . , xn).

As an example, we can take a function b(x) = f(‖x‖), for some smooth f(r)

satisfying crk−1 ≤ f ′′(r) ≤ Crk−1; say, b(x) = ‖x‖k+1
, for odd k. (k could also

be any real number greater than or equal to 2n + 1, since in fact we only need
b ∈ C2n+2(IRn), and also ψ ∈ C2n+1(B × Sn).)

Proposition 2.4.1 Let Tλ : D′(Sn) → D′(B) be an oscillatory integral operator
given by

Tλu(x) =

∫

Sn
dvolϑ e

iλ〈r,ω〉 ψ(x, ϑ)u(ϑ), ψ ∈ C∞(B × Sn),
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with B a smooth convex hypersurface in IRn+1.
Let the Gaussian curvature of B vanish at an isolated point ro on the support of

ψ. If the tangent plane at ro has a precise contact of order k > 1 with B, then Tλ
acts continuously from L2(Sn) to L2

loc(B), with the norm

‖Tλ‖ ≤ const λ−
n
2 +

1
2

k
2k+1 . (161)

Proof. We use the same local coordinates x as in (160), so that the origin x = 0 in
IRn
L

corresponds to the critical point ro ∈ B.
We will need a fine spatial partition of unity, as x approaches the origin. Let us

introduce a function ρ(x) ∈ C∞comp(IR
n), supported at the strip 1/2 ≤ ‖x‖ ≤ 2, such

that
∑

j≥0

ρ(2jx) ≡ 1 for 0 < ‖x‖ ≤ 1.

We split ρ(x) into a sum of several functions ρ(x) =
∑

ρa(x), a = 1 . . . A, sup-
ported in balls of radius 1/10 centered at some points pa ∈ supp ρ, 1/2 ≤ ‖pa‖ ≤ 2:
ρa ∈ C∞comp(IB

n
1/10(pa)). In each ball IBn1/10(pa), we have:

‖x‖ ≥ 1

2
− 1

10
,

inf ‖x‖
sup ‖x‖ ≥

1
2 − 1

10
1
2 + 1

10

=
2

3
.

Decompose Tλ as follows:

Tλ =
∑

δ≤1

A
∑

a=1

ρa(x/δ) ◦ Tλ, δ = 2−j , j ≥ 0. (162)

We will apply Theorem 1.1.1 to the operators ρa(x/δ) ◦ Tλ.
We need to rewrite the technical assumptions of Theorem 1.1.1 for the phase

function (155).
Let us consider a hypersurface B, locally given by the graph of b(x) ∈ C2(IRn

L
).

The condition (24) amounts to

sup ‖∇ϑ′g‖
sup ‖∇x′(∂xnb+∇x′b · ∇ϑ′g)‖
inf |∂xn(∂xnb+∇x′b · ∇ϑ′g)|

≤ 1

2
. (163)

Under a very weak assumption ‖∇xb(x)‖ ≤ ‖x‖ , the inequality (163) is satisfied if

‖x‖ ≤ 1/6, (164)

and if

‖ϑ‖ ≤ 1

6

inf ∂2xnb

sup ‖b′′‖ . (165)

Here ‖b′′‖ is the Hilbert-Schmidt norm of the Hessian of b.
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The condition (160) gives ∂2xnb ≥ c ‖x‖k−1, ‖b′′‖ ≤ C ‖x‖k−1, and the restriction
(165) on ‖ϑ‖ becomes

‖ϑ‖ ≤ c inf ‖x‖k−1

6C sup ‖x‖k−1
.

Since on the support of each ρa(x/δ) ◦ Tλ we have inf ‖x‖/ sup ‖x‖ ≥ 2/3, it suffices
to require that

‖ϑ‖ ≤ ε ≡ c

6C
·
(

2

3

)k−1

.

Note that the value of ε is only finitely small, and we could cover the sphere by
finitely many neighborhoods of this size.

As long as x and ϑ are in the limits specified by (164) and (165), we have:

|∂xnh(x, ϑ)| ≈ ∂2xnb(x) ≥ const ‖x‖
k−1

, (166)

and since on the support of the integral kernel of the operator ρa(x/δ) ◦ Tλ we have
‖x‖ ∼ δ, we obtain the following value for the principal curvature of the fold π

R
:

σ(δ) ∼ δk−1. (167)

Theorem 1.1.1 gives the following bounds on ‖ρa(x/δ) ◦ Tλ‖:

const λ−
n
2 +

1
4 δ

1
4 and const λ−

n
2 +

1
6 σ(δ)−

1
6 . (168)

xo

θo

πL

S"θxdet x,θ)( =0
πR πR

η

θ

δ

ξ

x

Ker πL

Ker

d

d

Fig. 4. The projection π
R
fails to be a Whitney fold at (xo, ϑo).

If we truncate the δ-neighborhood of xo, then the principal curvature of π
R
is bounded

from below by some σ = σ(δ). We choose δ so that the estimate on the truncated Tλ
coincide with the estimate on the localization of Tλ at the δ-neighborhood of xo.
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Now we can evaluate the operator norm of (162). Let us find the value of δ when
the two estimates (168) on ‖ρa(x/δ) ◦ Tλ‖ clutch together:

λ
1
4 δ

1
4 = λ

1
6 δ−

k−1
6 .

This gives δo = λ−
1

2k+1 .
Considering the sum (162) and using the first of the bounds (168) when δ ≤ δo

and the second bound otherwise, we conclude that

‖Tλ‖ ≤ const λ−
n
2 +

1
2

k
2k+1 . 2

This proves the estimate (161) in Proposition 2.4.1.
Theorem 2.4.1 follows from Proposition 2.4.1 and from the results of Section 1.2.

2.5 Proof for the general case

Now we would like to derive the regularity properties of R
MT

in the most general
situation.

The properties formulated in Theorem 2.2.1 would follow from the estimate (150)
stated in Proposition 2.3.1

We split the operator Tλ in (149) with respect to the values of the determinant of
the mixed Hessian,

Tλ =
∑

h̄>h̄o

T h̄ + T̄ h̄o ,

as in Section 1.1. According to Theorem 1.6.1,

∥

∥T h̄
∥

∥ ≤ const λ−n
2 h̄−

1
2 . (169)

To justify the estimate (150), we are only left to show that the operator T̄ h̄, which
is responsible for the neighborhood of the critical variety where |h(x, ϑ)| ≤ 2h̄, is
bounded by

∥

∥T̄ h̄
∥

∥ ≤ const λ−n−1
2 h̄

k+1
2k . (170)

The estimates (169) and (170) clutch at h̄o = λ−
k

2k+1 , yielding the estimate (150) on
Tλ. Note that k

2k+1 <
1
2 , so that the condition (100) of Theorem 1.6.1 is satisfied.

We already know from Remark 3 in Section 1.6 that the spatial decomposition of
T̄ h̄o with respect to ϑ, with the step h̄o, is almost orthogonal. Therefore, the estimate
on T̄ h̄o is entirely determined by the estimate on operators T̄ h̄Θ :

T̄ h̄Θu(x) =
∫

eiλS(x,ϑ) ψ(x, ϑ) β̄(h̄−1h(x, ϑ))χ(h̄−1ϑ−Θ)u(ϑ) dϑ,

β̄ ∈ C∞comp([−2, 2]), χ ∈ C∞comp(IB
n
1 ). (171)
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Proposition 2.5.1 (Individual estimates for T̄ h̄Θ) If the boundary B admits tan-
gent lines with contact of order not greater than k, with some constant κ > 0 in (142),
then

∥

∥T̄ h̄Θ
∥

∥ ≤ const λ−n−1
2 h̄

k+1
2k . (172)

We fix Θ ∈ Zn and introduce the notation

τ ≡ T̄ h̄Θ .

Let ω1 be the point on the sphere Sn which corresponds to the point Θh̄ on TωoS
n.

We also fix some point r1 ∈ B such that the normal at r1 is orthogonal to ω1. (Then
(r1, ω1) is a point in the critical variety.)

We consider B and Sn as locally parameterized by Euclidean coordinates xnew

and ϑnew in Tr1
B and Tω1

Sn, with the coordinate axes chosen as before: xnew
n is in

the direction of ω1, ϑ
new
n is in the direction of the inner normal nr1

, and the directions
of the axes xnew

i′ coincide with the directions of ϑnew
i′ , i′ = 1, . . . , n− 1.

The cut-off function χ(h̄−1ϑold − Θ) is equal to χnew (h̄−1ϑnew ), with χnew a
smooth function supported inside a ball of some larger radius (< 2) and centered in
the origin.

Later on, we do not use the superscript new for the new local coordinates and for
the function χnew .

As in (155), the phase function S in the new coordinates is given by

S(x, ϑ) = 〈r(x), ω(ϑ)〉 = ϑnbr1
(x)− xng(ϑ) + x′ · ϑ′, (173)

modulo some irrelevant terms.
The determinant of the mixed Hessian corresponding to the phase function (173)

is given by
h(x, ϑ) = ∂xnbr1

(x)− gϑn(ϑ) +∇x′br1
(x) · gϑ′(ϑ). (174)

The non-singular part Sx′ϑ′ of the mixed Hessian is a unit matrix.
The kernel of the differential of the map π

R
: (x, ϑ) 7→ (ϑ, Sϑ) is generated by the

vector

K
R
= gϑ′ · ∇x′ + ∂xn ∈ TxIRn

L
× TϑIRn

R
, K

R
∈ Ker dπ

R
if (x, ϑ) ∈ Σ0.

We consider K
R
as defined everywhere on the support of the integral kernel of τ .

Note that this vector does not depend on x, while ‖gϑ′(ϑ)‖ ≈ ‖ϑ′‖ ≤ 2h̄. This
implies that on the support of τ , the vector K

R
is always inside the conic neighbor-

hood of magnitude 2h̄ of the direction ∂xn . (This was the motivation to change the
coordinates.)

Now we introduce the fine localization with respect to x, with the step δ = h̄1/k:

τ =
∑

X∈Zn

τX , τX = χ(δ−1x−X) ◦ τ. (175)
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The mixed Hessian of the phase function S is of rank at least n − 1, while the
x-support of τX is of size h̄1/k, and ϑ-support is of size h̄. From the easy part of
Theorem 1.1.1 (the estimate (20)) it follows that

‖τX‖ ≤ const λ−
n−1

2 (h̄1/kh̄)
1
2 ≤ const λ−n−1

2 h̄
k+1
2k , (176)

in an agreement with (172).
Before checking the almost orthogonality relations for the operators τX , let us

substitute for h̄ the particular value h̄o = λ−
k

2k+1 when the estimates (169) and (170)
meet.

We claim that τX are almost orthogonal for different X ∈ Zn:

‖τ∗XτY ‖ ≤ const λ−n+1h̄
k+1
k

o a(X − Y ),
∑

X∈Zn

|a(X)|µ ≤ const , (177)

‖τXτ∗Y ‖ ≤ const λ−n+1h̄
k+1
k

o b(X − Y ),
∑

X∈Zn

|b(X)|ν ≤ const , (178)

for some non-negative µ, ν, such that µ+ ν = 1. We will take µ = 0, ν = 1.
The inequalities (176)-(178) would prove Proposition 2.5.1.
The condition (177) is straightforward, since if ‖X − Y ‖ is large enough (greater

than 2
√
n), then

τ∗X ◦ τY ≡ τ∗ ◦ χ(δ−1x−X)χ(δ−1x− Y ) ◦ τ ≡ 0.

We now need to justify (178).
The integral kernel of τXτ

∗
Y is given by

K(τXτ
∗
Y )(x, y) =

∫

dϑ eiλ(S(x,ϑ)−S(y,ϑ)) × . . . . (179)

We consider two cases.
• When the vector v = y − x ∈ IRn

L
is inside the conic neighborhood of magnitude

3h̄o of the directions ±∂xn , we start with

|h(y, ϑ)− h(x, ϑ)| ≥
∣

∣

∣h(x+ ‖v‖ K̃
R
, ϑ)− h(x, ϑ)

∣

∣

∣

−
∣

∣

∣h(y, ϑ)− h(x+ ‖v‖ K̃
R
, ϑ)
∣

∣

∣ , (180)

here K̃
R
= K

R
/ ‖K

R
‖.

Since

h(x, ϑ) = ∂xnbr1
(x)− gϑn(ϑ) +∇x′br1

(x) · gϑ′(ϑ)

= ‖K
R
‖ K̃

R
br1

(x)− ∂ϑng(ϑ), (181)
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the first term in the right-hand side of (180) has a very special form:

‖K
R
‖
∣

∣

∣
K̃
R
br1

(x+ ‖v‖ K̃
R
)− K̃

R
br1

(x)
∣

∣

∣
. (182)

According to the assumption that B admits tangent lines with contact of order not
greater than k and according to Lemma 2.2.2 (see the inequality (147)), the expression

(182) is not less than 2κ ‖v‖k.
From the other hand, since v is within 3h̄o-cone of ∂xn , while K̃R

= K
R
/ ‖K

R
‖ is

within 2h̄o-cone of ∂xn , we conclude that the angle between K̃
R
and v is at most 5h̄o.

This results in
∥

∥

∥
v − K̃

R
‖v‖
∥

∥

∥
≤ 5h̄o ‖v‖ .

Since the left-hand side is the distance from x+ ‖v‖ K̃
R
to y, the second term in the

right-hand side of (180) is bounded by

5h̄o ‖v‖ ‖∇xh‖ .

Thus, (180) is bounded from below by

|h(y, ϑ)− h(x, ϑ)| ≥ 2κ ‖y − x‖k − 5h̄o ‖y − x‖ ‖∇xh‖ .

This expression is greater than 4h̄o whenever ‖Y −X‖ is large enough (since ‖y − x‖
is approximately equal to h̄1/ko ‖Y −X‖).
• When the vector v = y − x is outside the conic neighborhood of magnitude 3h̄o of
the directions ±∂xn , we have

‖v′‖ ≥ 3h̄o |vn| . (183)

Here v′ ∈ IRn
L

is a vector obtained from v by taking 0 for its nth component.
We employ the operator Lϑ,

Lϑ = − 1

iλ
· (Sϑ(y, ϑ)− Sϑ(x, ϑ)) · ∇ϑ
‖Sϑ(y, ϑ)− Sϑ(x, ϑ)‖2

. (184)

We need to find the bound from below for the difference Sϑ(y, ϑ)−Sϑ(x, ϑ), which is
in the denominator of Lϑ. Note that now we are right on the critical variety.

We have:

‖Sϑ(y, ϑ)− Sϑ(x, ϑ)‖ ≥
∥

∥

∥

∥

∫ 1

0

d

dt
Sϑ′(x+ vt, ϑ) dt

∥

∥

∥

∥

≥
∣

∣

∣

∣

∫ 1

0

∇x′Sϑ′(x+ vt, ϑ) · v′ dt
∣

∣

∣

∣

−
∫ 1

0

‖∂xnSϑ′(x+ vt, ϑ)‖ |vn| dt

≥ ‖v′‖ − 2h̄o |vn| , (185)
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since Sx′ϑ′ is a unit matrix, and since

‖∂xnSϑ′‖ = ‖gϑ′(ϑ)‖ ≈ ‖ϑ′‖ ≤ 2h̄o.

Using (183), ‖v′‖ ≥ 3h̄o |vn|, we derive the bound

‖Sϑ(y, ϑ)− Sϑ(x, ϑ)‖ ≥
1

3
‖v′‖ ≥ 1

4
(‖v′‖+ h̄o |vn|)

≈ δ

4
(‖Y ′ −X ′‖+ h̄o |Yn −Xn|) . (186)

Now we integrate in (179) by parts, with the aid of the operator Lϑ defined in
(184). Each derivative ∇ϑ contributes h̄−1o , including the case when the derivative
acts on the denominator of Lϑ itself. We gain the factor

const

λh̄oδ (‖Y ′ −X ′‖+ h̄o |Yn −Xn|)
.

We repeat this procedure N = N1 +N2 times, obtaining the factor bounded by

const
1

(λh̄oδ ‖Y ′ −X ′‖)N1
· 1
(

λh̄2o δ |Yn −Xn|
)N2

.

Since λh̄oδ = λ
k

2k+1 , we will comply with (178) if we take N1 sufficiently large and
N2 ≥ 2.

This proves the required almost orthogonality relations (178) for the operators τX
with different indices X ∈ Zn, and concludes the proof of Proposition 2.5.1. 2

2.6 Regularity properties of the operator F̃

According to the results of Section 1.2, the regularity properties of the operator
F̃ : E ′(IR× Sn)→ D′(IR×B) with the integral kernel (140),

kF̃ (r, ω, t− s) = (nr · ω) δ(t− s− r · ω), (187)

depend on the rate of decay of the oscillatory integral operator

Uλu(x) =

∫

IRn

eiλS(x,ϑ) 〈nr(x), ω(ϑ)〉ψ(x, ϑ)u(ϑ) dϑ, ψ ∈ C∞comp(IR
n× IRn), (188)

with the phase function as in (149), S(x, ϑ) = 〈r(x), ω(ϑ)〉, x ∈ B, ϑ ∈ Sn.
The key difference of this operator from the operator Tλ in (149) is the factor

〈nr(x), ω(ϑ)〉 in the integral kernel. According to (152),

〈nr(x), ω(ϑ)〉 ∼ h(x, ϑ) = detSxϑ.
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Therefore, we apply Theorem 1.6.2 and conclude that

‖Uλ‖ ≤ const λ−
n
2 . (189)

Note that this estimate does not depend on the order of contact k.
Together with the results of Section 1.2, the estimate (189) yields the regularity

properties of F̃ stated in Theorem 2.2.2:

Hs(IR× Sn) F̃−→ Hs+n
2 (IR×B).
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