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Constructions of Nonlinear Covering Codes radiusR. In the notationgn, M), R and[n,n — 7], R we may omit
R. Let d(z, z) be the Hamming distance between vectorand =.
Alexander A. Davydov Let d(x, V') be the Hamming distance between a veatand code
V, ie.,,

Abstract—Constructions of nonlinear covering codes are given. Using
any nonlinear starting code of covering radiusRk > 2 these constructions
form an infinite family of codes with the same covering radius. A
nonlinear code is treated as a union of cosets of a linear code. New . , .
infinite families of nonlinear covering codes are obtained. Concepts of Denote byt + V' the translate of afn, M), codeV” with the leader
R, l-objects, R, I-partitions, and R, I-length are described for nonlinear t € Ey. Sot+V = {t+v:v € V}. Letwt (g) be the weight of
codes. a vectorg. Denote byF; the space of-dimensionalg-ary column

d(x,V) = win d(x,v).

Index Terms—Binary codes, covering codes, covering radius, nonbinary Vectors. Denote by
codes, nonlinear codes.

C1 XCQ ><---XCt:{(uhuz,-“,ut):ui EC;‘, L:].Hf}
. INTRODUCTION

Covering codes and their constructions are considered, e.g.,l}direct sum(DS) of codesCy,---. Cy, ¢ > 2. Let jiq(n, R, C') be
[1]-[30], and the references therein. In Sections Il and Il we develdpe density of the covering of am, M (C')), R codeC'
and generalize linear code constructions of [6]-[8] and [12] and
propose new constructions of nonlinear covering codes. Using an £ i /n "
arbitrary code of covering radiuR > 2 as a starting code, these a(n: B, C) = M(C) Y (a = 1) (i)/q : @
constructions form an infinite family of codes with the same covering =0
radius. A nonlinear code is treated as a union of cosets of a linear
code. Such treatment is based on the ideas of [1] and [22], thgﬁJ .
variants [13], [17], [23], [24], and [28], and approaches of [20] anH-2] We consider the value
[21]. The new constructions also use structural ideas of the blockwise-
direct sum construction [16], [26, Sec. 18.7.2], and [28]. In Section T, (R, U) = liminf yiq(re, R, Uy), U, el.
IV, new infinite families of covering codes are obtained. Parameters e

of the new codes are better than those of known codes with the sq_rg?#.(n R) be the leasknowndensity of the covering of a-ary
q ? =

length and covering radius. code of lengthn, covering radiusk. Denote byM; (n, R) the least
In [6] a new type of constructions of linear covering codes was 2 i A
proposed. In [7], [8], and [12] the ideas of [6] were modiﬁe?nowncardmahty of ag-ary code of lengt, covering radius?. Let

and developed. The constructions of the type considered in [6]—['8_ " .log‘! M be redundancy O_f thén, M), code.
o : T Fact 1: If an (n, M), R code exists then afn + 1, ¢M ), R code

and [12] can be called¢™-concatenating constructions” since a__ . ‘
parity-check matrix of a starting code is repeatét times. In this ex\llsvs. . ¢ f the best k infinite familids of
correspondence, we give variants¢df-concatenating constructions ilglve p:rame_ Ers S e, _es nown infinite: famiiies o
for ¢-ary nonlinear codes; > 2. Some results of this work were ("> % )23 codes withlt = 3, ¢ = 2.
briefly described in [9] and [10]. (Note also that the main ideas 3 o
of nonlinear constructions of this correspondence were described in Ai: 7 =3t —2, ny =48 x 277 — 1, M = 2"t 22,
the submitted version of [8]. To save space, the final version of [8] t>8, Mi,(3, 41) = 2.25 [12, form. (4.12)
contains only linear constructions.) 3 s ny— 141

In [28, Supplement] Struik briefly described a nonlinear gener- Az =3t —1, my =5lox 277 =2, M = 2" :

r an infinite familyU consisting of(n, M (U,,)),R codesU,, [8],

alization of |inear.qm_'con.catenating construc?ions of [6], [7], and t> 14, 10,(3, Ay) ~ 1.3744 [12, form. (1.4)
[12]. This generalization is close to Construction B of this work, see Ay r =3t ns =64 x 2" —1, M=2"
Remark 2. )

Let EI' be the space of-dimensional row vectors over the Galois t>4iseven i, (3, A3) ~ 4/3 [13, Theorem B
field GF(¢), ¢ > 2. Denote by an(n, M), R code ag-ary code of Agir =3t na =76 x27° -1, M = 2™,
lengthn, cardinality A/, and covering radiu®. Let an[n,n — r| R t>9is odd 71,(3, As) ~ 2.23 [12, form. (4.16).

code be g-ary linear code of length, codimension-, and covering

We can obtain a code of arbitrary lengthusing a family A; and
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are obtained in [21]. DS of these codes gives codeswith
1q(n,3,D) = 4.5 for arbitrary ¢ and arbitrary larges.

To illustrate the new constructions, in Section IV we obtain
Forn =387 x 3'=° — 1, n = 414 x 3'~° — 1, the family B, and
Fact 1 give density greater thah5.

new infinite familiesF; of (n, M )23 codesC; with the following
parameters:

1 -
Fi: R=3, q=2 r=>3—log,7, n =405 x 2075 _ 9,
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and

r=3t+1, n =431 x 3%, i3(3, B2) = 2.48.

The familiesF; illustrate that new constructions can result in codes

of smaller cardinality and density than known codestld same

s T length For an(n,M),3 codeC; we have
M=7x2"""= M3 (n,3), t>13,
_ 8 M = 6;M7(n,3), pg(n,3,C) = bipg(n,3)
(o _ o
#2(71,3,C’1)=§;1,2(n,3)7 o (3, Fi) = 2.7. ) with 51:%,62z_%if2>A>1,53:64:1§,55<;—,66<§.
Fo: R=3,¢g=2, r=3t—2—1log, A, Below all matrices (columns) argary. An element: of GF(¢™)
2\ . i s . ) written in ag-ary matrix (column) denotes a columm-dimensional
n= <46 + z)z -1 2>A>1, nislarge, vector that is aj-ary representation df. We always note the number
) of ¢-ary rows in a matrix. Let)® be a zero matrix (column) with
3t4+2 A
M=Ax2""" 51\’12'(7173), t>38, S rows. If § = 0 then the matrix (column)? is treated as absent.
AL Let GF'(¢) = GF(¢)\{0}. We consider linear combinations @fary
427 > p2(n,3,02) = 5#1(7%3) >2.25 (3)  columns only withnonzerog-ary coefficients, i.e., combinations of
Fy:R=3,¢=2 r=3t—1, the form
zZ
n= 502—; x2'7% —1, if t = 17,20 andt > 35, S aut,
n=>51x2"%— 2, if t =10,12,14,16,22,24,---,34, u=1
where f, € Fy, auw € GF'(¢). If the numberZ of summands in a

M = 2“73t+1 = %_J\[; (77/7 3)*

1.
ﬂg(n~3’C3) = 5#2(71 3)*
R=3, ¢=2, r=3t
no=64x 2% 427 x 220T=D/2 _ o
§=(t—1)/2(mod?2), 5 €40,1},
M=2"""%= %1112'(71,3), t>9is odd

4
3 (5)
In (2)-(5) codes withM3(n,3), u5(n,3) are obtained by Fact 1
from conventional known familiest;. From (2)—(5) we see that the
new familiesF; improve coverings in regions of code length of the
known familiesA;, A,, A4. Codes of the familyd; from [13] have
asymptotic densityt/3 for code lengt2“ — 1 wherew is odd. The
obtained familyFs has the same asymptotical densi}3 for code
length2* + ¢ wherew is even and: is small compared t@“. The
family F> shows that new constructions can obtain codesreg@on

T, (3, Fy) = 1.3469. @)

F4!

1. B ;
,u,g(TL,B, C4) = 5”‘2(”'/ 3)* H2(37F4) ~

linear combination is equal to zero this combination is treated as the
zero column. Lefl’ be the symbol of transposition.

Let C be an[n, n —r], code with a parity-check matrik . Denote

by C(s) the coset of cod€” with a syndromer of £, i.e.,

Clo)={z:2 € E], tH" =0} c(0)=C.

Let X, be a set ofp syndromes such that

2P: {011"'7017} QF;

Denote byC(X,) the union of cosets of cod€ with syndromes of
the setZ,

. We have

C(Ep) = U C(aj).

Clearly, C(%,) is an(n,pq" "), code.

Kabatianskii [20] suggested the following fact.
Fact 2 [20]: Let I,, be then x n identity matrix. LetZ,, be the

code consisting of the only word)- - - 0) of lengthn. We treatZ,

of code length(for F, the region is given byA). This new property as the lineafn, » — n], code with the parity-check matrik,. For
of the proposed constructions is connected with their nonlinearity a8y (n(V), M(V)), codeV there exist a linear code’v and a
peculiarities of design of Construction A from Section II. Note thaget of syndromest, such thatV’ = Cv(X,). In any case, one
the length of the first code of a family obtained by new construction8ay takeCy = Z, vy, p = M(V), £, = {v{ ,---,v1;(,} Where

is usually much greater thath0 or even1000.

{vi,- -, vmy} =V, viis acodeword o¥, i = 1, M(V), i.e., the

To illustrate a nonbinary application of new constructions, iset:, contains all transposed codewordstlf = {0} thenV = C'y.

Section IV we obtain familieds, Fs of (n, M )33 codesCs, Cs With
R = 3, ¢ = 3, and the following parameters for> 9:

Foin=414x3""° -1, M=3"%"'< %M;(ms),
1
ps(n,3,Cs5) < 5/1%(71,3), fis(3, F5) = 2.2. (6)
- t—5 y = n—3t—2 2 [
Fo:n=387Tx3"°"—-1, M=5x3 < M5 (n,3),
(8]

Q)
Here u3(n,3) = 4.5. Codes withM3 (n,3), p3(n,3) are DS of the

codes from [21] for large.. Other known codes with close parameters
are the familiesB;, B> of [8, form. (36), (37)] with

2 _
us(n,3,Cs) < §u3(7l,3), 13(3, Fs) < 3.0.

r=3t n=2321x3"", 43(3,B1) = 3.074

Fact 3 gives versions of construction from [1]. Variants and

generalizations of this construction obtain covering codes with good
parameters, see, e.g., [13], [17], [23], [24], and [28]. In [24, p. 8]
it is remarked that the construction of [1] is a generalization of the
constructions of [22], see also [23, p. 9]. The situation = Z,, for
Fact 3 is noted in [17] and [24].

Fact 3[1]: LetV be an(n,pq"~ "), code and lel” = Cv(XZ,)

where

Sp ={o1,-- 00} CFy

Cv is alinear[n, n — r], code with a parity-check matri¥l .

i) The covering radius of the cod€ is the least integeR? such
that every columnr € F; is a sum of some syndrome; .,
of ¥, with a linear combination of at mog® columns of the
matrix H.
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i) Let = be a vector ofE; with zH" = = € Fy. If and only if [l. CONSTRUCTION OF COVERING CODES
the columnx is a sum of some syndrome) of =, with a We definem R x ¢™ matricesB,, (b) with b € GF(¢™) U {#, }.
linear combination of distinct columns offf then there exists The value of R is defined by context.
a codewordw of V' with d(x,w) = t. Otherwise,

. el €2 Eqm
weEG={veV: vHY = Ti(r)} bey bes begm
and Bu(b)=| Ve Ve Veam || if b e GF(g™)
d(z, V) < d(z,G) < ¢. : :
. . bR_161 bR_162 bR_16 m
Definition 1 [8], [12]: Let V' be an(n, M), R code of lengthn, - !
cardinality M, and covering radiu®. Let! be an integerR > 1 > 0. 0m(R=2)
The codeV is called anR, l-objectof the spaceE] and is denoted DB (#) = |eica--- egm
by an (n. M), R.1 code if for each vector of E there exists a | 0"
word w(x) of V such thatR > d(x,w(x)) > 1. I1f I > 1 thenV is gm(R=1)
also anR,l;-object with?; = 0,1,---,1 — 1. B, (%) = |:51€‘7 . Wﬂ} (8)

Remark 1: R, I-objects are a subclass @, -subsets of [6, p.
321]. A spherical R,I-capsule with centerv in EJ is the set
{z:2z€ E}/,R>d(z,w) > 1} [6, p. 326]. SphericaR, I-capsules
centered at vectors of aR, I-object cover the spacg; . The goal
of this work is to construct codes covering the spdgg by usual
spheres. Spherica#, I-capsules and, [-objects are useful for it.

Example 1: The set{000000,111000,000111} is a (6,3)23,1
code. The se{0000,1111,2222,0011,2200} is a(4,5)32,1 code.
Let « € GF(4), a # 0,1. The set{000000, 111111, 000111,
acaaan, o?a’ata’a’a®, aaaa’ oo’} is a(6,6)44, 2 code. See
also Section IV.

Definition 2 [8], [12]: Let D = {1,---,n} be the set of code-
word positions of ann, M), R,! codeC' of covering radiusR. A
partition of the sefD into nonempty subsets is called &nl-partition
if for each vectorz of Ej there exists a codeworg{z) of C and a
vectore(x) of Ey such thatr = g(x) + e(x), R > wt(e(x)) > 1,

wheree; € GF(¢™),j =T1,¢™; {e1.e2,-+.e,m} = GF(¢™), i.e.,
ei A ey if i £, 0,5 € {T,¢™}, 0™ is the zeromU x ¢™ matrix.
The elemenb is called anindicator of a matrix B, (D).

Notation 1: Let m be a parameter. We introduce vectgrsand
', and a codeD,. Let g, = (p1,---,p~) Wherep; > 0 is an
integer,j = 1,7

> ri=p
j=1

We denote); = ¢, j = 1,7

5

mp __ .

q = | | Qj-
J=1

Q

Let A7 be a

and allnonzeropositions ofe(x) belong todistinct subsets.
Denote byh(C,I; K) the number of subsets in aR, -partition

K for a codeC. The value ofR is defined by context. For an

(n, M),R,1 codeC we haveh(C,I; K) < n and anR, I-partition

K is calledtrivial if 2(C,1; K') = n. The minimal number of subsets

in an R, [-partition for a code” is called anR, I-lengthof the code
C and is denoted by.(C,7). So, h(C,1) = ming h(C,I; K). For

translate of aqV;, M;),p; codeA; of covering radius

p; sothatd? =t, + A;. t. € EqNJ v=1,Q;,j=1,7. Let

J=1x

@y

s N
U Ay =E.7,
v=1

i.e., the union of@; translatesA] is the whole spac@;,wj. It is

linear codesR, [-partitions andR,-length were introduced in [8] possible that translates},---,A?j are not disjoint. If all translates
and [12]. For nonlinear codes an “effective length” corresponding 143, v = 1, Q;, are disjoint then4; is a code with redundancy.p;
R, 0-length was considered in [28, suppl., statement 6]. and M; = ¢"3~™°3. We have such situation, e.g., whety is a
For codes defined a8(X,) Definition 3 is equivalent to Defini- linear[N;, N; —mp;],p,; code and the translates are dissets
tions 1 and 2. Let ¢ be thewth element of the field GRYj), i.e.,
Definition 3: Let V. = Cv(¥,) be an(n,pq"~"),R code of . .
e . GF(Q)) = {600},

covering radiusk whereC'y is an[n, n—r], code with a parity-check

matrix H and . - . —
There exist distinct vectors(wy - - - w.) with w; € {1,Q;}. We

number these vectors in arbitrary order and denote by
(wi(u)---wy(uw))

thewuth vector withw;(u) € {1,Q;}, i =T, v, u=1,Q, W, # W,
if w# k. Let

Y, ={o1,---,0p} CFy.

Let ! be an integerR > 1 > 0. W. =

i) The codeV is called anR,-object of the spaceE; if for
each columnr of F; (including the zero column) there exist
a syndromer;(,, of ¥, and a linear combinatiod.(x) of at
least! and at mostR? distinct columns of the matri¥] such rn= [c‘fjf(u) ---521)(@]1}
thatm = o~y + L(7). '

i) Let D = {1,---,n} be the set of codeword positions of theThenT'. # T if u # k, F;"* = {['1,---,Tq}. Let
codeV. We also consideD as the set of column labels in the Do g wa () we ()
matrix H. A partition of the setD into nonempty subsets is w = A x As XX Ay
called anR. I-partition if for each columnz of Fy (including e ps of translates. TheR, is an (N, 3),p code with
the zero column) there exist a syndromg; of ¥, and a linear
combinationL(r) of at least and at mosf columns ofH with .
labels fromdistinct subsetsuch thatr = ;) + L(x). N= ZINW

=

— Nl

For i) and ii) if I = 0 we can treat the zero column as the linear
combination of0 columns of H. M=q )

5(2)

wa(u) w=1

Q.

~

M =[] M,

j=1
if [\lj = qu_m’)j_/ j

Q
U p.=EY

u=1

9)

la

%
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Construction A: Let
Vo = Cry(T))

be astarting (n¢,pg"° "°)R,ly code of lengthng, cardinality
pq"°~"0, and covering radiu®?, where

Eg:{a'«ll/-..vo'p}qu"‘O

and Cv, is an [ng,no —
Ho = [fi- fnol, fx € Fj°, 5 = 1,no. Let Ky be anR,lo-
partition for the starting cod&,. We denotér, = h(Vp, lo; Ko). Let
m, A be parameters\ € {0. R}. Wesetp = R— A, Q@ = ¢™", and
use Notation 1. We form aewcodeV by two steps
1) We form anauxiliary (n1, pQq"*~"1),R: codeV; of length
n1, cardinality pQg¢"*~ ", and covering radiusk,, where
Vi = Cy, (211—[) n1 = noq™, 1 = ro + mR, T = pQ,
E11'1 = ?:1 Ug:l 5‘21)} C Fy,

o
s = o™ |, if0<A<R

L Fu
8y = ngg}, fA=R o€, (10)

Lh,eFr,i= Lp,u=1,Q,C\ isan[ni,ns —r], code
with the parity-check matrix?

Q=[]

P(fh) = [fh fh]~

f~ is a column ofHy, P(f.) is anre X ¢ matrix of equal
columnsf., » = T, no, the assignment of indicatobs depends
on the partitionk’, as follows: if numbers, j belong to distinct
subsets ofK, then the inequalityb; # b; must be true, if
numbersu, t belong to the same subset &% then we are free
to assign the equality, = b, or the inequalityb., # b,. We

denote

r=1,n9

(11)

2) We form thenew (ny, My ) Rv,lv codeV of lengthny,
cardinality Ay, and covering radius®y. If A = R then
V =Vi, My = p¢"t7"t. If A < R we partition words of

the auxiliary codélV; into @ groupsG., so that

Gy={ven: vQf = (sEf), i=1,p}

u=1Q
Q
U G.=mn.

u=1
We choose a vectog, = (p1.---,p~), (N;, M;).p; codes
Aj, and translatesd? for v = 1,Q;, Q; = ¢, j = 1.7,
and put

Q
V= U D. x G., nv=DN-+nog™
u=1

—’7\'[\/ — WPQ(I”I*TI — Hpqnoqurofmf\ (12)
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where
hd v o v
Sei=p. N=Y N, M=]]M;
j=1 j=1 j=1
My = pqnvfrl — quVJrTLqu*TO*TIlR’ if H — qN*mP‘

Lemma 1: In Construction A for covering radii of codes, V1,

ro]; code with a parity-check matrix and Vs it holds thatRy > Ry > R.

Proof: Let Z < R. By Fact 3i), there exists a columne F°
that cannot be represented by a sum of a syndreme Y and
a linear combination oZ columns of Hy. We take thisr and an
arbitrary\ € F;"%. Then, by (10) and (11), the colunm\]* € F)*
cannot be represented by a sum of a syndr(ﬁrﬁéib € o and a
linear combination ofZ columns of(). So, R, > R. Finally, by
(12), Rv > R;. O

Examples of Conditions Sufficient for the EqualRyy = R in
Construction A (alwaysp = R — A):

1) R>2,10=0,A=0,3CGF(¢g™)U {x},¢™" + 12> ho,

gp = (1,---,1), q 22

2) R>2,1o=0A=03C GF¢"N\{0}, ¢" —13> ho,
.gp:(l?l |_§-|l QZQ

)R > 2,1y > 1, A =1, 8 C GF(¢™), ¢q" > ho,
gp = (1,-++.1), q>2

4) R>2,lo=R A=R,3CGF(g™) U{s} ¢" +1> ho,
q =z 2.

5) R>21o =0 A=13=GF(g™), no > ¢ > h,
g = (1,---,1), q > 2.

6) R=3,1,=0,A=23=GF(g")U{#}, no>q¢"+1>

ho, g, = (1), ¢ = 2, t > 1.

Comment 1: Under Conditions 1)-4) the parameter does not
have an upper bound. So, we have iafinite family of the new
codesV. Under Conditions 5) and 6), an infinite family can be
obtained by an iteration using Construction A, see Examples 3 and 5.
Under Conditions 5) and 6), waustuseall elements of GF¢™) or
GF(q™)U{#} asindicator$,. Conditions 5) and 6) are constructions
with a complete set of indicatord-or all conditions, the parameter
m is bounded from below. The inequality” + 1 > ho is better
than¢™ > hy or ¢™ — 1 > ho in respect to restrictions fom.
Theseinequalities permit us to assign distinct indicatdrs# by, if
the numberg, & belong to distinct subsets df,. Besides, we want
to decrease the density of the coveringny, R, V') of the new code
V. For the casélly = pg"Vv~"1 for fixed r, we should reduce the
lengthny of V, see (1). Increasing causes reduction a¥ andn, .
Conditions 1)-4) give\ = Iy, Conditions 5) and 6) giva =1, + 1,

A =1+ 2. If A = RthenN = 0. For decreasing ofV andny
vectorg, = (1,---,1,[R/2]) is preferential tog, = (1,---,1).

Theorem 1: If any of Conditions 1)-6) holds then the new code
V' obtained by Construction A has the same covering radius as the
starting codely, i.e., Ry = R. Besides], > [, for all Conditions
1)-6).

Proof: By Lemma 1, it is sufficient to prove thaky < R.
It means thati((c$), V) < R, where(cg) is an arbitrary vector of
ENV,6 € EMe=(c1---cy) € EN,e; € B}, j =T,7. We have

q

AL
AR
\i€F", i=1R (13)
We consider Condition 1 with =1o =0, v =p =R, p; = 1,

Q; =¢™, j =1, R. By Definition 3, we can find a syndroms,),
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an index collection/ = {j1,--+,j~}, and coefficients.; such that Let R > Z >2,b;, = *. In(16) we puti = 1,2,---,Z — 1, R.
Hencec; € A i=1,2,---,Z—1,R, andd(c,Dx) < R—Z.

zZ
T =04 + Z“’fffk’ Titn) € 22_/ R>7Z>1, The system of (17) has the form
k=1 Z—1
ar € GF'(q), k=1,Z (14) Z ake"kb}k1 =i - ggg(ui)
k=1
where f;, are columns of the matri¥l,, all numbersj;. of columns i=1,Z-1, b, #bj, if y#£Fk,
fj. belong todistinct subsetsf the partitionk’s. Thenb;, # b;, if z
y, k€ {1,Z}, y # k, see the assignment of indicatdrsin (11). Zakew =g — Ef@(%). (19)
Letc; € E;'i. Denote by¥;(c;) the least integer such that € k=1
A;I’“”f), see Notation 1. We take tHeastinteger for definiteness. The determinant of the system of (19) is not equal to zero since we
Let t;, be theuth column of the submatris,, (b,) in (11). add the columr{0---01)" to the Vandermonde matrix. By (19), we
Let R > Z > 1. For the index collection” we will find columns obtaine,, . Then, instead of (18), we calculate
t;.u, and a vectol x such that Z—1

e == Y aren by, i=ZR-1L

4
7] _ [os fix =
R R B |

Tkhk So, we obtairl" v andt;, ., for (15). By Fact 3ii)d(é,Gx) < Z. So
wherea;xy, ax, ji, k = 1, Z, are taken from (14), and besides the d((cg),V)<(R—-Z)+ Z=R.
vector I'x must satisfy the relations Other conditions can be considered similarly. We consider some
(i) ) L distinctive situations.
= =1,Z. 16 - " -
Suix) = Swicenn =5 (16) Condition 2: We havep; =1, Q; = ¢, j =1,7 -1, p, =
Leth,, # #, k=1, Z. “Locations” e, of columnst,, ,,, in (15) [#/2],v=LE/2]+1,p=R.LetZ > 1, see (14). We denote
are a solution of the system 51(17?()() = (EvxEsx -~ Errpo.x), Eix € GF(¢™),

4 1 1r/o
Zakeﬂkb;:l — A - ‘(yz').(p.)'/ 1=1,[R/2].
1 o If R—Z > [R/2] then we use (15)—(17). Instead of (18) we have

i=1,Z, b, #b;,, ify#k (17) v Z v
” " 51(;7) xX) = Ai = Za’“e#k 3:1 ifi=2+1,7v-1
The determinant of the system is not equal to zero since we have the k=1
Vandermonde matrix with consecutive degreedistinct elements Z i .
of GF(¢™). Having obtained,, from (17), we calculate Eioyrix =X — ) ageu by, ifi =7, R. (20)
k=1
zZ
. ) . (i , —
€y =N =D aren b5, i=Z+1LR  (18) By (20), we obtaing” , fori = Z+1.7. So
k=1 Ad(6,Gx)< Z, d(c.Dx)<R—Z7 d((c$).V)<R.

Now the relations (16) and (18) together give the desired vdctar If R—Z < [R/2] then in (16) we pui = R — Z + L, 7. Instead
We have obtained columrg, ., and the vectol’x simultaneously ¢ (17) we solve the system

satisfying (15) and (16). The columns, ,,, are given by locations P

eu, - By (15), we have the representation of the colup@m’ of Ztu-e Pl =\ — P

(13) by the sum of the syndrom& ™" of T}, see (10), and a = ' ' a

linear combination ofZ columns of the matrix2. By Fact 3ii), o, = ¢ fi—R_Z+1--1
d(é,Gx) < Z. The obtained vectoF x exactly gives a cod®x, P w(X) o 7
see Notation 1. By (16), ®; = Eiyq1,x, if i =, . (21)
o € A;l'z-(cz-) — Az“i()()7 i=1.2 Then we use (18) with = 1, R — Z, and obtain values offlff(x)
for i = 1,R— Z. By Fact 3ii), d(¢,Gx) < Z. By (16) with
i.e., i=R—-Z+1,v,wehavel(c,Dx) < R—Z.S0,d((c¢),V) < R.

Condition 3: We haveA =1o > 1,p; =1,Q; =¢", j = 1.7,
vy=p.LetL=Z—-A,p>L>1.In(16) we puti =1, L. Instead
Since A? is a code with covering radiug;, we haved(c,Dy) < ©f (15), (17), and (18) we use (22)—(24), respectively.

(ciea---cz) € Allvl()() « A;UZ(X) N AZZ(X)_

R — Z. Finally, ] ag:\) z i
0((¢9),V) < d((c). Dx x Gx) 5= o e #2)
=d(c,Dx)+d(¢,Gx)<(R—Z)+ Z = R. .
If Z = R then calculations of (18) are not executed Zake},,kbj-;‘ =X, ifi=1,A
de,Dx) =0 d(c6),V) < d(6,Gx) < . . | |
Let Z = 0, 7 = 0i(x), Se€ (14). We puF'x = \. Then ;akew"biﬁ_l = Mt — E‘S/Lz)'(ciy ifi=1,L. (23)
46&21' — [Tr/\]y. _ [ai(r)lﬂ‘\]y- _ (ggé(ﬂ))w 583()() — Aapim iakel"kb}\;_i_l, i=T¥1.5. (24)

6 €Gx. d((cg).V)<d(c.Dx)<v=p=R =1
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Condition 4: We haveV = Vi, lop = A = R, nv = ni. Instead
of (c¢¢) we consider a vectop. The relation (14) always holds for
Z = R. We use (15) witHo ;) 0™ instead ofl7i(x) I'x]T (see
(10)). Put that the right side of the equations of (17M\js obtain
eu,, k = 1, R, and show thatl(¢, V1) < R.

For Conditions 5 and 6, the matri® of (11) always contains a
submatrixB,. (b, ) with a calculated indicatdr,. sinceg = GF(¢™)
or 3 = GF(q

(22).
Condition 5: Hereq/ =p=R-1 Letm =0yq), A1 #0. We
put ) oy =&y ) Now ey € A7* ) and

(I(C,D\') <~vy—-1=R-2.

We calculateb, = (A2 — (\) )/A1 and put

—€ o =M = A, =2
So we obtainl’ x. We have
[7A]" = [i) 0™ Tx]"
+ [for A Ao MbE T = [F, 000,01
By Fact 3ii), d(¢,Gx) < 2. So
d((c0),Dx x Gx)<(R-2)+2=R.

Condition 6: HereI'x = £ZL1(X) Let @ = o) + a1 f;,, See

(14) If b;, ;é #, A2 # Mibj, orb;, = #, A # 0, we put
Now

5ul(X) = 5‘1’1(01)
1 € AT, Dx)=0, d((ce),V) < d(6,Gx).
Let by, # #, Ao # Aibjy, As + €0 ) # b,
b= (s + €5 )+ Xabjy )/ O + Maby, ) # by,

We put

d(e,

. We calculate

a1t = (Miby + X2)/(bj, +by)
y=(Mbj +A2)/ (b + D).
Then
[wA] = 68 an(fyy o thyy, 107,]"
+ for v, ybon b5l + [£2.0.0.0)".
By Fact 3ii), d(¢,Gx) < 3.

Lethy, # #, A2 # Mibjy, Aa+€0) )
aiW = Xi. Then

(A" = 6 4 anlfy,, W Wy, Wh2 1T
+[fer 0,02 + Aibjy 0] + [f,0,0,0]"

Again d(¢,Gx) < 3.
Let b, = #, A\ # 0. For ¢ = 2" we always can calculate
be = ((\s + € ))/A)'/?. Then

Al =

= \1b%,. We takeb, = #,

887+ ar[£,.0.a7" (A + Aib), 0]
4 [for Aty Aibgy Ab2)T + [£,,0,0,017,  d(¢,Gx) < 3.
Now we use the fact that = (¢1), d(e, Dx) < 1. If b, = #,
A =0, we putgu L(x) = As. Then
(AT = 687 4 ay[f5,.0, Aeart, 0]7,

d(¢,Gx) <1, d((co),V) < 2.

If b;, # #, A2 = A1b;,, we takeg( )(X) = A3+ \ib ]1,(11” = A
Then

[P = 68 b anf W Wy, WEL Y. d((e).V) < 2.
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Now let 7 = o;(x), A1 # 0. We calculateb, = A2/A and take

5“) vy = A+ AibZ. Then
AL = 50D NN AL r
[ﬂ—] - YX +[f#’“ 1y ALYy AL &P] +[f¢403070] ’
d(¢7Gz\') S 27 d((Cé)*‘;) S 3

Finally we consider values df-. Clearly,lv > [, if lo = 0. For

™) U {#}. For Conditions 5 and 6 we use the relatiorConditions 3 and 4 we hav& > I, in (14) and (15). By Fact 3ii),

there is a codeword of Vi with d(¢,w)=2>1y. So,lv >1,. O
Comment 2: From the proof one can see the following. lLep) €
E}v where¢ is an arbitrary vector oE;'t, ¢ = (¢i -+ c,) € B,
¢j € E 4,7 =T1,~. For Conditions 1-4 there exists a valdesuch
that R > Z > lp = A and at leasy”* distinct groupsG'y have
the following property: each groufx contains a word x (¢) with
d(¢,rx(d)) = Z (and hencel(¢,Gx) < Z). The valueZ depends
on ¢, see (13) and (14). Nonzero positions of the vegter rx (¢)
can be given by locations &f columnst;, .., in the matrix (11), see
(15), (22), and Fact 3ii). IZ = A then there is only one such group
G x. Condition 4 always implie = A. If Z > A the groupsG.x
can be given by vectorSx in which, e.g., the followingcomponents
51(1’,3(1\,) can be chosen arbitrarityi = 1,Z — A for Condition 1
with b;, # =, Condition 2 withR — Z > [R/2], and Condition
3;i=12,---,Z -1, R for Condition 1 withZ > 2, b,, =
i = R— Z +1,~ for Condition 2 withR — Z < fR/?] etc. It is
naturally to put for these “free” componerﬁ;%)(\ = £‘p (e;)r S€€
(16) and changes of values ofn (16) for distinct Condltlons Now
ci € A d(e,Dx) < R - Z, and

d((c6),Dx x Gx) < (R-Z)+ Z=R.

Locations of columns;, ., providing the equallt)g( )( x) = 5(
are values ot,, obtained from the systems in (17), (19), (21) and
(23).

For Conditions 5 and 6 we have > [, and it is possible in (14)
thatA > Z > ly. Then we calculaté, and find a desired grouf x
using the equalitiess = GF(¢™) or 5 = GF(¢™) U {#}. Again,
for someZ’ > Z we haved(s,Gx) < Z', d(e,Dx) < R - Z'.
Note that Condition 6 is connected with an ovalgdf + 2 points in
a projective plane P@,¢™), ¢ = 2" [26].

By structure, the construction

Q
= U Du x Gy

u=1

is similar to the blockwise direct sum (BDS) construction [16],
[28]. But the approaches to calculation of covering radius are
distinct. For the BDS construction, the radius is connected with
the valuesmin,, d(¢, D, ) + max, d(¢,D,) and min, d(¢, G.) +
max, d(¢,G.) whenever, for Construction A, the radius is estimated
with the help of the relationR — Z) + Z, see above.

1.
Construction B: Let

M ODIFICATION OF CONSTRUCTION
Vo = Oy ()
be astarting (o, pg"°" " )4 R, Iy code of covering radiu® where
2?7 = {017"'7UP} g -F(;O
Cy, is an[ng, ng — 7o) code with a parity-check matrix

Ho = [f1-"" fnols

Let Ko be anR,Iy-partition for the codel,. We denotehg
h(Vo,lo; Ko). We form anew(nv, My ),Rv, v codeV of covering

fx € F;°, k=1,no.
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radius Ry whereV = Cv (%), Rv > R, ny = nog™ + N, Remark 2: In [28, suppl., Statements 5-7] Struik briefly consid-

My = pq"V*’" ., r1 = ro +mR, =Y = {&,---,8}, ered a nonlinear generalization of linedf-concatenating construc-

o = [o; 0T € FJ', 0, € ¥, i = I,p, m is a parameter, tions of [6], [7], and [12]. This generalization usesarcs in a

Cv is an[nyv,nyv — r1], code with a parity-check matrify- such projective geometry. The construction of [28] is close and obtains

that codes with the same parameters as Construction B of this work in
which a starting code is aR, 0-object, the vectoy, is (1,---,1),

g(o)} Q=101 Ql, and K is an R, 0-partition. But the construction of [28] does not
allow to improve parameters of new codes by usiRgl-objects
Q. = { P(f.) }_/ k=T,ne (25) and R, I-partitions with/ > 1 and by using pqrity check matrices
By (br) of codes withp; > 2 for design of matricesD'?. Besides, in the
construction of [28] one cannot use translates of nonlinear codes for
the index= remarks a variant of a matrivf)’;;) is anmR x N design of codesD,, i.e., the construction of [28] is not close to
matrix, the value ofV(*) depends on a form of the matri®';, the Construction A of this work. Note also that in [28, suppl., Statement
matrices(?, 2., P(fx), andBm (bx) are defined by Construction A. 6] ideas connected with a complete set of indicators are used only
_Example 2: We consider Construction B with = 1. Let A € for R = 2 whereas Condition 5 allows to pit > 2 and Condition
{0, R} be a parameter, and let 6 is effective forR = 3, see Examples 3 and 5. It can be remarked
that constructions of this work allow to design codes in a region of

Hy=[0Q, U= {

om(B=p) gm(B=p) .. gm(R=p) !
=, oL oL the code_length, see Example 6. Therefore, new codes obtained by
W | omee = c gmez constructions of this work usually have better parameters than codes
Dy, = ] ‘.2 ) ) designed by the construction of [28].
: : : Note that connections between matrié&s(b), H, ¥ of linearg™ -
omer 0mer X =y concatenating constructions and a projective geometry are considered
' in [6], and [12, Remark 5.1]. In [6, Remark 2, p. 326], e.g., it is noted
(P1s77+5Py) = Gps Z/’j =p, p=R-—A (26) thata parity-check matrix of a maximum-distance-separable (MDS)

code can be used to design the matHx (Linear MDS codes and

where avectogp is defined in Notation 15, is a parity-check matrix n-arcs are equivalent objects [27])

of an[N;, N;j — mp;],p; code A; with covering radiugp;
v IV. FaMILIES OF COVERING CODES
N = >N Remark 3: By Fact 2, we can treat afmo, pg"° "), R. 1, code
j Vo asVy = Cy+()+) code wherel” is an (no,p*q"0~ "0), R, 1o
o . code, p* = pg™® 7", vy = ng, Cv+ = Zn,, 2% is the set of
the submatrix¥ in (25) is absent for\ = R. P vd o = o By or =p

transposed codewords B%. Then Construction A witdf = ¢ ™"

gives ny = N 4+ no¢™, My = p*q”V o= pqg"V ™"t where

ri =75+ mR = ny+mR, r1 = ro + mR. That is why we

often do not remark a cod€'y,.

Below, excepting Example 6, we consider and use Construction A

(ag) € Du x Gus  u € {1, 01, with M; = ¢"7"%, j =15, M = ¢" =", see (9) and (12). If

wi(a) . pj = 1thenA; is the[v.m,q, ¢m,q — m]q1 Hamming code where
a=(a1+ay) €Dy, g€ Gy, a; € A7, j=1,7.

Using Notation 1 it can be shown that Construction B wits 1
is a variant of Construction A whegachtranslateA; is acosetof a
linear code A;, j = 1,+. Let (ag) be a codeword of the new code
V of Construction A, i.e.,

” ; Pmyg=(¢" —1)/(qg—1).
Then 90" = & = [ov 0™ T, T = [¢l) ) - €7 01" Pmg = ( /lg—1)
see (10) and (11). Now we number cosets of B, N, — mp;lap;

code A; with a parity-check matrix2; in an order connected with
numbering of elements of GI&);). We put

Usually, p1 = 1 and A, is the Hamming code. For each codeword
z1 € Ay there exists a codeword, € A; with d(z1,2z2) = 3,
1+ a* = r2, Wwherea™ € A;, wt (a*) = 3. Each coset of4; also
w(u) —T . — has this property. Hence for each codewgidof the new codd”
A =Ae€ Eq': B = —&,(Afj)(“)}. F=Llyvu=L0Q- o exists a codeworgh € V with d(y1.y2) = 3, y1 + @ = y2,
a=(a",0,---,0) € E''v. So,Iy > 1for R > 3.
We construct anR, 1-partition &) for the codeV with R >
a?l = [0"0+m1"_5(1) ...7_5(7)( )]1’_ 3. If nonzero positions ofa* are 1, 2, 3, we partition the po-
b sitions 1,---, .., corresponding to translateglj into subsets
Hence {1},{2}, {3, ¢m,q}- Each codeA; has ap;,0-partition K; with
h(A;,0; K;) = n,. K; is also ap;,0-partition for each translate
(ag)H{ = a¥®" + gQ" =[o; 0"F]". A If p; = 1 thenn; = 1. We useK>,---. K, to partition the
positionsym 4 + 1,---, N corresponding to translateds, - - -, A~
So, («g) is also a codeword of the new codle of Construction B. into > ) _,m; subsets. By Proof of Theorem 1, for Conditions 1
Conditions 1-6 of Construction A are also sufficient for the equalitgnd 2, two columns from the same submatfix do not occur in
Ry = R in Construction B withs = 1. a representation of the colunjrnA)”, see (15). Hence, taking into
Construction B can be useful for estimatesiof and 2(V,ly) account Fact 3ii), we can partition the positioNs+ 1,---,ny of
using Definition 3. Besides, in order to |mprove parameters of the neélae codeV into |3| subsets such that each subset con5|stallof
codeV we can use special matricd3s similar to corresponding column labels ofall submatrices(?,, from (11) having the same
matrices of linear constructions of [6]-[8], [11], and [12], see, e.gindicatorb,. € 3. Here|X]| is the cardinality of a seX. We can
[10, Example 1]. put |3| = ho. Besides, we may also tre&t as an(nv, Mv ), R,0

Then
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code, see Definition 1. Clearly,(V,0) < 2(V,1). So Cauchy matrices for design of matricés..(b) [6, eq. (2.3)], take
. vectorsg, with many nonidentity components [6, pp. 319-320], [8,
h(V,0) < h(V,1) < 3+ 2771 +ho=~v+1+n, + ho, p. 2073], give more conditions sufficient fétyy = R [6, Theorem

2], [8, p. 2074], [12, Theorems 3.1, 4.1, 5.1], obtain estimates of
= ho. (27) lv,h(V,lv) and use them for improving the iterative process of
constructing codes [8, Secs. IV, VI, VII], usB”, I-subsets with
Example 3:R = 3, ¢ = 2. We obtain codes with the help of ancovering radius smaller thaR* [6, Definition 1, Example 5], etc.
iterative process when a new code is a starting code on the next stefRemark 5: The proposed constructions can be used to improve
Vo = Cv, (29) is the (no, 2"0770),3 code withng = 23, 7o = 11, estimates of the value
p=1,%, ={0}. Cy, is the[23.12]»3 Golay code. So}; = Cy,, .
see Fact 2. We use the trivial 0-partition K, with hy = 23 and na(R) = hr}}i‘g pq(n, R)
Condition 2 withgs = (1,2), 2™ — 1 > 23. We takeevenm > 6,
n o= 23 x 2", 1 = 11 + 3m. Let A, be the (n,2" 2™),2 where i, (n, R) is the minimal density of the covering of &
code P(m) of [13, Theorems 4, 5] witl. = 1.5 x 2 — 1. Then ary code of lengthn, covering radiusR. For example, the known

=2

for Conditions 1 and 2 with? > 3,

3

N =25x2™—2 ny =25.5%x2™ =2, My =2nv—(11+3m) gae families A; (see Section I) and Fact 1 give the following local
(12). Form = 6 we have a1630,2'%°72%),3,1 codeV’ with maxima ofu3(n,3): p3(n1 —1,3) & 4.5, p3(n2 — 1,3) & 2.75,
) ) . us(ng — 1,3) = 2.67, u3(nse — 1,3) =~ 4.46. So, the known
RV, 0) <AV, 1) <2414 (1.53x2°-1)+23=121 codes imply p2(3) < 4.5. It can be shown that the obtained

families F; of (2)—-(5) and Fact 1 give the following new local
maxima of u3(n,3): p3(np, — 1,3) = 3.01, p3(np,,3) = 3.74,
ps(np, —1,3) = 2.69, pS(ns — 1,3) = p3(np, — 1,3) = 2.67,
wheren g, is the length of codes of the famill;, n, is taken for
A = 7/4. For the lengthn -, the family I, gives the same density
3.74 as the familyFy and Fact 1. For the lengthr, — 1 the family

see (27). We tredt” as a(1630,2'%%°~2?),3, 0 code and use it &
for Condition 6 with1630 > 2™ +1 > 121, m = 7,10. Form =7
we have an(np,2"?7%),3,1p codeD with np = 1631 x 27 — 1.
As usual,A; is the Hamming code. Hende > 1. It can be shown
that actuallylp > 2, ie., ifxr € EY?, w € D, d(x,w) = 1, then
there exists a codeword € D with 2 < d(x,u) < 3. Existence of 4 i ; is even) or the familyF; (if ¢ is odd) and Fact 1 give the

the wordu follows from Fact 3ii) and the facts that for= 2, m > 2, density3.01. So, we obtaineg(3) < 3.74 instead ofix(3) < 4.5.
each column of a parity-check matrix of the Hamming code is a sum ' - -

of two other columns and each column of the submdfrixof (11)
is a sum of three other columns. Now we use the trivial partifian
and takeD asV;, for Condition 3 withA = 2, 2™ > np. We obtain
the family F5 of (4).

Example 4:R = 3,¢q = 2. Vj is the (ng, 2" *¥),3 code D(v)
of the family A; [13, Theorem 8], wherey = 2°7* — 1, v > 4
is even. We use the triviad, 0-partition Ky with hy = no and
Condition 2 withp = 3, g3 = (1,2), 2™ > 21, We takeodd
m = v + 1, v + 3 and obtaintwo new codesV from everycode
D(v), see Remark 3. Letl; be the[N2, N> — 2m]22 code of [12, [1] A. Blokhuis and C. W. H. Lam, “More coverings by rook domaing,”

eq. (1.3)] withV> = 27 x 2™ * — 1. We obtain the familyFy of (5). 2 gogqblign. Tlr&_eo\r/ysserblA, vol. %th& %Iil/_(l)—244,slh984. § -
p_ —9 V. =y, ; . A. Brualdi, V. S. Pless, and R. M. Wilson, “Short codes with a given
Example 5:R = 3,9 = 2. Vo is the (9, 7),3 code of [5]. Using covering radius,1EEE Trans. Inform. Theorwol. 35, pp. 99-109, Jan.
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