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Constructions and Families of Nonbinary upper bounds for codes with=4,5,7, R = 2, andr < 24. Some
Linear Codes with Covering Radius 2 results of this work were announced in [7] and [8].

Let F, be the Galois field ofy elements andF’;, = F,\{0}.

Alexander A. Davydov Denote by anfn,n — r],R code ag-ary linear code of length,

codimensionr, and covering radius?. This code is an(n — 7)-
dimensional subspace in the spacexafimensional row vectors over

Abstract—New constructions of linear nonbinary codes with covering F,. In the notation[n, n — r], R we may omitR and change: — r
radius R = 2 are proposed. They are in part modifications of earlier by its value. The length functiof(r, R; ¢) [1] is the smallest length

constructions by the author and in part are new. Using a starting code f l d ith codi : d . dius
with R = 2 as a “seed” these constructions yield an infinite family of codes O @ ¢-ary lin€ar code with codimension and covering radiusi.

with the same covering radius. New infinite families of codes withiz = 2 Let G; be the space of-dimensionalg-ary column vectors.
are obtained for all alphabets of sizeg > 4 and all codimensionsr > 3 All matrices and column vectors below ageary. An element of
with the help of the constructions described. The parameters obtained F,~ appearing in &-ary matrix denotes a column vector @f" that

are better than those of known codes. New estimates for some partition jo 5 a1y representation of this element, and vice versa, we can treat
parameters in earlier known constructions are used to design new code

families. Complete caps and other saturated sets of points in projective & CO'””}Q” vector ofy;" as an glemgnt oF ;.
geometry are applied as starting codes. A table of new upper bounds on  Let 07 be the all-zero matrix with: rows. Denote by0 a zero

the length function for ¢ = 4,5,7,R = 2, and r < 24 is included. column vector. We specify the dimensions of vectors and matrices
Index Terms—Complete caps, covering codes, covering radius, linear unless they are unambiguously defined by the context. In this case we
codes, nonbinary codes. specify the number of-ary rows in a matrix or positions in a column.

Denote by{H} the set of columns of a matrif. Let He be
a parity-check matrix of a cod€ and letT be the symbol of
transposition.

Constructions of linear covering codes with covering radius We consider linear combinations af-ary columns only with
2 and close problems are considered, e.g., in [1]-[16], and thenzerog-ary coefficients.
references therein. An introduction to linear covering codes and ) . . .
general survey is given in [3]. Linear codes with= 2, even basis “Fact 1: An [n.n - r]qf? code with a parity-check matri#f =
¢ > 4, and codimensiom = 4 are constructed in [1, p. 104]. In [5] £y f.], wheref; € G;.j =1.n, ljfls covering radiu = 2 if
and [6] the construction of [1] is generalized to odd basis 5. In and onIy_ i er_:lch nonzero cqlumnof g, can be represented by one
[2] a construction of codes Witl = 2, q = 3,r = 4¢ + L, is given. of following linear combinations with columns df:
Using these codes a “doubling” construction of [8, Theorem 3a], p=~.f;,, p€G,, p#0, f, €{H}, m€F; (1)

I. INTRODUCTION

[141 Sec 4] prOduqu C.Odes Wlﬂa : Q,q = 3’ r= 4t + 2 ln.a :A)/lfjl + A)/ijzﬂ P E gg’(* p 7/: 07 jl 7& ng f,il'
geometric perspective, linear covering codes with= 2 are studied f (7 e F 2
in [10], [11, Ch. 9], [12, Sec. 2], [15], and [16]. For arbitragyand » €HY v €Fy @

7, some code constructions were proposed in [4] and developedaifd, besides, there is a nonzero colupinof G that cannot be
[5], [6], and [9]. They rely on a linear code of covering radilts written in the form of (1).
as a starting code and result in infinite families of linear codes with Note that if R = 1, each nonzero column &f; can be written
the same covering radius. These constructions can be cajléd “ in the form of (1).
concatenating constructions” since a parity-check matrix of a startingwe can treat a nonzero column @f as a point of the projective
code is repeated™ times. geometry PGr — 1, g). Then a parity-check matrix of gn, n —r],2

In this correspondence we use, modify, and develop the approagtle( is a setH of » points. A point set of a projective geometry
and constructions considered in a recent paper [6]. In Section iH,1-saturated if any point of the geometry lies on a line through
we survey constructions foft = 2 from [6] and propose new at least two points of this set. By Fact &, is a 1-saturated set. A
constructions. For all the constructions described we obtain estimatesplete cap is a-saturated set such that no three of its points are
of partition parameters useful for constructing new codes by apllinear. If C has minimum distance at leasthen? is a complete
iterative process when codes obtained in a certain step are startia@. For details, see [6, pp. 2072, 2077], [11, Ch. 9], [12, Sec. 1.3],
codes in the next steps. The obtained estimates are better than tfio8eSec. 12], [15], and [16]. In Section Ill, we use complete caps
in [6] and help us to obtain a number of good code families. land otherl-saturated sets as starting codes.
Section Ill, with the help of the described constructions and the L . .
iterative process, we construct new infinite families of covering codesPefinition 1: Let H be a parity-check matrix of au, n — r],2
with R = 2 and anyg > 4,r > 3. Parameters of the new codes ar&°de and letl = [Fy-- £, Wherefjre Yo = Lon.
better than those of known codes. The obtained codes give new uppe® A partition of the column sefH} into nonempty subsets is
bounds on the length functions. We have included a table of the new called a2-partition if each nonzero colump of g; can be

represented in the form of either (1) or (2) where in (2) columns

Manuscript received August 3, 1997; revised October 19, 1998. This work f. andf. belong todistinct subsets
was supported in part by t_he Inte(natlonal Science Fou_ndanon under Granb J1 J2 i . . + .
UAA300 and by the Russian Basic Research Foundation under Grant g95D) A subsetF of a 2-partition is called aQ™-subsetif each
01-01331a. The material of this correspondence was presented in part at the column of 7 can be written in the form of (2), where columns
5th International Workshop on Algebraic and Combinatorial Coding Theory, f;, and f, belong todistinct subsetyy and Z of this 2-

AQI_(rZ]T’%,tEOZonl._tEutEJarlia, t‘?t“rt‘e 1‘1_7i %996- ion T <sion Probl partition and it is possible that = F. A 2-partition is called
e author Is wi e Institute 1or Intformation Iransmission Problems, a 2+-pal’titi0n |f |t haS aQ+-SUbSet.

Russian Academy of Sciences, GSP-4, Moscow, 101447, Russia. o B o
Communicated by A. Barg, Associate Editor for Coding Theory. c) A 2-partition is called &2"-partition if each nonzero column
Publisher Item Identifier S 0018-9448(99)04381-3. p of G; can be represented in the form of (2) with columns

0018-9448/99$10.00 1999 IEEE



1680 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 5, JULY 1999

f;, andf, belonging todistinct subsetsA code is called an this partition is a2”-partition (see Remark 1%,”(Hy) < 6, and
E-codeif its parity-check matrix admits aZ -partition. U is an E-code.

Remark 1: Definition 1 uses approaches of [6, Definitions 2.4, 6.1,
6.2]. The term “AL2”" of [6] is changed to “E” (for “exactly”). Each II.  CONSTRUCTIONS OFCODES
nonzero columrp of G, is equal to a linear combination ekactly ~ Constructions considered in this section are based on the following
two columnsfrom a parity-check matrix of afn,n — r],2 E-code. approach to lengthening nonbinary codes with covering raflias 2
By Fact 1 and Definition 1, &-partition of a parity-check matrix [6]. We use ar{no, no — 70,2 starting code, with a parity-check
H is a2”-partition if and only if each column off can be written Mmatrix
in the form of (2) with columnsf. and f. belonging to distinct _ » ro
subsets. So, each subset o@%—pé?tition is a0+ -subset. Ho=1fy---fu,]. 4, € 65"
Denote byh(H;K) (respectively,h*(H;K) or h*(H;K)) the Let m be an integer. We puy™ + 1 > no. Denote byW,, a
number of subsets in a-partition IC (respectively,2*-partition X  parity-check matrix of thgw. ¢, wm,q — m],1 Hamming code with
or 2”-partition K) for a matrix H. A partition into one-element w. , = (¢ —1)/(¢ — 1). We form an[n, n — r]; Ry new code)
subsets is calledrivial. By Fact 1, for a parity-check matrix of with n = 2w, , + noq™,r = ro 4+ 2m, and parity-check matrix (5)
a code with covering radiug the trivial partition always is @- (see at the bottom of this page), where
partition. The minimal number of subsets in apypartition for a f.e (Ho)
matrix H is denoted by:(H). So,h(H) = min h(H; K). Similarly, J ’
r {517527"'*661”}:}“1”

RY(H) = min h™(H; K), h”(H) = min h¥(H; K).
K K B; € Fym, j=T,n0—1, B:i# 7,

7 =1,n0.

j = 177'1,0

Example 1: We considerg = 4,7 = 3. Let « be a primitive o ] N .
element ofF';. The construction of [6, Theorem 5.2] gives fhe2],2 if @ # 4,0 is the zero column withn positions, 0 is the zero

code D with parity-check matrix k X w,,, matrix for k = ro, m.
From now on(a, b, ¢)” is a column oG witha € G1°,b, ¢ € GI".

7= (1) (1) (1) (1) [1) U £ £ . £l O In order to showRy = 2 we represent an arbitrary nonzero column
b= 01 a 0 1 B (pur,u)T € G, by alinear combination of at most two columns of
_ N Hy,, see Fact 1. For a nonzero colundrof G we denote byw(d)
Consider the partition the onlycolumn of the matrix¥,,, and by=(d) the onlyelement of
S IN AN ARFANI A F with d = n(dyw(d).

1) Assumep # 0. Since the starting cod®, hasR = 2 the

(we will write partitions in this form). Assumg, ~, § € F;. We have columnp can be written in the form of either (1) or (2) with

(3.0.0)" = 3f,,(0,7,0)" f;, € {Ho}.v = 1,2. We denotet = uz — 3;,u:.
=~f,.(0,0,6)7 a) Assumep = v f; . f; € {Ho}, see (1). Forj1 # no
=6f, +6f5.(0,6.6)" and j; = no we have, respectively,

— 5 ~ il - -
=6f5. (0,7 # 6,6) . (pour,uz)’ =7(8)(0,0,w(t)" + v (f, . ur. By wn)”
= (v +8)fs +6f5.(5,0,a0) t#0. neF; (6)
= s (5,0,8 % )T (P uz)’ = m(ur)(0.w(ur).0)" + 7 (f,,.0.7 "uz)”,
=(B+06a"")f +6a" f5.(8,7.0) u #£0, n €F;. (7)

=3 “Fi Byl T _ ,
/ fl * )f4 (/ »e ) i 2 \T b) Assum6p = “‘f,il + ’)'ijz with Ji 7& ]27]‘]17]‘]2 €
=p0fy;+f4 j=0,1(3,a'3,a°3) {H,}; see (2). Folj1, j» # no we have

=3fs i +o'Bfs,  i=02.

(pﬂ U, “’2)1' =M (‘fll » Ei'v /311 ékl'k)T + 72 (fj27 55/7 /31'2 gy)Ta

By Definition 1a), K is a 2-partition. Sincef, = a’f, + afs, 1.7 € FE (8)
the subse{f,, f,} is a Q" -subset. Henc& is a 2*-partition and P
h*(Hp) < 4. Values of¢.., £, can be found from the system

Example 2: We considerg = 5.r = 3. Let i/ be a6, 3]s code
with parity-check matrix 1€ + 728y =
1 11000 N5 &e + 720528y = U2
Hy=10 0 0 1 1 1|=[f-fd )

01 2 0 1 2

Using Fact 1, we verified directly that has covering radiu®. Hence

that has determinant:~.(3,, — 3;,) # 0. Here 3;, # f;,
sinceji1 # jo. FOr jo = ng we have

the trivial partition of Hy, is a 2-partition. Since (p, “17’“2)1'le(fh,qflul,,lew,flul)'l'+q/2(fj2,O,W';lt)lv,
f1+j = 2.f2+j + 4f3+‘j7j =0,3 Y1, 72 € F;' 9)

, 07:0 | 0 | fl f1 f1 || an—L fno—l -fno—l | fno fno fno
HV = |Wn | o™ | & EZ . £qm | . | El 52 . Eqm | 0 0 . 0 (5)

0" | W | Bi&r & -+ Bilgm || Brg1& Brg—1& -+ Bngilem | & & e Egm
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2) Assumep = 0. We have
(0.1, u2)" = m(u1)(0,w(1),0)" + 7(u2)(0,0, w(us))”,
U, U # 0. (10)
In (6), (7), and (10) one summand can be abseutsf O or
u; = 0. Columns(0,w(u,),0)T and(0, 0, w(u,))T are taken
from two left submatrices off;;, see (5).

Finally, there is a nonzero colump’ € g;° that cannot be
represented in the form of (1), see Fact 1. A colufphu;,u2)*
cannot be written in the form of (1) as well. SBy = 2.
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to distinct subsets of’y then the inequalitys; # 3; must be true, if
columnsf,, f, belong to the same subset &t then we are free to
assign the equality; = 3; or the inequalityd; # 3;.

We introduce notations for Constructidd (). Let

ng

Denote by£()\) the union of columns of all submatricés having
the same indicatoﬁj =)\, j = 1,n9. Letd, be thekth column of
the matrix D, k = 1,n(). Denote byt;. the cth column of the

. p . e —777 _ . T
The parametem is bounded only from below, see the inequalitpUPmatrix B (3;),j = T,no,c = 1,¢. Let hje = (f;.%;c)
¢™ +1 > no. Hence we can obtain an infinite family of the newP€ the cth column of the submatrixs;. By (13), (14), hj. =

codesV.
If

ng—1

U {,31} =Fm

we can eliminate one or two left submatricesif{, and reducen.

For example, assume th#} is an E-code and use a parity-checl%he same subset &fs if a

matrix H;, of the form of (5) without two left submatrices. Sinte

is an E-code, fop # 0 we always can apply the case (2) and th
relations of (8) and (9). Ip = 0 we cannot use the relation of (10).
But for u; # O the situation J, {5:} = F,~ always permits us to
find b with u> = 3,u,. We have

(0,1&1,’11,2)1' = (fb:uleﬁbul)l‘ - (fbvoﬂo)lv:
w1 #0, ux = Gy

.0,0)",

ng?

(11)

(0,0,u2)" =(f, ,0,u2)" = (f u =0. (12)

ng?

(f: & Bi€)” 1 0 # . hje = (£,,0.6)7 if 3 = = Let
ho = h(Ho; Ko). If Ko is a2™-partition or a2 -partition we denote
= Rt (Ho;Ko) or hF = hE(Hy;Kyo). Let b5 be one of the
values of eitherho, or he, or h{’.

For the set{S} we define a partitioriCs into 5 subsets corre-
sponding to the partitiois. For everyj, all columns of{S;} belong
to the same subset & s. Columns of setgS;} and{S;} belong to
nd only if columnsf, andf; belong to the
same subset of’y. The situation when the equality; = 3; always

Rolds if columnsf, andf; belong to the same subset/oj is called

an “hF-assignment.” In this case, each uniém) is a subset oK s
and|B| = h§ where|F| is the cardinality of a seF. Now we define a
partitionK s of the set{.S} into 215 subsets partitioning every subset
T of the partitionXs into two subsets so that the first one consists
of columnsh;,, hj, of all the submatricess; which belong to7
and the second one consists of columis;: k& = 3,¢™} of these
submatrices. By (13), (14h;1 = (£;,0,0)", hj» = (f;,1.3))"

Constructions described below develop the considered approachftd; # *, k2 = (f;.0,1)" if 3; = =

improve parameters of new codes. The restricj6h+ 1 > ng is
connected with the conditiom; # 3; if ¢ # j. Butif columnsf,, f,
are not used together in (8) or (9) then we can jput= 3;. Using a
2-partition K we can assign the same value®fto all elements of
each subset. Then the bound entakes another form, e.g.,

"+ 1> ho € {h(Ho;: K). hT (Ho: K), h" (Ho; K)}.

Sinceho < ng we can reducen, obtainlJ, {3} = F,~ and elim-
inate the left submatrices df;,.

We define a matrixB,.(3) where3 € F,~ U {x} is called an
indicator of the matrix.

n_ & & §qm o
B (8) = {351 eI ,egqm} if g Fym
. _Jo o 0
BTn("() - |:£1 E? {qm:| (13)

where{&, &2, -, 6gm} = Fym, & =0, & = 1, andO is the zero
column of G;*, cf. (5).

ConstructiondV: The index:i denotes a variant of a construc-
tion. Let ¢ > 3. A starting codely is an [ng,no — 70|42 code
with a parity-check matrixt?o = [f, -+ f,, |, f; € G3°,j = T, no.
Let Ko be a2-partition of { Ho}. Let m be an integer. We form an
[n,n — r]gRy new codeY with n = ) + nog™, v = ro + 2m,
and parity-check matrixy,, cf. (5)

5= i)

j=Tmo (14)

P(f;)

—[p®
Hy =[D 5], B ()

S=[S-S,
P(.fj) :[fj"'f]]v

where D is anr x »'" matrix, the value of.'” depends on the
form of the matrixD*), the matrixP(f;) is anro x ¢™ matrix of g™
equal columnsf; € {Ho},j = 1,70, the assignment of indicators
3, depends on the partitiokl, as follows: if columnsf;, f,; belong

Comment 1:

i) In Construction M) we want to obtainRy 2 where
Ry is the covering radius of the new codé As before,
u = (p,ui,u2)" is an arbitrary nonzero column g, with
P € G%u,ux € G, . In order to proveRy = 2 we show
that the columnu is equal to a linear combination of at most
two columns ofHy, see Fact 1. We represeatby a linear
combination

Y

(pa uy >u2)’T = Z

p=1
y+2§27 yaZZOW VTNA)/’CEFZ‘

l/pdip + § qﬂk(f].k"tjk‘fk)’T’
k=1
(15)

Since the starting codg, hasR = 2, a nonzero colummp can
be written in the form of either (1) or (2) with; , f,, € {Ho}.
We consider the following situation in (15); see (2)

fjl’sz €{Ho}.
71,72 € Fy,

Ji # J2,
z=2

p= '}"lfjl + '}’ijz-/
Bh #/31'23

where columnsf; and f,, belong todistinct subset®f Ko
(namely, this fact forces the inequality, # 3;,). In the case
(16), the combination (15) has the form of either (8), when
B3i1. 85 # %, or (9), wheng;, = %. So, in the case (16) the
form of the matrixS in (14) always permits us to find needed
columnst,, ., . Other cases depend on the matf%” and the
setB3 and are considered in the proofs of Theorems 1-5. In these
proofs we represent the colunip, u;,u2)" in the form (15).
From Constructiom/” and this comment it follows that for
a proof of the relationRy = 2 we should consider in theorem
proofs only the casep = 71 f;, # 0, see (1), ang = 0.

i) The approach to obtain estimates bfHy),h™(Hy) is as
follows: we consider all cases of the representation of (15)

y =0, (16)
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for different p,«, and ug and then construct a-partition,
or a 2" -partition, or a2 -partition of the column sef Hy}

in (14) so thatcolumns that are used together in considered

representations belong to distinct subselote that for the

representations of (8) and (9) we use at most one column from

each submatrixS;.
iii) Let o be a primitive element oF',. We define a function

v(w)=1if v #1, v(v)=aifv =1,
v€F,m, ¢(v)eFy. 17)
Assumeg > 4. Thena # o? # 1 and each column of is a

linear combination (with coefficients frodf, ) _of exactly two
columns from distinct subsets of the partitigis, e.g.,

h]P = (1_(5)})‘]1 + (Shjl’v]) E {2 qm}, fp E F;"nv
b=ay(a ), & = fp #0,1,&p.

Theorem 1:We give ConstructionM“). Letq>3,¢"+1 > ho,
m > 1,hg > 3

(18)

ore ore
D(1) = [/4777, Q"l]a A777, = |Wn 5 C27n = o™ N
o™ W

M = 2Wm, g,

{0,x} CBC Fym U {x}.
Then the new cod® is an[n,n — r],2 code with

n=2Wm g +n0g™, T=ro+2m, h(Hy)< ho.

Besides, forg > 4 the new codeV is an E-code with
RY(Hy) < ho +1.  h¥(Hy) < 2h.

Proof: The conditiond5 C F» U {x} andg™ +1 > h, allow
us to assign distinct indicator$ # 3; if columns f, fj belong to
distinct subsets oKy. We use thehy-assignment.

1) Assume thatin (159 = 1 f; # 0. see (1). For3;; € Fym
we denotet = us — 35, u;.

a) Assume@,1 #x Ift#0 then in (15)y =2 =1,

Q1> wm g, di; = (0,0,w(t)’ € {Qm}, and we use
(6). Ift = 0,44 # 0, we can apply for (15) the following

two variants:
Pour,ua)’ =i (f; 7w By tun)t
—'Yl ( 5)h111 + 5hnc)
go="12"1 20,1 (19)

In the first variant it holds thag =0,z = 1, cf. (6). For
the second one we put > 4,6 = a¥((7] 'u1)a™ ),
see (18) with¢, = +7'u;, and have in (15)y = 0,
z = Q,jl = _)’2. FinaIIy, ift = 0, u, = 0, thenug =0
and we apply for (15) the variants

(p7 0'/ O)T :Vl(fjlaovO)T

=7((1~- “)hh? + “hjlv)
€ = : (20)
b) Assume,BJ1 = If wy # 0 thenin (15)y = z = 1,
i1 < Wmq di; = (0,w(u1),0)" € {A,,}, and we use

7). fuy = 0, us # 0, we can apply two variants, cf.

7). 19)
(P,0,u2)" =~ (f,,. 0.7 ‘uz)"
271((1 8)hj 1 + bk o)

g =0 "” £0,1 (21)
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In the second variant we put

qg >4, 6= 05745)((7«1_111,2)(}'_])

see (18). Ifu; = u> = 0 we use (20).
2) Assume that in (15p = 0.

a) Assumeu;,u; # 0. Then in (15)y = 2,d;, € {A.},
d;, € {Qn}, and we use (10).

b) Assumeu; # O,u, = 0, or u; = O,u, # 0. Since
{0,%} C B we can putd;, = 0,34 = =, for somek,d,
and apply for (15) the following variants, cf. (10):

(0,4,,0)" ==(u,)(0,w(u,),0)"
=¢5(u1)hkr — ¢ (w1 )b
&=7 (m) #0,1, B =0 (22)
(0,0,u2)" =7(u2)(0,0,w(usz))"
= 1/’(uz)hdy - 1/)(1!2)’2{11
€, = M(H);éowd_* (23)

Columnshy, and hy; (respectively,hqy, and hy1) are
from distinct subsets oks for ¢ > 3

So, we have considereﬂl casesof the representation of (15) and
have shown thaf?y = 2

The estimate ofi(Hy) foIIows from (6)—(10) and (19)-(23). In
(19)—(23) we take the first variant with + » = 1. We use the
partition Cs into ho subsets. Each uniof()) is a subset ofCs.

By (6) and (7), columns of2(x) and columns of),, are not used
together. Hence we can inscribe the columngef to the subset
L(x). Similarly, we inscribe the columns afi,, to some subset

L(A1) with Ay # *. The approach of Comment 1 ii) is implemented.
We formed a2-partition Ky of the set{ Hy} into Lo subsets.

Assumeg > 4. We use the partitioiiC; and partition some subset
L(A2) with Ay & {1, *} into two subsets so that the first one consists
of columnsh;, andh;> of all the submatrices’; which belong to
£()2). By (18), each of these two new subsets i®4-subset. So,
T (Hy) < ho + 1. An indicator \s & {\1, %} exists sinceio > 3.

The estimate of:” (Hy) follows from (6)-(10), (19)—(23), and
Comment 1 iii). In (19)—(23) we consider the second variant with
z = 2. These relations show that the columartan be represented by
a linear combination oéxactly twocolumns of Hy.. Hence the new
codeV is an E-code. To provide the mentioned second variant we
use the partitioriCs with 24 subsets. Then, similarly to the partition
K1, we inscribe the columns of,, and Q.. to convenient subsets
of K. Recall that in the second variant of (19) and (21) we put
q > 4. O

In Theorems 2, 3, and 5 we will give conditios = F,~ or
B = F,~ U {«}. They mean that wenustuseall elements off';~
or F,= U {x} as indicators3; in (14). In this case we havea“
complete set of indicatotgCSI). For columnsu,,u2 € G;* with
u; # 0 the property CSI always permits us to find an indewith
u2 = Jpuq, See, e.g., (11).

Theorem 2: We give Construction}?). Let

q 23,
D(Z) = Qm

ng > ¢ > ho,

n® =
= Win,q,

m > 1,
B=F;m.
Then the new cod® is an[n, n—r],2 code withn =w.,,q+nog¢™,

r = ro + 2m. Besides, forg > 4,m > 2, the new codeV is an
E-code withi(Hy) < h¥(Hy) < 2ho + 2.
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Proof: The relationng, > ¢™ is a necessary condition to have Proof: The conditionny, > ¢™ + 1 is a necessary condition to
CSl with B = Fym. If ¢™ > ho we cannot use théo-assignment. have CSIwith3 = F,mU{x}. If ¢™ 41> hl we cannot use thi] -
To obtains = F~ we assigmy™ — hy “auxiliary” indicators 3; so  assignment. We use th&*-assignment as in Theorem 2 and besides
that 3; # 3; when columnsf,, f; belong to the same subset of thewe assign the indicatof; = = in accordance with the request of
partition Ko. In this case, a subset of the partitii; can consist of Theorem 3.

more than one uniof(\). We call such process @™ -assignment.” 1) Assume that in (15p = nf,; #0,see (1).
The conditionsB = F,» and¢™ > ho allow us to assign distinct
indicators3; # j3; if columnsf,, f, belong to distinct subsets éfo. a) Assumes;, # *. We can use the relations (6), (19), and
1) Assume that in (15p = 71 f;, # 0, see (1). Sincd+} ¢ B (20).
we use (6), (19), and (20). b) Assumes;, = . Then f]1 belongs to aQ*-subset of
2) Assume that in (15p = 0. Ko. Hence, by Definition 1f, = of, + nf, where

o,n € F, and f,, f, belong to distinct subsets @fo.
So, we can reduce this case to the situation of (16) and
use the relations (8) and (9).

a) Assumeu; # 0. We find b with u» = S,u, and put in
(15)y = 03;/ = 23.j1 = ]2 =b.

T u P u ’ . .

(0, w1, u2)" =9¢(ur)| fo, 'w(ul)"’db o(un) 2) Assume that in (15p = 0. We can use the relations (23) and
—¢(u1)(f,.0,0)" (24).' 5 —

) b= For estimate of.™ (Hy ) we use the second variant in (19), (20),

uz =Pyur, uy # 0. (24)  and (23) withg > 4 for (19). To provide it and the relation (24) we

By (17), for ¢ > 3 columns of (24) are from distinct use the partitionCs wit_h 2h _subs_ets. Taking into account (6) and
subsets of the partitioCs, cf. (11). the ca_sej,v1 = * considered in trlls prqof, we see that columns of
b) Assumeu; = 0. Thenu. # 0. For m > 2 we treat the unlon_q*) and columns ofD® = Q_m are not used together.
columns of the matrixi¥,, as points of the projective Hence, smlaﬂy to Theorem 1, we can |rlscr|be the columné pf
geometry PGm — 1,¢), see, e.g., [6, Secs. I, IV, V], to a subset ofCs obtained from the unior’(x). O
[11], and [13]. We use the same notation for a column
and the corresponding point. We pass_1 , lines from Remark 2: Under conditions of Theorems 1-3 (with > 2 for
some pointk. Let k4 be thedth point of theith line with Theorem 2) the new cod¥ is an E-code fory = 3 as well as for
k = ki. We form a partitionKy of the point set into ¢ > 4. Moreover, forg = 3,m > 2, the same estimates o (Hy)
as forg > 4 hold. We did not prove these facts for= 3 to save

two subsets
; - space.
{k.ki: i =1, wm_1,4}
and Theorem 4: We giveConstructiond*). Let Ko be a2”-partition.
{kfi: i=T, W1 4,d=2,q}. Let
Every point of a line is a linear combination (with ¢>3, ¢"+1>hy, m>1,
coefficients fromF?; ) of two arbitrary points of the same P.(f,)
line. So we can obtain two variants for (15) where in the DW= om oo™ =, .
second one points are from distinct subsetdof. Let, W, i .

e.g.,w(uz) = k3. Then G £x BCFom U ()

(0,0,u5)" =7 (u2)(0,0,w(us))"
=¢1(0,0, k)7 whereP.(f,) = [f,--- f.] iIs anro X w4 matrix of wy, , equal
iNT * columnsf, € {Ho}. Then the new cod¥ is an[n,n —r],2 E-code
+Jz(0,0,k3) ) 01,02 S Fq. (25) with n. = wm.’q_i_noqm7 r = 710_1_2”1’ h(H],) S hE(Hy) S h[];;—{—l.

If m =1 then|{W.,}| = 1, in (25) only the first variant Proof: We use theh# -assignment with/B| = h&. Assume
is possible, and’ is not an E-code. p # 0. Since K, is a 2F-partition we always can use (16) that
. ﬁ . leads to (8) and (9). Now assunpe= 0. We have
To estimater™ (Hy) we use (6), (8), (9), (24), the second variant ®) ©) W ! v
of (19), (20), a_nd (25), and Comment 1 iii). To prov!d__fa (2L_1) and (071“”“2)/1‘ :w(t)(f1,0,w(t))T
the second variant of (19) and (20) we use the partifion with ) T
2ho subsets and put > 4 for (19). To provide the second variant — x(t) <f” i _/31“1> .
of (25) we use the partitiodC,, with two subsets. The inequality w(t) w(t)
h(Hy) < hF(Hy) follows from Definition 1. O t=us — fiur #0. (26)
_ (0,ur1,u2)" =(fi.ur, frur)" = (£,.0.0)",
Theorem 3: We giveConstructiond/*). Let Ky be a2™-partition. us = fhur, t=0. (27)
Let
a>3, no>q¢"+1>hd, m>1, In (15) it holds thaty = =z = 1 for (26) andy = 0,z = 2,j; =

jo = 1, for (27).

To estimate” (Hy) we use the relations (8), (9), (26), and (27).
We assume that if in (14) an indicatgr = * then the columnf, First, we use the partitiofUs with h{ subsets. Then, to provide the
belongs to a0 -subset ofks. Under these conditions the new codeelation (27), we partition the uniog(3;) (that is a subset ok s)
Vis an[n,n — r],2 code withn = wy, ¢ + nog™,r = ro + 2m. into two subsets so that the first is the coludn. To provide the
Besides, forq > 4 the new codeV is an E-code withh(Hy) < relations (26) we inscribe the columns B to any unionL(\)
RP(Hy) < 2nf. with X # 3. O

p® =Qm, n® = Win,q, B=Fgm U {x}.
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Remark 3: ConstructionsM ", M(® | and M"Y of Theorems 1,
2, and 4 are Constructions32,, C'12,, andAL2 of [6, Secs. Ill, VI,
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at least one cod®(x). We consider gaps and the valuesact for

concrete code families. We use a development of the notation, e.g.,

Notation 6.1] except for some details. In Theorems 1, 2, and ; > ™k +1 > hE = 20F M, ;. = M, ; + m. j .. We fill

of this work the upper estimates &f Hy), A (Hy) are less (i.e.,

gaps by other constructions.

better) than ones in [6, Secs. IV, VI]. In [6, Sec. VI], e.g., we Let

have hZ(Hy) < 3ho + 2(wm—1,4 + 2) for Construction 432,
and h¥ (Hy) < 3¢™ 4 wm—1,, + 2 for ConstructionC'12,, but
in Theorems 1, 2 of this work we have”(Hy) < 2he and
P (Hy) < 2he + 2. For ConstructionAL2 no estimate oh” (Hy)
is given in [6] but one is obtained in Theorem 4 of this work.

These estimates o (Hy) are important for constructing new

R
—r(C I L
pg(n.R,C) = ¢ " ;(q -1) <7>
be the covering density of gn, n —r(C)]4 R codeC. For an infinite
family A consisting ofln, n — r(A,)], R codesA, we consider the

value

codes by iterative process when newly obtained codes are starting

codes for next steps, see Section Ill. The improved estimates helped

us to obtain a number of good code families.

Theorem 5: We giveConstructiond®. Let K, be a2”-partition.
Let the matrix D®) be absent, i.en® = 0,Hy, = 9, and let
g >3m0 >¢"+1>h, m>1, and B = Fym U {x}.
Then the new cod® is an[n,n — r],2 E-code withn = noq™,

7 = 7o 4 2m, h(Hy) < R¥(Hy) < 2h§.
Proof: As before, the conditiomy > ¢™ + 1 is a necessary
condition forB = F,m U {x}. If ¢ 4+ 1> h{’ we cannot use the

h-assignment. We use thg”-assignment as in Theorem 2 and Example 3: We consider; = 4,r = 2¢

additionally we assign the indicatat; = . Similarly to Theorem

ﬁq(R‘/ A) = liglglf'/l,q(n/, R, Ay).

Denote byn[r, R] the leastknownlength of ag-ary linear code of
codimensionr, covering radiusk. Let p3[n, R] be the leasknown
covering density and letj[», R] be the largesknowncodimension
of a ¢-ary linear code of lengthn, covering radiusk. If we obtain

an[n,n —r], R new codey with n < nj[r, R] thenr > r3[n, R|+1

andyug(n, R, V) < (1/q)pg[n, R]. In examples we give:g[r, 2] for

comparison.

— 1, and use th¢5, 2]42
codeD of Example 1, see (3). Constructidd® for Vo = D, m =

4 forp # 0 we can always use the relations (8) and (9). If- gives a[21.16]s2 E-codeS with 4" (Hs) < 8. We takeS as the
p = 0.u # 0, we use (24). Ifp = 0,u, = 0, we can apply Initial code of a chain withy = 21,7 = 5,h <8 my = 2.
the second variant of (23). To provide (23), (24) we use the partitionConstructiond/* for m = 2 forms an[n..n1 — r1]42 E-code

Ks with 2hf subsets. O

Remark 4:In (13) we can pufés, -+, & ={Wn }, k=wm, ¢+1.
Let K, be a partition of{S. } into three subset$h.i}, {hup: p =
2.k}, {huy: p = k+1,¢m}. This partition has the following

property: each column of. is equal to a linear combination (with 5376, 21504, 86016, 7, ;= 542M,; = 13,15,17, and h¥ <
) of exactly two columns from distinct subsetsy . 16 = 32.

*

coefficients fromF’,
of K, eg.,

hup = (1= 7(& )R + 7(&p) Rug(p)

wherep = k+ 1,4, €y = w(&p). 9(p) € {2, k}. The matrix(2],

of [6, egs. (14), (15)] and the matri%, in this work are the same.

Hencek’, is also a partition of €27, }. Estimates of.(Hy), h” (Hy)
in [6, Secs. IV, VI] are right but with the help of the partitidd,

the estimates of [6, egs. (20)—(22), (25)] can be explained bette

than it has been done in [6]. Moreover, using the partitica

V; of the first level withn; = 21 4% = 336,/ = 5+2-2 =
9,hf < 2.8 = 16.

The conditionn; = 21-4% > 4.3 41 > 16 holds form, ; = 2,
my2 = 3,mi13 = 4. SOM,;; =4,5,6 for j = 1,2,3. We obtain
three E-coded/; ; of the second level with, ; = 21. 417 =

The conditionny; = 214" > 4™t1x 41 > 32 holds for
miiyr = 3,6,k 1,4. We obtain four E-codesV; ; of
the third level withk = T,4,ny1, = 21 - 4™k AL, =
4 + mi,k 7, 10,7‘1,1,]; =5 + 23/[1,1,]6 19.2123.25
Similarly, the conditionn; > = 21 -4° > 4™uzk& 41 > 32
holds for m, >, = 3,7,k = 1,5, and we obtain five E-codes
V1o of the third level withk = T,5,ny05 = 21 - 47124,
7\/1’1‘2',@ = &T, T2,k = 542Mi0k = 21, 23, 25, 27, 29. FlnaIIy

we have six E-code¥; 3, With m1 3, = 3,8,k = 1,6,n1 36 =
21 4Musk My 5 = 914,71 5 = 23,25,27,29,31,33. So we

and approaches of Theorems 1-5 one can improve estimates Of . . .
[6, Sec. IV] changing term8ho, 2|5| and3|5]| by the term2ho. obtained a number of codes of the third level with equal parameters.

Further codimensions; ; ... of the new codes again can be equal
to each other but due to it gaps in the sequencesafdr = 5+ 2=
are absent ift > =® = 4. Gaps appear for = 1,3,7 = 7,11. We
obtained an infinite family4; of [n,n — r]42 E-codes with

.
Remark 5: With the help of ConstructiodZ®>’ we design infinite

FAMILIES oF CobES WITH COVERING RADIUS R = 2

|terat|v_e chalnsof new podes. A startlnq/to_,no — rO.]q_Q_ E-code Aig=4 r=20—1 n=21x4"7 =35,
Vo, satisfying the conditions of Theorem 5, is callediaitial code. o
The initial code hasiy > ¢™¢ + 1 > h{ for some valuesn;. and ¢>7, 7i(2,A) ~ 1.938. (28)

Using ConstructionV/*) for m = m; we obtain newn,, n; — r;],2
E-codesV; of the first level with n; = no¢™*,r;, = ro + 2m,,
R¥(Hy,) < h¥ = 2Rr{. Then for values ofm; ; satisfying the
conditionn; > ¢™ +1 > kY we obtain[n; ;, ni; — ri |42 E-
codesV; ; of the second levelwith n; ; = ni¢™Hi = nog™®7,
rij = Ti + 277li‘j = 7o + QJ\([,,"J'./JLL’]' = m; +m; ;. Slmllarly,
we obtain codes of thév + 1)th level from codes of theth level,
v > 2. (Note that distinct codes of theth level can have the same
parameters.) Such iterative process produces an infinite family ofExample 4: We considery = 5,r = 2¢t — 1, and take the E-code
[, — 7]42 E-codesV(x) with n = noq®,r = 1o + 22,2 — oc. U of Example 2 as the initial code with, = 6,7, = 3,hF <
The values ofz form an infinite sequence with some gaps in it$, m; 1. We construct a code chain using Constructibf®
beginning. There ie® such that for every: > =® we can design similarly to Remark 5 and Example 3. We obtain an E-ctgavith

Now we fill the gaps. Constructiodd " with Vo = D,m = 2,
forms a[90, 83]42 E-code, Constructiods*) with Vo = S, m = 3,
gives a[1365, 1354]42 E-code.
We have
ni2t —1,2] =255 x 477 = L

[5, eq. (4.1)]. Son < ng[r,2] for the family A;.
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ni =6-5" =30,7 =5,h{ <12. Since30 > 5% +1 > 12 one
hasmi,1 = 2, My,1 = 3. We get a[750, 741]52 E-codeV, ; of the
second level withh?’ < 24. The condition750 > 51,1k + 1 > 24
holds formi 1% = 2,3,4,k = 1,2,3. We haveM; 1, = 5,6,7,
and obtain three E-codég ;. of the third level with

nya g =6-5"11k = 18750,93750, 468750,
i = 13,15,17, Ly < 4s.
Further we get E-code¥ i ... with
Piaa. = 19,21,23,25
112 = 21,23,25,27,29
P13 =23,25,.,33.

For x > «® = 5 gaps in the sequence = 3 + 2z are absent.
Gaps exist fore = 2,4,r 7,11. We obtained a familyA, of
[n,n — r]s2 E-codes with parameters

Az: g =35,

r=2t—1, n=6x5"2% =235,

andt > 7, 7i5(2,A2) =2.304. (29)

ConstructionM™® with Vo = U,m = 2, andVy = Vi, m = 3,
gives a[156,149]52 E-code and g3781,3770];2 E-code and fills
the gaps. Note that fof = 5 the code family of [6, Example 6.3]
cannot be obtained since a neededl]|s2 code), does not exist
[3, Table 6.4].

Example 5: We considerq > 4,r = 2t¢. The construction of
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+® = 4. Gaps appear for = 1,3,» = 8,12. If ¢ = 4 we
have gaps forr = 8,12,14,20 since4® + 1< 4q + 4. We got a
family As of [n,n — r],2 E-codes with

As: q>4, r=2t, n=2¢"14+¢"24+¢7°,
t=3,5, andt > 7if ¢ > 5,
t=23,5,8,9, andt > 111if ¢ =4,
(2, A3) ®2—2¢ ' +05¢ > —2¢ > +¢ " (31)
By (31)

(2, As) = 1.504

Ts (2, As) & 1.6056
(2, As) = 1.7191
e (2, As) & 1.7542
Ty (2, As) =~ 1.7814.

To fill the gaps forg > 4 ConstructionM " with Vo = M, m = 2,
and Constructiond ) with Vo = P, m = 3, form [n,n — 7],2 E-
codes withn = f,(8)+¢+2,r =8, andn = f,(12)+¢*+q+1,r =12.
For ¢ = 4 ConstructiondM™® with Vo = P,m = 2, gives an
auxiliary [597, 587]42 E-code£ with ¥ (H.) < 11. Construction
M® with Vo =L, m =2, forms an E-codd with n=9552, r =14,
R¥(Hz) < 22. ConstructiondM® with Vo = T,m = 3, gives an
E-code withn = 611328,r = 20.
Due to [5, eq. (1.5)], [6, Example 6.1] we have

[1, p. 104] generalized in [5, Theorem 3.1] and [6] gives the

[2¢ 4+ 1,2¢ — 3],2 code M with parity-check matrix

1 - 1 00 0 --- 0
_ & & 1.0 0 -2 0
Hp = &€ o 200 1 - 1
0 --- 0 0 1 & &
:[fl"'f2q+l]7{€17"'v£q}
=F.;. & =0. (30)

In the proof of [6, Theorem 5.1] it is shown that the patrtitions

Kq= {-fl‘,‘.”‘r-qul}V{fq}?{fq«‘rl}'r{fq+2}'r{fq+3‘,‘."‘rf2q+1}
for evenqg and
Ko ={fr FoabAf st i ob Af 0}

{fq?fq+l}7{fq+2}7{fq+3“..7f2q+1}

ngl2t,2] = fo(20) + ¢+ wiay
for ¢ = 4,5 and
ng[2t,2] = fo(2t) + w34

for ¢ > 7. So,n = f,(2t) <ng[r, 2] for the family As.

Example 6: We consider; > 7.» = 2t —1. Forq > 7 there exists
always anfng, nq — 3]42 codeWV with n, < ¢. For example, we can
treat points of a small complete cap as columns of a parity-check
matrix of a codeV [6, pp. 2072, 2077], [12, Sec. 1.3]. Then by [10,
p. 59], [11, Table 9.3], and [15, Table 1], we hawvg < |¢/2] + 2
for ¢ > 8 andn, < 6,6,6,7,8,9,10,10,10,12,12,13, 14, 14,
for ¢ = 7,8,9,11.13,16,17,19, 23, 25, 27, 29, 31, 32, respectively.
Using the trivial partition Constructiod " with Vo = W, m = 1,
ho = ng, forms an[n,n — 5],2 E-code& with n = n,q + 2,

for odd ¢ are 2-partitions. It is easy to see that in both cases eadh (Hs) < n, + 1,h"(He) < 2ng. If 20, < ¢+ 1 we take

columnf, of the subset” = {f, 4, -+, fs,,,} is equal to a linear
combination of the columng, ., ¢ J andf, € J. SoJ is a
Q% -subset andC, are 2™ -partitions. Letg = 5,&41 = i,i =1, 4.
We verified by computer that

Ks = {f17f6}~{fzef5}~{f;saf4}v{f7}a{fs:"'vfn}

is a 2" -partition. So forq > 4 we have ht(Hm) < ¢ +
1. Construction M with Vo M, Ko Ky m = 1,
hd < q+ 1, gives an E-codeP. We takeP as the initial code
with nog = f,(r0)sr0 = 6,h§ < 2¢ + 2,m; = 2, where
fa(2t) = 24"+ ¢ + ¢

We design a code chain by Constructidd®, see Remark 5
and Examples 3, 4. We obtain an E-code with n; = f,(r1),
r o= 10,hY < 49+ 4. Letq > 5. Theng®> +1 > 4q + 4,
¢ +1 > 8 + 8 Forj = 1,3 we get E-codesV; ; with
ni; = fqlri)ir,; = 14,16,18,hF < 8¢ + 8, and E-
COdeSVl,j,k with nij ek = fq(rljj’k),rl)l,k 20,22,24,26,
22,24,26,28,30,71 3 % 24,26,---,34. We have

T2k = =

& as the initial code. If2n, >¢ + 1 Construction M®  with
Vo = E,m = 1, gives an[n,n — 7],2 initial E-code A" with
n = ngg® + 2¢ 4+ L,AY(Hy) < 2n, + 2< ¢ Similarly to
Examples 3-5, Constructial®) designs a family4, of [, n—7],2
E-codes with properties

Agiq>7, r=2t—1, t=4,6, andt > 8,
ng < g, there exists afig, ny — 3]42 code
n= nquZ +2¢" P forg+1> 2ng,
n= nquZ +2¢" P g forg+ 1< 2ny,
1 _ _
(2 A) & S(g+4+ 60 —11g77)
. -1
for oddg¢ > 9 with n, = qT + 2,
1 _ _ _
7y (2 A1) & 2 (g +6+9¢7 —4g™" = 16¢7")

for eveng > 8 with ng, = % + 2. (32)
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UPPER BOUNDS ON THE LENGTH FUNCTION {(7,2; ¢) FORg = 4,5,7

TABLE |
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Results of Examples 3-6 form Table I. For= 3.4 we use (3),
(4), and (30).

Remark 6: In the binary case, constructions of [9, Theorem 3.1]
and their modifications [9, Sec. 3] are effective. We can treat
Constructions M, M? as nonbinary generalizations of these
constructions. Ideas of Constructiodg® -3/ mainly work in
the binary case. But we have no improvements of binary results from
[9] with the help of M®—M®),
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T r,2;4) ry ¢ {(r,2;5) 7y 1 Wr, 2,7y 7rg i
< < <

3 5¢ 6 6d

4 9a 11’”5 15bc

5 21* 3 3 30* 35 aa* 31

6 37* 4 3 56® 4 3 106 4 3

7 90* 31 156* 3 4 309% 5 3

8 15¢f 41 287F 4 1 751% 41

9 336* 5 5 750* 5 5 2164% 5 4

10 592* 6 5 1400* 6 5 5194% 6 5

11 1365* 5 4 3781% 5 4 15141% 7 5

12 2389* 6 4 7031* 6 4 36415* 6 4

13 5376 9 5 18750® 9 5 106036* 9 5

14 9552® 10 5 35000° 10 5 254506° 10 5

15 21504* 9 5 93750% 9 5 741909° 11 5

16 37888* 10 5 175000® 10 5 1781542* 10 5

17 86016% 9 5 468750* 9 5 5193363* 11 5

18 151552* 10 5 875000® 10 5  12470794* 10 5 1]
19 344064°® 13 5  2343750° 13 5 36353541* 11 5

20 611328° 14 5 4375000% 14 5 87295558° 14 5

21 1376256° 13 5 11718750° 13 5 254474787° 15 5 [2]
22 2424832° 16 5 21875000* 14 5 611068906® 14 5

23 5505024* 13 5 58593750* 13 5 1781323509* 15 5 [3]
24 9699328* 16 5 109375000* 14 5 4277482342*% 14 5

Key to Table I: a1) I’[S] 6] dn) [4]
® bounds obtained in this work

* bounds described briefly without proofs in {7},(8] and considered in details in this work

(5]

ry — codimension of a starting code, 4 — number ¢ of construction M®

starting codes are codes from this table excepting r = 14, ¢ = 4.

[6]
By (32)

(2, Ay) = 1.88
(2, A1) = 1.707
71y, (2, Ay) = 1.943.
Besides, sincer; = 6, we have
7. (2, A4) = 2.00.

(7]
(8]

Q

El

To fill the gaps Constructiodd ™ with V, = £, m = 2, forms an (101

E-codeC with n=n,¢*+2¢°+q+1,7=9, A" (He) <2n, + 1 < ¢°.
ConstructionM®) with Vo = C,m = 2, gives an E-code with
n = nqq‘r’ + 2q4 + q3 + qz, r = 13.

For g = p? > 16 we take agV the code of [6, Theorem 5.2] with
ng = 3p — 1. By [6, eq. (30)], it can be shown thaf®(Hyy) < 4.
ConstructionM™ with Vo = W, m = 1, forms an initial code.
Constructiond® gives a family.As of [n, n — r],2 E-codes with

r=2t—1>5,

As: q=p° > 16,
3

n=0@Bp—1)¢'"+¢'",
D) lvd
(2. As) m 45— = — .9,
¢ P 2¢ pg
For growingq = p* codes of (33) have a covering densitys but
if we do not consider thg value as square we obtain a density of
q/8, see (32).
By [6, Example 6.3]

ne[2t — 1,2] = ngq" 2 +2¢" 7 + ¢ +wi_ay

[11]

[12]

(23]
[14]

[15]

il (33) g

if an [ng, ng — 3]42 code withn, < ¢ exists and
ng[2t —1,2] = (3p — l)qF2 +47% 4 Wi—3.q
if ¢ =p*> >9.S0,n<ni[r. 2] for the families.A, and As.
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