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Abstract

In this work we summarize some recent results, to be included in a forthcoming
paper [1]. We define u-density as a characteristic of quality for the kind of cov-
erings codes called multiple coverings of the farthest-off points (MCF). A concept
of multiple saturating sets ((p, u)-saturating sets) in projective spaces PG(N,q) is
introduced. A fundamental relationship of these sets with MCF is showed. Bounds
for the smallest possible cardinality of (1, u)-saturating sets are obtained. Construc-
tions of small (1, u)-saturating sets improving the probabilistic bound are proposed.
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1 Introduction

Let (n, M,d),R be a code of length n, cardinality M, minimum distance d,
covering radius R, over the Galois field F,. Let [n,k,d],R be a g-ary linear
code of length n, dimension k£, minimum distance d, covering radius R. One
may omit “d” if it is not relevant. Let Fj be the space of n-dimensional
g-ary vectors.

Definition 1.1 i) [4] An (n, M),R code C is said to be an (R, ) multiple
covering of the farthest-off points ((R,n)-MCF for short) if for all z € F}
such that d(z,C) = R the number of codewords ¢ with d(z,c) = R is at least
w. Here d(z,C) and d(z,c) are the Hamming distances of x from C and ¢,
respectively.

ii) Let an (n, M),R code C be an (R, u)-MCF. Let v(C, R) be the average
number of spheres of radius R centered in words of C' containing a fixed
element in F} with distance R from C. Define a p-density 6,(C, R) as follows:

0,(C,R) = llﬂ(C, R) > 1.

Theorem 1.2 Let an (R, 1)-MCF code C be a linear [n, k,d(C)],R code. De-
note by A, (C) the number of codewords of C of weight w. Then

(P (g —DF = (3 Ao (C)

0,(C,R) = P (qn—k B Zf:ol (?)(q _ 1)Z->

if d(C) > 2R — 1. (1)

Let PG(N,q) be a projective space of dimension N over the field F,. For
an introduction to p-saturating sets in PG(NN, q) and their connections with
linear covering codes, see e.g. [5] and references therein.

Definition 1.3 Let I = {P,..., P,} be a subset of points of PG(N,q). Let
N >p>1,u>1 Then I is said to be (p, u)-saturating if:

(M1) I generates PG(N,q);

(M2) there exists a point @ in PG(N,q) which does not belong to any
subspace of dimension p — 1 generated by the points of [;

(M3) for every point @ in PG(N,q) not belonging to any subspace of
dimension p — 1 generated by the points of I, the number of subspaces of
dimension p generated by the points of I and containing @ is at least u,
counted with multiplicity. The multiplicity mr of a subspace T' is computed
as the number of distinct sets of p 4+ 1 independent points contained in 7'M I.

Lemma 1.4 Let C be an [n,k|,R code. Consider every column of a parity
check matrix of C as homogenous coordinates of a point of an n-set I in
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PG(n—k—1,q). Then C is a (R, n)-MCF if and only if I is (R — 1, u)-
saturating.

2 (1, p)-saturating sets and (2, 1)-MCF codes

For p = 1, the conditions (M2),(M3) can be read as follows:

(M2) I is not the whole PG(N, q);

(M3) for every point @ in PG(N,q) \ I the number of secants of I from
Q is at least u, counted with multiplicity. The multiplicity m, of a secant ¢ is
computed as my = (#(gm)).

Definition 2.1 The p-length function ¢,(2,7,q) is the smallest length n of a
linear (2, 4)-MCF code with parameters [n,n — r,d],2, d > 3, or equivalently
the smallest cardinality of a (1, u)-saturating set in PG(r — 1,¢). For p =1,
we denote £,(2,7,q) as £(2,r,q); it is the “usual” length function [4,5].

It is obvious that p disjoint copies of a usual 1-saturating set in PG(r—1, q)
give rise to a (1, p)-saturating set in PG(r — 1, q). Therefore,

0(2,7r,q) < pl(2,r,q). (2)

Denote by 0,(2,7,¢) the minimum p-density of a linear (2, u)-MCF code
of codimension r over F,. Let 6(2,7, ¢) be the minimum covering density [4,5]
of a linear code with covering radius 2 and codimension r over F,. By (1),(2),

%@¢@>g5“@fgﬁély%lf)~ua1n@. (3)

wl(2,7,q)

By (2),(3), estimates for £,(2,r,q) and 6,(2,r,¢q) can be immediately ob-
tained from the vast body of literature on 1-saturating sets in finite projective
spaces. If ¢ is not square, the best result in this direction is the existence of
l-saturating |5v/qlogg|-sets in PG(2,q) which was shown by means of prob-
abilistic methods, see [3] and references therein. Therefore,

0,(2,3,q) < p5+/qlogg]. (4)

The aim of the present paper is to construct (1,u)-saturating sets in
PG(N, q) giving rise to (2, u)-MCF codes with p-density smaller with respect
to that derived from (3). Equivalently, it can be said that our goal is to obtain
(1, u)-saturating sets in PG(r — 1, q) with cardinality smaller than pf(2,7, q).
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The exact values of (2, r, ¢) are known only for small ¢, see [2,5]. Therefore
reformulating the foregoing, we can say that the aim of the present paper is to
construct (1, u)-saturating sets in PG(r — 1, q) with cardinality smaller than
wl(2,7,q) where £(2,7,q) is the smallest known length of a linear g-ary code
with covering radius 2 and codimension r.

Theorem 2.2 The following lower bound on the p-length function holds:
0u(2,3,9) = v2pq.
3 Constructions of small (1, u)-saturating sets in PG(2, q)

The constructions of this section essentially use the ideas and results of [6].
Let ¢ = p’ with p prime, and let H be an additive subgroup of F,. Let

Ly(X) = [ (X —h) € F,[X]. (5)

heH

Assume that the size of H is p* with 2s < £. Let

P
My = {(LH1—W> | Hy, Hy subgroups of H of size p* ', 3; € H \ Hl}
LH2<52) ( )
6

Theorem 3.1 Let ¢ = p*, and let H be any additive subgroup of F, of size

p°, with 2s < €. Let j1 be any integer with 1 < p < p*=%, and let 71, 7o, . . . Tu

be a set of distinct non-zero elements in F,. Let Ly (X) be as in (5), and My
be as in (6). Then the set
D={(Ly(a):1:1),(Ly(a):0:1)|aecF, U{(n:m:1)|me My,
i=1,..,ppU{(l:7:0)|i=1,...,0ppU{(1:0:0)}
is a (1, p)-saturating set of size at most
2 $—1)2
p* p—1

The order of magnitude of the size of D of Theorem 3.1 is p* where a =
max{( —s,log, pi- (25 —1)}. If s is chosen as [£/3], then the size of D satisfies

2¢3 +,u+,uw, if /=0 (mod 3)

#D < 2(2) ot P () ,if £=1 (mod 3) -

p p—1

22 MMS+u+u@£4@ﬂﬁ% if =2 (mod 3)
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Theorem 3.2 Let ¢ = p’, with ¢ odd. Let 1 < pu < p, and let H be any
additive subgroup of F, of size p®, with 2s +1 = (. Let Ly(X) be as in
(5), and My be as in (6). Then for any integer v > 1 there exists a (1, p)-
saturating set T in PG(2,q) such that

S My
#T < (v+ D)™ + p i + 1+

Corollary 3.3 Let ¢ = p**™, and let 1 < u < p. Then there exists a (1, u)-
saturating set in PG(2,q) of size less than or equal to

(p* —1)*
(p _ 1)U(p(25+1) _ 1)(1}—1)

ms.p) = iy {40t

v=1,...,25+1

s
™)

Several triples (s,p,v) such that ni(s,p,v) < 5v/qlogq are given in [6,
Table 1]. For the corresponding q = p?**1, these values of n,(s,p,v) are the
smallest known cardinalities £(2, 3, q) of 1-saturating sets in PG/(2,q), see [5,
Section 4.4]. Moreover, for 1 > 2, by (7) it holds that n,(s, p,v) < pni(s,p,v).
Thus, in the cases provided by the triples (s,p,v), the goal formulated in
Section 2 is achieved. Other general constructions and classification results of
(1, p)-saturating sets are given in [1].
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