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Constructions of Nonlinear Covering Codes

Alexander A. Davydov

Abstract—Constructions of nonlinear covering codes are given. Using
any nonlinear starting code of covering radiusR � 2 these constructions
form an infinite family of codes with the same covering radius. A
nonlinear code is treated as a union of cosets of a linear code. New
infinite families of nonlinear covering codes are obtained. Concepts of
R; l-objects, R; l-partitions, and R; l-length are described for nonlinear
codes.

Index Terms—Binary codes, covering codes, covering radius, nonbinary
codes, nonlinear codes.

I. INTRODUCTION

Covering codes and their constructions are considered, e.g., in
[1]–[30], and the references therein. In Sections II and III we develop
and generalize linear code constructions of [6]–[8] and [12] and
propose new constructions of nonlinear covering codes. Using an
arbitrary code of covering radiusR � 2 as a starting code, these
constructions form an infinite family of codes with the same covering
radius. A nonlinear code is treated as a union of cosets of a linear
code. Such treatment is based on the ideas of [1] and [22], their
variants [13], [17], [23], [24], and [28], and approaches of [20] and
[21]. The new constructions also use structural ideas of the blockwise-
direct sum construction [16], [26, Sec. 18.7.2], and [28]. In Section
IV, new infinite families of covering codes are obtained. Parameters
of the new codes are better than those of known codes with the same
length and covering radius.

In [6] a new type of constructions of linear covering codes was
proposed. In [7], [8], and [12] the ideas of [6] were modified
and developed. The constructions of the type considered in [6]–[8]
and [12] can be called “qm-concatenating constructions” since a
parity-check matrix of a starting code is repeatedqm times. In this
correspondence, we give variants ofqm-concatenating constructions
for q-ary nonlinear codes,q � 2. Some results of this work were
briefly described in [9] and [10]. (Note also that the main ideas
of nonlinear constructions of this correspondence were described in
the submitted version of [8]. To save space, the final version of [8]
contains only linear constructions.)

In [28, Supplement] Struik briefly described a nonlinear gener-
alization of linearqm-concatenating constructions of [6], [7], and
[12]. This generalization is close to Construction B of this work, see
Remark 2.

Let En
q be the space ofn-dimensional row vectors over the Galois

field GF(q); q � 2. Denote by an(n;M)qR code aq-ary code of
lengthn, cardinalityM , and covering radiusR. Let an[n; n� r]qR

code be aq-ary linear code of lengthn, codimensionr, and covering
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radiusR. In the notations(n;M)qR and [n; n� r]qR we may omit
R. Let d(x; z) be the Hamming distance between vectorsx and z.
Let d(x; V ) be the Hamming distance between a vectorx and code
V , i.e.,

d(x; V ) = min
v2V

d(x; v):

Denote byt+ V the translate of an(n;M)q codeV with the leader
t 2 En

q . So t + V = ft+ v : v 2 V g. Let wt (g) be the weight of
a vectorg. Denote byF r

q the space ofr-dimensionalq-ary column
vectors. Denote by

C1 � C2 � � � � � Ct = f(u1; u2; � � � ; ut) : ui 2 Ci; i = 1; tg

thedirect sum(DS) of codesC1; � � � ; Ct; t � 2. Let �q(n;R; C) be
the density of the covering of an(n;M(C))qR codeC

�q(n;R; C) = M(C)

R

i=0

(q � 1)
i n

i
q
n
: (1)

For an infinite familyU consisting of(n;M(Un))qR codesUn [8],
[12] we consider the value

�q(R;U) = lim inf
n!1

�q(n;R; Un); Un 2 U:

Let ��q(n;R) be the leastknowndensity of the covering of aq-ary
code of lengthn, covering radiusR. Denote byM�

q (n;R) the least
knowncardinality of aq-ary code of lengthn, covering radiusR. Let
r = n � logqM be redundancy of the(n;M)q code.

Fact 1: If an (n;M)qR code exists then an(n+1; qM)qR code
exists.

We give parameters of the best known infinite familiesAi of
(ni;M)23 codes withR = 3; q = 2.

A1: r = 3t� 2; n1 = 48� 2
t�5

� 1; M = 2
n �3t+2

;

t � 8; �2(3; A1) � 2:25 [12, form. (4.12)]

A2: r = 3t� 1; n2 = 51
3

8
� 2

t�5
� 2; M = 2

n �3t+1
;

t � 14; �2(3; A2) � 1:3744 [12, form. (1.4)]

A3: r = 3t; n3 = 64� 2
t�5

� 1; M = 2
n �3t

;

t � 4 is even; �2(3; A3) � 4=3 [13, Theorem 8]

A4: r = 3t; n4 = 76� 2
t�5

� 1; M = 2
n �3t

;

t � 9 is odd; �2(3; A4) � 2:23 [12, form. (4.16)]:

We can obtain a code of arbitrary lengthn using a familyAi and
Fact 1. But this new code has the density��2(n; 3) greater than
codes of the used familyAi, e.g., if the lengthn increases from
64 � 2

t�6
� 1 to 48 � 2

t�5
� 2, where t is large even, then the

density ��2(n; 3) increases from4=3 to 9=2, see (1). In general,
��2(ni � 1; 3) � 2��2(ni; 3) for largeni. Note also that asymptotic
optimal (n0;M 0

)q1 codes with arbitrary lengthn0 and

lim
n !1

M
0

= q
n
=(1 + (q � 1)n

0

)
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are obtained in [21]. DS of these codes gives codesD with
�q(n; 3;D) � 4:5 for arbitraryq and arbitrary largen.

To illustrate the new constructions, in Section IV we obtain
new infinite familiesFi of (n;M)23 codesCi with the following
parameters:

F1: R = 3; q = 2; r = 3t� log
2
7; n = 40

1

2
� 2

t�5
� 2;

M = 7� 2
n�3t

=
7

8
M

�

2 (n; 3); t � 13;

�2(n; 3; C1) =
7

8
�
�

2(n; 3); �
2
(3; F1) � 2:7: (2)

F2: R = 3; q = 2; r = 3t� 2� log
2
�;

n = 46 +
2

�
2
t�5

� 1; 2 > � > 1; n is large,

M = �� 2
n�3t+2

�
�

2
M

�

2 (n; 3); t > 8;

4:27 > �2(n; 3; C2) �
�

2
�
�

2(n; 3) > 2:25: (3)

F3: R = 3; q = 2; r = 3t� 1;

n = 50
31

32
� 2

t�5
� 1; if t = 17; 20 and t � 35;

n = 51� 2
t�5

� 2; if t = 10; 12; 14; 16; 22; 24; � � � ; 34;

M = 2
n�3t+1

=
1

2
M

�

2 (n; 3);

�2(n; 3; C3) =
1

2
�
�

2(n; 3); �
2
(3; F3) � 1:3469: (4)

F4: R = 3; q = 2; r = 3t;

n = 64� 2
t�5

+ 27� 2
2�+(t�7)=2

� 2;

� � (t� 1)=2 (mod 2); � 2 f0; 1g;

M = 2
n�3t

=
1

2
M

�

2 (n; 3); t � 9 is odd;

�2(n; 3; C4) =
1

2
�
�

2(n; 3); �
2
(3; F4) �

4

3
: (5)

In (2)–(5) codes withM�

2 (n; 3), �
�

2(n; 3) are obtained by Fact 1
from conventional known familiesAi. From (2)–(5) we see that the
new familiesFi improve coverings in regions of code length of the
known familiesA1; A2; A4. Codes of the familyA3 from [13] have
asymptotic density4=3 for code length2u � 1 whereu is odd. The
obtained familyF4 has the same asymptotical density4=3 for code
length2u+ " whereu is even and" is small compared to2u. The
family F2 shows that new constructions can obtain codes in aregion
of code length(for F2 the region is given by�). This new property
of the proposed constructions is connected with their nonlinearity and
peculiarities of design of Construction A from Section II. Note that
the length of the first code of a family obtained by new constructions
is usually much greater than100 or even1000.

To illustrate a nonbinary application of new constructions, in
Section IV we obtain familiesF5; F6 of (n;M)33 codesC5; C6 with
R = 3; q = 3, and the following parameters fort � 9:

F5: n = 414� 3
t�5

� 1; M = 3
n�3t�1

<
1

2
M

�

3 (n; 3);

�3(n; 3; C5) <
1

2
�
�

3(n; 3); ��3(3; F5) � 2:2: (6)

F6: n = 387� 3
t�5

� 1; M = 5� 3
n�3t�2

<
2

3
M

�

3 (n; 3);

�3(n; 3; C6) <
2

3
�
�

3(n; 3); ��3(3; F6) < 3:0: (7)

Here��3(n; 3) = 4:5. Codes withM�

3 (n; 3); �
�

3(n; 3) are DS of the
codes from [21] for largen. Other known codes with close parameters
are the familiesB1; B2 of [8, form. (36), (37)] with

r = 3t; n = 321� 3
t�5

; ��3(3; B1) � 3:074

and

r = 3t+ 1; n = 431� 3
t�5

; ��3(3; B2) � 2:48:

For n = 387� 3t�5 � 1, n = 414� 3t�5 � 1, the familyB1 and
Fact 1 give density greater than4:5.

The familiesFi illustrate that new constructions can result in codes
of smaller cardinality and density than known codes ofthe same
length. For an(n;M)q3 codeCi we have

M = �iM
�

q (n; 3); �q(n; 3; Ci) = �i�
�

q(n; 3)

with �1 =
7

8
; �2 �

�

2
if 2 > � > 1, �3 = �4 =

1

2
; �5 <

1

2
; �6 <

2

3
.

Below all matrices (columns) areq-ary. An elementh of GF(qm)
written in aq-ary matrix (column) denotes a columnm-dimensional
vector that is aq-ary representation ofh. We always note the number
of q-ary rows in a matrix. Let0S be a zero matrix (column) with
S rows. If S = 0 then the matrix (column)0S is treated as absent.
Let GF�(q) = GF(q)nf0g. We consider linear combinations ofq-ary
columns only withnonzeroq-ary coefficients, i.e., combinations of
the form

Z

u=1

aufu

wherefu 2 F r
q , au 2 GF�(q). If the numberZ of summands in a

linear combination is equal to zero this combination is treated as the
zero column. LetT be the symbol of transposition.

LetC be an[n; n�r]q code with a parity-check matrixH. Denote
by C(�) the coset of codeC with a syndrome� of F r

q , i.e.,

C(�) = fx : x 2 E
n
q ; xH

T
= �g C(0) = C:

Let �p be a set ofp syndromes such that

�p = f�1; � � � ; �pg � F
r
q :

Denote byC(�p) the union of cosets of codeC with syndromes of
the set�p. We have

C(�p) =

p

j=1

C(�j):

Clearly,C(�p) is an (n; pqn�r)q code.
Kabatianskii [20] suggested the following fact.
Fact 2 [20]: Let In be then � n identity matrix. LetZn be the

code consisting of the only word(0 � � � 0) of lengthn. We treatZn
as the linear[n; n � n]q code with the parity-check matrixIn. For
any (n(V );M(V ))q code V there exist a linear codeCV and a
set of syndromes�p such thatV = CV (�p). In any case, one
may takeCV = Zn(V ), p = M(V ), �p = fvT1 ; � � � ; v

T
M(V )g where

fv1; � � � ; vM(V )g = V; vi is a codeword ofV , i = 1;M(V ), i.e., the
set�p contains all transposed codewords. If�p = f0g thenV = CV .

Fact 3 gives versions of construction from [1]. Variants and
generalizations of this construction obtain covering codes with good
parameters, see, e.g., [13], [17], [23], [24], and [28]. In [24, p. 8]
it is remarked that the construction of [1] is a generalization of the
constructions of [22], see also [23, p. 9]. The situationCV = Zn for
Fact 3 is noted in [17] and [24].

Fact 3 [1]: Let V be an(n; pqn�r)q code and letV = CV (�p)

where

�p = f�1; � � � ; �pg � F
r
q

CV is a linear[n; n � r]q code with a parity-check matrixH.

i) The covering radius of the codeV is the least integerR such
that every column� 2 F r

q is a sum of some syndrome�i(�)
of �p with a linear combination of at mostR columns of the
matrix H.
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ii) Let x be a vector ofEn

q with xHT = � 2 F r
q . If and only if

the column� is a sum of some syndrome�i(�) of �p with a
linear combination oft distinct columns ofH then there exists
a codewordw of V with d(x; w) = t. Otherwise,

w 2 G = fv 2 V : vH
T
= �i(�)g

and

d(x; V ) � d(x;G) � t:

Definition 1 [8], [12]: Let V be an(n;M)qR code of lengthn,
cardinalityM , and covering radiusR. Let l be an integer,R � l � 0.
The codeV is called anR; l-objectof the spaceEn

q and is denoted
by an (n;M)qR; l code if for each vectorx of En

q there exists a
word w(x) of V such thatR � d(x;w(x)) � l. If l � 1 thenV is
also anR; l1-object with l1 = 0; 1; � � � ; l � 1.

Remark 1: R; l-objects are a subclass ofR�; l-subsets of [6, p.
321]. A sphericalR; l-capsule with centerw in En

q is the set
fx : x 2 En

q ; R � d(x;w) � lg [6, p. 326]. SphericalR; l-capsules
centered at vectors of anR; l-object cover the spaceEn

q . The goal
of this work is to construct codes covering the spaceEn

q by usual
spheres. SphericalR; l-capsules andR; l-objects are useful for it.

Example 1: The setf000000;111000;000111g is a (6; 3)23; 1

code. The setf0000;1111;2222;0011;2200g is a (4; 5)32; 1 code.
Let � 2 GF(4), � 6= 0; 1. The setf000000; 111111; 000111;
������; �2�2�2�2�2�2; ����2�2�2g is a (6; 6)44; 2 code. See
also Section IV.

Definition 2 [8], [12]: Let D = f1; � � � ; ng be the set of code-
word positions of an(n;M)qR; l codeC of covering radiusR. A
partition of the setD into nonempty subsets is called anR; l-partition
if for each vectorx of En

q there exists a codewordg(x) of C and a
vector e(x) of En

q such thatx = g(x) + e(x), R � wt(e(x)) � l,
and allnonzeropositions ofe(x) belong todistinct subsets.

Denote byh(C; l;K) the number of subsets in anR; l-partition
K for a codeC. The value ofR is defined by context. For an
(n;M)qR; l codeC we haveh(C; l;K) � n and anR; l-partition
K is calledtrivial if h(C; l;K) = n. The minimal number of subsets
in anR; l-partition for a codeC is called anR; l-lengthof the code
C and is denoted byh(C; l). So, h(C; l) = minK h(C; l;K). For
linear codesR; l-partitions andR; l-length were introduced in [8]
and [12]. For nonlinear codes an “effective length” corresponding to
R; 0-length was considered in [28, suppl., statement 6].

For codes defined asC(�p) Definition 3 is equivalent to Defini-
tions 1 and 2.

Definition 3: Let V = CV (�p) be an (n; pqn�r)qR code of
covering radiusR whereCV is an[n; n�r]q code with a parity-check
matrix H and

�p = f�1; � � � ; �pg � F
r
q :

Let l be an integer,R � l � 0.

i) The codeV is called anR; l-object of the spaceEn
q if for

each column� of F r
q (including the zero column) there exist

a syndrome�i(�) of �p and a linear combinationL(�) of at
least l and at mostR distinct columns of the matrixH such
that � = �i(�) + L(�).

ii) Let D = f1; � � � ; ng be the set of codeword positions of the
codeV . We also considerD as the set of column labels in the
matrix H. A partition of the setD into nonempty subsets is
called anR; l-partition if for each column� of F r

q (including
the zero column) there exist a syndrome�i(�) of �p and a linear
combinationL(�) of at leastl and at mostR columns ofH with
labels fromdistinct subsetssuch that� = �i(�) + L(�).

For i) and ii) if l = 0 we can treat the zero column as the linear
combination of0 columns ofH.

II. CONSTRUCTION OFCOVERING CODES

We definemR� qm matricesBm(b) with b 2 GF(qm)[f#; �g.
The value ofR is defined by context.

Bm(b) =

e1 e2 � � � eq
be1 be2 � � � beq
b2e1 b2e2 � � � b2eq

...
...

.. .
...

bR�1e1 bR�1e2 � � � bR�1eq

; if b 2 GF(qm)

Bm(#) =

0m(R�2)

e1e2 � � � eq
0m

Bm(�) =
0m(R�1)

e1e2 � � � eq
(8)

whereej 2 GF(qm), j = 1; qm; fe1; e2; � � � ; eq g = GF(qm), i.e.,
ei 6= ej if i 6= j; i; j 2 f1; qmg; 0mU is the zeromU � qm matrix.
The elementb is called anindicator of a matrixBm(b).

Notation 1: Let m be a parameter. We introduce vectorsg� and
�u and a codeDu. Let g� = (�1; � � � ; �
) where �j > 0 is an
integer, j = 1; 





j=1

�j = �:

We denoteQj = qm� , j = 1; 


Q = q
m�

=




j=1

Qj :

LetAv
j be a translate of an(Nj ;Mj)q�j codeAj of covering radius

�j so thatAv
j = tv +Aj ; tv 2 E

N
q ; v = 1; Qj ; j = 1; 
. Let

Q

v=1

A
v
j = E

N
q ; j = 1; 


i.e., the union ofQj translatesAv
j is the whole spaceE

N
q . It is

possible that translatesA1

j ; � � � ;A
Q

j are not disjoint. If all translates
Av
j , v = 1; Qj , are disjoint thenAj is a code with redundancym�j

andMj = qN �m� . We have such situation, e.g., whenAj is a
linear [Nj ; Nj �m�j ]q�j code and the translates are itscosets.

Let �(j)w be thewth element of the field GF(Qj), i.e.,

GF(Qj) = f�
(j)

1
; � � � ; �

(j)

Q g:

There existQ distinct vectors(w1 � � �w
) with wj 2 f1; Qjg. We
number these vectors in arbitrary order and denote by

Wu = (w1(u) � � �w
(u))

theuth vector withwj(u) 2 f1; Qjg; j = 1; 
; u = 1; Q; Wu 6=Wk

if u 6= k. Let

�u = [�
(1)

w (u)
�
(2)

w (u)
� � � �

(
)

w (u)
]
T
; u = 1; Q:

Then�u 6= �k if u 6= k, Fm�
q = f�1; � � � ;�Qg. Let

Du = A
w (u)

1
�A

w (u)

2
� � � � � A

w (u)



be DS of translates. ThenDu is an (N;M)q� code with

N =




j=1

Nj ; M =




j=1

Mj ;

Q

u=1

Du = E
N
q

M = q
N�m�

; if Mj = q
N �m�

; j = 1; 
:

(9)
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Construction A: Let

V0 = CV (�
0
p)

be a starting (n0; pq
n �r )qR; l0 code of lengthn0, cardinality

pqn �r , and covering radiusR, where

�
0
p = f�1; � � � ; �pg � F

r
q

and CV is an [n0; n0 � r0]q code with a parity-check matrix
H0 = [f1 � � � fn ], f� 2 F r

q , � = 1; n0. Let K0 be anR; l0-
partition for the starting codeV0. We denoteh0 = h(V0; l0;K0). Let
m;� be parameters,� 2 f0; Rg. We set� = R��, Q = qm�, and
use Notation 1. We form anew codeV by two steps.

1) We form anauxiliary (n1; pQq
n �r )qR1 codeV1 of length

n1, cardinality pQqn �r , and covering radiusR1, where
V1 = CV (�1

�); n1 = n0q
m; r1 = r0 + mR; � = pQ;

�1
� =

p

i=1

Q

u=1
f�

(i)
u g � F r

q ;

�
(i)
u =

�i
0m�

�u

; if 0 < � < R

�
(i)
u =

�i
�u

; if � = 0

�
(i)
u =

�i
0mR ; if � = R; �i 2 �

0
p (10)

�u 2 Fm�
q , i = 1; p, u = 1; Q, CV is an [n1; n1 � r1]q code

with the parity-check matrix



 = [
1 � � �
n ]


� =
P (f�)

Bm(b�)

P (f�) = [f� � � � f�]; � = 1; n0 (11)

f� is a column ofH0, P (f�) is an r0 � qm matrix of equal
columnsf�, � = 1; n0, the assignment of indicatorsbi depends
on the partitionK0 as follows: if numbersi; j belong to distinct
subsets ofK0 then the inequalitybi 6= bj must be true, if
numbersu; t belong to the same subset ofK0 then we are free
to assign the equalitybu = bt or the inequalitybu 6= bt. We
denote

� =

n

i=1

fbig:

2) We form thenew (nV ;MV )qRV ; lV codeV of length nV ,
cardinality MV , and covering radiusRV . If � = R then
V = V1, MV = pqn �r . If � < R we partition words of
the auxiliary codeV1 into Q groupsGu so that

Gu = fv 2 V1 : v

T
= �

(i)
u ; i = 1; pg

u = 1; Q

Q

u=1

Gu = V1:

We choose a vectorg� = (�1; � � � ; �
); (Nj ;Mj)q�j codes
Aj , and translatesAv

j for v = 1; Qj ; Qj = qm� ; j = 1; 
,
and put

V =

Q

u=1

Du �Gu; nV = N + n0q
m

MV =MpQq
n �r

=Mpq
n q �r �m� (12)

where




j=1

�j = �; N =




j=1

Nj ; M =




j=1

Mj

MV = pq
n �r

= pq
N+n q �r �mR

; if M = q
N�m�

:

Lemma 1: In Construction A for covering radii of codesV , V1,
andV0 it holds thatRV � R1 � R.

Proof: Let Z < R. By Fact 3i), there exists a column� 2 F r
q

that cannot be represented by a sum of a syndrome�j 2 �0
p and

a linear combination ofZ columns ofH0. We take this� and an
arbitrary� 2 FmR

q . Then, by (10) and (11), the column[��]T 2 F r
q

cannot be represented by a sum of a syndrome�
(j)
u 2 �1

� and a
linear combination ofZ columns of
. So, R1 � R. Finally, by
(12),RV � R1.

Examples of Conditions Sufficient for the EqualityRV = R in
Construction A (always� = R � �):

1) R � 2, l0 = 0, � = 0, � � GF(qm) [ f�g, qm + 1 � h0,
g� = (1; � � � ; 1), q � 2.

2) R � 2, l0 = 0, � = 0, � � GF(qm)nf0g, qm � 1 � h0,
g� = (1; � � � ; 1; dR

2
e), q � 2.

3) R � 2, l0 � 1, � = l0, � � GF(qm), qm � h0,
g� = (1; � � � ; 1), q � 2.

4) R � 2, l0 = R, � = R, � � GF(qm) [ f�g, qm + 1 � h0,
q � 2.

5) R � 2, l0 = 0, � = 1, � = GF(qm), n0 � qm � h0,
g� = (1; � � � ; 1), q � 2.

6) R = 3, l0 = 0, � = 2, � = GF(qm) [ f#g, n0 � qm + 1 �

h0, g� = (1), q = 2t, t � 1.

Comment 1: Under Conditions 1)–4) the parameterm does not
have an upper bound. So, we have aninfinite family of the new
codesV . Under Conditions 5) and 6), an infinite family can be
obtained by an iteration using Construction A, see Examples 3 and 5.
Under Conditions 5) and 6), wemustuseall elements of GF(qm) or
GF(qm)[f#g as indicatorsbi. Conditions 5) and 6) are constructions
with a complete set of indicators. For all conditions, the parameter
m is bounded from below. The inequalityqm + 1 � h0 is better
than qm � h0 or qm � 1 � h0 in respect to restrictions form.
Theseinequalities permit us to assign distinct indicatorsbi 6= bk if
the numbersi; k belong to distinct subsets ofK0. Besides, we want
to decrease the density of the covering�q(nV ; R; V ) of the new code
V . For the caseMV = pqn �r for fixed r1 we should reduce the
lengthnV of V , see (1). Increasing� causes reduction ofN andnV .
Conditions 1)–4) give� = l0, Conditions 5) and 6) give� = l0+1,
� = l0 + 2. If � = R thenN = 0. For decreasing ofN andnV
vectorg� = (1; � � � ; 1; dR=2e) is preferential tog� = (1; � � � ; 1).

Theorem 1: If any of Conditions 1)–6) holds then the new code
V obtained by Construction A has the same covering radius as the
starting codeV0, i.e.,RV = R. Besides,lV � l0 for all Conditions
1)–6).

Proof: By Lemma 1, it is sufficient to prove thatRV � R.
It means thatd((c�); V ) � R, where(c�) is an arbitrary vector of
En
q , � 2 En

q , c = (c1 � � � c
) 2 EN
q , cj 2 E

N
q , j = 1; 
. We have

�

T
=

�

�
2 F

r
q ; � 2 F

r
q ; � =

�1
...
�R

2 F
mR
q ;

�i 2 F
m
q ; i = 1; R: (13)

We consider Condition 1 with� = l0 = 0, 
 = � = R, �j = 1,
Qj = qm, j = 1; R. By Definition 3, we can find a syndrome�i(�),
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an index collectionJ = fj1; � � � ; jZg, and coefficientsak such that

� = �i(�) +

Z

k=1

akfj ; �i(�) 2 �
0
p; R � Z � l0;

ak 2 GF�(q); k = 1; Z (14)

wherefj are columns of the matrixH0, all numbersjk of columns
fj belong todistinct subsetsof the partitionK0. Thenbj 6= bj if
y; k 2 f1; Zg; y 6= k, see the assignment of indicatorsbi in (11).

Let ci 2 EN
q . Denote by	i(ci) the least integer such thatci 2

A
	 (c )
i , see Notation 1. We take theleast integer for definiteness.

Let tj� be the�th column of the submatrixBm(bj) in (11).
Let R > Z � 1. For the index collectionJ we will find columns

tj � and a vector�X such that

�

�
=

�i(�)
�X

+

Z

k=1

ak
fj
tj �

(15)

where�i(�), ak, jk, k = 1; Z, are taken from (14), and besides the
vector�X must satisfy the relations

�
(i)

w (X) = �
(i)

	 (c ); i = 1; Z: (16)

Let bj 6= �, k = 1; Z. “Locations” e� of columnstj � in (15)
are a solution of the system

Z

k=1

ake� b
i�1
j = �i � �

(i)

	 (c )
;

i = 1; Z; bj 6= bj ; if y 6= k: (17)

The determinant of the system is not equal to zero since we have the
Vandermonde matrix with consecutive degrees ofdistinct elements
of GF(qm). Having obtainede� from (17), we calculate

�
(i)

w (X) = �i �

Z

k=1

ake� b
i�1
j ; i = Z + 1; R: (18)

Now the relations (16) and (18) together give the desired vector�X .
We have obtained columnstj � and the vector�X simultaneously
satisfying (15) and (16). The columnstj � are given by locations
e� . By (15), we have the representation of the column�
T of
(13) by the sum of the syndrome�(i(�))X of �1�, see (10), and a
linear combination ofZ columns of the matrix
. By Fact 3ii),
d(�;GX) � Z. The obtained vector�X exactly gives a codeDX ,
see Notation 1. By (16),

ci 2 A
	 (c )
i = A

w (X)
i ; i = 1; Z

i.e.,

(c1c2 � � � cZ) 2 A
w (X)
1 �A

w (X)
2 � � � � � A

w (X)
Z :

SinceAv
j is a code with covering radius�j , we haved(c;DX) �

R � Z. Finally,

d((c�); V ) � d((c�);DX �GX)

= d(c;DX) + d(�;GX) � (R� Z) + Z = R:

If Z = R then calculations of (18) are not executed

d(c;DX) = 0 d((c�); V ) � d(�;GX) � R:

Let Z = 0, � = �i(�), see (14). We put�X = �. Then

�

T
= [��]

T
= [�i(�)�X ]

T
= �

(i(�))
X ;

� 2 GX ; d((c�); V ) � d(c;DX) � 
 = � = R:

Let R > Z � 2, bj = �. In (16) we puti = 1; 2; � � � ; Z � 1; R.
Henceci 2 A

w (X)
i ; i = 1; 2; � � � ; Z�1; R; andd(c;DX) � R�Z.

The system of (17) has the form
Z�1

k=1

ake� b
i�1
j = �i � �

(i)

	 (c )

i = 1; Z � 1; bj 6= bj ; if y 6= k;

Z

k=1

ake� = �R � �
(R)

	 (c )
: (19)

The determinant of the system of (19) is not equal to zero since we
add the column(0 � � � 01)T to the Vandermonde matrix. By (19), we
obtain e� . Then, instead of (18), we calculate

�
(i)

w (X) = �i �

Z�1

k=1

ake� b
i�1
j ; i = Z; R� 1:

So, we obtain�X andtj � for (15). By Fact 3ii),d(�;GX) � Z. So

d((c�); V ) � (R� Z) + Z = R:

Other conditions can be considered similarly. We consider some
distinctive situations.

Condition 2: We have�j = 1, Qj = qm, j = 1; 
 � 1, �
 =

dR=2e, 
 = bR=2c + 1, � = R. Let Z � 1, see (14). We denote

�
(
)

w (X) = (E1;XE2;X � � �EdR=2e;X); El;X 2 GF(qm);

l = 1; dR=2e:

If R�Z � dR=2e then we use (15)–(17). Instead of (18) we have

�
(i)

w (X) = �i �

Z

k=1

ake� b
i�1
j ; if i = Z + 1; 
 � 1

Ei�
+1;X = �i �

Z

k=1

ake� b
i�1
j ; if i = 
; R: (20)

By (20), we obtain�(i)w (X) for i = Z + 1; 
. So

d(�;GX) � Z; d(c;DX) � R� Z; d((c�); V ) � R:

If R�Z < dR=2e then in (16) we puti = R� Z + 1; 
. Instead
of (17) we solve the system

Z

k=1

ake� b
i�1
j = �i � �i;

�i = �
(i)

w (X); if i = R� Z + 1; 
 � 1

�i = Ei�
+1;X ; if i = 
; R: (21)

Then we use (18) withi = 1; R� Z, and obtain values of�(i)w (X)

for i = 1; R� Z. By Fact 3ii), d(�;GX) � Z. By (16) with
i = R� Z + 1; 
, we haved(c;DX) � R�Z. So,d((c�); V ) � R.

Condition 3: We have� = l0 � 1, �j = 1, Qj = qm, j = 1; 
,

 = �. Let L = Z ��; � > L � 1. In (16) we puti = 1; L. Instead
of (15), (17), and (18) we use (22)–(24), respectively.

�

�
=

�i(�)
0m�

�X

+

Z

k=1

ak
fj
tj �

: (22)

Z

k=1

ake� b
i�1
j = �i; if i = 1;�

Z

k=1

ake� b
�+i�1
j = ��+i � �

(i)

	 (c ); if i = 1; L: (23)

�
(i)

w (X) = ��+i�

Z

k=1

ake� b
�+i�1
j ; i = L+ 1; 
: (24)
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Condition 4: We haveV = V1, l0 = � = R, nV = n1. Instead
of (c�) we consider a vector�. The relation (14) always holds for
Z = R. We use (15) with[�i(�) 0

mR]T instead of[�i(�) �X ]
T (see

(10)). Put that the right side of the equations of (17) is�i, obtain
e� , k = 1; R, and show thatd(�; V1) � R.

For Conditions 5 and 6, the matrix
 of (11) always contains a
submatrixBm(b') with a calculated indicatorb' since� = GF(qm)
or � = GF(qm) [ f#g. For Conditions 5 and 6 we use the relation
(22).

Condition 5: Here
 = � = R � 1. Let � = �i(�), �1 6= 0. We
put �(1)w (X)

= �
(1)

	 (c )
. Now c1 2 A

w (X)

1
and

d(c;DX) � 
 � 1 = R� 2:

We calculateb' = (�2 � �
(1)

w (X)
)=�1 and put

��
(i)

w (X)
= �1b

i
' � �i+1; i = 2; 
:

So we obtain�X . We have

[��]
T
= [�i(�) 0

m
�X ]

T

+ [f'; �1; �1b'; � � � ; �1b
R�1
' ]

T � [f'; 0; � � � ; 0]
T
:

By Fact 3ii), d(�;GX) � 2. So

d((c�);DX �GX) � (R� 2) + 2 = R:

Condition 6: Here �X = �
(1)

w (X)
. Let � = �i(�) + a1fj , see

(14). If bj 6= #; �2 6= �1bj , or bj = #, �1 6= 0, we put
�
(1)

w (X)
= �

(1)

	 (c )
. Now

c1 2 A
w (X)

1
; d(c;DX) = 0; d((c�); V ) � d(�;GX):

Let bj 6= #, �2 6= �1bj , �3 + �
(1)

w (X)
6= �1b

2

j . We calculate

b' = (�3 + �
(1)

w (X)
+ �2bj )=(�2 + �1bj ) 6= bj :

We put

a1t = (�1b' + �2)=(bj + b')

y = (�1bj + �2)=(bj + b'):

Then

[��]
T
= �

(i(�))
X + a1[fj ; t; tbj ; tb

2

j ]
T

+ [f'; y; yb'; yb
2

']
T
+ [f'; 0; 0; 0]

T
:

By Fact 3ii), d(�;GX) � 3.
Let bj 6= #; �2 6= �1bj ; �3+�

(1)

w (X)
= �1b

2

j . We takeb' = #;

a1W = �1. Then

[��]
T
= �

(i(�))
X + a1[fj ;W;Wbj ;Wb

2

j ]
T

+ [f'; 0; �2 + �1bj ; 0]
T
+ [f'; 0; 0; 0]

T
:

Again d(�;GX) � 3.
Let bj = #; �1 6= 0. For q = 2t we always can calculate

b' = ((�3 + �
(1)

w (X)
)=�1)

1=2. Then

[��]
T
= �

(i(�))
X + a1[fj ; 0; a

�1

1 (�2 + �1b'); 0]
T

+ [f'; �1; �1b'; �1b
2

']
T
+ [f'; 0; 0; 0]

T
; d(�;GX) � 3:

Now we use the fact thatc = (c1), d(c;DX) � 1. If bj = #,
�1 = 0, we put �(1)w (X)

= �3. Then

[��]
T
= �

(i(�))
X + a1[fj ; 0; �2a

�1

1 ; 0]
T
;

d(�;GX) � 1; d((c�); V ) � 2:

If bj 6= #, �2 = �1bj , we take�(1)w (X)
= �3 +�1b

2

j , a1W = �1.
Then

[��]
T
= �

(i(�))
X + a1[fj ;W;Wbj ;Wb

2

j ]
T
; d((c�); V ) � 2:

Now let � = �i(�), �1 6= 0. We calculateb' = �2=�1 and take
�
(1)

w (X)
= �3 + �1b

2

'. Then

[��]
T
= �

(i(�))
X + [f'; �1; �1b'; �1b

2

']
T
+ [f'; 0; 0; 0]

T
;

d(�;GX) � 2; d((c�); V ) � 3:

Finally we consider values oflV . Clearly, lV � l0 if l0 = 0. For
Conditions 3 and 4 we haveZ � l0 in (14) and (15). By Fact 3ii),
there is a codewordw of V1 with d(�;w)=Z� l0. So, lV � l0:

Comment 2: From the proof one can see the following. Let(c�) 2

En
q where� is an arbitrary vector ofEn

q , c = (c1 � � � c
) 2 EN
q ,

cj 2 E
N
q , j = 1; 
. For Conditions 1–4 there exists a valueZ such

thatR � Z � l0 = � and at leastqZ�� distinct groupsGX have
the following property: each groupGX contains a wordrX(�) with
d(�; rX(�)) = Z (and henced(�;GX) � Z). The valueZ depends
on �, see (13) and (14). Nonzero positions of the vector�� rX(�)

can be given by locations ofZ columnstj � in the matrix (11), see
(15), (22), and Fact 3ii). IfZ = � then there is only one such group
GX . Condition 4 always impliesZ = �. If Z > � the groupsGX

can be given by vectors�X in which, e.g., the followingcomponents
�
(i)

w (X)
can be chosen arbitrarily: i = 1; Z � � for Condition 1

with bj 6= �, Condition 2 withR � Z � dR=2e, and Condition
3; i = 1; 2; � � � ; Z � 1; R for Condition 1 withZ � 2, bj = �;
i = R� Z + 1; 
 for Condition 2 withR � Z < dR=2e; etc. It is
naturally to put for these “free” components�(i)w (X)

= �
(i)

	 (c )
, see

(16) and changes of values ofi in (16) for distinct Conditions. Now
ci 2 A

w (X)

i , d(c;DX) � R � Z, and

d((c�);DX �GX) � (R� Z) + Z = R:

Locations of columnstj � providing the equality�(i)
w (X)

= �
(i)

	 (c )

are values ofe� obtained from the systems in (17), (19), (21), and
(23).

For Conditions 5 and 6 we have� > l0 and it is possible in (14)
that� > Z � l0. Then we calculateb' and find a desired groupGX

using the equalities� = GF(qm) or � = GF(qm) [ f#g. Again,
for someZ 0 > Z we haved(�;GX) � Z 0, d(c;DX) � R � Z 0.
Note that Condition 6 is connected with an oval ofqm +2 points in
a projective plane PG(2; qm), q = 2t [26].

By structure, the construction

V =

Q

u=1

Du �Gu

is similar to the blockwise direct sum (BDS) construction [16],
[28]. But the approaches to calculation of covering radius are
distinct. For the BDS construction, the radius is connected with
the valuesminu d(c;Du) + maxu d(c;Du) and minu d(�;Gu) +

maxu d(�;Gu) whenever, for Construction A, the radius is estimated
with the help of the relation(R � Z) + Z, see above.

III. M ODIFICATION OF CONSTRUCTION

Construction B: Let

V0 = CV (�
0

p)

be astarting (n0; pqn �r )qR; l0 code of covering radiusR where

�
0

p = f�1; � � � ; �pg � F
r
q

CV is an [n0; n0 � r0]q code with a parity-check matrix

H0 = [f1 � � � fn ]; f� 2 F
r
q ; � = 1; n0:

Let K0 be anR; l0-partition for the codeV0. We denoteh0 =

h(V0; l0;K0). We form anew(nV ;MV )qRV ; lV codeV of covering



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 5, SEPTEMBER 1997 1645

radiusRV whereV = CV (�
V
p ); RV � R; nV = n0q

m
+ N (");

MV = pqn �r ; r1 = r0 + mR; �
V
p = f�01; � � � ; �

0

pg;

�0i = [�i 0
mR

]
T 2 F r

q ; �i 2 �
0
p; i = 1; p; m is a parameter,

CV is an [nV ; nV � r1]q code with a parity-check matrixHV such
that

HV = [	 
]; 	 =
0
r

D
(")
m

; 
 = [
1 � � �
n ];


� =
P (f�)

Bm(b�)
; � = 1; n0 (25)

the index" remarks a variant of a matrix,D(")
m is anmR � N (")

matrix, the value ofN (") depends on a form of the matrixD(")
m , the

matrices
, 
�, P (f�), andBm(b�) are defined by Construction A.
Example 2: We consider Construction B with" = 1. Let � 2

f0; Rg be a parameter, and let

D
(1)
m =

0
m(R��)

0
m(R��) � � � 0

m(R��)

�1 0
m� � � � 0

m�

0
m�

�2 � � � 0
m�

...
...

.. .
...

0
m�

0
m� � � � �


;

(�1; � � � ; �
) = g�;




j=1

�j = �; � = R� � (26)

where a vectorg� is defined in Notation 1,�j is a parity-check matrix
of an [Nj ; Nj �m�j ]q�j codeAj with covering radius�j

N
(1)

=




j=1

Nj

the submatrix	 in (25) is absent for� = R.
Using Notation 1 it can be shown that Construction B with" = 1

is a variant of Construction A wheneachtranslateAv
j is acosetof a

linear codeAj , j = 1; 
. Let (�g) be a codeword of the new code
V of Construction A, i.e.,

(�g) 2 Du �Gu; u 2 f1; Qg;

� = (�1 � � ��
) 2 Du; g 2 Gu; �j 2 A
w (u)

j ; j = 1; 
:

Then g
T
= �

(i)
u = [�i 0

m�
�u]

T ; �u = [�
(1)

w (u) � � � �
(
)

w (u)]
T ,

see (10) and (11). Now we number cosets of an[Nj ; Nj �m�j ]q�j
codeAj with a parity-check matrix�j in an order connected with
numbering of elements of GF(Qj). We put

A
w (u)

j = fe 2 E
N
q : e�

T
j = ��

(j)

w (u)g; j = 1; 
; u = 1; Q:

Then

�	
T
= [0

r +m�
;��

(1)

w (u); � � � ;��
(
)

w (u)]
T
:

Hence

(�g)H
T
V = �	

T
+ g


T
= [�i 0

mR
]
T
:

So, (�g) is also a codeword of the new codeV of Construction B.
Conditions 1–6 of Construction A are also sufficient for the equality
RV = R in Construction B with" = 1.

Construction B can be useful for estimates oflV and h(V; lV )
using Definition 3. Besides, in order to improve parameters of the new
codeV we can use special matricesD(")

m similar to corresponding
matrices of linear constructions of [6]–[8], [11], and [12], see, e.g.,
[10, Example 1].

Remark 2: In [28, suppl., Statements 5–7] Struik briefly consid-
ered a nonlinear generalization of linearqm-concatenating construc-
tions of [6], [7], and [12]. This generalization usesn-arcs in a
projective geometry. The construction of [28] is close and obtains
codes with the same parameters as Construction B of this work in
which a starting code is anR; 0-object, the vectorg� is (1; � � � ; 1),
andK0 is anR; 0-partition. But the construction of [28] does not
allow to improve parameters of new codes by usingR; l-objects
andR; l-partitions with l � 1 and by using parity check matrices
of codes with�i � 2 for design of matricesD(")

m . Besides, in the
construction of [28] one cannot use translates of nonlinear codes for
design of codesDu, i.e., the construction of [28] is not close to
Construction A of this work. Note also that in [28, suppl., Statement
6] ideas connected with a complete set of indicators are used only
for R = 2 whereas Condition 5 allows to putR � 2 and Condition
6 is effective forR = 3, see Examples 3 and 5. It can be remarked
that constructions of this work allow to design codes in a region of
the code length, see Example 6. Therefore, new codes obtained by
constructions of this work usually have better parameters than codes
designed by the construction of [28].

Note that connections between matricesBm(b),H,	 of linearqm-
concatenating constructions and a projective geometry are considered
in [6], and [12, Remark 5.1]. In [6, Remark 2, p. 326], e.g., it is noted
that a parity-check matrix of a maximum-distance-separable (MDS)
code can be used to design the matrixH. (Linear MDS codes and
n-arcs are equivalent objects [27].)

IV. FAMILIES OF COVERING CODES

Remark 3: By Fact 2, we can treat an(n0; pqn �r
)qR; l0 code

V0 asV �

0 = CV (�
0
p ) code whereV �

0 is an (n0; p�qn �r
)qR; l0

code, p� = pqn �r , r�0 = n0, CV = Zn , �0
p is the set of

transposed codewords ofV0. Then Construction A withM = qN�m�

gives nV = N + n0q
m, MV = p�qn �r

= pqn �r where
r�1 = r�0 + mR = n0 + mR; r1 = r0 + mR: That is why we
often do not remark a codeCV .

Below, excepting Example 6, we consider and use Construction A
with Mj = qN �m� , j = 1; 
, M = qN�m�, see (9) and (12). If
�j = 1 thenAj is the ['m;q; 'm;q �m]q1 Hamming code where

'm;q = (q
m
� 1)=(q � 1):

Usually, �1 = 1 andA1 is the Hamming code. For each codeword
x1 2 A1 there exists a codewordx2 2 A1 with d(x1; x2) = 3,
x1 + a? = x2, wherea? 2 A1; wt (a

?
) = 3. Each coset ofA1 also

has this property. Hence for each codewordy1 of the new codeV
there exists a codewordy2 2 V with d(y1; y2) = 3, y1 + �a = y2,
�a = (a?; 0; � � � ; 0) 2 En

q . So, lV � 1 for R � 3.
We construct anR; 1-partition K(1) for the codeV with R �

3. If nonzero positions ofa? are 1, 2, 3, we partition the po-
sitions 1; � � � ; 'm;q corresponding to translatesAv

1 into subsets
f1g; f2g;f3; 'm;qg. Each codeAj has a�j ; 0-partition Kj with
h(Aj ; 0;Kj) = �j . Kj is also a�j ; 0-partition for each translate
Av
j . If �j = 1 then �j = 1. We useK2; � � � ; K
 to partition the

positions'm;q + 1; � � � ; N corresponding to translatesAv
2; � � � ;A

v



into 


j=2 �j subsets. By Proof of Theorem 1, for Conditions 1
and 2, two columns from the same submatrix
� do not occur in
a representation of the column[��]T , see (15). Hence, taking into
account Fact 3ii), we can partition the positionsN + 1; � � � ; nV of
the codeV into j�j subsets such that each subset consists ofall
column labels ofall submatrices
� from (11) having the same
indicator b� 2 �. Here jXj is the cardinality of a setX. We can
put j�j = h0. Besides, we may also treatV as an(nV ;MV )qR;0
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code, see Definition 1. Clearly,h(V; 0) � h(V; 1). So

h(V; 0) � h(V; 1) � 3 +




j=2

�j + h0 = 
 + 1 + �
 + h0;

for Conditions 1 and 2 withR � 3; j�j = h0: (27)

Example 3:R = 3; q = 2. We obtain codes with the help of an
iterative process when a new code is a starting code on the next step.
V0 = CV (�

0
p) is the (n0; 2n �r

)23 code withn0 = 23, r0 = 11,
p = 1, �0

p = f0g. CV is the [23; 12]23 Golay code. So,V0 = CV ,
see Fact 2. We use the trivial3; 0-partitionK0 with h0 = 23 and
Condition 2 withg3 = (1; 2), 2m � 1 � 23. We takeevenm � 6,
n1 = 23 � 2

m, r1 = 11 + 3m. Let A2 be the (n; 2n�2m)22
codeP (m) of [13, Theorems 4, 5] withn = 1:5 � 2

m � 1. Then
N = 2:5� 2

m � 2; nV = 25:5� 2
m � 2, MV = 2

n �(11+3m), see
(12). Form = 6 we have a(1630;21630�29)23; 1 codeV 0 with

h(V
0

; 0) � h(V
0

; 1) � 2 + 1 + (1:5� 2
6 � 1) + 23 = 121

see (27). We treatV 0 as a(1630;21630�29)23;0 code and use it asV0
for Condition 6 with1630 � 2

m
+ 1 � 121, m = 7; 10. Form = 7

we have an(nD; 2n �50
)23; lD codeD with nD = 1631� 2

7 � 1.
As usual,A1 is the Hamming code. HencelD � 1. It can be shown
that actuallylD � 2, i.e., if x 2 E

n
2 , w 2 D, d(x;w) = 1, then

there exists a codewordu 2 D with 2 � d(x; u) � 3. Existence of
the wordu follows from Fact 3ii) and the facts that forq = 2,m � 2,
each column of a parity-check matrix of the Hamming code is a sum
of two other columns and each column of the submatrix
� of (11)
is a sum of three other columns. Now we use the trivial partitionK0

and takeD asV0 for Condition 3 with� = 2, 2m � nD. We obtain
the family F3 of (4).

Example 4:R = 3; q = 2. V0 is the (n0; 2
n �3v

)23 codeD(v)

of the family A3 [13, Theorem 8], wheren0 = 2
v+1 � 1, v � 4

is even. We use the trivial3; 0-partition K0 with h0 = n0 and
Condition 2 with � = 3, g3 = (1; 2), 2m � 2

v+1. We takeodd
m = v + 1; v + 3 and obtaintwo new codesV from everycode
D(v), see Remark 3. LetA2 be the[N2; N2 � 2m]22 code of [12,
eq. (1.3)] withN2 = 27�2

m�4�1. We obtain the familyF4 of (5).
Example 5:R = 3; q = 2. V0 is the (9; 7)23 code of [5]. Using

K0 with h0 = 9 and Condition 6 withm = 3, n0 = 2
m
+ 1 = h0,

we obtain a(79; 7 � 2
79�18

)23; 1 codeV 0. Now we useV 0 asV0
for Condition 3 with� = 1, g2 = (1; 1), 2m � 79. We obtain the
family F1 of (2).

Example 6: If �j = 1 we can put thatAj is an(Nj ;Mj)q1 code
of [21] with 'm�1;q < Nj < 'm;q. Then weshortenthe new codes
V obtained whenAj is the Hamming code. We can construct codes
for a region of code length. Let R = 3; q = 2; V0 = CV . Let
CV be the[23; 13]23; 2 code of [12, Example 4.3]. LetA1 be an
(N1;M1)21 code of [21] where1 +N1 = 2

m=�, 2 > � > 1, N1

is sufficiently large to getM1 � 2
N =(1 + N1). We use Condition

3 with � = 2, 2m � 23, and obtain a familyF2 of (3).
Example 7:R = 3; q = 3. V0 = CV (�

0
p) is the (14; p �

3
14�r

)33 code of [29] withr0 = 14, p = 2187 = 3
7, CV = Z14,

see Fact 2. We use the trivial partitionK0 with h0 = 14 and
Condition 2 withg3 = (1; 2), 3m � 1 � 14, m = 3. Let A2 be
the [22; 16]32 code of [11, table 1]. ThenN = '3;3 + 22 = 35

and we have a(413; 3413�16)33;1 codeV 0 with h(V 0; 1) � 39, see
(27). We takeV 0 asV0. We use the3; 1-partitionK(1) asK0 and
Condition 3 with� = 1, g2 = (1; 1), 3m � 39. We putm � 4.
ThenN = 2'm;3, nV = 414� 3

m � 1, MV = 3
n �(16+3m), see

(12) and Remark 3. We obtain the familyF5 of (6). Similarly, if V0
is the(13; 1215)33 code of [19] we obtain the familyF6 of (7).

Remark 4: The described constructions can be developed and
modified by using the ideas of [6]–[12]. For example, we can use

Cauchy matrices for design of matricesBm(b) [6, eq. (2.3)], take
vectorsg� with many nonidentity components [6, pp. 319–320], [8,
p. 2073], give more conditions sufficient forRV = R [6, Theorem
2], [8, p. 2074], [12, Theorems 3.1, 4.1, 5.1], obtain estimates of
lV ; h(V; lV ) and use them for improving the iterative process of
constructing codes [8, Secs. IV, VI, VII], useR�; l-subsets with
covering radius smaller thanR� [6, Definition 1, Example 5], etc.

Remark 5: The proposed constructions can be used to improve
estimates of the value

�q(R) = limsup
n!1

�q(n;R)

where �q(n;R) is the minimal density of the covering of aq-
ary code of lengthn, covering radiusR. For example, the known
families Ai (see Section I) and Fact 1 give the following local
maxima of��2(n; 3): �

�

2(n1 � 1; 3) � 4:5, ��2(n2 � 1; 3) � 2:75,
��2(n3 � 1; 3) � 2:67, ��2(n4 � 1; 3) � 4:46. So, the known
codes imply �2(3) � 4:5. It can be shown that the obtained
families Fj of (2)–(5) and Fact 1 give the following new local
maxima of��2(n; 3): �

�

2(nF � 1; 3) � 3:01; ��2(nF ; 3) � 3:74;

��2(nF � 1; 3) � 2:69; ��2(n3 � 1; 3) � ��2(nF � 1; 3) � 2:67,
wherenF is the length of codes of the familyFj ; nF is taken for
� = 7=4. For the lengthnF the familyF2 gives the same density
3:74 as the familyF1 and Fact 1. For the lengthnF � 1 the family
A3 (if t is even) or the familyF4 (if t is odd) and Fact 1 give the
density3:01. So, we obtained�2(3) � 3:74 instead of�2(3) � 4:5.
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New Good Quasi-Cyclic Ternary
and Quaternary Linear Codes

Rumen N. Daskalov,Associate Member, IEEE,
and T. Aaron Gulliver,Senior Member, IEEE

Abstract—Let [n; k; d; q]-codes be linear codes of lengthn, dimension
k and minimum Hamming distance d over GF(q). The following quasi-
cyclic codes are constructed in this paper:

[44;11;20; 3]; [55;11;26 : 3]; [66;11;32; 3]; [48; 12;21; 3];

[60;12;28; 3]; [56;13;24; 3]; [65;13;29; 3]; [56;14;23; 3];

[60;15;23; 3]; [64;16;25; 3]; [36;9; 19; 4]; [90;9; 55; 4];

[99;9; 61; 4]; [30;10;14; 4]; [50;10;27; 4]; [55;10;30; 4];

[33;11;15; 4]; [44;11;22; 4]; [55;11;29; 4]; [36;12;16; 4];

[48;12;23; 4]; [60;12;31; 4]:

All of these codes have established or exceed the respective lower bounds
on the minimum distance given by Brouwer.

Index Terms—Quasi-cyclic codes, ternary and quaternary linear codes.

I. INTRODUCTION

Let GF(q) denote the Galois field ofq elements. A linear code over
GF(q) of lengthn, dimensionk, and minimum Hamming distance
d is called an[n; k; d; q]-code.

A codeC is said to be quasi-cyclic (QC) if a cyclic shift of any
codeword byp positions is also a codeword inC. A cyclic code is a
QC code withp = 1. The lengthn of a QC code is a multiple ofp,
i.e., n = mp. With a suitable permutation of coordinates, many QC
codes can be characterized in terms of(m�m) circulant matrices.
In this case, a QC code can be transformed into an equivalent code
with generator matrix

G = [R0; R1; R2; � � � ; Rp�1] (1)

whereRi; i = 0; 1; � � � ; p� 1 is a circulant matrix of the form

R =

r0 r1 r2 � � � rm�1
rm�1 r0 r1 � � � rm�2
rm�2 rm�1 r0 � � � rm�3

...
...

...
...

r1 r2 r3 � � � r0

: (2)

The algebra ofm�m circulant matrices over GF(q) is isomorphic
to the algebra of polynomials in the ring GF(q)[x]=(xm � 1) if R

is mapped onto the polynomial

r(x) = r0 + r1x+ r2x
2 + � � �+ rm�1x

m�1

formed from the entries in the first row ofR [8]. Theri(x) associated
with this QC code are called thedefining polynomials[4].
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