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Abstract. On the way of generalizing recent results by Cock and the second author, it is shown that when the
basisq is odd, BCH codes can be lengthened to obtain new codes with covering radiusR= 2. These constructions
(together with a lengthening construction by the first author) give new infinite families of linear covering codes
with codimensionr = 2k + 1 (the caseq = 3, r = 4k + 1 was considered earlier). New code families with
r = 4k are also obtained. An updated table of upper bounds on the length function for linear codes withr ≤ 24,
R= 2, andq = 3,5 is given.
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1. Introduction

In a recent paper, Cock and the second author [1] present a construction of linear ternary
(q = 3) codes with covering radius 2 and a good asymptotic behavior. The codes are
constructed starting from BCH codes, which are first extended, and then lengthened by
adding columns to the parity check matrix. It is here shown how this construction can be
generalized for any oddq to give families of codes with codimensionr = 2k+1. The new
codes obtained are further used in a lengthening construction by the first author [3] to get
more new codes.

We use the following notations. In the rest of the paper we assume thatq is an odd
prime power. LetFq denote the finite field of orderq. We will be particularly interested
in Fqd , that is, the degreed extension field ofFq. We denoteF∗ = F \ {0}. Clearly, the
multiplicative groupF∗q is a subgroup of the multiplicative groupF∗qd .

By [n,n − r ]q R we denote aq-ary linear code with lengthn, codimensionr (and thus
dimensionn− r ), and covering radiusR. Given the parity check matrixH of a code with
codimensionr , the covering radius is the smallest integerR such that any vector inFr

q
can be expressed as a linear combination of at mostR columns ofH. In this paper, we are

* This work was supported by the Academy of Finland



30 DAVYDOV AND ÖSTERG̊ARD

interested in the length functionl (r, R;q), that is—givenr , R, andq—the smallest possible
lengthn for an [n,n− r ]q R code. For an introduction to covering codes, see [2].

In Section 2, generalizations of the construction in [1] are considered. In Section 3, the
new codes are lengthened using methods from [3]. A table of upper bounds onl (r,2;q)
for r ≤ 24 andq = 3,5 is given in Section 4.

2. Lengthening of BCH Codes

We shall first discuss some properties of the extension fieldFqd . We define

W = qd − 1

q − 1
=

d−1∑
i=0

qi . (1)

Sinceqi is odd for alli , W is even ifd is even and odd otherwise. Thenormof elements
of a field will turn out to be a very useful tool here. The norm of an elementβ ∈ Fqd over
the fieldFq is (see, for example, [7, Definition 2.27])

NFqd /Fq(β) =
d−1∏
i=0

βqi = βW. (2)

For a proof of the following result, see [7, Theorem 2.28].

LEMMA 1 NFqd /Fq(β) ∈ Fq and this function is surjective (onto).

The concepts of quadratic residues (QRs) and quadratic nonresidues (QNRs) are important
in finite fields with odd basis.

THEOREM1 For k ≥ 1, all elements in F∗q are QRs in the extension field Fq2k .

Proof. From (2), Lemma 1, and the fact thatW is even (see comment after (1)), we get
that for eachγ ∈ F∗q there is aβ ∈ F∗q2k such thatγ = βW = (βW/2)2, soγ is a QR.

A basic result in group theory is that since the multiplicative groupF∗q is a subgroup of the
multiplicative groupF∗qd , F∗qd is partitioned by cosets ofF∗q (left and right cosets coincide
as the groups are commutative).

THEOREM2 For k ≥ 1, the elements of a coset of F∗q in F∗q2k are either all QNRs or all
QRs.

Proof. A coset ofF∗q is obtained asgF∗q = {g f | f ∈ F∗q } , g ∈ F∗q2k . As all elements inF∗q
are QRs (Theorem 1), then all elements ingF∗q are QRs ifg is a QR, and QNRs otherwise.

There areW cosets in total. Using this partitioning into cosets we can combinatorially
prove a theorem corresponding to Theorem 1 for odd-degree extension fields.
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THEOREM3 For k ≥ 0, half of the elements in F∗q are QRs (QNRs) in the extension field
Fq2k+1.

Proof. Let there bea QRs and(q − 1− a) QNRs inF∗q and let there beu cosets witha
QRs andW − u cosets with(q − 1− a) QRs. Then, as the total number of QRs inFq2k+1

is W(q − 1)/2,

a(W − u)+ (q − 1− a)u = W(q − 1)/2,

which gives

(2a− (q − 1))(W − 2u) = 0,

soa = (q − 1)/2 becauseW is odd and cannot be equal to 2u.

Note that the cosets discussed correspond to points of the projective geometry PG(d −
1,q), and the parity check matrix of the [W,W−d]q1 Hamming code contains one element
from each coset.

The codes constructed here and in [1] are lengthened BCH codes and have parity check
matrices of size(2d + 1)× n with the general form 1 1 1 · · · 1 0

0 α0 α1 · · · αqd−2 0
0 α0 α2 · · · αqd−3 D

 , (3)

where the submatrixD is different in different constructions,α ∈ Fqd is a primitive element,
and each entry of the second and the third row is replaced by the corresponding column of
d elements overFq (0 is a zero matrix of obvious size). The following theorem generalizes
[1, Theorem 1]. Here the columns ofD consist of one element from each coset ofF∗q2k with
QNRs only.

THEOREM4 Let q≥ 3 be an odd prime power and k≥ 1. Then

l (4k+ 1,2;q) ≤ (2q − 1)q2k − 1

2(q − 1)
.

Proof. We let V = {(1, ω, ω2) | ω ∈ Fq2k} andV ′ = {(0,0, ν) | ν ∈ SN}, whereSN

is any set with one element from each coset ofF∗q2k with QNRs only (so|SN | = W/2,
see Theorems 1 and 2). Then each vector(a,b, c) ∈ Fq Fq2k Fq2k can be expressed in the
following way as a linear combination with coefficients fromF∗q of at most two words in
V ∪ V ′ (note that−1,1/2 ∈ F∗q ):

a = b = 0: Follows from [1, Lemma 3];
a = 0, b 6= 0: (1,u,u2)− (1, v, v2) with u, v = (c± b2)/2b;
a = 1, c− b2 = 0: (1,b,b2);
a = 1, c− b2 is a QR: (1,u,u2)/2+ (1, v, v2)/2 with u, v = b±√c− b2;
a = 1, c− b2 is a QNR: (1,b,b2)+ w(0,0, v) with wv = c− b2;
a 6= 0,1: Follows from the cases witha = 1 using

(a,b, c) = a(1,b/a, c/a).
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By mapping the words inV ∪ V ′ to columns overFq we get a parity check matrix for a
q-ary covering code with covering radius 2. The total number of columns in this matrix is

n = q2k + W

2
= q2k + q2k − 1

2(q − 1)
= (2q − 1)q2k − 1

2(q − 1)
.

An important parameter that gives information about the quality of a (covering or error-
correcting) code is the density. For a code with covering radiusR, this gives the average
number of codewords at distance less than or equal toR from any word in the space. Perfect
codes have density 1. For aq-ary linear code of lengthn, codimensionr and covering radius
2, the density is

µ = 1+ (q − 1)n+ (q − 1)2n(n− 1)/2

qr
. (4)

For a given value ofq, calculation of the density of a code constructed in Theorem 4
reveals that ask (and son) tends to infinity, the density tends to

(2q − 1)2

8q
= q − 1

2
+ 1

8q
=
⌊q

2

⌋
+ 1

8q
. (5)

In [1, Theorem 2], a similar construction to that of Theorem 4 is given (which works for
r = 4k + 3). A generalization of that construction is also possible (and the density of the
codes tends toq/2 asr tends to infinity). However, it does not lead to any new bounds, so
we do not consider it here. But forq ≥ 5 we can obtain the following result. The proof
partly mimics that of Theorem 4. Now the submatrixD in the parity check matrix (3) is
taken to be the parity check matrix of an [n′,n′ − (2k+ 1)]q2 code.

THEOREM5 Let q≥ 5 be an odd prime power and k≥ 0. Then

l (4k+ 3,2;q) ≤ q2k+1+ l (2k+ 1,2;q).

Proof. We letV = {(1, ω, ω2) | ω ∈ Fq2k+1} andV ′ = {(0,0, ν) | ν ∈ V ′′}, whereV ′′ is
the set of columns of a parity check matrix for an [n′,n′ − (2k+1)]q2 code. Now, a vector
(a,b, c) ∈ Fq Fq2k+1 Fq2k+1 can be expressed in the following way as a linear combination
with coefficients fromF∗q of at most two words inV ∪ V ′ (note that−1 ∈ F∗q ):

a = b = 0: Follows from the particular choice ofV ′;
a = 0, b 6= 0: (1,u,u2)− (1, v, v2) with u, v = (c± b2)/2b;
a = 1, c− b2 = 0: (1,b,b2);

a = 1, c− b2 6= 0: (1− t)(1,u,u2)+ t (1, v, v2) with v = b+
√

1−t
t (c− b2),

u = (b− tv)/(1− t), wheret ∈ F∗q \ {1} such that(1− t)/t
and(c− b2) are both QRs or both QNRs;

a 6= 0,1: Follows from the cases witha = 1 using
(a,b, c) = a(1,b/a, c/a).
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In the fourth case, any of the two possible values of the square root may be used. The
value of t has to be chosen based on whether(c − b2) is a QR or a QNR. For different
t ∈ F∗q \ {1}, we get different values of(1− t)/t , which are all inF∗q . Now, since half of
the elements inF∗q are QRs (and the other half are QNRs) inFq2k+1 (Theorem 3), a feasible
value oft can always be found ifq ≥ 5 (but note that this is not possible ifq = 3 since
then there is only one possible value fort , as|F∗3 \ {1}| = 1).

By mapping the words inV ∪ V ′ to columns overFq we get a parity check matrix for a
q-ary covering code with covering radius 2. The length of the code isq2k+1 + n′, and as
we can maken′ = l (2k+ 1,2;q), we get thatl (4k+ 3,2;q) ≤ q2k+1 + l (2k+ 1,2;q).

Since Theorem 5 is recursive, calculation of the density of the code families is not straight-
forward. From Theorems 4 and 5 we get that 0< l (2k + 1,2;q) < 2qk (the bounds are
rough but sufficient). Now calculating the densitity (4) using the lower and upper bounds,
q2k+1 andq2k+1+ 2qk, on the lengths of the codes constructed in Theorem 5 in both cases
leads to the following asymptotic value of the density ask (andn) tends to infinity:

q

2
− 1+ 1

2q
. (6)

Interestingly, a slight modification of Theorem 5 gives a recursive construction of complete
caps in projective spaces [6].

In the last construction of this section, we use the parity check matrix
0 0 0 · · · 0 1 1 1 · · · 1 0
1 1 1 · · · 1 0 0 0 · · · 0 0
0 α0 α1 · · · αqd−2 0 0 0 · · · 0 Hd

0 α0 α2 · · · αqd−3 0 α0 α1 · · · αqd−2 0

 (7)

with even codimension 2+ 2d, whereHd is the parity check matrix of the [nd = (qd −
1)/(q − 1),nd − d]q1 Hamming code.

THEOREM6 Let q≥ 5 be an odd prime power and k≥ 1. Then

l (4k,2;q) ≤ 2q2k−1+ q2k−1− 1

q − 1
.

Proof. For d = 2k − 1, we want to show that any vector(a,b, c,e) ∈ Fq Fq Fq2k−1 Fq2k−1

can be expressed as a linear combination with coefficients fromF∗q of at most two columns
of (7). This can be done in the following ways:

a = 0: Use the firstq2k−1 columns of (7) as shown in the proof of
Theorem 5, except for the caseb = 0, c = 0, when
(0,0,0,e) = (1,0,0,e)− (1,0,0,0);

a = 1, b = 0: (1,0,0,e)+ u(0,0, c/u,0), wherec/u is a column vector ofH2k−1;
a = 1, b 6= 0: b(0,1, c/b, (c/b)2)+ (1,0,0,e− c2/b);
a 6= 0,1: Follows from the cases witha = 1 using

(a,b, c,e) = a(1,b/a, c/a,e/a).
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Hence the covering radius is 2. The length and the codimension of the code overFq are
obvious, so the proof is completed.

For k = 1, Theorem 6 givesl (4,2;q) ≤ 2q + 1, which coincides with the result in [3,
Theorem 5.1] for oddq. For k = 2, we getl (8,2;q) ≤ 2q3 + q2 + q + 1, whereas the
upper bound given in [4] and [5] is 2q3 + q2 + 2q + 2. The density of the codes from
Theorem 6 tends to

2− 2

q
+ 1

2q2

ask (andn) tends to infinity.

3. A qm-Concatenating Construction

In [1], the authors conjectured that a construction from [3] could be applied to find further
improvements for ternary covering codes using the new codes. Here we shall see that this is
indeed the case. Constructions from [3] will successfully be applied to the codes obtained
here and in [1]. These constructions were termedqm-concatenatingin [4], [5].

Let H′ = [h′1 h′2 · · · h′n′ ] be the parity check matrix of an [n′,n′ − r ]q2 starting code.
The parity check matrix for the codes obtained in theqm-concatenating construction here
has the following general form:

H =
 h′1 h′1 · · · h′1 · · · h′n′ h′n′ · · · h′n′

0 α0 · · · αqm−2 · · · 0 α0 · · · αqm−2 A
0 β1α

0 · · · β1α
qm−2 · · · 0 βn′α

0 · · · βn′α
qm−2

 , (8)

whereα is a generator ofFqm andβi ∈ Fqm with some further restrictions. We further
denoteH = [h1 h2 · · · hn]. The matrixA of size(r +2m)×n′′ varies in different variants
of this construction and the new code will be an [n = n′qm + n′′,n − (2m+ r )]q2 code
when the parameters are chosen carefully.

In the basic version of the construction, we let

A =
 0 0

Hm 0
0 Hm

 (9)

and require thatβi 6= βj when i 6= j . This is a variant of Construction A322 in [3,
Notation 6.1].

THEOREM7 Let q≥ 2 be a prime power and qm ≥ l (r,2;q). Then

l (r + 2m,2;q) ≤ qml (r,2;q)+ 2(qm − 1)

q − 1
.

Proof. We prove that the code with parity check matrix from (8) and (9) has covering
radius 2. Since the code with parity check matrixH′ has covering radius 2, every element



NEW LINEAR CODES 35

a ∈ Fqr can be written asa = sh′i + th′j with i 6= j ands, t ∈ Fq. When we want to
solve the equationshk + thl = x, with x = (a,b, c) ∈ Fqr Fqm Fqm, we get three subcases
depending on whethers andt are zero or nonzero:
Case 1: s= t = 0: (a = 0) Now we can write(0,b, c) = (0,b,0) + (0,0, c) =
u(0,b/u,0)+ v(0,0, c/v), whereb/u andc/v are column vectors ofHm.
Case 2: s 6= 0, t = 0: Herea = sh′i and we get that(a,b, c) = s(h′i ,b/s, βi (b/s)) +
u(0,0, (c− βi b)/u), where(c− βi b)/u is a column vector ofHm.
Case 3: s6= 0, t 6= 0: In this final case, whena = sh′i + th′j , we end up with the equation
system{

su+ tv=b
sβi u+tβj v=c

which we want to solve foru, v ∈ Fqm. Since the determinant of this equation system is
st(βj − βi ) 6= 0, there is a solution (remember thatβi 6= βj wheni 6= j ).

The proof is now completed. To minimize the lengthn we use a starting code of length
l (r,2;q).

Actually, by slightly altering the parity check matrix,qm ≥ l (r,2;q) could be replaced
by qm + 1 ≥ l (r,2;q) in Theorem 7 (see [3, Condition A3]). However, this would not
affect the results in this paper.

In the secondqm-concatenating construction used here (which is Construction C121 in
[3]), we let

A =
 0

0
Hm

 . (10)

Since this matrix has fewer columns than (9), we need further requirements onβi . In fact,
we want

{β1, β2, . . . , βn′ } = Fqm. (11)

We must then haven′ ≥ qm, and sincen′ = qm would be very restrictive, we would like to
allow some of the values ofβi to be the same. This is indeed possible under the following
conditions.

We partition the set{1,2, . . . ,n′} = S0 ∪ S1 ∪ · · · ∪ Sqm−1 such that all elements inFqr

which are not obtainable as the multiple of one column ofH′ can be obtained assh′i + th′j ,
wherei and j belong to different subsets of the partition. If this is possible we say that the
code has aqm-partition. We define a one-to-one correspondence between the setsSi and
the elements inFqm. In the construction, ifi ∈ Sa we letβi take the corresponding value in
Fqm.

THEOREM8 Let q≥ 2 be a prime power. If there is an[n′,n′ − r ]q2 code C, qm ≤ n′, and
C has a qm-partition, then

l (r + 2m,2;q) ≤ qmn′ + qm − 1

q − 1
.
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Proof. We consider the codeC with parity check matrix from (8) and (10), and assume
thatqm ≤ n′ and thatC has aqm-partition. We shall show thatC has covering radius 2. We
know that every elementa ∈ Fqr can be written asa = sh′i + th′j with i 6= j ands, t ∈ Fq

with i and j belonging to different subsets of theqm-partition. When we want to solve
shk + thl = x, with x = (a,b, c) ∈ Fqr Fqm Fqm, we get three subcases:
Case 1: s= t = 0: (a = 0) If b = 0, then we have a solution using one column from (10).
If b 6= 0, then we take(0,b, c) = (h′p,b, βpb) − (h′p,0,0), whereβp = c/b. Such ap
exists because of (11).
Case 2: s6= 0, t = 0: Coincides with the proof of Theorem 7.
Case 3: s6= 0, t 6= 0: Coincides with the proof of Theorem 7 after noticing that due to the
qm-partition,βi 6= βj .

Note that, compared to Theorem 7, we now usen′ and notl (r,2;q) in the statement
since—for given values ofq, r , andm—occasionally Theorem 8 can only be applied to
codes of some lengthn′ > l (r,2;q) (this is clearly always the case ifl (r,2;q) < qm).

Applying theqm-concatenating construction to the new code families gives several code
families, which will be presented in the following theorems. We define the parity function
p(x) ≡ x (mod 2), p(x) ∈ {0,1}.
THEOREM9 Let q≥ 3 be an odd prime power and k≥ 2. Then

l (4k+ 3,2;q) ≤ (2q − 1)q2k+1+ 3qk+1+p(k) − 4

2(q − 1)
.

Proof. From Theorem 4, we have that fork′ ≥ 1, l (4k′ + 1,2;q) ≤ (2q−1)q2k′−1
2(q−1) . Since

q2k′ <
(2q−1)q2k′−1

2(q−1) < q2k′+1, Theorem 7 can be applied whenm≥ 2k′+1; we shall consider
m = 2k′ + 1 andm = 2k′ + 3. In these two cases we get (after substitutingk = 2k′ and
k = 2k′ + 1, respectively) that whenk ≥ 2 is even,

l (4k+ 3,2;q) ≤ (2q − 1)q2k+1+ 3qk+1− 4

2(q − 1)

and whenk ≥ 3 is odd,

l (4k+ 3,2;q) ≤ (2q − 1)q2k+1+ 3qk+2− 4

2(q − 1)
,

which can be unified to get the desired result.

Calculation reveals that the asymptotic density asn tends to infinity of the codes from
Theorem 9 (withr = 4k + 3) coincides with that of the starting codes (withr = 4k + 1),
given in (5). (But the density of a new code is slightly greater than that of the starting
code.) Forq = 3 andr = 4k + 3, the asymptotic density for the codes obtained in [4] is
approximately 1.178 whereas it is 25/24≈ 1.042 here.

The codes from Theorem 5 can also be used as starting codes, and we can in fact use the
construction in Theorem 8.
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THEOREM10 Let q≥ 5 be an odd prime power and k≥ 1. Then

l (4k+ 1,2;q) ≤ q2k + l (k− 1+ p(k),2;q)qk+1−p(k) + (2− p(k))
qk+1−p(k) − 1

q − 1
.

Proof. From Theorem 5, we have that fork′ ≥ 0, l (4k′+3,2;q) ≤ q2k′+1+l (2k′+1,2;q).
From the proof of Theorem 5, it is clear that the code obtained has aq2k′+1-partition (in
each subset, take one column fromV and at most one column fromV ′). We can then apply
Theorem 8 withm= 2k′ + 1 and we get that whenk ≥ 1 is odd,

l (4k+ 1,2;q) ≤ q2k + l (k,2;q)qk + qk − 1

q − 1
.

By further applying Theorem 7 withm= 2k′ + 3 we get that whenk ≥ 2 is even,

l (4k+ 1,2;q) ≤ q2k + l (k− 1,2;q)qk+1+ 2(qk+1− 1)

q − 1
.

Again, the asymptotic density of the new codes (withr = 4k + 1) coincides with that
of the starting codes (withr = 4k + 3) given in (6). In the calculation of the density,
we need bounds forl (r,2;q); cf. remark after Theorem 5. We can here use, for example,
0 < l (r,2;q) < 2qr/2, which follows from l (2k + 1,2;q) ≤ 2qk used earlier and the
boundl (2k+ 2,2;q) ≤ 2qk+1 derived usingl (k+ 1,2;q) ≤ ql(k,2;q). It turns out that
for the density calculations, the only significant term on the right side of the inequality in
Theorem 10 isq2k. For example, forq = 5 with r = 2k + 1, the density is 1.6 compared
to 2.304 for the family constructed in [4].

THEOREM11 Let k≥ 3. Then

l (4k,2;3) ≤ 5 · 9k + 3k+2−p(k)

6
− 1.

Proof. We now start from codes obtained by applyingl (r + 1,2;3) ≤ 2l (r,2;3) [4],
[8] to the codes from [1, Theorem 1] (or, from Theorem 4 withq = 3). For such codes
l (4k′ + 2,2;3) ≤ (5 · 9k′ − 1)/2, k′ ≥ 1. By using Theorem 7 withm = 2k′ + 1 and
m = 2k′ + 3, respectively, and combining the results, the theorem is proved similarly to
Theorem 9.

The density of the codes from Theorem 11 (as well as that of the starting codes) tends
to 25/18≈ 1.389 ask (andn) tends to infinity (cf. [1]). This improves on the asymptotic
density obtained in [4], which is approximately 1.447. Note that we can also try to apply
l (r + 1,2;3) ≤ 2l (r,2;3) to Theorem 9 to get bounds for the same parameters, but the
results will turn out to be slightly worse than by using Theorem 11 (the asymptotic density
is the same).
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Table 1.Upper bounds onl (r,2;q) for r ≤ 24,q = 3,5.

r l (r,2;3) l (r,2;5) r l (r,2;3) l (r,2;5)
3 4i 6i 14 1822h 35000k

4 8h 11c 15 2915d 78256b

5 11a 28a 16 5588f 175000k

6 22h 56k 17 8201a 410937e

7 40g 131b 18 16402h 875000k

8 76j 281c 19 24785d 1953828b

9 101a 703a 20 49328f 4375000k

10 202h 1400k 21 73811a 9853906e

11 323d 3153b 22 147622h 21875000k

12 620f 7031c 23 223073d 48831278b

13 911a 16406e 24 443960f 109375000k

Key to Table 1.
a—Theorem 4 (also [1, Theorem 1] forq = 3)
b—Theorem 5
c—Theorem 6
d—Theorem 9
e—Theorem 10
f —Theorem 11
g—[1, Theorem 2]
h—l (r + 1,2;3) ≤ 2l (r,2;3) [4], [8]
i —See [9, Table I]
j —[3]
k—[5]

4. A New Table

We conclude the paper by presenting upper bounds onl (r, R;q) for r ≤ 24, R = 2, and
q = 3,5 in Table 1. For recent tables of linearq-ary codes with these parameters, see [1],
[4], [5]. The boundsl (11,2;3) ≤ 323 andl (15,2;3) ≤ 2915 andl (4,2;5) ≤ 11 were
also obtained in [3], the boundsl (12,2;3) ≤ 620 andl (16,2;3) ≤ 5588 in [4], and the
boundl (12,2;5) ≤ 7031 in [5].
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