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Constructions and Families of Nonbinary
Linear Codes with Covering Radius

Alexander A. Davydov

Abstract—New constructions of linear nonbinary codes with covering
radius R = 2 are proposed. They are in part modifications of earlier
constructions by the author and in part are new. Using a starting code
with R = 2 as a “seed” these constructions yield an infinite family of codes
with the same covering radius. New infinite families of codes withR = 2

are obtained for all alphabets of sizeq � 4 and all codimensionsr � 3

with the help of the constructions described. The parameters obtained
are better than those of known codes. New estimates for some partition
parameters in earlier known constructions are used to design new code
families. Complete caps and other saturated sets of points in projective
geometry are applied as starting codes. A table of new upper bounds on
the length function for q = 4; 5; 7; R = 2; and r � 24 is included.

Index Terms—Complete caps, covering codes, covering radius, linear
codes, nonbinary codes.

I. INTRODUCTION

Constructions of linear covering codes with covering radiusR =
2 and close problems are considered, e.g., in [1]–[16], and the
references therein. An introduction to linear covering codes and a
general survey is given in [3]. Linear codes withR = 2, even basis
q � 4, and codimensionr = 4 are constructed in [1, p. 104]. In [5]
and [6] the construction of [1] is generalized to odd basisq � 5: In
[2] a construction of codes withR = 2; q = 3; r = 4t+ 1; is given.
Using these codes a “doubling” construction of [8, Theorem 3a],
[14, Sec. 4] produces codes withR = 2; q = 3; r = 4t + 2: In a
geometric perspective, linear covering codes withR = 2 are studied
in [10], [11, Ch. 9], [12, Sec. 2], [15], and [16]. For arbitraryq and
r, some code constructions were proposed in [4] and developed in
[5], [6], and [9]. They rely on a linear code of covering radiusR
as a starting code and result in infinite families of linear codes with
the same covering radius. These constructions can be called “qm-
concatenating constructions” since a parity-check matrix of a starting
code is repeatedqm times.

In this correspondence we use, modify, and develop the approach
and constructions considered in a recent paper [6]. In Section II,
we survey constructions forR = 2 from [6] and propose new
constructions. For all the constructions described we obtain estimates
of partition parameters useful for constructing new codes by an
iterative process when codes obtained in a certain step are starting
codes in the next steps. The obtained estimates are better than those
in [6] and help us to obtain a number of good code families. In
Section III, with the help of the described constructions and the
iterative process, we construct new infinite families of covering codes
with R = 2 and anyq � 4; r � 3: Parameters of the new codes are
better than those of known codes. The obtained codes give new upper
bounds on the length functions. We have included a table of the new
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upper bounds for codes withq = 4; 5; 7; R = 2; andr � 24: Some
results of this work were announced in [7] and [8].

Let FFF q be the Galois field ofq elements andFFF �

q = FFF qnf0g:
Denote by an[n; n � r]qR code aq-ary linear code of lengthn,
codimensionr, and covering radiusR: This code is an(n � r)-
dimensional subspace in the space ofn-dimensional row vectors over
FFF q: In the notation[n; n� r]qR we may omitR and changen� r

by its value. The length functionl(r;R; q) [1] is the smallest length
of a q-ary linear code with codimensionr and covering radiusR:

Let Grq be the space ofr-dimensionalq-ary column vectors.
All matrices and column vectors below areq-ary. An element of

FFF q appearing in aq-ary matrix denotes a column vector ofGmq that
is aq-ary representation of this element, and vice versa, we can treat
a column vector ofGmq as an element ofFFF q :

Let 0k be the all-zero matrix withk rows. Denote by0 a zero
column vector. We specify the dimensions of vectors and matrices
unless they are unambiguously defined by the context. In this case we
specify the number ofq-ary rows in a matrix or positions in a column.

Denote byfHg the set of columns of a matrixH: Let HC be
a parity-check matrix of a codeC and let T be the symbol of
transposition.

We consider linear combinations ofq-ary columns only with
nonzeroq-ary coefficients.

Fact 1: An [n; n � r]qR code with a parity-check matrixH =
[fff1 � � � fffn], wherefff j 2 Grq ; j = 1; n, has covering radiusR = 2 if
and only if each nonzero columnppp of Grq can be represented by one
of following linear combinations with columns ofH:

ppp = 1fff j ; ppp 2 Grq ; ppp 6= 0; fff j 2 fHg; 1 2 FFF
�

q (1)

ppp = 1fff j + 2fffj ; ppp 2 Grq ; ppp 6= 0; j1 6= j2; fff j ;

fff j 2 fHg; 1; 2 2 FFF
�

q (2)

and, besides, there is a nonzero columnppp0 of Grq that cannot be
written in the form of (1).

Note that ifR = 1, each nonzero column ofGrq can be written
in the form of (1).

We can treat a nonzero column ofGrq as a point of the projective
geometry PG(r�1; q): Then a parity-check matrix of an[n; n�r]q2
codeC is a setH of n points. A point set of a projective geometry
is 1-saturated if any point of the geometry lies on a line through
at least two points of this set. By Fact 1,H is a 1-saturated set. A
complete cap is a1-saturated set such that no three of its points are
collinear. If C has minimum distance at least4 thenH is a complete
cap. For details, see [6, pp. 2072, 2077], [11, Ch. 9], [12, Sec. 1.3],
[13, Sec. 12], [15], and [16]. In Section III, we use complete caps
and other1-saturated sets as starting codes.

Definition 1: Let H be a parity-check matrix of an[n; n � r]q2
code and letH = [fff1 � � � fffn], wherefff j 2 Grq ; j = 1; n:

a) A partition of the column setfHg into nonempty subsets is
called a2-partition if each nonzero columnppp of Grq can be
represented in the form of either (1) or (2) where in (2) columns
fffj andfff j belong todistinct subsets.

b) A subsetF of a 2-partition is called aQ+-subset if each
column ofF can be written in the form of (2), where columns
fff j and fff j belong to distinct subsetsY and Z of this 2-
partition and it is possible thatY = F : A 2-partition is called
a 2+-partition if it has aQ+-subset.

c) A 2-partition is called a2E-partition if each nonzero column
ppp of Grq can be represented in the form of (2) with columns
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fff j andfff j belonging todistinct subsets. A code is called an
E-codeif its parity-check matrix admits a2E -partition.

Remark 1: Definition 1 uses approaches of [6, Definitions 2.4, 6.1,
6.2]. The term “AL2” of [6] is changed to “E” (for “exactly”). Each
nonzero columnppp of Grq is equal to a linear combination ofexactly
two columnsfrom a parity-check matrix of an[n; n � r]q2 E-code.
By Fact 1 and Definition 1, a2-partition of a parity-check matrix
H is a 2E-partition if and only if each column ofH can be written
in the form of (2) with columnsfff j and fff j belonging to distinct
subsets. So, each subset of a2E-partition is aQ+-subset.

Denote byh(H;K) (respectively,h+(H;K) or hE(H;K)) the
number of subsets in a2-partition K (respectively,2+-partition K
or 2E-partition K) for a matrix H: A partition into one-element
subsets is calledtrivial . By Fact 1, for a parity-check matrix of
a code with covering radius2 the trivial partition always is a2-
partition. The minimal number of subsets in any2-partition for a
matrixH is denoted byh(H): So,h(H) = min

K
h(H;K): Similarly,

h+(H) = min
K

h+(H;K); hE(H) = min
K

hE(H;K):

Example 1: We considerq = 4; r = 3: Let � be a primitive
element ofFFF 4: The construction of [6, Theorem 5.2] gives the[5; 2]42
codeD with parity-check matrix

HD =
1 1 1 0 0
0 0 0 1 1
0 1 � 0 1

= [fff1 fff2 fff3 fff4 fff5]: (3)

Consider the partition

K = ffff1; fff2g; ffff3g; ffff4g; ffff5g

(we will write partitions in this form). Assume�; ; � 2 FFF �

4: We have

(�; 0; 0)T = �fff1; (0; ; 0)
T

= fff4; (0; 0; �)
T

= �fff4 + �fff5; (0; �; �)
T

= �fff5; (0;  6= �; �)T

= ( + �)fff4 + �fff5; (�; 0; ��)
T

= �fff3; (�; 0; � 6= ��)T

= (� + ���1)fff1 + ���1fff3; (�; ; 0)
T

= �fff1 + fff4; (�; ; �
j�)T

= �fff2+j + fff4; j = 0; 1; (�; �i�; �2�)T

= �fff3�i + �i�fff5; i = 0; 2:

By Definition 1a),K is a 2-partition. Sincefff1 = �2fff2 + �fff3,
the subsetffff1; fff2g is aQ+-subset. HenceK is a 2+-partition and
h+(HD) � 4:

Example 2: We considerq = 5; r = 3: Let U be a [6; 3]5 code
with parity-check matrix

HU =
1 1 1 0 0 0
0 0 0 1 1 1
0 1 2 0 1 2

= [fff1 � � �fff6]: (4)

Using Fact 1, we verified directly thatU has covering radius2. Hence
the trivial partition ofHU is a 2-partition. Since

fff1+j = 2fff2+j + 4fff3+j ; j = 0; 3

this partition is a2E-partition (see Remark 1),hE(HU) � 6; and
U is an E-code.

II. CONSTRUCTIONS OFCODES

Constructions considered in this section are based on the following
approach to lengthening nonbinary codes with covering radiusR = 2
[6]. We use an[n0; n0 � r0]q2 starting codeV0 with a parity-check
matrix

H0 = [fff1 � � � fffn ]; fff j 2 G
r
q ; j = 1; n0:

Let m be an integer. We putqm + 1 � n0: Denote byWm a
parity-check matrix of the[wm;q; wm;q �m]q1 Hamming code with
wm;q = (qm � 1)=(q � 1): We form an[n; n � r]qRV new codeV
with n = 2wm;q + n0q

m; r = r0 + 2m; and parity-check matrix (5)
(see at the bottom of this page), where

fff j 2 fH0g; j = 1; n0

f�1; �2; � � � ; �q g = FFF q

�j 2 FFF q ; j = 1; n0 � 1; �i 6= �j

if i 6= j;0 is the zero column withm positions,0k is the zero
k � wm;q matrix for k = r0;m:

From now on(aaa; bbb; ccc)T is a column ofGrq with aaa 2 Grq ; bbb; ccc 2 Gmq :
In order to showRV = 2 we represent an arbitrary nonzero column
(ppp; uuu1; uuu2)

T 2 Grq by a linear combination of at most two columns of
H 0
V , see Fact 1. For a nonzero columnddd of Gmq we denote bywww(ddd)

the onlycolumn of the matrixWm and by�(ddd) the onlyelement of
FFF �
q with ddd = �(ddd)www(ddd):

1) Assumeppp 6= 0: Since the starting codeV0 hasR = 2 the
columnppp can be written in the form of either (1) or (2) with
fff j 2 fH0g; v = 1; 2: We denotettt = uuu2 � �j uuu1:

a) Assumeppp = 1fffj ; fff j 2 fH0g; see (1). Forj1 6= n0
and j1 = n0 we have, respectively,

(ppp; uuu1; uuu2)
T =�(ttt)(0;0;www(ttt))T + 1(fffj ; �11 uuu1; �j �11 uuu1)

T ;

ttt 6= 0; 1 2 FFF �

q (6)

(ppp; uuu1; uuu2)
T =�(uuu1)(0;www(uuu1);0)

T + 1(fffj ;0; �11 uuu2)
T ;

uuu1 6= 0; 1 2 FFF �
q : (7)

b) Assumeppp = 1fff j + 2fffj with j1 6= j2; fff j ; fff j 2
fH0g; see (2). Forj1; j2 6= n0 we have

(ppp; uuu1; uuu2)
T = 1(fffj ; �x; �j �x)

T + 2(fffj ; �y; �j �y)
T ;

1; 2 2 FFF �

q : (8)

Values of�x; �y can be found from the system

1�x + 2�y = uuu1

1�j �x + 2�j �y = uuu2

that has determinant12(�j � �j ) 6= 0: Here �j 6= �j
sincej1 6= j2: For j2 = n0 we have

(ppp; uuu1; uuu2)
T =1(fffj ; �11 uuu1; �j �11 uuu1)

T+2(fffj ;0; �12 ttt)T ;

1; 2 2 FFF �

q : (9)

H 0

V =
0r j 0r j fff1 fff1 � � � fff1 j � � � j fffn �1 fffn �1 � � � fffn �1 j fffn fffn � � � fffn
Wm j 0m j �1 �2 � � � �q j � � � j �1 �2 � � � �q j 0 0 � � � 0

0m j Wm j �1�1 �1�2 � � � �1�q j � � � j �n �1�1 �n �1�2 � � � �n �1�q j �1 �2 � � � �q

(5)
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2) Assumeppp = 0: We have

(0; uuu1; uuu2)
T = �(uuu1)(0;www(uuu1);0)

T + �(uuu2)(0;0;www(uuu2))
T
;

uuu1; uuu2 6= 0: (10)

In (6), (7), and (10) one summand can be absent ifttt = 0 or
uuui = 0: Columns(0;www(uuu1);0)

T and(0;0;www(uuu2))
T are taken

from two left submatrices ofH 0

V ; see (5).

Finally, there is a nonzero columnppp0 2 Grq that cannot be
represented in the form of (1), see Fact 1. A column(ppp0; uuu1; uuu2)

T

cannot be written in the form of (1) as well. So,RV = 2:
The parameterm is bounded only from below, see the inequality

qm + 1 � n0: Hence we can obtain an infinite family of the new
codesV:

If
n �1

i=1

f�ig = FFF q

we can eliminate one or two left submatrices ofH 0
V and reducen:

For example, assume thatV0 is an E-code and use a parity-check
matrixH 0

V of the form of (5) without two left submatrices. SinceV0
is an E-code, forppp 6= 0 we always can apply the case (2) and the
relations of (8) and (9). Ifppp = 0 we cannot use the relation of (10).
But for uuu1 6= 0 the situation

i
f�ig = FFF q always permits us to

find b with uuu2 = �buuu1: We have

(0; uuu1; uuu2)
T =(fffb; uuu1; �buuu1)

T � (fffb; 0;0)
T
;

uuu1 6= 0; uuu2 = �buuu1 (11)

(0;0; uuu2)
T =(fffn ;0; uuu2)

T � (fffn ;0;0)T ; uuu1 = 0: (12)

Constructions described below develop the considered approach to
improve parameters of new codes. The restrictionqm + 1 � n0 is
connected with the condition:�i 6= �j if i 6= j: But if columnsfff i; fff j
are not used together in (8) or (9) then we can put�i = �j : Using a
2-partitionK we can assign the same value of�i to all elements of
each subset. Then the bound onm takes another form, e.g.,

q
m + 1 � h0 2 fh(H0;K); h+(H0;K); hE(H0;K)g:

Sinceh0 � n0 we can reducem, obtain
i
f�ig = FFF q and elim-

inate the left submatrices ofH 0
V :

We define a matrixBm(�) where� 2 FFF q [ f�g is called an
indicator of the matrix.

Bm(�) =
�1 �2 � � � �q
��1 ��2 � � � ��q

; if � 2 FFF q

Bm(�) =
0 0 � � � 0

�1 �2 � � � �q
(13)

wheref�1; �2; � � � ; �q g = FFF q ; �1 = 0; �2 = 1; and0 is the zero
column of Gmq ; cf. (5).

ConstructionM (i): The indexi denotes a variant of a construc-
tion. Let q � 3: A starting codeV0 is an [n0; n0 � r0]q2 code
with a parity-check matrixH0 = [fff1 � � � fffn ]; fff j 2 Grq ; j = 1; n0:
Let K0 be a2-partition of fH0g: Let m be an integer. We form an
[n; n � r]qRV new codeV with n = n(i) + n0q

m; r = r0 + 2m;

and parity-check matrixHV , cf. (5)

HV = [D(i)
S]; S = [S1 � � �Sn ]; Sj =

P (fff j)
Bm(�j)

P (fff j) = [fff j � � �fffj ]; j = 1; n0 (14)

whereD(i) is an r � n(i) matrix, the value ofn(i) depends on the
form of the matrixD(i), the matrixP (fffj) is anr0�qm matrix ofqm

equal columnsfff j 2 fH0g; j = 1; n0, the assignment of indicators
�j depends on the partitionK0 as follows: if columnsfff i; fff j belong

to distinct subsets ofK0 then the inequality�i 6= �j must be true, if
columnsfff i; fff j belong to the same subset ofK0 then we are free to
assign the equality�i = �j or the inequality�i 6= �j :

We introduce notations for ConstructionM (i): Let

B =

n

i=1

f�ig:

Denote byL(�) the union of columns of all submatricesSj having
the same indicator�j = �; j = 1; n0: Let dddk be thekth column of
the matrixD(i); k = 1; n(i): Denote bytttjc the cth column of the
submatrixBm(�j); j = 1; n0; c = 1; qm: Let hhhjc = (fffj ; tttjc)

T

be the cth column of the submatrixSj : By (13), (14), hhhjc =
(fffj ; �c; �j�c)

T if �j 6= �; hhhjc = (fffj ;0; �c)
T if �j = �: Let

h0 = h(H0;K0): If K0 is a2+-partition or a2E-partition we denote
h+0 = h+(H0;K0) or hE0 = hE(H0;K0): Let h0 be one of the
values of eitherh0, or h+0 , or hE0 :

For the setfSg we define a partitionKS into h0 subsets corre-
sponding to the partitionK0: For everyj, all columns offSjg belong
to the same subset ofKS : Columns of setsfSig andfSjg belong to
the same subset ofKS if and only if columnsfff i andfff j belong to the
same subset ofK0: The situation when the equality�i = �j always
holds if columnsfff i andfff j belong to the same subset ofK0 is called
an “h0 -assignment.” In this case, each unionL(�) is a subset ofKS

andjBj = h0 wherejFj is the cardinality of a setF : Now we define a
partitionKS of the setfSg into 2h0 subsets partitioning every subset
T of the partitionKS into two subsets so that the first one consists
of columnshhhj1; hhhj2 of all the submatricesSj which belong toT
and the second one consists of columnsfhhhjk: k = 3; qmg of these
submatrices. By (13), (14),hhhj1 = (fffj ; 0;0)

T ; hhhj2 = (fffj ; 1; �j)
T

if �j 6= �; hhhj2 = (fffj ;0; 1)
T if �j = �:

Comment 1:

i) In ConstructionM (i) we want to obtainRV = 2 where
RV is the covering radius of the new codeV: As before,
uuu = (ppp; uuu1; uuu2)

T is an arbitrary nonzero column ofGrq with
ppp 2 Grq ; uuu1; uuu2 2 Gmq : In order to proveRV = 2 we show
that the columnuuu is equal to a linear combination of at most
two columns ofHV , see Fact 1. We representuuu by a linear
combination

(ppp; uuu1; uuu2)
T =

y

p=1

�pdddi +

z

k=1

k(fffj ; tttj c )T ;

y + z � 2; y; z � 0; �p; k 2 FFF
�

q : (15)

Since the starting codeV0 hasR = 2, a nonzero columnppp can
be written in the form of either (1) or (2) withfff j ; fff j 2 fH0g:
We consider the following situation in (15); see (2)

ppp = 1fff j + 2fff j ; fff j ; fff j 2 fH0g; j1 6= j2;

�j 6=�j ; 1; 2 2 FFF
�

q ; y = 0; z = 2 (16)

where columnsfff j and fffj belong todistinct subsetsof K0

(namely, this fact forces the inequality�j 6= �j ): In the case
(16), the combination (15) has the form of either (8), when
�j ; �j 6= �, or (9), when�j = �: So, in the case (16) the
form of the matrixS in (14) always permits us to find needed
columnstj c : Other cases depend on the matrixD(i) and the
setB and are considered in the proofs of Theorems 1–5. In these
proofs we represent the column(ppp; uuu1; uuu2)T in the form (15).
From ConstructionM (i) and this comment it follows that for
a proof of the relationRV = 2 we should consider in theorem
proofs only the casesppp = 1fff j 6= 0, see (1), andppp = 0:

ii) The approach to obtain estimates ofh(HV); h
E(HV) is as

follows: we consider all cases of the representation of (15)



1682 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 5, JULY 1999

for different ppp; uuu1; and uuu2 and then construct a2-partition,
or a 2+-partition, or a2E -partition of the column setfHVg
in (14) so thatcolumns that are used together in considered
representations belong to distinct subsets. Note that for the
representations of (8) and (9) we use at most one column from
each submatrixSj :

iii) Let � be a primitive element ofFFF q: We define a function

 (�) = 1 if � 6= 1;  (�) = � if � = 1;

� 2FFF �q ;  (�) 2 FFF �q : (17)

Assumeq � 4: Then� 6= �2 6= 1 and each column ofS is a
linear combination (with coefficients fromFFF �q) of exactly two
columns from distinct subsets of the partitionKS , e.g.,

hhhjp = (1��)hhhj1 + �hhhjv; p 2 f2; qmg; �p 2 FFF
�

q ;

� =� (�p�
�1); �v =

�p

�
6= 0; 1; �p: (18)

Theorem 1:We give ConstructionM (1): Let q� 3; qm+1� h0;
m � 1; h0 � 3

D
(1) = [AmQm]; Am =

0r

Wm

0m
; Qm =

0r

0m

Wm

;

n
(1) = 2wm;q; f0; �g � B � FFF q [ f�g:

Then the new codeV is an [n; n � r]q2 code with

n = 2wm;q + n0q
m
; r = r0 + 2m; h(HV) � h0:

Besides, forq � 4 the new codeV is an E-code with

h
+(HV) � h0 + 1; h

E(HV) � 2h0:

Proof: The conditionsB � FFF q [ f�g andqm+1 � h0 allow
us to assign distinct indicators�i 6= �j if columnsfff i; fff j belong to
distinct subsets ofK0: We use theh0-assignment.

1) Assume that in (15)ppp = 1fffj 6= 0; see (1). For�j 2 FFF q

we denotettt = uuu2 � �j uuu1:

a) Assume�j 6= �: If ttt 6= 0 then in (15) y = z = 1;
i1>wm;q; dddi = (0;0;www(ttt))T 2 fQmg; and we use
(6). If ttt = 0; uuu1 6= 0; we can apply for (15) the following
two variants:

(ppp; uuu1; uuu2)
T = 1(fffj ; 

�1
1 uuu1; �j 

�1
1 uuu1)

T

= 1((1� �)hhhj 1 + �hhhj v)

�v =
�1
1 uuu1

�
6= 0; 1: (19)

In the first variant it holds thaty = 0; z = 1; cf. (6). For
the second one we putq � 4; � = � ((�1

1 uuu1)�
�1);

see (18) with�p = �1
1 uuu1; and have in (15)y = 0;

z = 2; j1 = j2: Finally, if ttt = 0; uuu1 = 0; thenuuu2 = 0

and we apply for (15) the variants

(ppp;0;0)T = 1(fffj ;0;0)
T

= 1((1� �)hhhj 2 + �hhhj v)

�v =
�� 1

�
6= 0; 1: (20)

b) Assume�j = �: If uuu1 6= 0 then in (15)y = z = 1;
i1 � wm;q; dddi = (0;www(uuu1);0)

T 2 fAmg; and we use
(7). If uuu1 = 0; uuu2 6= 0; we can apply two variants, cf.
(7), (19)

(ppp;0; uuu2)
T = 1(fffj ;0; 

�1
1 uuu2)

T

= 1((1� �)hhhj 1 + �hhhj v)

�v =
�1
1 uuu2

�
6= 0; 1: (21)

In the second variant we put

q � 4; � = � ((�1
1 uuu2)�

�1)

see (18). Ifuuu1 = uuu2 = 0 we use (20).

2) Assume that in (15)ppp = 0:

a) Assumeuuu1; uuu2 6= 0: Then in (15)y = 2; dddi 2 fAmg;
dddi 2 fQmg; and we use (10).

b) Assumeuuu1 6= 0; uuu2 = 0; or uuu1 = 0; uuu2 6= 0: Since
f0; �g � B we can put�k = 0; �d = �; for somek; d;
and apply for (15) the following variants, cf. (10):

(0; uuu1;0)
T =�(uuu1)(0;www(uuu1);0)

T

= (uuu1)hhhkx �  (uuu1)hhhk1

�x =
uuu1

 (uuu1)
6= 0; 1; �k = 0: (22)

(0;0; uuu2)
T =�(uuu2)(0;0;www(uuu2))

T

= (uuu2)hhhdy �  (uuu2)hhhd1

�y =
uuu2

 (uuu2)
6= 0; 1; �d = �: (23)

Columnshhhkx and hhhk1 (respectively,hhhdy and hhhd1) are
from distinct subsets ofKS for q � 3:

So, we have consideredall casesof the representation of (15) and
have shown thatRV = 2:

The estimate ofh(HV) follows from (6)–(10) and (19)–(23). In
(19)–(23) we take the first variant withy + z = 1: We use the
partition KS into h0 subsets. Each unionL(�) is a subset ofKS :

By (6) and (7), columns ofL(�) and columns ofQm are not used
together. Hence we can inscribe the columns ofQm to the subset
L(�): Similarly, we inscribe the columns ofAm to some subset
L(�1) with �1 6= �: The approach of Comment 1 ii) is implemented.
We formed a2-partitionK1 of the setfHVg into h0 subsets.

Assumeq � 4: We use the partitionK1 and partition some subset
L(�2) with �2 62 f�1; �g into two subsets so that the first one consists
of columnshhhj1 andhhhj2 of all the submatricesSj which belong to
L(�2): By (18), each of these two new subsets is aQ+-subset. So,
h+(HV) � h0 + 1: An indicator�2 62 f�1; �g exists sinceh0 � 3:

The estimate ofhE(HV) follows from (6)–(10), (19)–(23), and
Comment 1 iii). In (19)–(23) we consider the second variant with
z = 2: These relations show that the columnuuu can be represented by
a linear combination ofexactly twocolumns ofHV : Hence the new
codeV is an E-code. To provide the mentioned second variant we
use the partitionKS with 2h0 subsets. Then, similarly to the partition
K1, we inscribe the columns ofAm andQm to convenient subsets
of KS : Recall that in the second variant of (19) and (21) we put
q � 4:

In Theorems 2, 3, and 5 we will give conditionsB = FFF q or
B = FFF q [ f�g: They mean that wemustuseall elements ofFFF q

or FFF q [ f�g as indicators�j in (14). In this case we have “a
complete set of indicators” (CSI). For columnsuuu1; uuu2 2 Gmq with
uuu1 6= 0 the property CSI always permits us to find an indexb with
uuu2 = �buuu1, see, e.g., (11).

Theorem 2: We give ConstructionM (2): Let

q � 3; n0 � q
m � h0; m � 1;

D
(2) =Qm; n

(2) = wm;q; B = FFF q :

Then the new codeV is an [n; n�r]q2 code withn=wm;q+n0q
m;

r = r0 + 2m: Besides, forq � 4;m � 2, the new codeV is an
E-code withh(HV) � hE(HV) � 2h0 + 2:
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Proof: The relationn0 � qm is a necessary condition to have
CSI with B = FFF q : If qm>h0 we cannot use theh0-assignment.
To obtainB = FFF q we assignqm � h0 “auxiliary” indicators�j so
that �i 6= �j when columnsfff i; fff j belong to the same subset of the
partitionK0: In this case, a subset of the partitionKS can consist of
more than one unionL(�): We call such process a “qm-assignment.”
The conditionsB = FFF q and qm � h0 allow us to assign distinct
indicators�i 6= �j if columnsfff i; fff j belong to distinct subsets ofK0:

1) Assume that in (15)ppp = 1fff j 6= 0, see (1). Sincef�g =2 B
we use (6), (19), and (20).

2) Assume that in (15)ppp = 0:

a) Assumeuuu1 6= 0: We find b with uuu2 = �buuu1 and put in
(15) y = 0; z = 2; j1 = j2 = b:

(0; uuu1; uuu2)
T = (uuu1) fffb;

uuu1
 (uuu1)

; �b
uuu1

 (uuu1)

T

�  (uuu1)(fffb; 0;0)
T

uuu2 =�buuu1; uuu1 6= 0: (24)

By (17), for q � 3 columns of (24) are from distinct
subsets of the partitionKS , cf. (11).

b) Assumeuuu1 = 0: Then uuu2 6= 0: For m � 2 we treat
columns of the matrixWm as points of the projective
geometry PG(m � 1; q), see, e.g., [6, Secs. I, IV, V],
[11], and [13]. We use the same notation for a column
and the corresponding point. We passwm�1;q lines from
some pointkkk: Let kkkid be thedth point of theith line with
kkk = kkki0: We form a partitionKW of the point set into
two subsets

fkkk; kkk i1 : i = 1; wm�1;qg

and

fkkkid: i = 1; wm�1;q; d = 2; qg:

Every point of a line is a linear combination (with
coefficients fromFFF �q) of two arbitrary points of the same
line. So we can obtain two variants for (15) where in the
second one points are from distinct subsets ofKW : Let,
e.g.,www(uuu2) = kkki2: Then

(0;0; uuu2)
T =�(uuu2)(0;0;www(uuu2))

T

=�1(0;0; kkk
i
1)
T

+ �2(0;0; kkk
i
3)
T ; �1; �2 2 FFF

�

q : (25)

If m = 1 thenjfWmgj = 1, in (25) only the first variant
is possible, andV is not an E-code.

To estimatehE(HV) we use (6), (8), (9), (24), the second variant
of (19), (20), and (25), and Comment 1 iii). To provide (24) and
the second variant of (19) and (20) we use the partitionKS with
2h0 subsets and putq � 4 for (19). To provide the second variant
of (25) we use the partitionKW with two subsets. The inequality
h(HV) � hE(HV) follows from Definition 1.

Theorem 3: We giveConstructionM (3): LetK0 be a2+-partition.
Let

q � 3; n0 � qm + 1 � h+0 ; m � 1;

D(3) =Qm; n(3) = wm;q; B = FFF q [ f�g:

We assume that if in (14) an indicator�j = � then the columnfff j
belongs to aQ+-subset ofK0: Under these conditions the new code
V is an [n; n � r]q2 code withn = wm;q + n0q

m; r = r0 + 2m:
Besides, forq � 4 the new codeV is an E-code withh(HV) �
hE(HV) � 2h+0 :

Proof: The conditionn0 � qm + 1 is a necessary condition to
have CSI withB = FFF q [f�g: If qm+1>h+0 we cannot use theh+0 -
assignment. We use theqm-assignment as in Theorem 2 and besides
we assign the indicator�j = � in accordance with the request of
Theorem 3.

1) Assume that in (15)ppp = 1fff j 6= 0, see (1).

a) Assume�j 6= �: We can use the relations (6), (19), and
(20).

b) Assume�j = �: Thenfff j belongs to aQ+-subset of
K0: Hence, by Definition 1,fff j = �fff i + �fff t where
�; � 2 FFF �q and fff i; fff t belong to distinct subsets ofK0:
So, we can reduce this case to the situation of (16) and
use the relations (8) and (9).

2) Assume that in (15)ppp = 0: We can use the relations (23) and
(24).

For estimate ofhE(HV) we use the second variant in (19), (20),
and (23) withq � 4 for (19). To provide it and the relation (24) we
use the partitionKS with 2h+0 subsets. Taking into account (6) and
the case�j = � considered in this proof, we see that columns of
the unionL(�) and columns ofD(3) = Qm are not used together.
Hence, similarly to Theorem 1, we can inscribe the columns ofQm

to a subset ofKS obtained from the unionL(�):

Remark 2: Under conditions of Theorems 1–3 (withm � 2 for
Theorem 2) the new codeV is an E-code forq = 3 as well as for
q � 4: Moreover, forq = 3;m � 2, the same estimates ofhE(HV)
as for q � 4 hold. We did not prove these facts forq = 3 to save
space.

Theorem 4: We giveConstructionM (4): LetK0 be a2E-partition.
Let

q � 3; qm + 1 � hE0 ; m � 1;

D(4) =
P�(fff1)
0m

Wm

; n(4) = wm;q;

�1 6= �; B � FFF q [ f�g

whereP�(fff1) = [fff1 � � � fff1] is an r0 � wm;q matrix of wm;q equal
columnsfff1 2 fH0g: Then the new codeV is an[n; n�r]q2 E-code
with n = wm;q+n0q

m; r = r0+2m; h(HV) � hE(HV) � hE0 +1:
Proof: We use thehE0 -assignment withjBj = hE0 : Assume

ppp 6= 0: SinceK0 is a 2E-partition we always can use (16) that
leads to (8) and (9). Now assumeppp = 0: We have

(0; uuu1; uuu2)
T =�(ttt)(fff1; 0;www(ttt))

T

� �(ttt) fff1;
�uuu1
�(ttt)

;
��1uuu1
�(ttt)

T

;

ttt = uuu2 � �1uuu1 6= 0: (26)

(0; uuu1; uuu2)
T =(fff1; uuu1; �1uuu1)

T � (fff1; 0;0)
T ;

uuu2 = �1uuu1; ttt = 0: (27)

In (15) it holds thaty = z = 1 for (26) andy = 0; z = 2; j1 =
j2 = 1; for (27).

To estimatehE(HV) we use the relations (8), (9), (26), and (27).
First, we use the partitionKS with hE0 subsets. Then, to provide the
relation (27), we partition the unionL(�1) (that is a subset ofKS)
into two subsets so that the first is the columnhhh11: To provide the
relations (26) we inscribe the columns ofD(4) to any unionL(�)
with � 6= �1:
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Remark 3: ConstructionsM (1);M (2); andM (4) of Theorems 1,
2, and 4 are ConstructionsA322; C121; andAL2 of [6, Secs. III, VI,
Notation 6.1] except for some details. In Theorems 1, 2, and 4
of this work the upper estimates ofh(HV); h

E(HV) are less (i.e.,
better) than ones in [6, Secs. IV, VI]. In [6, Sec. VI], e.g., we
have hE(HV) � 3h0 + 2(wm�1;q + 2) for ConstructionA322
and hE(HV) � 3qm + wm�1;q + 2 for ConstructionC121, but
in Theorems 1, 2 of this work we havehE(HV) � 2h0 and
hE(HV) � 2h0 +2: For ConstructionAL2 no estimate ofhE(HV)
is given in [6] but one is obtained in Theorem 4 of this work.

These estimates ofhE(HV) are important for constructing new
codes by iterative process when newly obtained codes are starting
codes for next steps, see Section III. The improved estimates helped
us to obtain a number of good code families.

Theorem 5: We giveConstructionM (5): LetK0 be a2E-partition.
Let the matrixD(5) be absent, i.e.,n(5) = 0; HV = S; and let
q � 3; n0 � qm + 1 � hE0 ; m � 1; and B = FFF q [ f�g:
Then the new codeV is an [n; n � r]q2 E-code withn = n0q

m;
r = r0 + 2m;h(HV) � hE(HV) � 2hE0 :

Proof: As before, the conditionn0 � qm + 1 is a necessary
condition forB = FFF q [ f�g: If qm + 1>hE0 we cannot use the
hE0 -assignment. We use theqm-assignment as in Theorem 2 and
additionally we assign the indicator�j = �: Similarly to Theorem
4 for ppp 6= 0 we can always use the relations (8) and (9). If
ppp = 0; uuu1 6= 0; we use (24). Ifppp = 0; uuu1 = 0; we can apply
the second variant of (23). To provide (23), (24) we use the partition
KS with 2hE0 subsets.

Remark 4:In (13) we can putf�2; � � � ; �kg=fWmg; k=wm;q+1:
Let K0u be a partition offSug into three subsetsfhhhu1g; fhhhup: p =
2; kg; fhhhup: p = k + 1; qmg: This partition has the following
property: each column ofSu is equal to a linear combination (with
coefficients fromFFF �

q ) of exactly two columns from distinct subsets
of K0u, e.g.,

hhhup = (1� �(�p))hhhu1 + �(�p)hhhug(p)

wherep = k + 1; qm; �g(p) = www(�p); g(p) 2 f2; kg: The matrix
r
u

of [6, eqs. (14), (15)] and the matrixSu in this work are the same.
HenceK0u is also a partition off
r

ug: Estimates ofh(HV); h
E(HV)

in [6, Secs. IV, VI] are right but with the help of the partitionK0u
the estimates of [6, eqs. (20)–(22), (25)] can be explained better
than it has been done in [6]. Moreover, using the partitionKS

and approaches of Theorems 1–5 one can improve estimates of
[6, Sec. IV] changing terms3h0; 2jBj and3jBj by the term2h0:

III. FAMILIES OF CODES WITH COVERING RADIUS R = 2

Remark 5: With the help of ConstructionM (5) we design infinite
iterative chainsof new codes. A starting[n0; n0 � r0]q2 E-code
V0, satisfying the conditions of Theorem 5, is called aninitial code.
The initial code hasn0 � qm + 1 � hE0 for some valuesmi:
Using ConstructionM (5) for m = mi we obtain new[ni; ni� ri]q2
E-codesVi of the first level with ni = n0q

m ; ri = r0 + 2mi;
hE(HV ) � hE1 = 2hE0 : Then for values ofmi;j satisfying the
conditionni � qm + 1 � hE1 we obtain[ni;j ; ni;j � ri;j ]q2 E-
codesVi;j of the second levelwith ni;j = niq

m = n0q
M ;

ri;j = ri + 2mi;j = r0 + 2Mi;j ;Mi;j = mi + mi;j : Similarly,
we obtain codes of the(v + 1)th level from codes of thevth level,
v � 2: (Note that distinct codes of thevth level can have the same
parameters.) Such iterative process produces an infinite family of
[n; n � r]q2 E-codesV(x) with n = n0q

x; r = r0 + 2x; x ! 1:
The values ofx form an infinite sequence with some gaps in its
beginning. There isx� such that for everyx � x� we can design

at least one codeV(x): We consider gaps and the values ofx� for
concrete code families. We use a development of the notation, e.g.,
ni;j � qm + 1 � hE2 = 2hE1 ;Mi;j;k = Mi;j +mi;j;k: We fill
gaps by other constructions.

Let

�q(n;R; C) = q�r(C)
R

i=0

(q � 1)i
n

i

be the covering density of an[n; n� r(C)]qR codeC: For an infinite
family A consisting of[n; n� r(An)]qR codesAn we consider the
value

�q(R;A) = lim inf
n!1

�q(n;R;An):

Denote byn�q [r; R] the leastknown length of aq-ary linear code of
codimensionr, covering radiusR: Let ��q [n; R] be the leastknown
covering density and letr�q [n; R] be the largestknowncodimension
of a q-ary linear code of lengthn, covering radiusR: If we obtain
an [n; n�r]qR new codeV with n<n�q [r; R] thenr � r�q [n; R]+1
and�q(n;R;V) � (1=q)��q [n; R]: In examples we given�q [r; 2] for
comparison.

Example 3: We considerq = 4; r = 2t � 1, and use the[5; 2]42
codeD of Example 1, see (3). ConstructionM (3) for V0 = D;m =
1; gives a[21; 16]42 E-codeS with hE(HS) � 8: We takeS as the
initial code of a chain withn0 = 21; r0 = 5; hE0 � 8;m1 = 2:

ConstructionM (5) for m = 2 forms an[n1; n1 � r1]42 E-code
V1 of the first level withn1 = 21 � 42 = 336; r1 = 5 + 2 � 2 =
9; hE1 � 2 � 8 = 16:

The conditionn1 = 21 �42 � 4m +1 � 16 holds form1;1 = 2;
m1;2 = 3;m1;3 = 4: SoM1;j = 4; 5; 6 for j = 1; 2; 3: We obtain
three E-codesV1;j of the second level withn1;j = 21 � 4M =
5376; 21504;86016; r1;j = 5 + 2M1;j = 13; 15; 17; and hE2 �
2 � 16 = 32:

The conditionn1;1 = 21 � 44 � 4m + 1 � 32 holds for
m1;1;k = 3; 6; k = 1; 4: We obtain four E-codesV1;1;k of
the third level with k = 1; 4; n1;1;k = 21 � 4M ;M1;1;k =
4 + m1;1;k = 7; 10; r1;1;k = 5 + 2M1;1;k = 19; 21; 23; 25:
Similarly, the conditionn1;2 = 21 � 45 � 4m + 1 � 32
holds for m1;2;k = 3; 7; k = 1; 5; and we obtain five E-codes
V1;2;k of the third level with k = 1; 5; n1;2;k = 21 � 4M ;
M1;2;k = 8; 12; r1;2;k = 5 + 2M1;2;k = 21; 23, 25, 27, 29. Finally
we have six E-codesV1;3;k with m1;3;k = 3; 8; k = 1; 6; n1;3;k =
21 � 4M ;M1;3;k = 9; 14; r1;3;k = 23; 25; 27; 29; 31; 33: So we
obtained a number of codes of the third level with equal parameters.
Further codimensionsri;j;k;��� of the new codes again can be equal
to each other but due to it gaps in the sequences ofx andr = 5+2x
are absent ifx � x� = 4: Gaps appear forx = 1; 3; r = 7; 11: We
obtained an infinite familyA1 of [n; n � r]42 E-codes with

A1: q = 4; r = 2t� 1; n = 21� 4t�3; t = 3; 5;

and t � 7; �4(2;A1) � 1:938: (28)

Now we fill the gaps. ConstructionM (1) with V0 = D;m = 2;
forms a[90; 83]42 E-code, ConstructionM (4) with V0 = S; m = 3;
gives a [1365; 1354]42 E-code.

We have

n�4[2t� 1; 2] = 251
3
� 4t�3 � 1

3

[5, eq. (4.1)]. So,n<n�4[r; 2] for the familyA1:

Example 4: We considerq = 5; r = 2t� 1; and take the E-code
U of Example 2 as the initial code withn0 = 6; r0 = 3; hE0 �
6;m1 = 1: We construct a code chain using ConstructionM (5)

similarly to Remark 5 and Example 3. We obtain an E-codeV1 with



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 5, JULY 1999 1685

n1 = 6 � 51 = 30; r1 = 5; hE1 � 12: Since30 � 52 + 1 � 12 one
hasm1;1 = 2;M1;1 = 3: We get a[750; 741]52 E-codeV1;1 of the
second level withhE2 � 24: The condition750 � 5m + 1 � 24
holds form1;1;k = 2; 3; 4; k = 1; 2; 3: We haveM1;1;k = 5; 6; 7;
and obtain three E-codesV1;1;k of the third level with

n1;1;k = 6 � 5M = 18750;93750;468750;

r1;1;k = 13; 15; 17; hE3 � 48:

Further we get E-codesV1;1;k;u with

r1;1;1;u = 19; 21; 23; 25

r1;1;2;u = 21; 23; 25; 27; 29

r1;1;3;u = 23; 25; � � � ; 33:

For x � x� = 5 gaps in the sequencer = 3 + 2x are absent.
Gaps exist forx = 2; 4; r = 7; 11: We obtained a familyA2 of
[n; n � r]52 E-codes with parameters

A2: q = 5; r = 2t� 1; n = 6� 5t�2; t = 2; 3; 5;

and t � 7; �5(2;A2) � 2:304: (29)

ConstructionM (4) with V0 = U ;m = 2; and V0 = V1;m = 3;
gives a[156; 149]52 E-code and a[3781; 3770]52 E-code and fills
the gaps. Note that forq = 5 the code family of [6, Example 6.3]
cannot be obtained since a needed[4; 1]52 codeV0 does not exist
[3, Table 6.4].

Example 5: We considerq � 4; r = 2t: The construction of
[1, p. 104] generalized in [5, Theorem 3.1] and [6] gives the
[2q + 1; 2q � 3]q2 codeM with parity-check matrix

HM =

1 � � � 1 0 0 0 � � � 0
�1 � � � �q 1 0 0 � � � 0
�21 � � � �2q 0 0 1 � � � 1
0 � � � 0 0 1 �2 � � � �q

= [fff1 � � � fff2q+1]; f�1; � � � ; �qg

= FFF q; �1 = 0: (30)

In the proof of [6, Theorem 5.1] it is shown that the partitions

Kq = ffff1; � � � ; fffq�1g;ffffqg; ffffq+1g; ffffq+2g; ffffq+3; � � � ; fff2q+1g

for even q and

Kq =ffff1; � � � ; fffq�4g;ffffq�3g;ffffq�2g;ffffq�1g;

ffffq; fffq+1g; ffffq+2g; ffffq+3; � � � ; fff2q+1g

for odd q are 2-partitions. It is easy to see that in both cases each
columnfff i of the subsetJ = ffffq+3; � � � ; fff2q+1g is equal to a linear
combination of the columnsfffq+2 =2 J and fff j 2 J : So J is a
Q+-subset andKq are2+-partitions. Letq = 5; �i+1 = i; i = 1; 4:
We verified by computer that

K5 = ffff1; fff6g; ffff2; fff5g; ffff3; fff4g; ffff7g; ffff8; � � � ; fff11g

is a 2+-partition. So for q � 4 we have h+(HM) � q +
1: ConstructionM (3) with V0 = M; K0 = Kq; m = 1;
h+0 � q + 1; gives an E-codeP: We takeP as the initial code
with n0 = fq(r0); r0 = 6; hE0 � 2q + 2;m1 = 2; where
fq(2t) = 2qt�1 + qt�2 + qt�3:

We design a code chain by ConstructionM (5), see Remark 5
and Examples 3, 4. We obtain an E-codeV1 with n1 = fq(r1);
r1 = 10; hE1 � 4q + 4: Let q � 5: Then q2 + 1 � 4q + 4;
q3 + 1 � 8q + 8: For j = 1; 3 we get E-codesV1;j with
n1;j = fq(r1;j); r1;j = 14; 16; 18; hE2 � 8q + 8; and E-
codes V1;j;k with n1;j;k = fq(r1;j;k); r1;1;k = 20; 22; 24; 26;
r1;2;k = 22; 24; 26; 28; 30; r1;3;k = 24; 26; � � � ; 34: We have

x� = 4: Gaps appear forx = 1; 3; r = 8; 12: If q = 4 we
have gaps forr = 8; 12; 14; 20 since 42 + 1< 4q + 4: We got a
family A3 of [n; n � r]q2 E-codes with

A3: q � 4; r = 2t; n = 2qt�1 + qt�2 + qt�3;

t = 3; 5; and t � 7 if q � 5;

t = 3; 5; 8; 9; and t � 11 if q = 4;

�q(2;A3) � 2� 2q�1 + 0:5q�2 � 2q�3 + q�4: (31)

By (31)

�4(2;A3) � 1:504

�5(2;A3) � 1:6056

�7(2;A3) � 1:7191

�8(2;A3) � 1:7542

�9(2;A3) � 1:7814:

To fill the gaps forq � 4 ConstructionM (1) with V0 =M; m = 2;
and ConstructionM (4) with V0 = P;m = 3; form [n; n � r]q2 E-
codes withn=fq(8)+q+2; r=8; andn=fq(12)+q

2+q+1; r=12:
For q = 4 ConstructionM (4) with V0 = P;m = 2; gives an
auxiliary [597; 587]42 E-codeL with hE(HL) � 11: Construction
M (5) with V0=L; m=2; forms an E-codeT with n=9552; r=14;
hE(HT ) � 22: ConstructionM (5) with V0 = T ;m = 3; gives an
E-code withn = 611328; r = 20:

Due to [5, eq. (1.5)], [6, Example 6.1] we have

n�q [2t; 2] = fq(2t) + qt�4 + wt�2;q

for q = 4; 5 and

n�q [2t; 2] = fq(2t) + wt�3;q

for q � 7: So,n = fq(2t)<n�q [r; 2] for the familyA3:

Example 6: We considerq � 7; r = 2t�1: For q � 7 there exists
always an[nq; nq � 3]q2 codeW with nq <q: For example, we can
treat points of a small complete cap as columns of a parity-check
matrix of a codeW [6, pp. 2072, 2077], [12, Sec. 1.3]. Then by [10,
p. 59], [11, Table 9.3], and [15, Table 1], we havenq � bq=2c + 2
for q � 8 and nq � 6; 6; 6; 7; 8; 9; 10; 10; 10; 12; 12; 13; 14; 14;
for q = 7; 8; 9; 11; 13; 16; 17; 19; 23; 25; 27; 29; 31; 32; respectively.
Using the trivial partition ConstructionM (1) with V0 =W;m = 1;
h0 = nq; forms an [n; n � 5]q2 E-code E with n = nqq + 2;
h+(HE) � nq + 1; hE(HE) � 2nq: If 2nq � q + 1 we take
E as the initial code. If2nq >q + 1 ConstructionM (3) with
V0 = E ; m = 1; gives an [n; n � 7]q2 initial E-code N with
n = nqq

2 + 2q + 1; hE(HN ) � 2nq + 2<q2: Similarly to
Examples 3–5, ConstructionM (5) designs a familyA4 of [n; n�r]q2
E-codes with properties

A4: q � 7; r = 2t� 1; t = 4; 6; andt � 8;

nq <q; there exists an[nq; nq � 3]q2 code;

n =nqq
t�2 + 2qt�3 for q + 1 � 2nq;

n =nqq
t�2 + 2qt�3 + qt�4 for q + 1< 2nq;

�q(2;A4) �
1

8
(q + 4 + 6q�1 � 11q�3)

for oddq � 9 with nq =
q � 1

2
+ 2;

�q(2;A4) �
1

8
(q + 6 + 9q�1 � 4q�2 � 16q�3)

for evenq � 8 with nq =
q

2
+ 2: (32)
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TABLE I
UPPERBOUNDS ON THE LENGTH FUNCTION l(r; 2; q) FOR q = 4; 5; 7

By (32)

�8(2;A4) � 1:88

�9(2;A4) � 1:707

�11(2;A4) � 1:943:

Besides, sincen7 = 6, we have

�7(2;A4) � 2:09:

To fill the gaps ConstructionM (4) with V0 = E ;m = 2; forms an
E-codeC with n=nqq

3+2q2+q+1; r=9; hE(HC)�2nq +1<q2:
ConstructionM (5) with V0 = C; m = 2; gives an E-code with
n = nqq

5 + 2q4 + q3 + q2; r = 13:
For q = p2 � 16 we take asW the code of [6, Theorem 5.2] with

nq = 3p� 1: By [6, eq. (30)], it can be shown thathE(HW) � 4:
ConstructionM (4) with V0 = W;m = 1; forms an initial code.
ConstructionM (5) gives a familyA5 of [n; n� r]q2 E-codes with

A5: q = p2 � 16; r = 2t� 1 � 5;

n = (3p� 1)qt�2 + qt�3;

�q(2;A5) � 4:5�
3

p
�

17

2q
+

9

pq
: (33)

For growingq = p2 codes of (33) have a covering density4:5 but
if we do not consider theq value as square we obtain a density of
q=8, see (32).

By [6, Example 6.3]

n�q [2t� 1; 2] = nqq
t�2 + 2qt�3 + qt�4 + wt�4;q

if an [nq; nq � 3]q2 code withnq <q exists and

n�q [2t� 1; 2] = (3p� 1)qt�2 + qt�3 + wt�3;q

if q = p2 � 9: So,n<n�q [r; 2] for the familiesA4 andA5:

Results of Examples 3–6 form Table I. Forr = 3; 4 we use (3),
(4), and (30).

Remark 6: In the binary case, constructions of [9, Theorem 3.1]
and their modifications [9, Sec. 3] are effective. We can treat
ConstructionsM (1);M (2) as nonbinary generalizations of these
constructions. Ideas of ConstructionsM (3)–M (5) mainly work in
the binary case. But we have no improvements of binary results from
[9] with the help ofM (3)–M (5):
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