
designs by Mathon [13] and Jimbo [14]. Here, we use it to 
produce good larger DTS from smaller DTS. 

An additive triangle of size n is a collection T of n(n + 1)/2 
integers s,!, k = 1,2;..,n; j = 1,2;..,n + 1 - k, 

such that 

6 
n-1 

Sl  
n-1 

s2 
,,’ 

‘ss. 

2 
Sl  

. . . 
651 

s; s; ... 4 

j+k-1 

SF = c s,l, 
i=j 

(5) 

where s,k is called the entry in the (k, j&position of T. 
From definitions above, we can show that an additive se- 

quence of permutations of order 2r + 1 and length n is equiva- 
lent to 2r + 1 additive triangles of size n with entries from X’ 
such that each integer of X1 is the entry s]k, k = 1,2;*., n; 
j = 1,2;.., n + 1 - k, of exactly one of them [15]. Each triangle 
Ai of a DTS determines an additive triangle of size IZ whose 
entries are s,k = ai j+k - aij, k = 1,2;*., n; j = 1,2;..,n + 1 - 
k, called a difference triangle of Ai with n = J. Following the 
construction for perfect systems of difference sets with ASP, we 
describe a method to obtain DTS from known DTS and ASP. 
Let U,,.,*, U2r+ 1 be the additive triangles corresponding to an 
additive sequence of permutations of order 2r + 1 and length 
n = 1. For i = 1,2;.+, I and j = 1,2;.., 2r + 1, define additive 
triangles 7; + L$ as follows: for k = 1,2;.., J and p = 1,2;.*, J 
+ 1 - k, the entry in the (k, p&position of q + q is (2r + 1)s: 
+ s,“, where Ti has entry s,” and q has entry s,” in the (k, p)- 
position. The resulting ml additive triangles Ti + q correspond 
to a new (tZ, J)-DTS with t = 2r + 1 and m  = tm, + r, where 
m, is the maximum element of (I, J)-DTS. For a similar proof, 
see 1121, [15]. 

Example 2: An ASP of order 5 and length 4 is as follows: 
x' = (-2, -l,O, 1,2, x2 = (0,1,2, -2, -11, x3 = 
(2, -2, - l,O, l), and X4 = (- l,O, 1,2, -2). It is known that 
there are a (3,4)-DTS with m, = 32 and a (4,4)-DTS with 
m, = 41. Therefore, we have a (15,4)-DTS with m  = 162 and a 
(20,4)-DTS with m  = 207. New results on M(Z, J) obtained with 
this construction are also given in Table I. The best known 
results are included for comparison. 

IV. CONCLUSION 

With the disjoint difference sets formed from the lines of 
Euclidean geometries and difference families, and additive se- 
quence of permutations, we present further results on the size of 
difference triangle sets. With these results, we can construct 
better convolutional self-orthogonal codes. DTS and related 
DDS have some applications. The results can be extended to 
apply to other applications [4], [6]. 
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linear covering codes with covering radii R = 2,3,4. Using these codes, 
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Denote by E” the space of n-dimensional vectors over the 
Galois field GF(2). Let an [n, n - r]R code be a binary linear 
code of length n, codimension r, and covering radius R. An 
[n, n - r]R code is an (n - r)-dimensional subspace of E”. The 
covering radius of an [n, II - r(C)]R code C is the least integer 
R such that the space E” is covered by spheres of radius R 
whose centers are codewords. The density of this covering is 
denoted by &a, R, C) and is defined as follows: 

p(n, R,C) p 2”-‘(‘) 2” 

R 
n = 

c( ,i i=o i 
2r(C) > 1. - (1.1) 

This parameter characterizes a quality of the covering. 
Let U  be an infinite family of codes with covering radius R, 

and let U, be a code with length n of this family. For the family 
U, we consider the following asymptotic parameter [9]: 

ii(R,U) 2 liminf p(n, R,U,). (1.2) 
n-m,lJneu 

Further, we use the notation p(R) instead of p( R, U) because 
the family U is defined by context. 

The length function Z(r, R) [3] is the smallest length of a binary 
linear code with codimension r and covering radius R. 

For the family of the [Zr - 1,2’ - 1 - r]l Hamming codes 
with R = 1, we have p(l) = 1. Infinite families of binary linear 
codes with R 2 2 are considered, e.g., in [3], [5], 171, [9], [lo], [16]. 
Tables of upper bounds on Z(r, R) are given in [l] and [3]. The 
constructions DS (direct sum) and ADS (amalgamated direct 
sum) for covering codes are described in [lo]. Other construc- 
tions of covering codes are proposed in [7]. They use a starting 
code to generate an infinite code family. 

In this work we modify a construction from [7] and generate 
infinite families of codes with covering radii R  = 2,3,4 having 
better parameters than known families. Thus we improve upper 
bounds on l(r, R). The constructed codes are normal as defined 
in [lo]. 

In Section II, we give the general form of a covering code 
parity-check matrix proposed in [7]. We call this form “Construc- 
tion A.” In order to obtain a real matrix from the general form, 
one should design some submatrix and some set of field ele- 
ments. In Sections III-V, for R  = 2,3,4, we propose a number 
of techniques for design of this submatrix and this set and obtain 
code families. We constructed in Examples 3.1, 4.2, and 5.5 
infinite families of [n, n - r]R codes with parameters: 

R  = 2, r = 2t, t 2 4, n = 27 X 2’-4 - 1 
p(2) = 1.4238, ’ (1.3) 

R = 3, r = 3t - 1, t 2 14, n = 821 X 2’-’ - 1, 
F(3) = 1.3744, (1.4) 

R = 4, r = 4t - 2, t 2 16, n = 991 x 2’-9 - 1, 

p(4) = 2.3392. (1.5) 
In Section VI we give in Table I the new upper bounds on 
l(r, R) for r I 64, R  = 2,3,4, and new upper bounds on l(r, R) 
for r = 21,28, R  = 5. 

II. DEFINITION, NOTATIONS, AND CONSTRUCTION A 

Here all matrices and columns are binary. An upper index in 
the notation of a matrix (column) is the number of binary rows 
(components) in it, except for the symbol of transposition tr. An 
element h of GF(2m) written as an element of a binary matrix 

TABLE I 
CONSTRUCTIVE UPPERBOUNDS ONTHELENGTHFUNCTION 

l(r,R) FOR R = 2,3,4 

2 

3 
4 
5 
6 

7 
a 

3 
10 
11 
12 
13 
14 
15 
16 

I? 
18 

19 
20 
21 
22 

23 
24 
25 
26 

27 
28 

29 
30 
31 
32 110591 3286 765 64 7247757311 6291455 192511 

33 
2O 34 
qa 3Q 35 
5a 5a qa 36 
ga ha ha 37 

13 a -ra 7a 38 
19 a 11 a EGa 39 
26 bVc 14 a Lla 40 
39 c 18 b 13a 41 
53d 22' lba 42 
79 c 23 a 20 a 43 

107 38 b 24 a 44 
159 c 53 c 25 a 45 
215 h-3 d,e 29 a 46 
31'3 c 75 37 a 47 
431 95 4ge 48 
639 ’ 126 62 d 43 
863 153 77 c 50 

1279 c 205 a4 51 
1727 255 d 93 52 
2559 c 308 d 125 53 
3455 383 150 54 
5119 c 511 d 174 55 
6911 618 190 56 

10239 c 767 238 57 
13823 820 301 58 
20479 c 1215 349 59 
27647 1535 381 60 
40959 c 1642 477 61 
55295 2431 605 62 
a1919 c 3071 701 63 

163833 c 4863 894 
221183 6143 990 
327679 ' 6574 1246 

442367 9727 1533 
655359 ' 12287 1790 
884735 13150 1982 

1310719 u^ 19455 2494 
1769471 24575 3038 
2621439 ' 26271 3581 
3538943 38911 3965 
5242079 c 49151 4989 
7077887 52543 6015 

10485759 c 77823 7165 
14155775 '98303 7933 
20971519 c 105087 9981 
28311551 155647 12031 

41943039 c 196607 14333 
56623103 210175 15869 
83886079 ' 311295 19965 

113246207 393215 24063 
167772159 ' 420351 28669 
226492415 622591 31741 
335544319 c 786431 39933 
452984831 840703 48127 
671088639 ' 1245183 57341 
905969663 '1572863 63485 

1342177279 c 1681407 79869 
1811939327 2490367 96255 
2684354559 ’ 3145727 114559 
3623878655 3362815 126847 
5368709119 ' 4980735 159615 

Key to Table I: Unmarked bounds are obtained in this work. 
“Ref. [lo]. 
bRef. [ll. 
‘Ref. [9]. 
dRef. [7]. 
eRef. 181. 

(column) denotes the m-dimensional column vector that is the 
binary representation of h. For definiteness, h = h, cxymml 
+ ... +h,a + h, = (h, ... h, hI)f’, where hi E GF(2), i 
= 1, m, and (Y is a primitive element of GF(2m). We assume 
that formally the number of summands of a column sum may be 
equal to zero and then we treat this sum to be equal to the zero 
column. 

Fact 2.1 (51: The covering radius of a binary linear code of 
codimension r with a parity check matrix H  is the least integer 
R such that any binary column of length r is a sum of at most R 
columns of H. 

Definition 2.1: Let C  be a binary linear [Q, Q  - SIR code of 
length Q, codimension s, covering radius R, with a parity-check 
matrix @ ‘. Let I be an integer, R  2 1 2 0. Let 1 have the 
following properties: for any binary column r of length s 
(including the zero column), there exists an integer z(n) such 
that R  2 z(r) 2 1, and the column v can be represented by a 
sum of z(r) distinct columns of the matrix as. By definition, a 
sum of 0 colu&s is treated as the zero column. Then this code 
C is called an R, l-object of the space EQ and is denoted by a 
[Q, Q  - SIR, 1 code. A [Q, Q  - SIR, 1 code with 1 > 0 is also a 
[Q, Q  - SIR, I, code with I, = 0, l;.., 1 - 1. 

Remark 2.1: The R, I-objects are a subclass of the R, l-subsets 
introduced in [7, p. 3211. 
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Clearly, a [Q, Q  - s]R code is always a [Q, Q  - s]R, 0 code. by context. Obviously, R  I h(W, 1; K) I Q. If h (@‘, 1; K) = Q, 
But if 1 > 0, then the structure of the code parity-check matrix i.e., every subset contains one column, then the partition K is 
answers the question: can the [Q, Q  - SIR code be treated as a called trivial. 
[Q, Q  - SIR, 1 code? We consider also the following minimum over all partitions: 

Example 2. I: We consider the following parity-check matrices: h(aS, 1) p min h(@‘, 1; K). (2.5) 

K Example 2.3: The [4,1]2,0 repetition code parity-check matrix 

Lo 0 0 1 l] 

0 0 0 0 
1 0 0 0 1 =Icp 1 ... 0 0 1 0 1 (PSI, ,n ‘r I?r-x73\ ; = 1,4. (2.6) 

Lo 0 0 1 11 
yi - “I \b ,, c  

cpi E GF(24), i = n, (2. 
The partition {cp,, (p2, p3}, {cp,} is (2,0)-sufficient. h(Q3, 0) = 2 < 

2, Q. 
Remark 2.2: Assume that we treat the same code with a 

parity-check matrix @ ’ as an R, Ii-object and R, &-object with 
1, > 1, 2 0. Let K, be an (R, I,)-sufficient partition of @ ‘. Then 
there exists an (R, I,)-sufficient partition K, such that 
h(@‘, 1,; KJ 5 h(W, 1,; K,); in any case, we can take K, = K,. 

cpi E GF(2’), i = 1,7. (2.3) 

The matrix @f defines the [5,1]2,0 repetition code. It cannot be 
treated as a [5,1]2,1 or a [5,1]2,2 code since the column (OOOO)‘r 
is not equal to a sum of one or two columns of @f. The matrix 
Qz  defines a [5,1]3 code C. We have (OOOO)‘r = (p3 + (p4 -I- vs. 
Hence C is a [5,1]3,0 and a [5,1]3,1 code. It cannot be treated 
as a [5,1]3,2 or a [5,1]3,3 code since the column (1000)” cannot 
be represented by a sum of two or three columns of @ i and for 
1 =’ 2,3 the representation ( lOOO)‘r = cpi cannot be used. The 
matrix a5 defines a code with R = 3. It is a [7,2]3,2 code, since 
(oooooYr = cpl + qJ2 + (P7, Pl = (P2 + 97, (P3 = (P4 + ‘ps + 
(P6,“’ . 

An addition of columns to a parity-check matrix of a code can 
increase 1 for fixed covering radius R. 

Example 2.2: A [Q, Q  - s]4 code with minimum distance 3 is 
a [Q, Q  - s]4,2 code (see this example below). If we add to a 
parity-check matrix @ ’ of a [Q, Q  - s]4,0 code a column which 
is a sum of two columns of P, we construct a [Q + 1, Q  i 1 - 
s]4,2 code. From the [8,1]4,0 repetition code, we obtain a 
[9,2]4,2 code with the parity-check matrix 

so, 
h(W, 1,) I h(W, Z1) for 1, < l,, 

Vl, K h(W, 0) 5 h(W, 1; K). (2.7) 
Example 2.4: For the matrix @ i of (2.2), the trivial partition 

K, gives h(@& 1; K,) = 5. The following partition K, is (3,0)- 
sufficient: {~1},{(pZ},{(p3, (p4, cp,]. We have h(@z, 0; K,) = 3 < 5. 

For the matrix a5 of (2.3), the trivial partition K, gives 
h(@, 2;K,) = 7. The following partition K, is (3,1)-sufficient: 
{cpi}, i = 1,2,6,7, {(p3, (p4, cps}. Here h(@, 1; K,) = 5 < 7. 

Remark 2.3: The number of subsets h(@“, 1; K) is equal to the 
chromatic number h(J) of graph I(J) considered in 17, Section 
3, Remark 11. 

Let 0” be a zero matrix with s rows. The number of columns 
in 0” is determined by context. We introduce matrices PR(b) 
with b E GF(2m) U {*}: 

cpi E GF(27), i = 1,9. (2.4) 

Here (0000000)” = qo, + (p2 + po,, ‘pi = (p2 + (ps, (p2 = ‘pi + 
~9, ~9 = CP~ + ~2, pi = Pi + ‘~1 + (~2 + (PS> i = 34. 

where A4 = 2”; ej E GF(2”), ejb” E GF(2”), j = 1, M, u 
= 1, R  - 1; b’ is the ith power of b; Om(R-l) is the zero 

m(R - 1) X M matrix; e, # ej if i f j, i, j E 11, M} (i.e., 
k,;.., eM} = GF(2”)). The element b is called an indicator of 
matrix BmR(b). 

We consider the general form of a covering code parity-check 
matrix construction proposed in 171. Here we call it “Construc- 
tion A.” 

Definition 2.2: Let 0’ be a parity-check matrix of a binary 
linear [Q, Q  - SIR, 1 code of length Q, codimension s, covering 
radius R. A partition K of the column set of the matrix @ ” into 
nonempty subsets is called (R, Z)-sufficient if for any binary 
column v of length s, there exists an integer z(n) such that 
R  2 z(r) 2 1 and the column r can be represented by a sum of 
z(a) columns of as from distinct subsets. No two columns from 
the same subset should occur in this sum. 

Construction A: Let a starting code V, be a binary linear 
[Q, Q  - SIR, 1, code of covering radius R with a parity-check 
matrix 

w = [cpl (P2 *.. 4oQL (pi E GF(ZS), i = 1, Q. (2.9) 

We denote by h(W, 1; K) the number of subsets in an (R, I)- Let K be an (R, I,)-sufficient partition of the column set of Cp” 
sufficient partition K for a matrix Cp”. The value of R  is defined into h(W,l,; K) subsets. A izew code V is an [n,n - r]R,,l 
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code of covering radius R, with a parity-check matrix H:(K) 
which has the following construction: 

0” ; 

-/I 

P”(cp,> ... P”(cp,) 

H;(K) p 
----+--------------- 

lT 

r=s+mR, 
DmR E j BmR(b,> ... RmR(b,> 

(2.10) 

where m 2 1 is an integer; E is an index of matrices DemR and 
H;(K); DpR is an mR x N(m) matrix (its structure and the 
number of columns N(m) are defined separately); OS is the zero 
s X N(m) matrix; and PS(pi) is an s X 2” matrix with equal 
columns cp,, i.e., P”(cp,> = [cpi ... cpi]. The assignment of indica- 
tors bj depends on the partition K in the following way: if 
columns cpi and 4 from @ ’ belong to distinct subsets of the 
partition K, then the inequality b, z  bj should be true; if columns 
cp, and pt belong to the same subset of K, then we are free to 
assign the equality b, = b, or the inequality b, # 6,. 

Note that for the trivial partition K, all indicators bi should 
be distinct, i.e., bi # bj if i # j. Note also that the index E is 
useful to distinguish variants of matrices DEmR and Hi(K). 

Denote by /3 the set of indicators of the matrices RmR(bi> in 
(2.10): 

p 2 6 {bi}. (2.11) 
i=l 

Construction A defines the general form of the parity-check 
matrix of a new code K To obtain a concrete matrix from the 
general form in (2.10), we should construct submatrix DpR and 
give the set of indicators /3 and the value of parameter m. These 
problems are considered in detail in Sections III-V for codes 
with R = 2,3,4. 

Directly from the construction in (2.10) it follows that the new 
[n, n - r]R,, 1 code V has codimenison r = s + mR, length 
IZ = 2”Q  + N(m), where N(m) is the number of columns in 
submatrix DemR, and covering radius R, 2 R. In Sections III-V, 
we design submatrix DemR and set /I such that the equality 
R, = R holds. 

Without going into detail, note that indicator set p and 
bounds for the m value will be designed by one of the following 
ways: 

Case Al. 

/~LGF(~‘?u{*I\T, 2’” + 1 - ITI 2 h(@‘“,l,; K). 
(2.12) 

Case A2: 

p= GF(2m) u {*)\T, Q  2 2m + 1 - ]TI 2 h(QS, 1,; K). 
(2.13) 

Here T is some set, and ITI is the cardinal@ of T. We will give 
T for every concrete situation (see Theorems 3.1-5.1). For Case 
A2, we must use all elements of the set GF(2m) U { *) \ T as 
indicators b. 

We use Construction A iteratively. We can use a parity-check 
matrix H,‘(K) of a code V obtained on the ith step as a 
parity-check matrix a,’ of a starting code V, for the (i + 1)th 
step. In this process, we may consider the same starting code V,, 
with distinct values of 1, to use both Case Al and Case A2 and 
different variants of these cases. (See, (2.7), Remark 2.2, and 
Examples 4.2, 5.1, 5.6.) Estimates of I and h(Hl(K), 1) for new 
codes V are important for the remarked iterative process. We 

give these estimates in Theorem 3.1-5.1. (In [7], such estimates 
are not described.) 

We introduce notations for submatrices of matrix H:(K) in 
(2.10): 

P”( cpi> 
L; A ------- ) I 1 BmR(b,> 

i = 1,Q; 

We denote by L(f) the union of columns of all submatrices L; 
having the same indicator bi = f, where i E {l, Q}, f E p. Let 
W” be a parity-check matrix of the [2” - 1,2” - 1 - ml1 
Hamming code containing all nonzero columns of length m. Let 
y, w, d E GF(2”) be columns of this matrix. Denote by W,” the 
matrix W” with column y omitted. 

Example 2.5: The matrix D6 is obtained by ADS of two 
Hamming codes: 

c  
0 0 1 1 1 1;o;o 0 0 0 0 0 
1 1 0 0 1 l!O’O  0 0 0 0 0 

06’ 0 1 0 1 0 11110 0 0 0 0 0 ---------------~-~--------------- 
0 0 0 0 0 

1 
O!O!O 0 1 1 1 1 

0 0 0 0 0 0 0 0 0 0 01011 0;1;0 1 1 0 IJ 0 1 0 1 1 1 

(2.15) 

Let U  4 (rr, ui;.., uR)“, rr E GF(2”), ui E GF(2*), i = 1, R, 
i.e., U  is a column of GF(2’), r = s + mR. Proofs of the equality 
R, = R in Theorem 3.1-5.1 are based on Fact 2.1. We should 
represent any column U as a sum of at most R columns of 
matrix H:(K). The basic idea of the proof lies in the following. 
Let r = ‘pi1 + ... + ‘pj,, where ‘pi,;.., 4, belong to distinct sub- 
sets of K and R 2 z > 0. Then by definition of matrix H,‘(K) 
(see (2.10)), all indicators b,l,..+, bj, are distinct. This allows us to 
solve some system of .z linear equations and to find z columns 
(one column of each submatrix L;,;.., Lfz) such that their sum S 
coincides with U in z elements u,~;*., uTZ. If R  > z, we add 
R - z  columns of submatrix ?l to the sum S. The added 
columns contain zeros in positions corresponding to u,,;.‘, u,~. 
If 1, = 0, then for r = 0 we have z = 0. For Case Al in the 
situation 1, = 0, the submatrix DC”” is a parity-check matrix of 
a code with covering radius R. For Case A2 when 7~ = 0 (and in 
some other situations), we calculate some indicator b[ and use 
the sum of two columns of submatrix L;. The indicator b6 
always exists since /3 = GF(2m) U { *} \ T. 

The new codes V are normal by Theorem 32 of [6], which 
shows that if a linear binary code has length n I 12, or minimal 
distance d I 3, or covering radius R I 2, then this code is 
normal. We show that codes V with R = 3,4 have d = 3. We 
can use codes V in construction ADS [lo]. 

For some examples in Sections III-V, we tested codes using a 
computer. For most of these examples there are proofs based on 
Fact 2.1. To save space we omit these proofs. For short we may 
write H,’ instead of H:(K). For R = 2,3,4, we write mR by 
2m,3m,4m. If in a column sum S representing a column U 
some summand is equal to the zero column, then this summand 
is treated to be absent. In summands of the form (cpf,O, w)“, 
(0, 0, w, 0)‘: etc., the value of w  is defined by context. 

III. CODES WITH COVERING RADIUS R = 2 
Theorem 3.1: Let a starting code V, be a [Q, Q  - s]2,0 code 

with a parity-check matrix a,” of the form (2.9). Let K be a 
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(Z,O)-sufficient partition of Cp” into h(@‘,O; K) subsets. We V,, V,, V, for m = 2,3,4, respectively. Directly using Case Al of 
define a new code V by a parity-check matrix H,‘(K) of the (3.1) and (3.3) with m = 2, we design a [26,18]2,0 code VI with 
form (2.101, where indicator set p (see (2.11)), parameter m, and h(H,8,0> 5 5. For m = 3,4, we construct the parity-check matrix 
submatrix 0,“” are chosen by one of the following ways: H,‘(K) of the form (2.10) with special indicator sets /3 and 

Case Al: submatrices 0,““. For m = 3, we take Df;l = D6 (see (2.15)) 

P 5 GF(2’? U {*I, 2” + 1 r h(W,O; K), and p = {O, (Y, cy + 1, a2 + 1, cy2 + (.u}, where (Y is a primitive 

0:” p [;f ;I. 

element of GF(23). We obtain [.53,43]2,0 code V, with h(H$), 0) 

(3.1) I 9. (The same code is described in Theorem 5 of [7].) For 
m = 4, we take p = (0, 1, (Y, (Ye, *}, where a! is a primitive 

Case A2: element of GF(24>, and 

p = GF(2m), Q  2 2” 2 h(W,O; K), D2m 2 - Li [ O ” I . w” 000 0000 1111 111 1111 0000 0000 ; 1 
(3.2) 000 1111 0000 111 1111 0000 0000 ; 1 

011 0011 0011 011 0011 0011 0000 1 1 
Then V is a normal [n, IZ - r]2,0 code with r = s + 2m and 

D2m 
101 0101 0101 101 0101 0101 0000 1 

parameters: 12 _ - 000 0000 0000 000 0000 1111 1111 
1 

0 I 
Case Al: 000 0000 0000 000 1111 0000 1111 I 0 

n = 2”(Q + 2) - h(H;(K),O) I h (@“,O; K). (3.3) 
000 0000 0000 101 0011 0110 0011 I 0 

2, 000 0000 0000 011 0110 0101 0101 ; 0 
Case A2: 

n = 2”(Q + 1) - 1, h(H;(K),O) I 2 X 2m + 1. (3.4) 

Proof: We prove Cases Al and A2 considering examples of 
representation for columns U = (v, ui, ~~1~’ E GF(2’), 7r E 
GF(2S), ui, u2 E GF(2m). 

1) TT = ‘p, + ‘pi; ‘pi and 4 belong to distinct subsets of K; 
bi # bj. 

Cases Al and A2: Let bi, bj # * . We find x and y solving the 
system x@/- r + yb;- ’ = ug , 6 = 1,2. Now U = (cp,, n, xbijfr + 
(Cpj, Y, Ybj)“. 

Case Al: bj = *. U  = (pi, ul, u1 bi)” + ((pi, 0, iv)“, w  = u1 bi 
+ u2. 

2) rr= vi. 
Cases Al and A2: If b, # *, then U = (pi, ui, ui bJr + 

(0, 0, w  Y. 
Case Al: bi = *. U  = ( cpi, 0, u~)‘~ + (0, ul, 0)“. 
3) lr = 0. 
Case Al: U  = (0, ul, 0)“’ + (0, 0, u2jfr. 
CaseA2: Let u1 # 0. Since p = GF(2”), indicator b( = u2/uI 

always exists and U = ( cpc, 0, 0)” + (4, ul, u1 bc jr’. If ui = 0, 
u = (O,O, u2)fT 

To estimate h(H;(K),O), we partition columns of H;(K) 
(except submatrix V{> in accordance with the partition K of 
matrix Cp”: if columns cpi, ‘pj of @ ’ belong to distinct subsets of 
K, then columns of submatrices Li, L; belong to distinct subsets 
of the partition of H;(K). For definiteness we assume that the 
first (resp., second) subset does not contain submatrices Li with 
bi = 0 (resp., bi = *>. Taking into account the case r = (oi, we 
inscribe the columns of Vc of the form (0, 0, w)” (resp., (0, w, Ojtr 
in the first (resp., second) subset. To estimate h(H;(K),O), we 
obtain 2 x 2’?’ subsets partitioning every union L(f > in two 
subsets such that the first subset contains all columns ,of the 
form (cp,, 0, Ojtr and the second subset contains the rest of the 
columns. The (2 x 2”’ + 11th subset consists of columns of qi. 
From the considered representations of U, it follows that these 
partitions of H;(K) and H,‘(K) are (2,0)-sufficient. 

By Theorem 32 of [6], the code V is normal since it has 
R = 2. 0 

Note that Case Al corresponds to condition 2 of Theorems 2 
and 4 in [7]. 

Example 3.1: In the first step of an iterative process, the 
[5,1]2,0 code with the parity-check matrix @: of (2.1) is a 
starting code V, with h(@;,O) = 5. We design three new codes 

(3.5) 

This 8 X 27 matrix is a modified form of the parity-check matrix 
of the [26,18]2,0 code VI with the last additional column. We 
obtain a [107,95]2,0 code V, with h(H:$ 0) I 32. We tested the 
codes V, and V, and the estimates of h(Htf,O) and h(H:$O) 
using a computer. 

For i 2 2 on the ith step of the iterative process, we directly 
use Case A2 of (3.2) and (3.4). Codes designed on the (i - 1)th 
step are starting codes for the ith step. Let f(r) b 27 x 2’-4 - 1 
for r = 2t. The [Q, Q  - s]2,0 codes VI, V,, and V, have Q  = 
f(s). Hence (see (3.4)) all [n, n - r]2,0 codes obtained by the 
iterative process have n = f(r). 

In the second step, the condition Q  2 2” 2 h(@“, 0; K) holds 
for m = 3,4, m = 4,5, and m = 5,6 if a starting code is VI, V,, 
and V,, respectively. We obtain codes C,, C, with n = 215,431, 
r = 14,16, h(H,‘, 0) I 17,33 (for starting code VI and m = 3,4), 
codes C,, C, with n = 863,1727, r = 18,20 (for starting code V, 
and m = .4,5), and codes C,, C, with n = 3455,6911, r = 22,24 
(for starting code V, and m = 5,6). 

Take a [f(s), f(s) - s]2,0 code with s = 2k 2 8 as a starting 
code for Case A2 with m = p. We obtain a [f(r), f(r) - r]2,0 
code C with r = 2t, t = Al. f k, h(H;(K),O) I 2 X 2* + 1. We 
next use C as a starting code for Case A2 with m = M. The 
inequality in (3.2) has the form 27 X 2’-4 - 1 > 2M 2 2 X 2’ 
+ 1. It holds for M = p + 2, t. Using these values of M, we 
construct t - p - 1 = k - 1 new [f( p), f( p) - p]2,0 codes Y 
with p=2r,r=t+p+f2,2t.Sincek24,codesYwithr= 
2t - 1,2t will always be obtained. So, if we have a series of 
codes C with t = a, 2a - 2, we can design a sequence of codes 
Y with T = 2a - 1,4a - 4. Now we can take this sequence of 
codes Y as starting codes and obtain a series of new [f(r), f(r) 
- r]2,0 codes with r = 2t, t = 4a - 3,8a - 8, etc. 

Codes Cr;.., C, designed in the second step form a required 
series of codes C with t = 7,12. So, we proved that the consid- 
ered iterative process forms an infinite family of [n, n - r]2,0 
codes with R = 2, r = 2t, t t 4, n = 27 X 2’p4 - 1, p,(2) = 
1.4238 (see (1.3)). 

Really we obtain also codes Y with r I 2 t - 2 and can 
construct for the described family different codes with the same 
parameters. 

Remark 3.1: Taking the [4,1]2,0 code of (2.6) as a starting 
code and directly using Case A2, we can design codes with 
R=2, r=2t-127, r#9,13,17,25,33, n=5~2’-~-1, 
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that have the same parameters as the codes of [9]. But these 
codes and the codes of [9] differ in structure. 

IV. CODES WIT COVERING RADIUS R = 3 

Denote by A’” a parity-check matrix of a code with covering 
radius R = 2 and codimension r = 2m. Let A,, be the length 
of this code. 

Theorem 4.1: Let a starting code V, be a [Q, Q  - s]3,1, code 
with parity-check matrix @ ’ of the form (2.9). Let K be a 
(3, @-sufficient partition of @ ” into h(aS, 1,; K) subsets. We 
define a new code V by a parity-check matrix H:(K) of the 
form (2.10), where indicator set p (see (2.11)), parameter m, and 
submatrix 0,“” are chosen by one of the following ways: 

Case Al: 
i) I, = 0, P G  GF(2’9 \ (01, 2” - 1 2 h(QS,O; K), 

(4.1) 

ii) I,=l, P G  GF(2"), 2” r h(CaS, 1; K), 

D3” Li 
11 - (4.2) 

iii) 1, = 2, ,8 c GF(2”? u {*I, 2”’ + 1 1 h(QS,2; K), 

0" D;2” ii [ 1 W” . (4.3) 
0” 

Case A2: 

v4l, /3 = GF(2’? u { *], Q  2 2m + 1 2 h(mS,Z,; K), 
D3” & D3” 

2 12 . (4.4) 
Then v is an [n, II - r]3,1 code with r = s + 3m and parame- 
ters: 

Case Al: 

0 n = 2”(Q + 1) + A,, - 1, 12 1, (4.5) 
ii) n = 2”(Q + 2) - 2, 1 = 2, 

h(H;,(K), 1) I h(BS, 1; K) + 2, (4.6) 
iii) n = zm<Q + 1) - 1, 1 = 2, 

h(H;,(K),2) I h (@‘,2; K) + 1. (4.7) 
Case A2: . 

n = 2”(Q + 1) - 1, 1 = 2 for m 2 2, 
h(H;(K),l,) I 2(2” + 1) + 1. (4.8) 

Besides, if m 2 2 or rz I 12, then V is a normal [n, rz - r]3 
code. 

Proof: We prove Cases Al and A2 considering examples of 
representation for columns U = (rr, ui, u2, u~)~‘, rr E GF(2S), 
ul, u2, u3 E GF(2m). 

1) r = pi + pj + 40,; cpi, q!, and (Pi belong to distinct sub- 
sets of K; bi, bj, and b, are distinct. 

Cases Al i-Aliii, A2: Let b,, bj, b, # *. We find x, y, z  solv- 

ing the system xbf-l + ybj”- ’ + zbkfi-’ = ug, 6 = 1,2,3. Now 
U = (cp,, x, xbbi, xb?)” + (9. y  ye ybs)tr + (cpk, z, zbk, zb;)“. If 
b, = * , the system takes the form xb>- ’ + yb,6-’ = ug, s  = 1,2, 
and the third summand is ( qok, 0, 0, w)“. 

2) Z- = ‘p, + ‘pj; cpi and qj belong to distinct subsets of K; 
bi ,# bj. If bi, bj f *, then U = (qi, x, xbi, xbF)rr + 
(q,, y, ybj, ybj2)t” + F, where X, y  are a solution of the system 
xb?-’ . +ybj”-’ = ug, 6 = 2,3 and F = (O,W,O,O)‘~ for Case Al 
i; ‘6 = 1,3 and F = (O,O, w, O)r’ for Cases Alii, Aliii, and A2. 
Note that /3 n (0) = 0 for Case Ali. 

If b, = *, then U = (cpi, ui, uIbj, uIbfYr + (qj, O,O, ,Yr + 
(0, 0, w, OY. 

3) rr = cpi. (Here we do not consider Case Aliii.) 
Cases Ali and Alii: U  = (vi, I+, uIbi, uIb,?)t’ + P, where P is 

a sum of at most two columns of submatrix qcr (see the defini- 
tion of A2m). 

Case A2: Let b, # *, u2 # uIbi, us # uIbf. Take bc = (ug 
+u2bi)/(u2 + u,b,) # bi, x  = (ulbt + u2)/(bi + bc), y  = (u,b, 
+ u2)/(bi + 9). Then U = (cp,, x, xbi, xb?Y + (cp,, O,O,O)” + 
(Q, Y, ybc, yb;Y. 

Let bi # *, u2 = uIbi, ua + zqbz. Take b* = *, w  = ug + 
u, b,f. Then U = (cpi, ul, uIbj, u,b,2)” + (cp,, 0, 0, 0)” + 
(cp,, 0, 0, WY’. 

Let b, = *, ui # 0. Take bt = u,/u,, w  = ug + urb$. Then 
U=((P~,O,O,W)~‘+(~~~U~~U~~~~U~~~)~’+((P~~O~O~~)~~~ 

4) r = 0. (Here we do not consider Cases Alii and Aliii.) 
Case Ali: D$ is a parity-check matrix of a code with R = 3. 
CaseA2: Let ui # 0, ui # ur u3. Take 6: = u3/u1, w  = u2 + 

u,bg. Then U = (cp,, ul, u,b*, uIb$)” + (Q, 0, 0, 0)” + 
(0, 0, w, OP. 

For 7~ = cpi, n = 0, the indicators b, exist since p = GF(2m) 
u {*I. 

The estimate of h(H,‘(K), I,) in (4.8) is obtained in perfect 
analogy to the estimate in (3.4). To estimate h(H[,(K), 1) in 
(4.6), we partition columns of H;,(K) (except submatrix *cl) in 
accordance with partition K of matrix a’“, i.e., if columns ‘pi and 
‘pj of @ ’ belong to distinct subsets of K, then columns of 
submatrices Li and L> belong to distinct subsets of the partition 
of H;,(K). Also, we form two subsets from columns of ?;, 
having the form (O,O, w, OY and (O,O, 0, w)~~, respectively. The 
estimate of h(H[,(K), 2) in (4.7) is similar. Since h(@s, 1,) 2 R 
= 3, we have m 2 2 in Cases Ali and Alii. Clearly, for m 2 2 
the zero column is a sum of three columns of Wm, every column 
of W” is a sum of two columns of W”, and every column of the 
submatrix Li is a sum of three columns of it. Hence, we have 
1 2 1 in (4.5) and 1 = 2 in (4.6) and (4.8). In (4.7) we have 1 = 2 
since I, = 2. For m 2 2, the new code V has minimal distance 
d = 3 (see W” in (4.1)-(4.4)). By Theorem 32 of [6], an [n, rz - r] 
code is normal if d I 3 or rz I 12. 17 

Cases Ali and Alii correspond to conditions 4 and 5 of 
Theorems 2 and 4 in [7]. 

Example 4.1: V, is the [7,2]3,2 code of Examples 2.1 and 2.4. 
Case Aliii for m 2 3 gives an infinite family of [n, n - r]3,1 
codes with 

R = 3, 1= 2, r=3t-1, t 2 5, 

fl = 2’+’ - 1, L(3) = 2.6667. (4.9) 

Example 4.2: The [23,12]3,0 Golay code is a code V, for Case 
Ali. We take the parity-check matrices of codes in (1.3) ob- 
tained in Example 3.1 as A2m and obtain a family of [n, n - r]3,1 
codes with 

R = 3, 12 1, r=3t-1, t 2 9, 

n = 411 x 2’-s - 2, j%(3) = 1.3794. (4.10) 

The first code of the family uses the parity-check matrix H:f of 
the [53,43]2,0 code obtained in Example 3.1 as matrix A2m. We 
tested using a computer that this first code is an [820,794]3,2 
code with h( H1206,) I 820, h(Hf$, 0) I 33. We use it as V, for 
Case A2, m = 5,9, and Case Aliii, m 2 10. Thus we obtain a 
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family of [n, II - r]3,2 codes with R = 3, r = 3t - 1, t 2 14, Example 4.6: V, is the [ll, 4]3,1 code of Example 4.3. We 
n = 821 x 2’-9 - 1, p(3) = 1.3744 (see (1.4)). construct a (3,1)-sufficient partition for matrix Hi as follows: 

Example 4.3: V, is the [5,1]3,1 code with parity-check matrix {h,];..,Ih&, {h,L{h,, h,, h,,,, h,,]. h(Hi, 1) I 8. We take m = 4, 
@ i, h(@&O) I 3 (see Examples 2.1 and 2.4). We use Case A2, p = {0, Q, 02, a2 + (Y, (Ye, a3 + (Y, a3 + (Ye, a3 + o2 + a}, (Y 
m = 1,2, and obtain an [ll, 4]3,1 code with the parity-check is a primitive element of GF(24), 
matrix 

0 1 11 00 00 00 oo7 0 ; 00 11 00 00 00 y (0001)” (4.17) = = (Yo. 

0 ’ 00 00 11 00 11 
Hi = 0 I 00 00 00 11 11 = Ih, ... h,,l, 

0 I 01 01 00 00 00 We tested using a computer that a [205,186]3,1 code is ob- 
1 I 00 01 00 00 00 tained. 
0 ; 00 01 01 01 01 Example 4.7: Let 0,““’ = D$‘, B3m(#) 4 D:T, /3 = GF(2”) U 

{ * ,#}, m = 3 (see (4.2) and (4.3)). V, is the [14,6]3,0 code [lo] 
hi E GF(27), i = l,ll, (4.11) with the parity-check matrix 

h(Hi, 0) 5 7, and a [23,13]3,2 code with h(Hi’, 0) I 11. Using 
the [ll, 4]3,1 code as V, for Case A2, m = 3, we obtain a 
[95,79]3,2 code. The designed [23,13]3,2 code has a larger 
length than the [22,12]3,0 shortened Golay code, but its param- 
eters 1 and h(Hj’, 0) are better. Using the [23,13]3,2 code as V, 
for Case A2, m = 4, and Case Aliii, m 2 5, we generate an 
infinite family of [n, IZ - r]3,1 codes with 

R = 3, 1 = 2, r = 3t - 2, t 2 8, 

n=3x2’+‘-1, p(3) = 2.25. (4.12) 

100 000 00 00 11 01 
010 000 00 00 11 10 
001 000 00 01 01 01 
000 100 00 01 01 10 
000 010 00 10 01 01 
000 001 00 10 01 10 
000 000 10 11 10 01 
000 000 01 11 10 10 

cpi E GF(28), i = 1,14. 

Example 4.4: V, is the [7,1]3,0 repetition code. For Case Ali, 
m 2 4, we take the parity-check matrices of codes in (1.3) as 
A2m and generate an infinite family of [n, II - r]3,1 codes with 
parameters 

R = 3, 12 1, r = 3t, t 2 6, 

n = 155 x 2’-6 - 2, F(3) = 2.3676. (4.13) 

Now we consider some special forms of submatrix 0,“” 
and p. 

Let K be a partition of a8 of the form {vi, vi+ r], i = 1,3,5,13, 
{(pi}, j = 7,12. We tested using a computer that K is (3,0)-suf- 
ficient. Take b, = b, = 1, b, = b, = a, b, = b = (Ye, b, = a3, 
b, = (Ye, b, = cz5, b,, = d, b,, = *, b,, = f> 4, = b,, = 0, 
where a! is a primitive element of GF(23). We tested using a 
computer that [126,109]3,2 code is obtained. 

Example 4.5: V, is the [7,1]3,0 code, m = 3, /3 = GF(23) \ {0}, 
and 0,“” has the form 

P3(y) is a matrix of six equal columns y. We verified using a 
computer that a [75,60]3,2 code V,, with h(H;2,2) 5 23 is 
obtained. Now again V, is the [7,1]3,0 code, m = 3, /3 = 
GF(23) \ {l}, and 0,‘” has the form 

D3" - 
14 - y = (001)“. (4.15) 

We tested using a computer that a [75,60]3,1 code V,, with 

V. CODES WITH COVERING RADIUS R = 4 

Theorem 5.1: Let a starting code V, be a [Q, Q  - s]4,1, code 
with a parity-check matrix @ ’ of the form (2.9). Let K be a 
(4, lo)-sufficient partition of a,” into h(W, 1,; K) subsets. We 
introduce the notation ho A h(DS, 1,; K). We define a new code 
V by a parity-check matrix H,‘(K) of the form (2.10), where 
indicator set /3 (see (2.11)) parameter m, and submatrix 0,“” 
are chosen by one of the following ways: 

Case Al: 

9 1, = 2, P c GF(2”), 2” 2 h,, 

02” 02” 
D4m $ wm 0" 

11 

I I3 
(5.1) ) 

om W” 

ii) 
1, = 2, P G  GFW’? U I*), 2” + 1 2 ho, m is odd, 

j-0” 0q 

(5.2) 

h(Hi:, 1) I 14 is obtained. So, we have two distinct codes V,, 
L 

and V,, with the same parameters n and r, but with distinct iii) 

values of 1 and h(H,“, I). We next use directly Theorem 4.1 in 1, = 2, p c {l, a, cY2,-., a?, 
the following situations: Case A2, m = 4, V, is code V,,; Case 
A2, m = 5,6, V, is code V,, or V,,; Case Aliii, m r 7, V, is 
code V,,. We obtain a family of [n, n - r]3,1 codes with c + 1 zho, 

R = 3, 1 = 2, r = 3t, t 2 9, 

c  = [(2” + 2)/3J, 

n = 19 X 2’-3 - 1, F(3) = 2.2327. (4.16) y = (0 . . . 01)” = &J, (5.3) 
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where (Y = (0 ... OIO)‘r is a primitive element of GF(2m); 

iv) I, = 3, p _c GFt2’?, 2” 2 h,, 

Dfr P 03" [ 1 W” . (5.4) 

Case A2: 

j> 1, = 0, p = GF(2’? u { *}, Q  2 2” + 1 2 h,, 

r 0” 0” 0” 1 

ii> I, = 0, p = GF(2m), 

Q>2’?‘>h,,, D$~D$“, (5.6) 

jjj> 1, = 0, /3 = GF(2”), Q  2 2” 2 h,, in is odd, 

0" Orn 
D;y a - AZ” 02” , L 1 .(5.7) 

0” wm 

where A”” is a parity-check matrix of a [A,, , A,, - 2m]2 code. 
Then V is a normal [n, n - r]4,1 code with r = s + 4m and 
parameters: 

Case Al: 

i) and ii) 
n = 2m(Q + 2) - 2, I = 3, h(H,‘(K),2) I h, + 2, 

h(H;(K),3) 5 3h, + 2 for in 2 3, g = 11,12, (5.8) 

iii) n = 2”(Q + 2) - 3, 1 2 2; (5.9) 

iv) n = 2”(Q + 1) - 1, 1 = 3, 

hw;,(K),3) I h, + 1. (5.10) 

Case A2: 

j) and jj) n = 2”(Q + 3) - 3, 1=3 form23, 

hWj(K),2) I 2yf + 5, h(lq’(K),3) I 4Yf + 9, 

f = 21,22, 

YZl = 2m + 1, Yzz = 2m; (5.11) 

iij) n = zm(Q + 1) + A,, - 1, 1 2 2. (5.12) 

Proof: We prove Cases Al and A2 considering examples of 
representation for columns U = (v, ul, ZQ, u3, uJ”, r E GF(2S), 
ul, u2, u3, u4 E GF(2’9. 

1) rr = qi f ‘pj f (Pk f ‘Pp; Cpi, ‘pi, (Pk, and ‘Pp belong to 
distinct subsets of K; bi, 4, b,, and bp are distinct. 

Cases Ali-Aliu, A2j-A2jjj: Let bi, b,, b,, b, # *. We find x, 
y, z, and t solving the system xb!- ’ + yb:- ’ + zbj-l + tb:- ’ 
= us, S = 1,4. U  = (cp,, x, xb,, xbf, xb,3)” + ((pi, y, yb,, ybf, 

ybj)“’ + (cpk, z, zb,, zb;, zb:)” + (cp,, t, tb,,tb;, tb;)‘: If bp = * 
(Cases Alii and A2j), the system contains three equations. In the 
representation of U, the fourth summand is ( qP, 0, 0, 0, VV)~~. 

2, T = pi + 4 ' 'Pk; qi, qj, and ‘pk belong to distinct sub- 
sets of K; bi, bj and b, are distinct. 

Let b,, bj, b, # * . We find x, y, and z solving the system T of 
three equations xbf-l + yb;-’ + zbj- ’ = ug. Now U = 
(qi> X, Xbi, Xbb,2, Xb31tr ’ ((Pi, Y> Ybj, Yb/‘, Yb;It” f (pk> Z> Zbk, zbi, 
zb:)” + f; f is a column of qtr. We introduce notations: S, = bi 
+ b,, S, = b, + b,, S, = bj + b,, II, = b,bj, II, = bibk, & = 
bjbk, (T, = b, + bj + b,, u2 = II, + II, + r13, c3 = b,b,b,, A = 

Cases Ali, Aliv, A2j-A2jjj: We take S = 1,2,3 and f = 
to, 0, 0, 0, WY’. 

Case Alii: We solve two systems ,T with S = 1,2,4 and S = 
1,3,4. We denote their determinants by A, and AZ. We can 
show that A1 = Aul, A2 = Au,. Clearly, A f 0. Suppose, A1 = 
A, = 0. Then u, = + = 0 and b,” + bjbk + bz = 0. Let t = 
bib,‘. Then t2 + t + 1 = 0. The equation cannot be solved over 
GF(2m) with odd m [14]. So, either A, # 0 or A2 # 0. If A, # 0, 
then f = (O,O, 0, w, OY. If A, f 0, then f = (O,O, w, O,O)@. 

Case Aliii: Solving the system T with S = 1,2,3, we obtain 
X = (U3 + U2S3 + U1 II3>/tS~S~>, y = (U3 + U*S2 + 
u1 H,>/(S,S,), z  = (u, + u2S, + u1 II,>/(S,S,>. For these val- 
ues of x, y, z, we have xbL3 + ybj3 + zbz = 6. If 0 + uq # a, then 
(see (5.3)) the matrix q13 contains the column f = (0, 0, 0, 0, 0 + 
uJ’ and the representation of U  is obtained. 

If 0 + u4 = LY (i.e., u4 = LY + 0), then we solve the system T 
with 6 = 2,3,4 and obtain x = (uq + u3S3 + u2 n,)/(S,S,b,>, 
y  = (u, + u3S2 + u2 II,>/(S,S,b,), z  = (a, f UPS, + 
u2 H,)/(S,S,b,), where b,,bj,bk # 0 (see (5.3)). For obtained 
values of x, y, and z, we have x + y + z = R. We substitute 
U 4= cr + 0 into 0 and obtain R = u1 + cy/u3. Since /3 & 
11, a, a 2,..., a’}, we have ua = c~~,31~<3~-312~-1. 
Hence u3 f LY, R + u1 # 1. For the matrix D$, we have 
y = 1. Therefore, ?i3 contains the column f = (0, 0 + 
ul, 0, 0, O)@. The representation of U  is designed. 

Let b, = * (Cases Alii, Azj). We solve the system xbls-’ + 
ybf-’ = ug, S = 1, 2. Now U = (vi, x, xbi, xb,2, xb3)fr + 
tpj, y, ybj, yb;, yb;)‘r + (qk, O,O, 0, w)” + (O,O, 0, g, O)fr, w  = xb; 
+ yb; + u4, g = xb? + yb; + u3. 

3) r = ‘pi + ‘pj; cpi and ‘pj belong to distinct subsets of K; 
bj # b,. Here we do not consider Case Aliv. Let b,,bj # *. We 
solve the system xbf-1 + yb;-’ = u6, where 6 = 1,2, for Cases 
Ali, A2j, A2jj; S = 2,3 for Case Aliii; S = 1,4 for Cases Alii, 
A2jjj (if m is odd, then b: # b,3). Now U = (cpi, x, xb,, xbf, xbL?)t’ 
+ ( qj, y, yb,, yb,?, yb,?)fr + P, where P is a sum of at most two 
columns of llry. If bj = * (Cases Alii, A2j), then U = ((oi, u1, 
uIbi, u,bz, zqb;Y’ + ((pi, 0, 0, 0, w)” + (0, 0, g, 0, O )@ + (0, 0, 0, 
d, OY. 

4) rr = ‘pi. (Here we do not consider Cases Ali-Aliv.) 
Cases A2j-A2jjj: Let bi f *. Then U = (pi, ul, 

qb,, zqbf, u,b3)@ + (O,O, O,O, w)” + P, where P is a sum of at 
most two columns of VJ. 

Case A2j: Let bi = *. If u, # 0, then we can always find 
b[ = u2/uI, since p = GF(2”‘? U {*>. Now U = ((P~,O,O,O,WY 
+~4~g,0,0,0,0)~~+t~~,u~,u~,u~b~,u~b~)~’+~0,0,0,d,0)~~. If 

Ul = 0, then U = (cp,, 0, 0, 0, uqY + (0, 0, uZ, 0, 0)” + 
to, 0, 0, U3, OK 

5) rr = 0. (Here we do not consider Cases Ali-Aliv.). 
Cases A2j-A2jjj: u1 = 0. U  is a sum of at most three columns 

of Ti. 
Cases A2j, A2jj: u, # 0. We can always find bE = u2/u1. Now 

U=(~~,O,O,O,O)f’+(~~,u1,u2,u,b~,u~b~)fr+(O,0,O,d,O)fr 
+ to, 0, 0, 0, WY. 

Case A2jjj: u1 # 0. Since for odd m any element of GF(2”) is 
a cube, we can always find bc such that b: = uq/ul. Then 
U = (c~g,O,O,0,0)~~ + (cp,, ul, ulb5,uIb~,uJ’ + P, where P is a 
sum of at most two columns of Vi3 corresponding to submatrix 
A’“. 

Estimates of h(H,‘(K),2) in (5.8) and h(H[,(K),3) in (5.10) 
are obtained in the same way as the estimate of h(H[,(K), 1) in 
Theorem 4.1. 
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Since h(@‘, I,) 2 R = 4, we have m 2 2 for all Cases Al and 
A2. Moreover, for Cases Alii and Azjjj, where m is odd, we have 
m 2 3. 

For m r 3, we consider partitions P3 and P4 of a union L( f >. 
For P3, the first (resp., second) subset consists of columns 
((pi, ei,eif, eif2, eif3)@ with ei = 0,l (resp., ei = LY, a’), and the 
third subset is the rest of the columns. Here 0, I, cy E GF(2m), 
and (Y is a primitive element. The first and the second subsets of 
P4 are the same as the first and the second subsets of P3, the 
third subset contains columns with ei = (Y + I, and the fourth 
subset is the rest of the columns. It can be verified directly that 
both partitions P3 and P4 allow us to represent any column of 
L(f) by a sum of three columns of distinct subsets. Also, P4 
permits us to represent any column of the form (0, ei, ei f, ... >tr 
by a sum of four columns of distinct subsets. Now we introduce 
the partition P, of the column set of the matrix W? the first 
(resp., second) subset consists of only the column (0 ... 01)” 
(resp., (0 ... OIO)“, and the third subset is the rest of the columns. 
Any column of W” is a sum of two columns of distinct subsets. 
Besides, in W*, we have three linearly dependent columns of 
distinct subsets. 

We consider Case Ali (see (5.8)). Since 1, = 2 > 0, columns 
of ?\Ir;, occur in representations of U  together with columns of 
submatrices LI. For m 2 2, any column of Ll is a sum of three 
columns of this submatrix. Hence 1 = 3. Let 1 PI = ha, m 2 3. 
To estimate h(H;,(K), 3), we use P3 for every union L(f) and 
obtain 3h, subsets. In addition, every submatrix W” in Vll 
defines one subset. Properties of P3 show that the described 
partition of H{,(K) is (4,3)-sufficient. The Case Alii is similar. 

For Case A2j (see (5.1111, columns of Vi1 can occur in 
representations of U  without columns of L:. To estimate 
h(H,‘,(K), 31, we use P4 for unions L(f) and P, for every 
submatrix Wm in Vi,. We obtain 4(2” + I) + 9 subsets. Prop- 
erties of P4, P, show that 1 = 3, and this partition of H&(K) is 
(4,3)-sufficient. If, e.g., U  = (0, ul, u,bC, u,bi, uIb2jt’, u1 f 0, 
then we represent U by a sum of four columns of distinct 
subsets. Now we consider Case A2j for 1 = 2. We partition every 
union L(f) into two subsets as in Theorem 3.1. We use P, for 
one of the submatrices W” in q&. Other submatrices Wm 
define two subsets. We obtained a (4,2)-sufficient partition of 
2(2” + 1) + 5 subsets. Case A2jj is similar. 

Since 0,““’ contains submatrix Wm, and we always have m 2 2, 
the code V has minimal distance d = 3 and is normal by 
Theorem 32 of [6]. 0 

Cases Ali and Aliv correspond to condition 4 of Theorems 2 
and 4 in [7]. 

Example 5.1: V, is the [9,1]4,0 repetition code. Case A2j, 
m = 3, gives a [93,73]4,3 code with h(Hif,2) I 23, h(H$, 3) I 
45. Now we take this code as V, for Case Ali, m = 5, and Case 
Aliv, m 2 6. This generates a [3038,2998]4,3 code and a family 
of [n, n - r]4,1 codes with 

R = 4, 1 = 3, r = 4t, t = 5, t 2 11, 

n = 47 X 2’-4 - I, p(4) = 3.1024. (5.13) 

Example 5.2: Here we use Example 2.2. ADS of the [23,12]3,0 
Golay code and Hamming codes gives a [25,12]4,0 code, a 
[29,15]4,2 code with h(Qi4, 2) < 26, and a [37,22]4,2 code with 
h(@‘,2) I 26. (The estimates of h(@‘,2) are tested using a 
computer.) From the [9,1]4,0 repetition code and the [25,12]4,0 
code, we obtain a [lo, 2]4,2 code and a [26,13]4,2 code. 

Example 5.3: V, is the [IO, 2]4,2 code of Example 5.2. With 
the help of Case Ali, m = 4, and Case Aliii, m = 5,6,7, we 
design [190, 16614, 3, [381, 35314, 3, [765, 73314, 3, and 

[1533,1497]4,3 codes. Now V, is the [9,2]4,2 code of Example 
2.2. By Case Ali, m = 4, and Case Aliii, m = 5,6, we design 
[174,15114,3, [349,32214,3, and [701,670]4,3 codes. 

Example 5.4: V, is the [S, 1]4,0 repetition code. Using Case 
A2jjj for m = 3 and the matrix in (2.15) as Azm, we obtain an 
[84,65]4,3 code. Now V, is the [37,22]4,2 code of Example 5.2. 
Case Ali, m = 5,6, and Case Aliii, m = 7,11, give an 
[1246,1211]4,3 code fl with h(HT:,3) s  80, a [2494,2455]4,3 
code, and [n, n - r]4,3 codes with 

R = 4, 1 = 3, r=4t-I, t = 11,15, 

n = 39 X 2’-4 - 3. (5.14) 

Now V’s is the code a. Case Aliv, m 2 7, gives [n, n - r]4,1 
codes with 

R = 4, 1 = 3, r=4t-1, t = 9, t 2 16, 

n = 1247 X 2’-9 - I, p(4) = 2.9323. (5.15) 

Example 5.5: We consider codes with r = 4t - 2. ADS of the 
114,613 code [IO] and the [3,1]1 Hamming code gives a [16,6]4,0 
code V,. Using Case A2jj, m = 4, we obtain a [301,275]4,3 code. 
Let Zk be the identity k  x k matrix. ADS of the [5,1]2 code (see 
(2.1)) and the [7,4]1 Hamming codes gives a [17,7]4,2 code V, 
with the parity-check matrix 14 04 o4 I v 

($10 & 03 I ,I wd o3 jp = [cpl ... (P171, V = (llll)“, 
03 03 w; I p 

p = (lll)f’. (5.16) 

It can be shown that the partition into nine subsets 
~cP~I;~~,~(P~I, (q+, 1.. , (P~~I,~(P~~,~~~, 40~~1, {(P~~I is (4,2)-sufficient. 
Case Alii, m = 3, and Case Aliii, m = 5, give an [150,128]4,3 
code and a [605,575]4,3 code. 

Now V’s is the [29,15]4,2 code of Example 5.2. Using Case 
Ali, m = 5,6, and Case Aliii, m = 7,11, we design a 
[990,956]4,3 code with h(H:t, 3) I 80, an [1982,1944]4,3 code, 
and [n, n - r]4,3 codes with 

R = 4, 1 = 3, r = 4t - 2, t = 11,15, 

n = 31 X 2’-4 - 3. (5.17) 

Finally, let V, be the [990,956]4,3 code. Using Case Aliv, 
m 2 7, we obtain an infinite family of [n, n - r]4,3 codes with 
parameters R = 4, r = 4t - 2, t = 9, t 2 16, n = 991 X 21e9 - 
1, p(4) = 2.3392 (see (1.5)). 

Example 5.6: Further r = 4t - 3. The 9 X 13 parity-check 
matrix 

@9 B I6 I5 o6 ’ 
,i ,I o3 w,31p = [cpl -.. (P131, 5 = (111111)“, 

p = (ill)“, (5.18) 

defines a [13, 414, 2 code Vo. The partition 
(cpll,~~~,((P71;((0~,..‘, pi,}, (qi3} into nine subsets is (4,0)-suffi- 
cient. The partition (cpi>;.*, (cps), ((Pi;.., (pi& (cpi3] into 10 sub- 
sets is (4,2)-sufficient. Case A2j, m = 3, Case Ali, m = 4, and 
Case Aliii, m = 5, design a [125,104]4,3 code, a [238,213]4,3 
code, and a [477,448]4,3 code, respectively. 

Now take the [26,13]4,2 code of Example 5.2 as V,. Case Ali, 
m = 5,6, and Case Aliii, m = 7,11, give an [894,861]4,3 code 
with h(H::, 3) I 80, an [1790,1753]4,3 code, and In, n - r]4,3 
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codes with VII. CONCLUSION 

R = 4, 1 = 3, r = 4t - 3, t = 11,15, Using the constructions of [7] and new constructions obtained 
in this work, we designed a number of infinite families of binary 

n = 14 x 2’-3 - 3. (5.19) linear covering codes with covering radii R = 2,3,4. The de- 

Finally, let V, be the [894,861]4,3 code. Using Case Aliv for signed codes give new upper bounds on the length function 

m 2 7, we obtain an infinite family of [n, n - r]4,3 codes with l(r, R). Ideas and approaches used in this work can be applied 

parameters for construction of codes with R 2 5. 

R = 4, 1 = 3, r=4t-3, t 2 16, 
ACKNOWLEDGMENT 

n = 895 x 2’-9 - 1, p(4) = 3.1124. (5.20) 
The authors thank V. A. Zinoviev and an anonymous referee .- 

Remark 5.1: One of the referees noted the following useful for very helpful and detailed comments and suggestions. The 
facts. We can treat binary columns as points of a projective authors also thank H. Janwa, J. H. van Lint, and V. S. Pless for 
geometry and multiples of these points (see [3], [9], [13]). For sending to them copies of their papers. 

111 

example- matrix BAR 
(1 b b2 ‘. 

contains all multiples of the point 
b > or (:“’ Rl 

1; Ghedre’In 3.1, mat& 
.-., 0,l) in the geometry PG (R - 1,2”?. 

0:” corresponds to two points of the 
line PG(1,2”), matrix 0;“’ corresponds to one point of the 
line, the claim p = GF(2m) means that we require availability of 
the rest of the points, and finally, in the proof we generate the 
line with the help of two points. In Theorem 4.1, three noncolin- 
ear points span a plane. Case Aliii uses the oval in PG (2,2? of 
2” + 2 points [14], etc. A similar approach can be used for 
Theorem 5.1. 
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