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Constructions and Families of Covering Codes and 
Saturated Sets of Points in Projective Geometry 

Alexander A. Davydov 

Abstract-In a recent paper by this author, constructions of linear 
binary covering codes are considered. In this work, constructions and 
techniques of the earlier paper are developed and modified for q-ary 
linear nonbinary covering codes, q 2 3, and new constructions are 
proposed. The described constructions design an infinite family of codes 
with covering radius R based on a starting code of the same covering 
radius. For arbitrary R 2 2, q 1 3, new infinite families of nonbinary 
covering codes with “good” parameters are obtained with the help of an 
iterative process when constructed codes are the starting codes for the 
following steps. The table of upper bounds on the length function for 
codes with q = 3, R = 2, 3, and codimension up to 24 is given. We 
propose to use saturated sets of points in projective geometries over finite 
fields as parity check matrices of starting codes. New saturated sets are 
obtained. 

Zndex Terms-Covering radius, covering codes, nonbinary codes, sat& 
rated sets of points in projective geometry, density of a covering. 

I. INTRODUCTION 

This work is devoted to design of linear q-ary covering codes and 
infinite families of the codes. Similar questions are considered, e.g., 
in [2]-[4], [6]-[16], [20]-[23], [25], [26], [29]-[31], and [33]. In [15], 
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constructions direct sum (DS) and amalgamated DS (ADS) are given. 
An effective approach to these problems is proposed in the paper [8], 
where constructions of linear binary covering codes are described. 
Using a starting code, these constructions form an infinite family 
of new codes with the same covering radius. In [8], graphs l?(J) 
associated with a parity check matrix and R* , l-subsets are introduced 
to improve parameters of new codes. However, nonbinary codes and 
iterative design of codes, using the graph l?(J), are considered in 
[8] very briefly. 

Here, constructions and techniques of [8] are developed and 
modified for q-ary codes, q > 2. Many approaches and results of 
this work are essentially nonbinary (But some new constructions can 
also be used for q = 2). For ease of representation we consider 
R, Z-objects (instead of R’, l-subsets) and R, l-partitions of parity 
check matrices (instead of graphs l?(J)), where R is the covering 
radius of a code. We give new constructions CSI with “a complete 
set of indicators” for any R > 2, q > 2, and their variants for 
R = 3, 4, q 2 2. We propose constructions “almost 1 = 2” (AL2) 
for R = 2, q > 2. The R, l-partitions allow us to reduce restrictions 
on a parameter m  (see Section III), to construct codes with relatively 
small codimensions and to extend the useful region for constructions 
CSI and AL2. We describe methods to increase 1 for R, Z-objects with 
q > 2. Estimates of 1 and the number of subsets in R, Z-partitions are 
obtained for new codes designed by constructions considered. The 
estimates are important for an iterative process when constructed 
codes are starting codes for following steps. For q 2 3 a number 
of new infinite families of covering codes with “good” parameters 
are designed. They give new upper bounds on the length functions 
(Note that R, l-objects, R, Z-partitions, and constructions CSI are 
considered in [l l] for q = 2, R 2 4). 

Saturated sets of points in projective geometries are described in 
[l] and [32]. A correspondence between these sets and parity check 
matrices of covering codes is considered in [4], [12], [14], [17], [22], 
and [2.5]. In [4] the saturated sets are called “R-spanning sets.” 

Here we use saturated sets of points as starting codes and con- 
versely treat parity check matrices of designed codes as saturated sets. 
In the last case, parameters obtained are better than those known. In 
addition, we obtained new constructions of saturated sets. 

Some results of this work were presented at conferences [9], [lo]. 
Denote by E,” the space of n-dimensional row vectors over the 

Galois field GF(q), q 2 2. Let an [n, n - T]~R code be a q- 
ary linear code of length n, codimension r, and covering radius 
R. The code is a subspace of E: with dimension k = n - r. 
In the notation [n, n - T]~R we may omit R  and change n - r 
by k. Let an [n, k, d],R code be an [n, k],R code of minimum 
distance d. Denote by d(z, z) the Hamming distance between vectors 
x and z. The sphere of radius R with center z in E,” is the set 
{x: x E Et, R  2 d(z, z)}. Let V,(n, R) be the cardinality of 
the sphere. 

v4(n, R) = &q - 1); (1) z=O 
The covering radius of an [n, n - r(C)lg code C is the least integer 
R such that E,” is covered by spheres of radius R whose centers 
are codewords of 6. The density of this covering [7] is denoted by 
pq(n, R, Cl. 

pq(n, R, C) k q”-r’c’V,(n, R)/qn 
= V4(n, R)/q’(C) 2 1. (2) 

0018-9448/95$04.00 0 1995 IEEE 
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(See the sphere bound [6]). For an infinite family U consisting of 
[n, n - T(U~)]~R codes U, we consider the value p,(R, U) [8], 
[W 

ii,(R, U) 2 Jlminfp4(n, R, U,), U, E U. (3) 

Further, all columns and matrices are q-ary. An element h of 
GF (qm) written as an element of a q-ary matrix denotes a column 
m-dimensional vector that is a q-ary representation of h. An upper 
index in a notation of a matrix is the number of q-ary rows in it. 
Let T be the symbol of transposition of a column. Denote by FpT the 
space of r-dimensional q-ary column vectors. If a column cp belongs 
to F,’ then 

p = (bl,.-,br)T, b; E GF(q), i = 1, T. 

The lengthfunction Z(r, R; q) [4] is the smallest length n of a q-ary 
[n, n - T]~R code with codimension T. 

Fact 1.1 [6], [16]: The covering radius of a q-acy [n, n-r14 code 
with a parity check matrix H’ is the least integer R with the following 
property: for any q-ary r-dimensional column n there exists a linear 
combination L(r) of at most R columns of H’ such that 7r = L(n). 

An s-dimensional projective geometry PG (s, q) over the field 
GF (q) is described in [ 181, [27]. A nonzero column a = 
(al,...,&) T of F,’ with a, E GF(q), i = 1, T, can be 
treated as a point of the geometry PG (y - 1, q). A column 
Xa = (XUl,...,XU,) ‘, X E GF (q), X # 0, corresponds to the 
same point. 

Dejinition 1.1 [32]: A set H’ of points in a projective geometry 
PG (r - 1, q) is called (R -. 1)-saturated if R  is the least integer 
with the following property: for any point z  of PG (y - 1, q) there 
exist R  independent points of H’ such that x  lies in the subspace of 
PG (r - 1, q) generated by these points. 

We added to the definition of [32] “R is the least integer. . . .” We 
use the notation H’ for parity check matrices and saturated sets. 

Fact 1.2 [22]: 

1) Let H’ be a parity check matrix of an [n, n - T]~R code of 
covering radius R. Then in the geometry PG (T - 1, q) the set of n 
points corresponding to columns of H’ is (R - 1)-saturated. 

2) Let H’ be an (R- 1)-saturated set of n points of PG (T - 1, q). 
The aggregate of r-dimensional columns corresponding to the points 
of H’ is a parity check matrix ,of an [n, n - ~1~ R code of covering 
radius R. 

From an [nl, nl - rl],R~ and an [nz, n2 - T~]~Rz code Con- 
struction DS [15] forms an [nl + nz, n1 + n2 - ~1 - r21QR code, 
R = RI + R2. Let 

ft,* $ (q” - 1)/k! - 1). (4) 

From the [fs,q, fs,s-s]ql Hamming codes Construction DS produces 
a code family HM consisting of [n:,R, n:,R - T]~R codes with 

nT,R = (R - A)ft,, + Aft+l,q, t = Lr/R], A = T - tR. (5) 

We use the family HM for comparisons. We note that n&R = Rft,q 
and we have, e.g., 7X,(2, HM) = 2, p,(3, HM) = 4.5. So, it is of 
interest to obtain families U with ~~(2, U) < 2, ~~(3, U) < 4.5. 
In the general case, it is of interest to get infinite families consisting 
of [n,,R, nr,R - T]~R codes with n,,R < nz,R. Binary linear codes 
satisfying the inequalities are obtained, e.g., in [4], [8], [ll], [14], 
[151. 

In this work for arbitrary q > 3, R  > 2 we obtain new 
infinite families of codes with nr,R < nf,R and with pq(2, U) < 
2, p,(3, U) < 4.5. 

In Section II we introduce R, Z-objects and R, Z-partitions. In 
Section III constructions of covering codes are considered. In Section 
IV we estimate the parameter I and the number of subsets in R, Z- 
partitions for new codes. In Section V we give parameters of the 
known saturated sets and design new ones. In Section VI for R  = 2, 
q 2 2, we proposed constructions AL2 and design new code families. 
In Sections VII and VIII we obtain new code families with R 2 3, 
P P 3. 

II. R, Z-OBJECTS AND R, Z-PARTITIONS 

Let GF* (q) fi GF (q)\(O). GF* (q) is the set of nonzero elements 
of GF (q). We consider linear combinations of q-ary columns only 
with nonzero q-ary coeficients. If formally the number of summands 
in a linear combination equals zero then this combination is treated 
as the zero column. So, we consider only linear combinations L of 
the form 

L = eakpk, Pk E F:, arc E GF* (q), k  = G, 
k=l 

i fz=OthenL=O. 

Here (pk are q-ary columns, ak are nonzero q-ary coefficients. 
Dejnition 2.1: Let C  be a q-ary linear [Y, Y -.s]~ R code of length 

Y, codimension s, covering radius R, with a parity check matrix 9”. 
Let Z be an integer, R  > 1 2 0. The code C is called an R, Z-object of 
the space E,’ and is denoted by a [Y, Y - slsR, 1 code if for any q- 
ary s-dimensional column x of F,” (including the zero column) there 
exists a linear combination L(r) of at least 1 and at most R distinct 
columns of the matrix as such that n = L(T). All coefficients in 
the combination L(x) are q-ary and nonzero. For Z = 0 we can treat 
the zero column as the linear combination of 0 columns of Cp”. A 
[Y, Y - s]~ R, 1 code with 1 > 0 is also a [Y, Y - s]~R, 11 code 
with 11 = 0, l,... ,I - 1. 

Comment 2.1: Let as be a parity check matrix of a [Y, Y-s], R, 1 
code 

@ ” = [cpl . . . CPY], (021 E F;, u = 1, Y. 

By Definition 2.1, for any q-ary s-dimensional column n of F,” there 
exists a representation of the form 

z(r) 
n- = L(n) = Cakcpj,, R 2 z(n) 2 4 ak E GF* (q), 

k=l 

k = 1, z(r) (6) 

wherejk E (1, Y}, k  = 1, Z(T),.& # jt ifp # t,p, t E (1, z(w)}; 
the integer z(n) and the sets {al,... , a,(,)}, {jl,... ,j,(,,} depend 
on 7r. 

Dejinition 2.2: A linear or nonlinear code C of length Y and 
covering radius R is called an R, Z-object of the space EF if for 
any vector x  of E,’ there exists a word W(X) of C  such that 
R  2 d(x, W(X)) 2 1. 

For linear codes Definitions 2.1 and 2.2 are equivalent. 
R, Z-objects are a subclass of R*, Z-subsets proposed in [8, p. 3211. 
Remark 2.1: For R 2 1 2 0 a spherical R, Z-capsule with center 

w in the space E,’ is the set {x: z  E EF, R 2 d(x, w) 2 1) [8]. 
Spherical R, Z-capsules centered at vectors of an R, Z-object cover 
the space ET. 

Dejinition 2.3: 
1) Let 8 > 3. Distinct nonzero linearly dependent columns 

Pl,‘-‘,WS of F,” are called a o-group if there exist nonzero q-ary 
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coejjicients cl, . . . , co such that 

&*Yx = 0, yk E F;, yk # 0, ck E GF* (q), k  = 1, 6’ 
k=l 

where yp # yt if P  # t, P, t E  (1, O}.  

2) In the geometry PG (s - 1, q) 6’ distinct points are called a 
6’-group if corresponding columns of F,” (see Section I) are a &group. 

We can increase 1 for fixed R using O-groups in a parity check 
matrix 

as = [yl . ..yy]. yu E F;, u = 1, Y. 

Let 

A = clqul +...+ceyu, = 0 

X E GF* (q) 

7r = L(7r) = a1yj, +. . . + a,yj, 

(see (6)). We add XA to L(x). 

t(x) 
= ~weyp., t(X) = z + A(X) (7) 

e=l 

where X, arc, c;, we E GF* (q) for all k, i, e; A(X) = 0 - 
y(X) - l?; y(X) is the number of the cases arc = -Xc, with 
jk = uz, y(X) E {O,}; r‘ fi I{j~,...,j~} n {u1,.~.,w}I. The 
situations R 2 t(X) > z are useful. 

Lemma 2.1: In the situation (7) there exist Xi and X2 such that 

8 - r 2 A(X,) > 8 - I? - [(r, q) 

0 - r - <*(r, 4) 2 a(~,) 2. 8 - 2r 

where 

m d 2 lrh - 111 

t*(r, 4 a rrh - vi. 

Proof The sum of y(X) over 4 - 1 distinct X is equal 
to l?. Hence there exist elements Xi, Xz such that $X1) 5 
t(r, 41, +dxd 2 <*cry 4). 

Example 2.1: By Lemma 2.1, there exist elements X1 - Xg with 
the properties: A(X,) = 6’ - 2 if r = 1, Q  > 2; A(X,) = 6’ - 1 
if r = 1, q 2 3; 

O-2>A(Xs)>O-3>A(X4)>O--4, forr=2, q=3; 

A(X,) = 6’ - 2 and 6’ - 3 2 A(X,) 2 8 - 4 for r = 2, q 1 4. 
For l? = 0 always A(X) = 0. 

Example 2.2: Let C  be an [n, k, d],R code. In (7) we put 0 = d. 
For z = 0 we have t(X) = d. For 2 = 1 we have r 5 1, d + 1 2 
t(X) 2 d - 1. Hence C is an [n, k],R, 1 code with 1 2 1 for R  = d 
and 1 2 2 for R  > d. 

Example 2.3: Direct sum of the [4, 2131 Hamming code and the 
[4, 1132 repetition code gives an [8, 3133 code C with the parity 
check matrix 

1 

0 1 1 1 0 0 0 0 
1 0 1 2 0 0 0 0 

(P5= 0 0 0 0 0 0 1 2 
0 0 0 0 0 1 0 2 
0 0 0 0 1 0 0 2 I 

= [ye . . ys], yu E F,5, u = 1,. (8) 

Here ~1, ~2, $73 and ~1, YZ, $74 are 3-groups, Q%, .. . ,Y8 is a 4- 

with 8 E (3, 4}, F = 1, and we can find an element X with 
t(X) = 3 (see Example 2.1). If rr = ~1 we take X = 1, 
n = ‘~1 + (cpl + ‘PZ + 2~3) = 2~1 + $QZ + +a. But the column 
r = 95 + ~6 is not equal to a linear combination of three columns 
of (P5. So, C is an [S, 3133, 2 code and C is not an [8, 3133, 3 code. 

Dejinition 2.4: Let 9” be a parity check matrix of a q-ary linear 
[Y, Y - s]~ R, 1 code of length Y, codimension s, covering radius R. 
A partition of the column set of the matrix 9” into nonempty subsets 
is called an R, Z-partition if for any q-ary s-dimensional column r 
of F,” (including the zero column) there exists a linear combination 
L(n) of at least 1 and at most R columns from distinct subsets such 
that 7r = L(rr). No two columns from the same subset should occur 
in this linear combination. All coefficients in the combination L(T) 
are q-ary and nonzero. For an R, O-partit ion we can treat the zero 
column as the linear combination of 0 columns of a”. 

Denote by h(@‘, 1; K) the number of subsets in an R, l-partition 
K for a matrix as. The value of R  is defined by context. Clearly, R  5 
h(V, 1; K) 5 Y. A partition K is called trivial if h (@“, 1; Ii) = 
Y. We define the minimum over all R, Z-partitions li 

h(+,“, 1) 2 rn2 h(@“, 1; K). 

Remark 2.2: Let K1 be an R, II-partition of the column set of 
@ ’ that is a parity check matrix of a [Y, Y - slPR, II code V 
with 21 > 0. We may treat V as a [Y, Y - s]~R, l2 code with 
11 > Z2. Obviously, there exists an R, Z2-partition Kz such that 
h(@“, 12; Kz) 5 h(P, 11; KI): in any case, we can take Kz = K1. 
Hence, h(@“, 12) < h(W, II) for 12 < 11. 

Example 2.4: The matrix a5 in (8) has a 3, 2-partition K1 and a 
3, O-partit ion 1{~, where KI is {p;}, i = 1, 2, 5, 6, 7, 8, (93, (~4) 
and KZ is {y;}, i = 5, 8, {PI, ~2, ~3, ~4). So 

h(a5, 0; Kz) = 5 < h(@, 2; K1) = 7. 

III. CONSTRUCTIONS OF COVERING CODES 

Dejinition 3.1 [S]: Let p be an integer. Let G(p) be a class of 
vectors with integer positive components. A vector g belongs to 
G(P) if 

9 = (Pl, /a,“‘, P-/L PA E (1, P}, i-l = 1, y, ?Pi = p (9) 
i=l 

and any integer t E { 1, p} can be represented by a sum of the vector 
components, i.e., there exists a subset e(t) of the set {PI,. . . , p7} 
such that t is equal to the sum of all elements of 0(t). 

Let G,(p, V) be a subclass of G(p) with u E (1, p - l}, a E 
(0, 1). 

Ga(p, u) 4 {g: g E G(p); px = 1, X = 1, v; pf I ~+a, 
f = v + 1, r}. 

For a vector g of Ga(p, V) we design a subset 01 (t) as a variant of 
8(t). The subset 0i (t) consists of vector components with consecutive 
indices and at least one of two components pu, pv+l belongs to 81 (t). 

e,(t) b {Pw, Pw+l,...,Pv+O. 

If t < P,,+~ then w = v + 1 - t, [ = 0. If t 2 pv+l then 

w=v+l-t+d([), d(j)$p,+l+...+p,+,, is< 

and pu+; E 0,(t) if and only if d(i) 5 t. By design, t = 
Pw + . . . + p,,+c. For example, g = (1, 1, 1, 3, 4, 4) E Gi (14, 3). 

group. For any column 7r = pU, u = 1, 8, we have a B-group Q,(9) = {pz, p3, p4, p5}. 
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From matrices AI,. . . , A, we construct the matrix 
DS(Ai,...,A,). 

rA1 0 ... 0 i 

DS(Ai,...,A,) A I 0 AZ .. 
. . . . . . 
0 0 . . 

0 

4 

(10) 

A, 

where 0 is a zero matrix of a suitable size. (DS means “direct sum.“) 
Denote by WF the parity check matrix of the [fm,*, fm,q - mlp 1 

Hamming code. Let 0” be a zero matrix with s rows. The number of 
columns in 0” is defined by context. Denote by g,, the vector of p 

’ ones, i.e., g, - A (l,...,l) E G(p). We introduce matrices oyR(g) 
and BmR(b). 

i 

DS(Al,...,A,) , 0 VZL 

- - - - -- - - - - -- 

Dp”R(g) ii 0 mh 

_ - - - -- - _ - - -- 

0 mu 
I DS(A,+i,.+.,A,) 1 (11) 

where g = (PI,... , py) E G(p); PI + . . . + pr = p; Ax is a parity 
check matrix of an [Nh, Nx - rnp,~]~ph code with covering radius 
pi, X = 1, y; if pi = 1 then Ax = Wp; A = R-p 2 0; N(m) = 
Nl+...+N,;O”* is the zero mh x N(m) matrix; if g # jIp and 
g E Ga(p, v) then x = v; if g = gp or g E {G(p)\Ga(p, v)} then 
x = 0 and the submatrices DS (AI,. . . , A,), OmL, OlnU are absent; 
L=pl+...+p,;O~ListhezeromLx(N,+i+.~~+N,)matrix; 
u = Px+l+..‘+pr; 0 mU is the zero mU x (Ni +. . . + N,) matrix. 

for b = * 

forb=#, R=3 

el 
elb 

elb’ 

e2 ... eM 

e2b ... eMb 
ezb2 ..’ eMb2 . . 

for b E GF(q”) (12) 

where M = qm; b” is the uth power of b, u = 1, R - 1; e3 E 
GF(qm), j = 1, M; e; # e3 if i # j, i, j E (1, M}, i.e., 
{el,..., 

A starting code Vo is a linear [Y, Y - s]~R, lo code of covering 

eM> = GF(q”); 0’ is the zero U x M matrix. The element 

radius R with a parity check matrix as that is called a starting matrix. 

b is called an indicator of DmR(b). 

CD” = [yl . ..yy]. yu E F,“, ‘u = 1, Y. (13) 

Let KO be an R, la-partition of the column set of the matrix a’. 
Denote by P” (cp) a matrix of equal s-dimensional columns p. 
P”(p) = [p . . ~1. The number of columns in P”(v) is defined 
by context. 

The base construction forms a new [n, n - T]~Rv, Z code V with 
a covering radius RV and with the parity check matrix 

H’ = P”(w) ... P”(WY) 
BmR(bI) ... B”n(by) ’ I 

T = s + mR (14) 

where DmR matrix tie (g~tfc~~om~m$(m) matrix; 0” is the zero’s x N(m) 
s 

) 0 (g) are absent if 10 = R; P”(p,) is 

an s x qm matrix, p6 is a column of as, b, E GF(qm) U {*, #}, 
e = 1, Y; assignment of indicators b; depends on the partition R*IJ 
as follows: if columns p;, pj of %” belong to distinct subsets of KO 
then the inequality b; # bj should be true, if columns vu, pt belong 
to the same subset of KO then we are free to assign the equality 
b, = b2 or the inequality b, # bt. 

If the partition Ka is trivial, all indicators b; must be distinct, i.e., 
b, # bi if i # j. We introduce notations for the matrix H’. 

0" ” ’ Dp”R(g) [ 1 
0 s+mt--m 

A 
s; = WY 1 - , t=l,R 

oW-t) 

/3 k U{b;}, ho k h(@, lo; Ko). (15) 
i=l 

p is the set of all indicators of the submatrices B”n(b;) in H’. 
By the construction in (14), the new code V has covering radius 

Rv 2 R. We give groups Conditions A and C sujjicient for the 
equality Rv = R. Each condition includes a subset B of the set 
GF(q”) U {*, #}. In Conditions A we have ,8 C B, (RI 2 ho. 
It permits us to assign distinct indicators b, # bj if columns p;, pl 
belong to distinct subsets of Ko. For Conditions C we must use all 
elements of ?? as indicators b, i.e., /3 = ??. Here the inequalities 
Y 2 Ii?1 > ho are necessary. Conditions C define constructions with 
a complete set of indicators (CSI). 

Sufficient Conditions A and C: 

Al R 2 2, /? C GF(q”)\{O}, qm - 1 4 ho, p = R - lo, 
g E G(P, v)> q 1 2. 

A2 R 2 2, /3 c GF(q”), qm 2 ho, p = R - lo, g = gp, q > 2. 
A3 R 2 2, p G GF(q”) U {*}, qm + 1 2 ho, p = R, lo = 0, 

g = ii,. q 2 2. 
A4 R 2 2, p c GF(q”) U {*}, pm + 1 2 ho, lo = R, q 2 2. 
Cl R > 2, j? = GF(q”), Y 2 qm 2 ho, lo = 0, p = R - 1, 

g = sp, q 2 2. 

C3 R = 4, /3 = GF(q”), Y > qm > ho, lo = 0, p = 3, 
9 = (‘4 11, Q 2 2, (CT - 1)/3 is not an integer. 

C4 R = 3, /3 = GF(qm) U {#}, Y 2 qm + 1 > ho, lo = 0, 

C2 R~3,/‘3=GF(q”)U{*},Y~qm+1~ho,lo=0, 
p = R - 1, g = g,, q 2 2. 

p = 1, g = &, q = 2i, i 2 1. 
Comment 3.1: In Conditions A, the parameter m is not bounded 

from above. SO, we can get an infinite family of the new codes 
V. In Conditions C the parameter m is bounded from above but 
Conditions C improve parameters of the new codes and are useful in 
the beginning of an iterative process of code design (see Sections VI 
and VII). For all Conditions A and C the parameter m is bounded 
from below. The inequality qm + 1 2 ho is better than qm 2 ho 
or qm - 1 > ho in respect to restrictions for m. Besides, we can 
reduce ho treating VO as a code with 2: < la (see Remark 2.2). On 
the other hand, we want to decrease the length 12 of the new code V 
by reducing of N(m). This reduction is provided by increasing A. 
Conditions Al-A3, Cl-C3, and C4 give A = la, A = la + 1, and 
A = ZO + 2, respectively. If la = R then N(m) = 0 (see A4). For 
decreasing of N(m) vectors of G, (p, v) are preferential to g = gP. 

Theorem 3.1: Let q 2 2. Let a starting code Vo be a [Y, Y - 
s14. R, 10 code of length Y, codimension s, and covering radius R 
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with a parity check matrix Cp” of the form (13), let Xa be an R, lo - 
partition of the column set of the matrix @ ’ into ha subsets, and let 
a new code V be a code with a parity check matrix H’ of the form 
(14). If any of Sufficient Conditions A and C holds then the new code 
V is an [n, n - r&R, 1 code with the same covering radius R as the 
starting code and with the following values of length n, codimension 
T, and the parameter I: 

n=Yqm+N(m), r=s+mR, l>lo WJ) 

where N(m) is the number of columns of the matrix oyR(g) of 
(14). 

Proof: The proof is based on Fact 1.1. Let X, be the pth column 
of orR(g). Denote by t,, the ith column of PR(b,). We represent 
arbitrary column U of F,’ as a linear combination of the form (see (6)) 

where 7r E F,“, ?I E F4”“;Q + z < R; R > z > lo; Q  2 0; 
ak, .ft E  GF*(q), k = 1, 

L 
z, t = 1, Q; under Conditions A for 

p # c and p, c  E { 1, a} we have pj, # cpj, ; under Conditions C 
the equality pjP = pJc iS possible for p # c; u = (~1,. . . , u~)~, 
u; E GF(q”), i = 1, R. 

We partition the rows of matrices oyR(g) and PR(b,) into 
R equal groups with numbers 1,. . . , R. Every group contains m 
rows. A column of a matrix is treated as an aggregate of R  q- 
ary representations of elements of GF (qm). The ith row group 
corresponds to the element u; of u. 

We consider Condition Al. Let in (17) n # 0 or lo > 1. Then 
z > 1. We use an index collection J = {jr,. . . ,j3} such that 
7r = alyj, + . . . + a,cpj, and all columns pJk belonrdistinct 
subsets of Ka. Then bj, # bj, if p # c and p, c  E (1, z} (see 
the assignment of indicators b; in (14)). We prove that for the index 
collection J the representation of (17) is possible, i.e., one can find 
convenient columns tj, ik , X,, . 

Let E A d - A. Then p - E = R - z. Using Definition 3.1 
we consider a subset e(E) for the vector g of the matrix oFR(g). 
Let e(O) g 0. Let dmR be the matrix consisting of the columns 
of oTR(g) that contain all submatrices A, such that pE does not 
belong to 6’(E). R  - 2 rows groups of the matrix dmR that contain 
the submatrices A, form a parity check matrix of a code with covering 
radius R - 2. The remaining z row groups of dmR contain zero rows. 
Denote by 71, . . . , T= numbers of the zero row groups. These groups 
correspond to the submatrix OmA of DyR(g) and submatrices Af 
such that pf E B(E). On  the other hand, the zero row groups of dmR 
correspond to elements url, . . . , ur, of the column u. 

Denote by U’ a column of Fc coinciding with the column U 
on the elements r, url,. . . , Us, Let IIT be the matrix obtained by 
addition .a upper zero rows to the matrix dmR. We design a subset 
e(E) providing existence of indices ir , . . . , i, such that the 1st sum 
in (17) is equal to U”. Then we can obtain the column U summing 
the column U* with Q  5 R - z  columns of IIT (see the second sum 
in (17)). “Locations” eile of columns tj,,, in the 1st sum of (17) are 
a solution of the system 

z 
xake;,bji-’ = u,,, c  = G, bJp # b,, if p # t. (18) 
kzl 

Let A be the determinant of the system in (18). For the proof it 
is sufficient that A # 0. If T; = rr + i - 1, i = 2, 2, then 
A # 0 since we have the Vandermonde matrix with consecutive 
degrees of distinct elements of GF (q”). The subset Bi (E) provides 
the condition T; = 71 + i - 1. Zero-row groups of the matrix dmR 

with numbers L + i, i = 1, A, L = pr +. . . + pn, correspond to the 
submatrix O ”*. For Condition Al we have 

L=x=v, {~+l,~+n}~{~~,...,7,}. 

If in 01(E) we have w 5 v then r2 = w + i - 1, i = 1, z, where 
the numbers 71,“. , T,-,+I correspond to elements pw,. . . , pv 
of 01(E), the numbers T~-~+z, ... ,T~-,+~+A correspond to the 
submatrix O ”“, and the numbers rv--w+2+~, . . , TV correspond to 
elements pv+r, . . . , pY+t of&(E).Ifw=Y+lthenr,=V+i, 
i = 1, z, where the numbers ~1, . . . , TA correspond to 0 mA and 
the numbers TA+~, . . . , TV correspond to elements pw,. . . , pU+c of 
b(E). 

Let la = 0. Then A = 0 and orR(g) is a parity check matrix of 
a code with covering radius R. For rr = 0 we have in (17) z = 0, 
Q  I R. 

Conditions A2-A4 can be considered similarly to Condition Al. 
We consider some distinctive situations. 

Condition A2: Let in (17) bj, = 0. We should take ~1 = 1. 
Since g = gP we always can take 0(E) = {pr , . . . , pi}. We put 
T, = i, i = 1, 2, where the numbers ~1, . . . , TA correspond to the 
submatrix O ”* and the numbers TA+I, . . . , T= correspond to elements 
of the subset B(E). 

Condition A3: Here E = z. Let bj, = 0, bjz = *. We should 
put 71 = 1, T= = R. we take e(a) = {p~,...,p+~, py}. 
T; = i, i = 1, z  - 1, T, = R. We add the column (0, . . . , 0, l)T 
to the Vandermonde matrix. 

Condition A4: We have in (17) B = R, Q  = 0. 
In most cases, Conditions C can be proved similarly to Conditions 

A. We consider distinctive situations when an element be E GF ( qm) 
is calculated. In the matrix H’ one always can find a submatrix 
BmR(bt ) with the indicators be since for Conditions C we have fi = 
B. ThenotationdmR, U, U*, u = (u~,‘..,uR)~, TI,".,T~, A is 
the same as above. 

Condition Cl: Let in (17) r = 0, ur # 0. We take bc = UZ/UI, 
%  = 2, j, = j, = [, {TI, v-2) = (1, 2) and 

U’ = (pE, ul, ulb<,...,ulb~-l)T - (cpc, O,...,O)T. 

The matrix dmR contains submatrices A,, E = 2, R  - 1. 
Condition C2: Let in (17), x  = arpjr, b,, = *, ul # 0. We 

take bg = ULB/U~, z = 3, j, = j, = 5. (~1, TZ, ~3) = (1, 2, R}, 
al w  = uR - ulbp-l and 

U” =al((~~~,O,O,...,w)~+(~~,u1,ulb~,...,u~b~-~)~ 

- (PE, 0, o,-mT. 

Condition C3: If (qm - 1)/3 is not an integer then bf # bz for 
bl, bz E GF(q”), bl # bz. Let in (17) rr = alcpj, + aavj,. We 
take (~1, TZ} = (1, 4}, z  = 2. Then A = bg, - b;l # 0. The matrix 
d mR contains a submatrix AI. If r = 0, ur # 0, then bg = U~/UI, 
z  = 2, jr = ja = [, {TI, 72) = (1, 4}, and 

U’ = (cp<, ‘~1, ulb<, ulb;, uU.lb;)T - (y<, 0, 0, 0, O)T. 

Condition Cf: In (17) let 7r = al yj, . 
i) bj, # #, u2 # ulb,,, us # ulbf,. We put Q  = 0, z  = 3, 

j, = j, = [, and 

bc = (~3 + uzbj,)/(u2 + ulbj,) # bn 

alt = (ulbc + uz)/(bj, + b<) 

Y = (ulbj, + uz)/(bj, + be). 

Then 

U = al(pj,, t, tbj,, tb;,)T + (pE, y, ybe, yb;)T 

+ (95, 0, 0, v. 
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ii) bji # #, us # ulbj,, US = ulb:, . We take bc = #, 
w = u2 + alulbj,, t = 3, and 

U = al(cpj,, UI, ulbjl, ulb:,)T + (PC, 0, w, QT 

+ ($2, 0, 0, QT. 
iii) bj, = #, UI # 0. For q 

(U3/Ul) . l/2 

u = al(cpi,, 0, w, 0) 
T 

+ (cpe, 0, 0, v 

alw = u2 + ulb<. 

Now let in (17) rr = 0, u] 
w = us + ulbg. If w # 0 then 

= 2i we always can tind be = 

+ (cpc, ul, ulbc, uIb;)T 

# 0. We take bc = UZ/UI, 

U = (~5, UI, ulbg, u&)* + (pE, 0, 0, O)T 

+ (0, 0, 0, w)T. cl 

IV. ESTIMATES OF 1 AND h(H’, I) FOR NEW CODES 
The estimates are important for an iterative process when the new 

[n, n- T]~ R, 1 code V with 1 2 20 is a starting code for the next step. 
Saying “1 = a” we treat V’as an [n, n - rlsR, a code. The 

case 1 = la is always possible. Cases 2 > la are possible since the 
matrix H’ contains 0-groups (see (7)). When for H’ we design an 
R, l-partition with 1 > la thereby we show that the new code V 
can be treated as an [n, n - T]~R, I code. Submatrices @‘, a:, Zi, 

’ and Hh of H’ are defined in (15). Let Hi and H& (resp. HG 
and H&) be the matrix H’ and its submatrix H& obtained under 
Sufficient Conditions A (resp., Conditions C). Let n(f) be the union 
of columns of all submatrices 0: having the same indicator b, = f, 
where u E (1, Y}, f 6 p. We assume that for each submatrix Ax 
of the matrix DyR(g) in (11) there exists a pi, O-partition Kx with 
h(Ax, 0; KA) = no. We denote 

c !I 171 +. . . + 7p(. 

A vector g of G(p) has a component pi = 1. Hence @r contains 
a submatrix SF. To form e-groups we treat columns of the submatrix 
IV,m from $ as points of the projective geometry PG (m - 1, q) 

(see Section I). We use, e.g., the fact that three points of the same 
line are a S-group. 

We can also form &groups in submatrices 0;. For j = 
1, M, M = qm, we denote a column of 0: 

S,j A (pm, ej, ejb,,...,ejbc-l)T . 

if b, E GF(q”) 

S,j A (pu, 0,e.e ,O, ej)T 

if b, = * 

if b, = #. Further, er = 0, ea = 1. Columns SUr, SU2, SU3, j E 
(3, M}, are a 3-goup. 

Remark 4.1: From Proof of Theorem 3.1 we see that for all 
Conditions A and C we use in (17) at most one column from 
each submatrix EL. For Conditions A two columns from the same 
submatrix 0: do not occur in (17). For Conditions C the column 
($2, 0,. . . > v of Q; can occur in (17) together with another column 
from the same submatrix RET. 

We consider Conditions A. Let 1 = la. To construct an R, lo- 
partition KA for Hi we partition columns of H&A into IpI subsets 
so that each subset is R(f). Columns of @’ are partitioned into C 

subsets in accordance with the partitions ICX of submatrices Ax. We 
put IpI = ha. Then 

h(Hi, lo) 5 ho + C, Q 2 2. (19) 

Now 1 = R - p > lo, p > 2, R 2. 3, q 2 3. For an (R, R - p)- 
partition Kz we use 3-groups with I 5 1, A(X) = 3 - r‘ (see 
Example 2.1). In J submatrices SF, 0; we form N 3-groups that do 
not mutually intersect. The maximal number of S-groups with I = 1 
is equal to J (see Remark 4.1). We put N 2 [(R-p - ZO + J)/31. 
Then(R-p)-la 5 3N-J.ToconstructK~ weform3N additional 
subsets in the R, la-partition KA so that each new subset consists of 
one column from the formed 3-groups. So 

h(H;, R-P) 5 ho+C+3 
R-p-lo+J 1 3 ) 

P 2 2, R 2 3, q 2 3. (20) 

Let 1 = R 2 3, q 2 3. If in (7) t = R - 2 or R - 1 we put 
0 = 3, I = 1 with A(X) = 2 or A(X) = 1 (see Example 2.1). For 
Hi we construct an R, R-partition KtA with the following property 
II: one always can add a 3-group to the representation (17) so that 
I’ = 1 and all columns of the 3-group belong to distinct subsets 
of this partition. We put I/31 = ha and obtain 3ha subsets in HAA 
partitioning every union n(f) into three subsets so that the first (resp., 
second) subset consists of all columns of the form S,r (resp., S,,). 
Columns S, 1, $2, S,j, j 2 3, are a 3-group. So, if a column from 
any submatrix fi: is present in (17) (i.e., z 2 1) then the property 
II holds. In all we can use ha 3-groups from submatrices fli. For 
z of these groups we have I 5 1, where z is taken from (17). For 
ha - .a groups we have I = 0. We take A(X) 2 1 for one group, 
A(X) 2 2 for t - 1 groups, and A(X) = 3 for ha - z groups. The 
sum of all A(X) is no less than 3ha - z - 1 > R-z (since ha 2 R). 
So, the number of the formed 3-groups is sufficient to get 1 = R. 

Let ZO 2 1. Then in (17) z _> 1. We partition columns of Q’ into 
C subsets (as for KA) and obtain an R, R-partition KlA so that 

h(Hi, R) 5 3ho + C, for R > ZO 2 1, R 2 3, q 2 3. (21) 

Let ZO = 0, m 2 2. In (17) the case t = 0 is possible. Let g = sp. 
Then the submatrix Q’ consists of R submatrices EL. For an R, R- 
partition K&t we form fm-r,4 + 2 subsets in each submatrix Zy 
treating columns of its submatrix Wqm as points of PG (m - 1, q) 
and passing fm-r,* lines from some point P. One subset consists 
of the point P, fm-r,q singleton subsets contain one point of each 
line, and the last subset contains the rest of the columns of SE. The 
property II holds since three points of a line are a 3-group. So, for 
g = 3, we have 

h(HL R) I 3ho + R(.fm-~,q + 2) 
if R 2 3, 10 = 0, m 2 2, q > 3. (22) 

Now we consider Conditions C. Let I = 20 = 0. To construct an 
R, O-partition Kc for H& we obtain 2lPl subsets in H& partitioning 
every union R(f) into two subsets so that the first subset consists 
of all columns of the form S,r. In the submatrix 9“ we obtain C 
subsets. So 

WG, 0) I 2lPl+ C, 4 2 2. (23) 

Now for Hk we construct a partition XC adding to KC one subset 
consisting of the column &a. For q > 3 columns Srr , Sr2, S13 
form a 3-group and belong to distinct subsets of XC. By Example 
2.2, we have 

h(H&, 2) 2 2IpI + C + 1, q 1: 3,Z = 1 if R = 3, 
2 = 2 if R 2 4. (24) 
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Let 1 = R > 3, q 2 3, m 2 2. For Conditions Cl, C2, C4 
we design an R, R-partition KG. Similarly to the partition K& we 
form fm- i ,4 + 2 subsets from columns each submatrix 5: and obtain 
3/p/ subsets in H& partitioning every union n(f) into 3 subsets. 
The property II holds. So, 

h(fG, R) I 3IPI + &Urn-l,q + 2), 
for R  2 3, q 2 3, m 2 2 (25) 

where Q  = R- 1 for Conditions Cl and C2; Q  = 1 for Condition C4. 

V. SATURATED SETS OF POINTS IN PROJECTIVE GEOMETRY 
We consider saturated sets in accordance with Definition 1.1 and 

Fact 1.2. (R- 1)-saturated sets of n points in the projective geometry 
PG(r - 1, q) with parameters (26)-(28) are given in [18], [19], [24], 
[28], [32, pp. 329, 3321. Values of qa, q1 are sufficiently large. 

R  = 2, q > qo, r = 3, n = 2(q - 1)/v + 2, w  1 (q - 1). (26) 

R = 3, q > 41, r = 4, n 5 2(q - 1)/s, s  1 (q - 1). (27) 

R = 2, r = 3, n = [0.5q + 21, for q 2 8, 
n = 4, 6, 6, 6, 12, 14, 16, 18, 18, 22, 22, for 

q = 3, 4, 5, 7, 23, 29, 31, 37, 41, 43, 47, respectively. 

(28) 
Sets of (28) are complete caps [17], [18] (see [12], [14] for q = 2). 

A d-secant of a point set H’ is a line L such that IL tl H’) = d 
[18]. A point set H’ in PG(r - 1, q) is l-saturated if any point of 
PG(r - 1, q)\Hr lies on d-secant of H’, where d > 2 [l], [32]. 

A l-saturated set of 2q + 1 points in a geometry PG (3, 2i) is 
obtained in [4, p. 1041. We generalize the construction of [4] for 
odd q. 

Theorem 5.1: We consider the projective geometry PG (3, q) for 
even and odd q. Let q 2 4. Let H4 be the following set of 2q + 1 
points: 

i 

111 .*.I 0 0 0 0 ... 0 
H4 = 0 1 a3 . ‘. a, 1 0 0 0 ... 0 

0 1 a; ... a; 0 0 1 1 ... 1 
000 . ..o 0 1 1 a3 ... a, 1 

= {Yl . . . YZqfl} (29) 

where 0, 1, a; E GF(q), a, # 0, a; # 1, i = 3, q; a; # aj if 
i # j, i.e. 

(0, 1, U3,“’ ,aql = GF(q) 

yj is a point of PG(3, q), j = 1, 2q+ 1. 
Then H4 is a l-saturated set in PG (3, q) for even and odd q. One 

can also treat H4 as a parity check matrix of a [2q + 1, 2q - 3],2, 0 
code with h(H4, 0) 5 5 for even q and h( H4, 0) 5 7 for odd q. 

Proof Denote by rr the plane of points of the form 
(a, b, c, O)T. Let S be a point set in rr. Denote by PS a point of 
rr\S. Let B be a collection of lines in rr. Denote by N(Ps, B) the 
number of lines of B containing the point P.S. Let B(S) be the 

collection of ah 2-secants of S. Then N(P., B(S)) 5 []S(/2]. Let 

L* e {Yq+z,. . . > wq+11 

Lk L*uA 

A k (0, 0, 1, O)T 

Q  A PG(3, q)\{x u L}. 

Then L is a line, A is a point, A = B n L. Let Q  be a point of q. 
Let W be a plane spanned by Q  and L. 

Let q = 2k with integer k 

c* A {yl,...,yq+l} 

Cl b {$Q,*..,yq-1) 

F b B(C*)\B(Cl). 

Then C = C* U A is an oval. We have 

N(Pc, B(C)) = k + 1 

118, P. 1631, 
N(Pc, B(C*)) = k 

N(Pc, F) 2 k - LlGl/2j = 1. 

So, all points of r\C lie on 2-secants of C* belonging to F. Besides 
A E L, L is a q-secant of L*. The oval C  has not l-secants. The 
plane W intersects the plane rr on a 2-secant of C  containing A and 
a point X of C’. The line through Q  and X is a 2-secant ofH4 since 
it intersects L*. So all points of 9 lie on 2-secants of H4. By the 
construction, we form a 2, O-partit ion for the matrix H4 as follows: 

Cl, {%>, {Q-%+1), {v%+zI, {Y*+3,...,92q+lI. 

We need two last subsets to cover A. 
Now q = 2k + 1 

D” b {p~,...,yq} 

Dl A {pl,‘..,~q--4) 

D=D*UA 

G  2 B(D*)\B(Dl). 

D  is an oval. We have N(Po, B(D)) > k [18, Table 8.21, 
N(PD, B(D*)) 2 k-l, N(Po, G)  2 k-l- LjD11/2] = 1. So all 
points of n\D lie on 2-secants of D* belonging to G. In rr there is the 
onZy l-secant of D  (J, say) containing A [18, Table 8.21. The point 
pp+i lies on J. The plane W intersects rr on a line M containing A 
and a point X E H4. M is either J (then X = vs+i) or a 2-secant 
of D  (then X E D*). The line through Q  and X is a 2-secant of 
H4. A 2, O-partit ion for the matrix H4 has the form DI, {y4-3}, 

{G+z), {vL-I)~ {Y+ Y~+I), {w4+21, {e+3,. . , wq+ll. We do 
not need the 2-secant through y4 and y4+i. 0 

An l-saturated set of 3p points in a plane PG (2, p”) is obtained 
in [32, p. 3261. We construct a l-saturated set of 3p - 1 points. 

Theorem 5.2: Let q = p2 2 4. Then in the plane PG (2, p”) a 
l-saturated set H3 of 3p - 1 points ~1, . . . , pap--1 can be formed as 
follows (see (30) at the bottom of this page): where (Y is a primitive 
element of GF(p’); 0, 1, cZ E GF(p), c; # 0, 1, i = 3, p; cz # cJ 
if i # j, i, j E (3, p}, i.e., (0, 1, ca,...,cr} = GF(p). 

H3 = 
1 1 1 ... 1 
0 0 0 ..’ 0 
0 1 c3 ‘. . cp 

11 ...l 
00 . ..o 
a! c3a ... cpck 0 

0 

0 ... 0 
1 1 1 ‘.. 1 
0 1 c3 . . . cp 1 

= {Yl . ..$73p-1) (30) 
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Proof: W e  denote B = blo +  bo, F  = fla +  fo, x =  
fl - blfob;‘, where B, F  E GF(p’), bl, bo, fl, fo E GF(p). Let 
L1  (resp., Lz) be  the line consist ing of points of the form (1, 0, B)T 
(resp., (0, 1, B)T). Let B #  0. Then 

(1, B, F)T = (1, 0, Z#  + B(0, 1, fob;‘)T 

ifbo #  0  

(1, B, F)T = (1, 0, fo)T + B(0, 1, fJ$)T 

if b. =  0, bl #  0. So, any  point of PG(2, q)\{Ll U L2) lies on  a  
2-secant of H3. Any point of the lines Lt, LZ  is also covered since 
y; E  LI, i < 2p, p3 E ~52, j L 2p. 0 

VI. CODES WITH COVERING RADIUS R = 2  
Notation 6.1: W e  denote by Construct ion AIR, (resp., Construc- 

tion Cj R,) the construct ion of Theorem 3.1 for the cover ing radius 
R with the vector g  =  S, of G(p) under  Condit ion Ai (resp., Cj). 
For Condit ion A4 we put p  =  0. For Construct ion AiR, or CjR, 
we have n = Yq” + pfm,p in (16) and  C = p  in (19)-(21), (23), 
(24). For Construct ion C121,  e.g., it holds that h(H&, 0) <  2q” + 1  
in (23). 

Definition 6.1: A q-ary l inear [Y, Y-s],2, 0  code of codimension 
s, cover ing radius 2  with a  parity check matrix 9” is called an  AL2- 
code if for any  nonzero q-ary s-dimensional column rr of F,” there 
exists a  l inear c,ombination J%(T) of two distinct columns of azi” such 
that r =  L(r). Both coefficients in the combinat ion L(n) are q-ary 
and  nonzero.  

The term “AL2” means “almost 1  =  2.” Spherical 2, 2-capsules 
centered at vectors of an  AL2-code C with length Y cover all vectors 
of Er\C. 

Definition 6.2: Let Q ” be  a  parity check matrix of a  q-ary AL2- 
code of codimension s. A partit ion of the column set of the matrix as  
into nonempty subsets is called an  AL2-partit ion if for any  nonzero 
q-ary s-dimensional column n  of F: there exists a  l inear combinat ion 
L(n) of two columns from distinct subsets such, that r =  L(n) . Both 
coefficients in the combinat ion L(n) are q-ary and  nonzero.  Denote 
by h(@“, AL2) the minimal number  of subsets in an  AL2-partit ion 
for a  matrix a’. 

For a  matrix HL formed by Construct ion A322 the partition KcA 
(see (22)) is an  AL2-partit ion since any column of Hi is involved in 
a  S-group such that all its columns belong to distinct subsets of K&. 
So, Construct ion A322 for m  2  2, q  2  3, gives an  AL2-code with 

h(H:, A=) I 3ho  + 2(f,-I,, +  2). 

The  partition KZ. (see (25)) is an  AL2-partit ion for a  matrix H& 
formed by Construct ion C121.  Hence Construct ion Cl21 for m  2  2, 
q  2  3, gives an  AL2-code with 

h(K5, M-2) I 3q” + fm-l,a +  2. 

Theorem 6.1: W e  introduce Construct ion AL2. Let q  2  2. Let a  
starting code I$ be  a  q-ary [Y, Y - ~1~2, 0  ALZcode of length Y, 
codimension s, cover ing radius 2, with a  parity check matrix a” of 
(13), let Ka be  an  AL2-partit ion of the column set of the matrix 
@ ” into ho  subsets, and  let a  new code V be  a  code with a  parity 
check matrix 

P”(cpl) ... P”(cpY) 
B*“(h) ... Bzm(by) ’ 1 

T = s +  2m, g  = (1) (31) 

where HL is a  matrix H’ of (14) with a  submatr ix P,” (cpi ) instead 
of 0”; notat ions 0:” (g). P”(cp;), B2”(b;), pi, p, and  assignment 
of indicators b; are the same as in (14), (15); Pz(cpl) is the s x fm,q 

TABLE I 
UPPER BOUNDS ON THE LENGTH FUNCTION l(r, R; 3) FOR R = 2, 3  

P R=2 R=3 

2 2 - 
3 4 3 
4 a 5 
5 11 a 
6 24 11 
7 44 15 
a  76  24 

P it=2 R=3 P R=2 R=3 

9 130 37 17 8734 674 
10 220 57 18 17860 971 
11 323 i’b  19  26203 1295 
12 661 107 20 53581 2024 
13 971 170 21 78610 2915 
14 1984 229 22 160744 3087 
15 2915 323 23 235831 6074 
16 5953 431 24 482233 a667 

matrix of equal  columns (pi; bl #  *; p  g  GF(q”) U {*}; 
qm + 1  1  ho. Then V is an  [n, n  - (s +  2m)], R, 0  code with 
R = 2, n  =  Yq” + fm,g. 

Proof LetU=(~,ul,ff lz)T,rrEFq,uI,uL2EF*m.If~#0 
then n  = acpj +  c+Q~, a, c E GF* (4);bj #  bk. If bj, bk  #  * then 

u = a(Yj, 2, xbjjT + C((pk, Y, ybk)T 

where ax + cy = 2~1, axbj +  cybk = u2. If bk  =  * then 

U = dcpj, x, &AT + c(cpk, 0, yJT 

where ax = ui, uxbj +  cy = ~2. 
Let r =  0. If ug  #  ulbl then there exists a  column w of W q m  

with dw = ulbl - ~2, d  6  GF* (q). W e  have 
T U = d(cpl, uld-‘, uld-lb/ - d(cpl, 0, w) . 

If ua  = ulbl then 

U = (~1, ~1, u lbdT - (PI), 0, O>T. 

Example 6.1: From the [ 11, 6132  Golay code Construct ion A322, 
m  = 3, 5, forms three codes.  The first [323, 312132  code with 
h(Hi, 0) 5  13, h(Hl, AL2) 5  45, is VO for Construct ion Cl21, 
m  = 3, and  Construct ion AL2, m  2  4. W e  obtained a  family A1 
of [n, n - ~132 codes with 

R = 2, q  =  3, T  =  2t +  1, ~~(2, Al) M  1.1816 < 2, 
n = 324 x 3t-5 - 1, for t = v7, 
n = 323.5 x 3t-5 - 0.5, for t 2  8. (32) 

By (28), in PG(2, 9) there is a  l-saturated set of six points. W e  
treat the points as  columns X; of Fg” and  get a  [24, 18132  code C by 
the method of [4, p. 1031.  W e  consider columns of W,’ as elements 
uj of GF  (9) and  form a  matrix 

e  =  [@l)~ . . ) fJ!E6] 

Qi = [$%1,...,$%4], 
- - 

(piJ =  ujX;, i = 1, 6, j =  1, 4. 

Now in X0 we change elements of GF (9) by  two elements of GF (3) 
and  obtain a  parity check matrix Q6  of the code C. Since any three 
CohI~s Cpij, pik, ‘pzp are a  S-group, C is an  AL2-code. By design, 
h(@, 0) =  6. Using C as Vo for Construct ion C121,  m  = 2, and  
Construct ion AL2, m  2  3, we obtain a  family AZ of [n, n - ~132 

codes with 

R = 2, q  =  3, r =  2t 2  10, n = 24.5 x 3t-3 - 0.5, 

7X3(2, AZ) M 1.65. (33) 

From the above we have entries in Table I for R = 2, r =  5, 6, 
T  2  10. Besides, using the [4, 1132  repetit ion code Construct ion 
A322 forms a  [14, 9132  code D and  a  [44, 37132  code. From D 
Construct ion Cl21 produces an  [13O, 121132  code. Using Hamming 
codes Construct ion DS gives an  [8, 4132  AL2-code E. From E 
Construct ion AL2 forms a  [76, 68132  code. 
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Example 6.2: Let q 2 7. From the [2q + 1, 2q - 3],2 code C of 
Theorem 5.1 with h(H4, 0) 5 7 5 q Construction C121, m = 1, 
forms a code with n = 2q2 + q + 1, T = 6, h(H&, 0) 5 2q + 1. 
Then Construction C121, m = 2, gives an AL2-code with P = 10, 
h(H&, AL2) 5 3q2 + 3. Using Construction AL2, m  2 3, we get 
a family AB of [n, n - ~1~2 codes with 

R = 2, q 2 7, T = 2t, ~~(2, AS) z 2 - 2q-1 + 0.5q-’ < 2, 

n = aft,, - ft--l,q, for t > 2,, t # 4, 6, 7. (34) 

If q = 4, 5 then h(N4, 0) > q. We use the code C as Vo for 
Construction A322, m  = 2, and get an AL2-code. Then we use 
Construction AL2 and obtain a family A4 with 

P,G A4) z 2 - 2q-l+ 2.5q-2 < 2. 

Example 6.3: Vo is a [Y(q), Y(q) - 3],2 code, Y(q) < q (see, 
e.g., Section V). Construction A322, m = 2, gives an AL2-code. 
From this code Construction AL2, m 2 2, forms a family of 
[n, n - ~1~2 codes with 

R = 2, T = 2t + 1 > 11, 

n = Y(q)qt-l + 2ft-l,, - ft-3,q < n5,2 (35) 

where Y(q) = 3p - 1 if q = p2 2 4, Y(q) = LO.5q + 21 if q > 8, 
Y(q) = 2(q-l)vp1+2, u ] (q-l), if q is large (see (30), (28), (26)). 

If q = p2 2 9 we form an AL2-partition K for the matrix H3 
in (30) as fdows: {PI), {PZ}, (~3,~..,+92~-1}, (~2~1, {PZ~+I}, 

{~++a,. . . , yap-l}. Construction AL2, m >_ 1, produces a family 
of [n, n - ~1~2 codes with 

R = 2, q = p2 2 9, r = 2t + 1 2 5, 

n = (3P - l)qt-l + ft-1,q < nf,a. 

The parameters of codes of Examples 6.2 and 6.3 are better than 
ones in [32, formulas (5), (9)] and in the relation (5) of Section I. 

VII. CODES wm COVERING RADIUS R = 3 
We use Constructions A231, A232, A430, C132, C431 (see Nota- 

tion 6.1). For Construction Cl32 we have h(H&, 1) 5 2qm + 3 in 
(24). For C431 we have h(H&, 0) 5 2qm + 3 in (23), h(Hg, 3) 5 
3qm + fm-~,s + 5 in (25). 

Example 7.1: From the trivial [3, 0133 code Construction C132, 
m = 1, forms an [II, 5133, 1 code F. From F Construction A232, 
m = 2, 5, produces four codes. The first [107, 95133, 3 code is a 
code Vo for Construction A430, m  2 4. We obtained a family B1 
of [n, n - ~133, 3 codes with 

R=3, q=3, r=3t, j&(3, B1)~3.074<4.5, 
n = 12 X 3t-2 - 1, for t = 4, 7, 
n = 107 x 3t-4, for t > 8. (36) 

From the [4, 2131 Hamming code and the [ll, 6132 Golay code 
Construction DS forms a [15, 8133, 1 code G  with d = 3 (see 
Example 2.2). From G  (in the same way as for (36)) Construction 
A232, m = 3, 6, and Construction A430, m 2 4, produce a 
[431, 415133, 3 code and a code family B2 with 

R = 3, q = 3, T = 3t + 1, ~~(3, B2) M 2.480 < 4.5, 
n = 16 x 3t-2 - 1, fort = 5, 8, 
n = 431 X 3t-5, for t 2 9. (37) 

Similarly, using the [13, 10131 code instead of the [4, 2131 code we 
get a [24, 16133, 1 code, a [674, 657133, 3 code, and a code family 

Bs with 

R = 3, q = 3, r = 3t + 2, j13(3, B3) M 3.162 < 4.5, 
n = 25 x 3t-2 -1, fort = 5, 8, 
n = 674 x 3t-5 , for t > 9. (38) 

From the above we have entries in Table I for R  = 3, T = 
3, 6, 7, 8, 12, T 2. 15. For T = 4, 5, 9, 10, 13 we use Hamming 
codes and codes with R = 2 inConstruction DS. From the [8, 3133, 2 
code of (8) Construction A231, m = 2, 3, forms a [76, 65133, 3 code 
and a [229, 215133, 3 code. 

Example 7.2: Let q 2 4. From the [2q + 1, 2q - 3],2 code of 
Theorem 5.1 and the [q + 1, q - l],l Hamming code Construction 
DS produces a [3q + 2, 3q - 4],3, 1 code VO with ho 5 7 + 2 = 9. 
To design a 3,1-partition for a parity check matrix of the code VO we 
add two subsets to the 2, O-partit ion from Proof of Theorem 5.1. The 
first subset is {~~+a}, the second subset contains columns of a parity 
check matrix of the Hamming code. Columns pq+2, pq+3, p4+4 
form a S-group. Construction A232, m  = 2, produces an [L, L - 
12],3, 3 code, L = 3q3 + 2q2 + 2q + 2. Construction A430, m  2 3, 
gives a family B4 of [n, n - ~1~3, 3 codes with 

q 2 4, r = 3t 2 21, n = Lqtp4, 

i&(3, B4) M 4.5 x (1 - q-l + q-Z/3). 

If q = 2” > 8 then ho < 5+2 = 7. We iteratively use Construction 
C43i with m  = 1, m  = 2, and get a [P, P - 15],3, 3 code 
P = 3q4 + 2q3 + q2 + q + 1, h(HA5, 3) < 3q2 + 6. Then we 
use A430, m  2 3, and obtain a family Bs with 

r = 3t, n = Pqtp5, jI,(3, Ll5) M 4.5 x (1 -q-l - 2q-‘/3). 

Example 7.3: VO is an [N, N-41,3, 1 code with N 5 2(q-1)/s, 
s  ] (q - l), ho < N < q, and large q (see (27)). Here la = 1 since 
the code I/o has d = 3 (see Example 2.2). Construction A232, m  = 1, 
and Construction A430, m  2 2, produce a family of [n, n - ~1~3, 3 
codes with 

r = 3t + 1 > 16, s  ] (q - l), 
n = 2qt-l (q - 1)/s + 2qtp2 < nz, 3. 

VIII. CODES WITHCOVERINGRADIUS R > 4 
Remark 8.1: In Sections VI and VII for R  = 2, 3 and arbitrary 

q 2 3 we obtained families of [n,,R, nn,,R - r14R codes with 
n,,R < n*,,R. Using codes of Sections VI and VII in Construction 
DS we can design injinite families of codes with &,R < n*,,R for 

arbitrary q 2 3, R  2 4. To improve parameters of new families 
with R 2 4 we can use Construction DS for a starting code and then 
apply Constructions Ai R,, Cj R,. In this case the parameter I of the 
starting code is near to R. 

Example 8.1: Let R  = 2r 2 4, q > 4. Using T the [2q + 1, 2q - 
3],2 codes of (29) Construction DS forms a [2qT+T, 2qT - 371q R, 1 
code C with Z 5 R - 2. To get an (R, R - 2)-partition for a parity 
check matrix of C  we form at most eight subsets in each matrix H4 
of (29) adding the subset {~~+a} to the 2, O-partit ion from Proof of 
Theorem 5.1. Columns pq+2, ~~+a, pq+4 form a S-group with I 5 
2 (see Example 2.1). Construction A2R2 produces a [II, II-s],R, R  
code with s = 2R + mR, qm 2 87, lI = (2q + l)rqm + 2fm,*, 
h(Hi, R) 5 247 + 2. Now Construction A4Ro, with m  = M, 
qM > 24~+2, gives a family of [n, n-r],R, R  codes with R = 2r, 
q 2 4, T = R(m+M+2),n = (Rq”+l+Tq”+2f,,,)qM < n*,,R. 

If R  = 27. + 1 2 5 we can use the codes of Example 7.2 for DS. 
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Example 8.2: Let R = 2r 2 4, q 2 8, u = LO.5q + 21. A parity 
check matrix of the [v, v - 3],2 code B of (28) has a 4-group since it 
corresponds to a complete cap [ 181. From 7 the codes B Construction 
DS forms a [t/r, VT - 37],R, lo code VO with Zc 5 R - 3 (see 
Example 2.1 and (7)). We use the trivial R, lo-partition, Condition 
Al, P - 1 2 vr, g = (1, 2), and a parity check matrix of the code 
in (34) as submatrix A”” of the matrix D,““(g). We get a family 
of [n, n - T&R codes with 

R = 2r, q 2 8, r = 3r + mR, 

n = LO.5q + 2jrq” + 3fm,* - fm-l+~< nf,fi. 

Example 8.3: Let R = 2r 2 4, q = p2 > 9, w = 3p - 1. 
Using (30) Construction DS forms a [wr, wr - 37],R, R code. We 
can form an R, R-partition with ho = 67 using the partition Ii’ 
of Example 6.3. Construction A4Ro gives [n, n - T]~R codes with 
r = 37 + mR, n = wrqm < nE,R. 

Ix. CONCLUSION 
Developing results from the author’s recent paper [8] this work 

gives constructions of q-ary codes with arbitrary covering radius 
R 2 2 and arbitrary basis q 2 2. To construct an infinite family of 
codes with covering radius R it is sufficient to have a starting code 
with the same covering radius. Saturated sets of points in projective 
geometries over finite fields are effectively used as starting codes. 
New infinite families of covering codes obtained here have relatively 
“good” parameters. Described constructions seem to be quite clear 
and regular, and algorithms of “decoding” (for finding a codeword at 
distance at most R to any vector of the space) can be easy designed. 
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