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An Alternative to the Hamming Code in the Class of 
SEC-DED Codes in Semiconductor Memory 

Alexander A. Davydov and Leonid M. Tombak 

Abstract-The II code constructed by Panchenko is studied. The If 
code to be an alternative to the Hamming code in the class of single- 
error correcting and double-error detecting codes (SEC-DED codes) is 
also considered. The II code has a smaller number of words of weight 4 
and provides a larger probability of the triple-independent-error detec- 
tion than the shortened Hamming code with the same parameters. In 
this work shortening algorithms for the If code are proposed, and parity 
check matrices of the [39,321, [72,641, [137,1281 shortened II codes are 
constructed. The codes obtained can detect byte errors of length 4. 

I. INTR~DU~I~N 

Every word of a semiconductor memory is usually encoded by 
an error correcting code [20]. Errors appearing in the memory 
are classified to be either independent errors or byte errors 
[l]-[8], [13]-[18]. In this correspondence the following strategies 
for memory protection [l]--[lo], [13]-[18], [21, p. 177-1821 are 
considered. 

I) A linear code of length n, minimum distance d = 4 and 
redundancy r = [logan] + 1 is used. All single errors are 
corrected and all double errors and some triple errors are 
detected. 

2) In addition to Strategy 1 the same code detects all byte 
errors of length 4. 

Let A, be the ratio of the number of triple independent 
errors that may be detected by a code to the total number of 
triple errors. Denote by A, the number of words of weight 4 in a 

P, = 

The Hamming code is the most well known of codes with 
d = 4. The problem of A, minimization for the shortened Ham- 
ming code was considered in [3], [4], [9], [Ill, [13], [14], and [21]. 
(Throughout this correspondence the word “shortened” may be 
omitted in a code name.) Let uf(n,r) be the minimum of A, 
over all [n, n - r] Hamming codes. In [9] evaluations of uF(n, r) 
were obtained. 

There are linear codes with d = 4 that are not equivalent to 
the Hamming code [lo], [12], [19]. Let u$(n, r) be the minimum 
of A, over all linear [n,n- r] codes with d = 4. In [II], [19] 
evaluations of ut(n,r> were obtained. In [19] Panchenko con- 
structed the II code that is not equivalent to the Hamming code 
and has A, < uf(n, r). 

Let N, = 17.2’-6. In [12] it is proved that there exist only 
three nonequivalent quasiperfect binary linear codes with d = 4, 
n > N,: the Hamming code with n = 2’-l, the II code with 
n = 5*2’-4, and the fl code with n = 9.2’-s. Any binary linear 
code with d = 4, II > N,, is a shortening of one of these codes. 

Let B, =[bk;*., bk] be a matrix consisting of equal columns 
b,, where b, is the binary representation of k. Let D = 2r-4, 
i = y-5 , 

G= 

The parity check matrix P, of the nonshortened [II, n - r] n 
code with n = 5.2’-4, r 2 5, has the following form: 

P,= [W], (2) 

where B, is a (r -4)X5 matrix. 
For example, the parity check matrix of the [40,33] II code is 

11111 11111 
00000 11111 
11111 00000 

t 

10001 10001 
01001 01001 
00101 00101 
00011 00011 

11111 
11111 
11111 
10001 
01001 
00101 
00011 

(3) 

code. For Strategies 1 and 2, the memory reliability substantially 
depends on the value of A,. It is known that A3 = 1-4A,/( 1) 
[13]. Hence, it is useful to decrease the value of A,. 

It should be noted that the maximum number of l’s in rows of 
a parity check matrix and regular structure of the matrix are also 
important for memory protection systems [4], [6], [7], [13]-[18], 
L-m 
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The parity check matrix Q, [12] of the nonshortened [n, n - r] 
Sz code with n = 9.2’-5 has the following form: 

Q ,= [w], (4) 

where B, is a (r - 5) X 9 matrix. 
Codes with n = 2’-’ + r, r I 9, used in a memory, have 

n> N,. 
In Section II we construct two shortening algorithms for the 

II code. We consider the following ranges of code length n: 

max{5~2’~4-8,9~2r-5-1,17~2’-6+l}~n~5~2’-4. (5) 

max(5.2r-4 -25, 17.2r-6 + 1) I n 5 5~2’~~. (6) 

The range (5) includes [39,32] and [72,64] codes. In the range 
(5) the first algorithm gives the global minimum of A,, i.e., 
A, = u&r). The range (6) includes [137,128] codes. In the 
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TABLE I 
VALUESOFA~ FORTHE n CODES SHORTENED BYALGORITHM~AND LQWERBOUNDS 

OF A, FORTHESHORTENEDHAMMINGCODES 

i 

0 
1 
2 
3 
4 
5 
6 
7 
8 

(r 14 7) 

40 
39 
38 
37 
36 
35 

II Code Hamming 
A,= Code A, 2 

1190 1480 
1071 1332 
959 1191 
854 1063 
756 945 
665 838 

Crif-8) 

80 
79 
78 
77 
76 
75 
74 
73 
72 

II Code Hamming 
A,= Code A, 2 

10300 12578 
9785 11944 
9285 11335 
8800 10748 
8330 10185 
7875 9644 
7455 9124 
7048 8626 
6654 8157 

range (6) the second algorithm provides smaller values of A, in where Fj is the number of external columns s,, for which 
comparison with the Hamming code and the R code. However, m(t) = j. 
this algorithm does not give the best shortened II code. In 
Section II we construct the parity check matrices of the [39,32], 

The main idea of proposed algorithms is to decrease F,,,,,. 
Algorithm 1: We shorten the matrix P, by i columns, i I 8. 

[72,64], and [137,128] shortened II codes for strategy I. We delete columns of P, in the following order: 
In Section III we construct the parity check matrices of the 

[72,64] and [137,128] shortened II codes for the strategy II. 
Structures of the obtained matrices are regular. Therefore, [~].[~]~[~]~[~I.[~]~[~]~[~]~[~]~ C9) 

these matrices are suitable for VLSI implementation. 
All obtained parity check matrices of the II code have a 

where g, is a column of matrix G, corresponding to the binary 

larger value of A, than corresponding matrices of the Hamming 
representation of v, and columns b,, b,, b,, bx are distinct. 

code and the n code. Therefore, the II code for strategies I, II 
Throughout this correspondence the expression j = {a, b}, 4 

provides the best reliability of the memory in the class of linear 
= (c, d} means that F, = c, Fb = d. Let E = 5.2’-‘. 

codes with n = 2’-2 + r. Theorem 1: For r X n matrices with n = 5~2’~~ - i obtained 
Some results of this work are introduced (without proofs) in by Algorithm 1 the nonzero values Fj can be represented as 

m. follows: 
,’ 

i=O: j={D,E}, q={lOD,D-I}. 

i=l: j=(D-l,D,E-I}, I$=(4D,bD,D-1). 

i=2: j=(D-2,D-l,D,E-21, q=(D-1,60+1,3D,D-1). 

i=3: j={D-2,D-l,D,E-3}, 4={3D-3,60+3,D,D-I}. 

i=4: j={D-2,D-l,E-4}, l$ = (60 -6,4D +6, D -1). 

i=5: j={D-2,D-l,E-5}, Fj={lOD-lO,lO,D-I}. 

i=6: j=(D-3,D-2,D-l,E-6,E-5}, F,={4D-8,60+2,6,D-2,l). 

i=7: j=(D-4,D-3,D-2,D-l,E-7,E-6), F,={D-4,6D-8,30+9,3,D-3,2). 

i=8: j=(D-4,D-3,D-2,D-l,E-g,E-7}, $={3D-12,6D,D+ll,l,D-4,3}. (10) 

II. THESHORTENED n CODES WITHTHEBESTDETECTING 
Proof: See the Appendix. 0 

CAPABILITY INTHE CLASS OFBINARY LINEAR CODE 
WITH d=4 

Denote by A’$n, r> and Ay(n, r> the maximum of A, over all 
linear [n, n - r] codes with d = 4 and over all [n, n - r] Ham- 

In order to count A, we represent a nonzero column s,, ming codes respectively. 
which does not belong to the parity check matrix of an [n, n - r] 
code (“external” column), as the sum of two columns h,,j and 

Theorem 2: In the range (5) the [n, n - r] II code obtained by 

h,,j+l, which belong to the matrix [14], [19]. Denote by m(t) the 
Algorithm 1 has the minimum number of words of weight 4 and 

number of various representations of the column s,. Then the 
the maximum probability of triple-independent-error detection 

following relations hold: 
over all linear [n, n - r] codes with d = 4, i.e., this II code has 
A, = c&n, r) and A3 = At(n, r). 

st = ht.1 + ht,2 = h,,, + ht,4 = . . . = hr,2m(tj-z + ht,2m(tp (7) Proof: See the Appendix. 0 
where 

m(t)E{O;..,[n/21}. 
Using the relations (81, (IO) and results of [9] we obtain 

t =l;**, 2’-l-n, Table I. 
In order to shorten the matrices P, and Ps we use Algorithm 

1. Let r = 7, i = 1, and y = 7. Then the parity check matrix Hsa 
of the [39,32] II code is the matrix P, with the last column 



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 37, NO. 3, MAY 1991 899 

omitted. Take r = 8, i = 8, y = 15, S = 14, v = 13, and J? = 12. The parity check matrix HT2 of the [72,64] II code has the following 
form: 

H72 = 

~00000 
00000 
00000 
00000 

10001 
01001 
00101 
00011 

00000 
11111 
00000 
00000 
10001 
01001 
00101 
00011 

00000 
11111 
00000 
11111 
10001 
01001 
00101 
00011 

11111 
00000 
00000 
00000 

1 

10001 
01001 
00101 
00011 

00000 
11111 
11111 
00000 
10001 
01001 
00101 
00011 

11111 
00000 
00000 
11111 
10001 
01001 
00101 
00011 

00000 
11111 
11111 
11111 

10001 
01001 
00101 
00011 

11111 11111 
00000 00000 
11111 11111 
00000 11111 

+ 

10001 10001 
01001 01001 
00101 00101 
00011 00011 

00000 
00000 
00000 
11111 
10001 
01001 
00101 
00011 

00000 
00000 
11111 
00000 
10001 
01001 
00101 
00011 

00000 
00000 
11111 
11111 
10001 
01001 
00101 
00011 

1111 
1111 
1111 
0000 
1000 
0100 
0010 
0001 

11 11 
11 11 
00 00 
00 00 
10 01 
01 01 
00 01 
00 11 

111 1 
111 1 
000 0 
111 1 
100 1 
010 1 
001 1 
000 1 

. (11) 

with d = 4 obtained by shortening of linear codes nonequivalent 
to the II code. 

For H39: 

A, = a,L(39,7) = 1071, A3 = A$(39,7) = 0.5312. 

For the Hamming code [9]: 

a,H(39,7) 2 1332, Ay(39,7) I 0.4170. 

For HT2: 

A, = a,L(72,8) = 6654, A3 = A+(72,8) = 0.5537. 

For the Hamming code [9]: 

a,H(72,8) 2 8157, Ay(72,8) I 0.4529. 

Denote by I the maximum number of l’s in rows of a parity 
check matrix. Matrices H39 and H,2 have I = 19 and I = 34, 
respectively. The parity check matrices of the [39,32] and [72,64] 
Hamming codes constructed in [13], 1141 have I = 15 and I = 27, 
A, = 8392, A3 = 0.4361. 

Algorithm 2: We shorten matrix P, by i columns, where 
i I 25. We delete submatrices BU [ 1 G  

, where u=k,, v=l;*., 
q = [i/S], any three and four columns of the set {bkl, bkZ; . ., b,$ 
are linearly independent. If i # 5q, then one submatrix is deleted 
incompletely. 

For r x n matrices with n = 5.2’-4 -5q obtained by Algo- 
rithm 2 the nonzero values of Fj can be represented as follows: 

j={D-2q,D--2q+2,D-q,E-5q,E-5q+5}, 

l$={lOD-lo-5q(q-1),5q(q-l),lO, 

D - 1 - q(q - 1)/2, q(q - 1)/2). (12) 

This relation can be proved similar to Theorem 1. 

Theorem 3: In the range (6) the [rz, n - r] II code obtained by 
Algorithm 2 has a smaller value of A, than any [n, n - r] codes 

Proof: See the Appendix. 0 

Let r =9, i=23, q=5, k,=31, k,=30, k,=29, k,=27, 
and k, = 23. The parity check matrix HIj7 of the [137,128] code 
obtained from Ps by Algorithm 2 has the following form: 

HI,, = 
4.1 4 “. 4, 82, B24 B2, B2, B2s 1 G  G  ..+ G  6 G  G  G  G  ’ 

(13) 
where j2s = [b,,b,,] is 5 x 2 matrix, 6 = [gig21 is 4~ 2 matrix. 

For H,,,: A, = 45488, A3 = 0.5660, I =62. (Note that we 
construct the parity check matrix of the [137,128] II code with 
A, = 45443, but this matrix does not have a regular structure). 

For the Hamming code: 

a9(137,9) 2 15182, Ay(137,9) I 0.4735, r 2 54, 

[4], [9]. [13]. In [4] the parity check matrix of the [137,128] 
Hamming code with A, =56252, A3 = 0.4733, I =55 is de- 
scribed. 

Algorithm 2 gives matrices with more regular structure than 
Algorithm 1. For example, the parity check matrix Hg of the 
[72,64] II code obtained by Algorithm 2 is more regular than 
HT2. For H$: A, = 6657, IY = 35. 

III. PARITY CHECK MATRICES OF THE II CODES 
DETECTING BYTE ERRORS OF LENGTH 4 

The parity check matrix H;2 of the [72,64] II code detecting 
byte errors of length 4 has the following form: 

1111 
1111 
0000 
1111 
1000 
0100 
0010 
0001 

1111 
1111 
1111 
0000 
1000 
0100 
0010 
0001 

1111 0001 
1111 0010 
1111 0100 
1111 1000 

I 1000 1111 
0100 1111 
0010 1111 
0001 1111 

0001 
0110 
1011 
1100 
1111 
1111 
1111 
1111 

(14) 

0000 
0000 
1111 
0000 

0000 0000 
0000 0000 
0000 0000 
0000 1111 
1000 1000 
0100 0100 
0010 0010 
0001 0001 

. . . 

H;2 = 
1000 
0100 
0010 
0001 

. . . 
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The syndromes of byte errors of length 4 are not identical with 
any column of the matrix H;2. For Hy2: A, = 7221, A, = 0.5156, 
I- = 36. 

The matrix Pr can be represented as follows: 

P, = [4&%4A,I. 
Corresponding matrices for the Hamming code have A, = Let Y={l,2,4,8,15], U = {3,5,6,7,9,10,11,12,13,14}. 

8408, A,=O.4363, F=27 [4] and A,=8200, A,=O.45, I=31 Definition: Let 
D51. 

The parity check matrix H& of the [137,128] II code detect- 
ing the byte errors of length 4 has the following form: 

EAT, kE(O;..,15}. 

Then biO is called the locator of column a, and g, is called the 

Proof of Theorem 1: We consider the case i = 8. For i # 8 
where H& is the matrix Hq2 with the last 7 columns omitted. the proof is analogous. 
For H&,: A, = 54885, A, = 0.4763, I = 68. For the Hamming For i = 8 the II code shortened by Algorithm 1 has the 
code the corresponding matrix H(l”) in [4] has A, = 57339, following parity check matrix: 
A, = 0.4529, F = 65. 

CONCLUSION 

The Il code proposed by Panchenko belongs to the class of 
SEC-DED codes. In this correspondence we construct the 
parity check matrices of the [39,32], [72,64], and [137,128] 
shortened II codes. The obtained matrices provide a smaller 
number of words of weight 4 and a larger probability of triple- 
independent-error detection as compared with the Hamming 
codes. 

The constructed [39,32] and [72,64] shortened II codes have 
the minimum number of words of weight 4 in the class of all 
linear codes with the same parameters. 

On the other hand, the parity check matrices of the II code 
have more l’s in rows than corresponding matrices of the 
Hamming code. 

The II code is a reasonable alternative to the Hamming code 
in the class of SEC-DED codes. 

H so-s= [A~(Y)A~(Y)A,(Y,~)A,(Y,v)A,,(Y,S)]. 

The deleted columns of Pr are external for a shortened matrix, 
but these columns cannot be represented in the form (7). Hence, 
the F spectrum does not depend on the deleted columns. All 
sums of the form gi + gj for i, j E Y, i f j, are distinct: 

g,+g,=g,; g4+g,=gl2,g4+gl,=gll~ g,+g,s=g,; 

~2+~4=&,~~2+~,=~lO~~2+~l,=!?l3~ (A-2) 

For any external column a E A,, k  # 0, in every sum of the 
relation (7) one summand belongs to a matrix Ai and the other 
summand belongs to a matrix A,, where i, s  E Y, gi + g, = g,. 
For II E A, both summands belong to a matrix Ai, i E Y. For 
the matrix HsDw8 we partition external columns into 4 groups: 
1) the matrix A,, 2) the matrix A,, 3) the matrices 
A,, A,, A,, A,,, A,,, A,,, 4) the matrices A,, A,,, A,,. Partial 
F spectrums of external columns belonging to different matrices 

ACKNOWLEDGMENT of one group are equal (see (A.2)). The partial F spectrums of 

The authors thank the referees for their helpful suggestions. 
the groups of columns are as follows: 

j={E-8,E-7}, F/l)= ID -473); 
APPENDIX 

Notations and Definitions. 

The set of numbers 4 (see (8)) is called an F spectrum. If 
external columns are partitioned into noncross groups, then F@) 
denotes the number of columns. belonging to uth group, for 
which m(t) = j. The set of numbers F/“’ is called a partial F 
spectrum. Obviously, 

Fj = CF,“? 

Denote by Gi = [gi gi . * . gi] a matrix consisting of equal 
columns gi, where gi is the binary 4-bit representation of i. Let 
B* =[b,b, . . . b,-,] be a (r -4)~2’-~ matrix consisting of all 
distinct columns bj of length r -4, where bj is the binary 
representation of j. Denote by B*(d,; . ., d,) the matrix B* 
with columns b+. . . , bd,, omitted. Let 

j={D-2,D-I}, F!‘)- , -{D-1,11; 

j={D-4,D-3},F/“)={3D-12,12}; 

j={D-3,D-2},F(4)={6D-12,12}. (A.9 

For example, we calculate $3). Columns b,, b,, bx are distinct, 
so columns of A,, with locators b,, + b, = b,, b,, + b,, b, + 
b,, b, + bx can be obtained by D - 3 ways as a sum of columns 
belonging to A,(y, 3) and A,(y,v). Everyone of the other 
D -4 columns of A,, is obtained in D -4 ways. We may 
consider A,, and A, in the same way. Therefore, in the third 
group of external columns m(t)= D -3 for 3.4 = 12 columns 
and m(t) = D -4 for 3(D -4) = 30 - 12 columns. 

So it is important that columns b,, b,, b,, b, are distinct but 
the F spectrum does not depend on concrete values of y, 6, v, 2. 

The proof of necessity can be obtained from (A.1) and (A.3). 

/ 
Proof of Theorem 2: According to [12], in the range (5) the 

following linear binary codes with d = 4 exist: the IT code and 
its shortenings, the shortened Hamming codes, the R code and 

A,(d,;..,d,)= 
B*(d,,...,d,) 1 its shortenings. 

Gi ’ 
i=1;**,15. We show that the shortened II code obtained by Algorithm 1 

is the best code over all shortened II codes. For n - 1 external 



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 37, NO. 3, MAY 1991 901 

columns the number of representations m(t) is reduced by one 
if the code of length n is shortened by one symbol. According to 
(8), in order to minimize the value of A, in a shortened code we 
should reduce the maximal values of m(t). For the nonshort- 
ened II code external columns can be partitioned into 2 groups: 
1) the matrix A,, 2) the matrices A,, k  E U. The partial F 
spectrums of these groups of columns are as follows: 

j=(E},E;“)=(D-1); &V=(D), F$=(lOD}. (A.4) 

Therefore, in the range (5) for any shortening of the II code by 
i I 8 symbols we have j > 3. 

Denote by IIf a shortened II code. For the code IIf we 
introduce the following notations. Let Xf be the set of deleted 
columns of P, and let Xf be the set of deleted columns with the 
indicator gi, i E Y. Obviously, 

Xf= uxif. 
iEY 

Let the column 

be a representative of the set X[. Denote by Xf, a set contain- 
ing one representative of every Xif # 0, i E Y. Let 1x1 be the 
cardinality of a set X. Evidently, X5 2 Xf, IX; 1 I 5. Let the set 
of numbers Fi’,f) be the partial F spectrum of columns belong- 
ing to the matrix A,, u E U. Denote by F(‘,f) this partial F 
spectrum. 

Lemma 1: For any Xf,Xf there exists on equivalent the 
matrix P, for which all columns of Xs have equal locators. 

Proof We give the algorithm of this equivalent transforma- 
tion. Assume that X{# 0, i E Y, i.e., IXf, I= 5. Let u(j) = 2j-l. 

1) For j = 2,3,4 we sum the (r + 1 - j)th row of P, with the 
rows in which bkucj, differs from b,,. As a result four 
columns of Xf have locator b,, and the fifth one has a 
locator b$,,,. 

2) We add the sum of the 4 lower rows of P, to the rows in 
which b,, differs from bz,,,. Now all columns of Xi have 
locator b&. 0 

Let 

A set Xf is called nonoptimal if Xi, - Xii,, 2 2. Denote by 
A,(IIf) the number of words of weight 4 in nf. 

Lemma 2: Let II’ be a code such that the set X’ is nonopti- 
ma1 and IX’1 I 8. Then there is a code II2 with IX21 = 1X*1, 
A4(I12) < A,(II’). 

Proof: Let X& = 1X: 1, Xk, = 1X:1. 
Since X’ is a nonoptimal set and IX’1 I 8, we have Xtfiin = 

IXiil I 1. So we should consider two cases: XAi,, = 0 and Xkin = 1. 
We consider the first case. (The second case can be studied in 
much the same way.) 

For i = 2,4,8,15 we assume that 1X,‘/ > 0. Let 

x;=(?,..-,:}, iE(2,4,8,15]. 

By Lemma 1, bk2 = bk, = bk, = bk,,. Let II2 be the code with 

X2=X’“{ $)\( >}. 
From (A.5), it follows that 

(A-5) 

[X11= 1x21, xi” = xi’, i=4,8,15, 

Constructions of codes II’, II2 result in 
F(7,1) = F(7,2), F(ll,l) = F(w), p,l) = F(w)+ (A.-j) 

According to (8), (A.l), it holds that 

A,(nf) = ; c  ‘F (;)Fiu,fj. 
veil k=2 

(A.7) 

Let 

From (A.6), it follows that QU = 0 for ZJ = 7,11,12. Now we can 
compare the partial Fco,f) spectrums. For this comparison we 
use the code II3 with 

For the code II’, we see there are (resp. 112> 2’-4 - IX:1 
(resp. 2’-4 - 1) columns of A, for which the value of m(t) is 
decreased by one with respect to the code I13. 

Let C = IXil-1, Nj = 2r-4 - 1X$. For a code nf denote by 
k(u, f, u) the number of representations in (7) of the uth column 
belonging to A,. From the constructions of codes II’,II’ it 
follows that I k(u, 1, u) - k(u, 2, u)l I 1. Consequently, 

~o=~l((“‘“~~“‘)-(k(071~)-l)) 

= 5 (k(O,l,u)-1). (A.81 
u=l 

Reasoning along similar lines, we obtained (A.9)-(A.12). 

Q3= ; (k(3,1,u)-1). (A.91 
u=l 

N4 
@ ,+Qe= c (k(5,1,u)-k(6,1,u))>O. (A.lO) 

u=l 

The last formula follows from relations IX:1 > IX,‘1 + 1 = IX: I, 
IX,‘1 = 1X:1. From th ese statements we can obtain that k(5,1, u) 
> k(6,1, u) for any u. In addition, the columns 

[if]? [?I 
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have equal locators. In much the same way we have 

$=@io= 5 (k(9,1,u)-k(lO,l,u))>O, (A.ll) 
u=l 

45 
@i3 +@i4= c (k(14,l,u)- k(13,l,u)) > 0. (A.12) 

u=l 

Let rr > 0. From (A.7)-(A.12), it follows that 

Ix:1 IX:1 
A~(II~)-A~(II’)= c k(O,l,u)- c k(3,1,m)+r. 

u=l m=l 
(A.13) 

From (A.4), it follows that k(O,l, u) > k(3,1, m) for any m, u E 
11;. ., 2r-4]. Consequently, A,UI’) > A4(I12>. 0 

According to Lemmas 1 and 2, the code obtained by Algo- 
rithm 1 is optimal for any i I 6. If i = 7, we should consider two 
nonequivalent shortened II codes: 1) the code obtained by 
Algorithm 1; 2) the code obtained by deleting the following 
columns: 

g,, ’ g, ’ g, ’ g, ’ gl ’ gl5 ’ g8 
(A.14) 

If i = 8, we should consider three nonequivalent shortened II 
codes: 1) the code obtained by Algorithm 1; 2) and 3) the codes 
obtained by deleting of the following columns: 

{z, 2) and {Z, 2) respectively. 

We obtain the F spectrums in the cases (A.14), (A.15) and 

(A.15) 

conclude that the II code obtained by Algorithm 1 has a smaller 
value of A, than other II codes. 

According to [19], in the range (5) for any length n there 
exists a shortened [n, n - r] II code that has a smaller value of 
A, in comparison with any shortened [n, n - r] Hamming code. 
Hence, the II code shortened by Algorithm 1 has a smaller 
value of A, than any shortened Hamming code with the same 
parameters. 

The range (5) contains the KI code only for r = 6,7,8. In the 
range (5) we obtained the values of A, for the R code using a 
computer. These values are larger than the II codes shortened 
by Algorithm 1. For example, the [72,64] R code has A, = 7742 
(compare with Table I). This finishes the proof of Theorem 2. 0 

Proof of Theorem 3: According to [12], we consider the 
Hamming code, the II code, and the fI code. 

The range (6) includes the n code only for r = 6, * ’ . ,9. We 
obtained the value of A, for the n code with r = 6,7,8, by 
hand and for r = 9, n 2 141 by computer. Algorithm 2 gives 
smaller values. The F spectrum of the [144,144 - 91 a code is as 
follows: j = (72,48,16}, E; = {15,112,240). Hence, any shortened 
[137,128] n code cannot be better than the [137,128] R code 
with F spectrum of the form j = (65,41,16,15), Fj = 
{15,112,149,91} and with A, = 50159. But according to (12), the 
[140,131] II code shortened by Algorithm 2 with i = 20 has 
A, = 49670. 

The Hamming code is a code with even weights. According to 
[9] and [ll, formula (3)], it follows that for shortened Hamming 
codes A4>(t)((I)/2r-‘- )/ 1 6. It can be verified that in the 

range (6) for the shortened Hamming codes the values of A, 
are larger than for the II code shortened by Algorithm 2. 0 
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