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Abstract. On the way of generalizing recent results by Cock and the second author, it is shown that when the
basigy is odd, BCH codes can be lengthened to obtain new codes with covering Ragit’s These constructions
(together with a lengthening construction by the first author) give new infinite families of linear covering codes
with codimensiorr = 2k + 1 (the case] = 3,r = 4k + 1 was considered earlier). New code families with

r = 4k are also obtained. An updated table of upper bounds on the length function for linear codesvidth

R =2, andq = 3,5 is given.
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1. Introduction

In a recent paper, Cock and the second author [1] present a construction of linear ternary
(g = 3) codes with covering radius 2 and a good asymptotic behavior. The codes are

constructed starting from BCH codes, which are first extended, and then lengthened by
adding columns to the parity check matrix. It is here shown how this construction can be

generalized for any odglto give families of codes with codimension= 2k + 1. The new

codes obtained are further used in a lengthening construction by the first author [3] to get
more new codes.

We use the following notations. In the rest of the paper we assumejtisaan odd
prime power. Letr, denote the finite field of order. We will be particularly interested
in Fye, that is, the degree extension field of;. We denoteF* = F \ {0}. Clearly, the
multiplicative groupF; is a subgroup of the multiplicative grOnggd.

By [n, n —r]qR we denote a-ary linear code with length, codimensiorr (and thus
dimensiom — r), and covering radiuR. Given the parity check matrid of a code with
codimensiorr, the covering radius is the smallest intedgeisuch that any vector irIF,;
can be expressed as a linear combination of at lRasilumns ofH. In this paper, we are

* This work was supported by the Academy of Finland
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interested in the length functid(r, R; q), thatis—giverr, R, andg—the smallest possible
lengthn for an [n, n — r]qR code. For an introduction to covering codes, see [2].

In Section 2, generalizations of the construction in [1] are considered. In Section 3, the
new codes are lengthened using methods from [3]. A table of upper bourids 2nq)
forr < 24 andgq = 3, 5 is given in Section 4.

2. Lengthening of BCH Codes

We shall first discuss some properties of the extension FigildWe define

w_q_l_;q. (1)

Sinceq' is odd for alli, W is even ifd is even and odd otherwise. Thermof elements
of a field will turn out to be a very useful tool here. The norm of an elergeatF,« over
the fieldF, is (see, for example, [7, Definition 2.27])

d-1
Nea/r(B) =[] 8Y = 8" (2)
i=0

For a proof of the following result, see [7, Theorem 2.28].

LEMMA 1 Nqu/Fq (B) € Fq and this function is surjective (onto).

The concepts of quadratic residues (QRs) and quadratic nonresidues (QNRs) are important
in finite fields with odd basis.

THEOREM1 For k > 1, all elements in fare QRs in the extension fielq:F.

Proof. From (2), Lemma 1, and the fact thét is even (see comment after (1)), we get
that for eachy € Fj there is af € Fy, such thay = Y = (BV/?)?, soy is a QR.
|

A basic resultin group theory is that since the multiplicative grBgijs a subgroup of the
multiplicative groupFgy, Fg is partitioned by cosets d¥; (left and right cosets coincide
as the groups are commutative).

THEOREM?2 For k > 1, the elements of a coset og T F(;k are either all QNRs or all
ORs.

Proof. AcosetofF; is obtained ag R = {gf | f € Fat.ge F;Zk. As aIIeIementsirIF;
are QRs (Theorem 1), then all elementg iy are QRs ifg is a QR, and QNRs otherwise.
]

There areW cosets in total. Using this partitioning into cosets we can combinatorially
prove a theorem corresponding to Theorem 1 for odd-degree extension fields.
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THEOREM3 For k > 0, half of the elements injFare QRs (QNRs) in the extension field
Fq2k+1.

Proof. Let there bea QRs andq — 1 — a) QNRs inFy and let there be cosets witha
QRs andW — u cosets with(q — 1 — a) QRs. Then, as the total number of QRFgx+
isW(q —1)/2,

aW-u+@-1-ayu=W(@-1)/2
which gives
(2a—(q—1))(W—2u) =0,

soa = (q — 1)/2 becausé&V is odd and cannot be equal ta.2 [ ]

Note that the cosets discussed correspond to points of the projective geomédry-PG
1, 9), and the parity check matrix of th#\[, W —d]41 Hamming code contains one element
from each coset.

The codes constructed here and in [1] are lengthened BCH codes and have parity check
matrices of siz€2d + 1) x n with the general form

11 1. 1 0
0a® ol .o a92] 0 |, (3)
0a® @? ... o983 D

where the submatriR is different in different constructiona, € Fga is a primitive element,

and each entry of the second and the third row is replaced by the corresponding column of
d elements oveF, (O is a zero matrix of obvious size). The following theorem generalizes
[1, Theorem 1]. Here the columnsBfconsist of one element from each cosngizt with

QNRs only.

THEOREM4 Let g > 3 be an odd prime power andk 1. Then
(20 —Dg* -1

: <
4k +1,2;,q) < G- 1)
Proof. We letV = {(1,»,w?) | ® € Fqa} andV’ = {(0,0,v) | v € Sy}, whereSy
is any set with one element from each cosefgf with QNRs only (so|Sy| = W/2,
see Theorems 1 and 2). Then each ve@ob, ¢) € FqFqFq can be expressed in the
following way as a linear combination with coefficients frdfj of at most two words in
V UV’ (note that-1,1/2 € Fj):

a=b=0: Follows from [1, Lemma 3];
a=0,b+#0: (1,u,u?®) — (1, v, v?) with u, v = (c + b?)/2b;
a=1,c—-b2=0: (1, b, b?);

a=1c—b’isaQR: (L u,u?/2+ (1, v,v?)/2withu,v =Db++/c—b?
a=1,c—b?isaQNR: (1, b, b? + w(0, 0, v) with wv = ¢ — b?;
a#0,1: Follows from the cases withh= 1 using

(a,b,c) =a(l, b/a, c/a).
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By mapping the words iv U V' to columns ovelrq we get a parity check matrix for a
g-ary covering code with covering radius 2. The total number of columns in this matrix is

g* -1 (2q—-Dg* -1
29-1)  29-1

W
n=q2k+?=q2k+ -

An important parameter that gives information about the quality of a (covering or error-
correcting) code is the density. For a code with covering raBiuthis gives the average
number of codewords at distance less than or equRFftom any word in the space. Perfect
codes have density 1. Fogaary linear code of length, codimensiom and covering radius
2, the density is

_1+@-Dn+(q—-1°n(n-1)/2

n= T .

For a given value ofy, calculation of the density of a code constructed in Theorem 4
reveals that ak (and son) tends to infinity, the density tends to

(4)

9-1* g-1 1 {qJ 1

& 2 & L2l e

: ©)

In [1, Theorem 2], a similar construction to that of Theorem 4 is given (which works for
r = 4k + 3). A generalization of that construction is also possible (and the density of the
codes tends tq/2 asr tends to infinity). However, it does not lead to any new bounds, so
we do not consider it here. But for > 5 we can obtain the following result. The proof
partly mimics that of Theorem 4. Now the submatifixn the parity check matrix (3) is
taken to be the parity check matrix of am,[n’ — (2k + 1)]42 code.

THEOREM5 Let g > 5be an odd prime power andk 0. Then

l(4k +3,2;9) < g +1(2k+ 1, 2; q).

Proof. WeletV = {(1,w,®?) | w € Fgx} andV’ = {(0,0,v) | v € V"}, whereV"” is

the set of columns of a parity check matrix for an ' — (2k + 1)]42 code. Now, a vector
(a,b, ) € FqFgz1Fgi1 can be expressed in the following way as a linear combination
with coefficients fromF of at most two words itV U V' (note that-1 € Fj):

a=b=0: Follows from the particular choice &f;

a=0,b+#0: (1,u,u®) — (1, v, v®) with u, v = (c &+ b?)/2b;

a=1,c—b2=0: (1 b,b?);

a=1c—b*#£0 (1-t)Luud)+t(@l v, v})withv=b+ /(- b,
u= (b—tv)/(1—1t), wheret € Fa\ {1} such thatl —t)/t
and(c — b?) are both QRs or both QNRs;

a#0,1: Follows from the cases with= 1 using
(a,b,c) =a(l, b/a, c/a).
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In the fourth case, any of the two possible values of the square root may be used. The
value oft has to be chosen based on whetter b?) is a QR or a QNR. For different
t e Fy\ {1}, we get different values afl — t)/t, which are all inFJ. Now, since half of
the elements irfr; are QRs (and the other half are QNRsFp«1 (Theorem 3), a feasible
value oft can always be found i > 5 (but note that this is not possibledf= 3 since
then there is only one possible value fpas|F; \ {1}| = 1).

By mapping the words iv U V' to columns oveiFq we get a parity check matrix for a
g-ary covering code with covering radius 2. The length of the codg'is* + n’, and as
we can makey = | (2k + 1, 2; q), we get that (4k + 3, 2; @) < g1 +1(2k + 1, 2; q).

]

Since Theorem 5is recursive, calculation of the density of the code families is not straight-
forward. From Theorems 4 and 5 we get that0(2k + 1, 2; q) < 2g* (the bounds are
rough but sufficient). Now calculating the densitity (4) using the lower and upper bounds,
g%+ andg?+! 4 2g%, on the lengths of the codes constructed in Theorem 5 in both cases
leads to the following asymptotic value of the densitkgandn) tends to infinity:

q 1
- =1+ —. 6
2 1ty (6)

Interestingly, aslight modification of Theorem 5 gives arecursive construction of complete
caps in projective spaces [6].

In the last construction of this section, we use the parity check matrix

00 O0-.-.- O 11 1 1 0
11 1..- 1 00 O0-.--- O 0
0a el ... a2 00 O0-.- O Hq (7)
0 a® a2 ... o938 0 o ol ol -2 0

with even codimension 2 2d, whereHy is the parity check matrix of thenf = (q¢ —
1)/(q — 1), ng — d]g1 Hamming code.
THEOREMG6 Let > 5be an odd prime power andk 1. Then
a1, 9* -1
[ (4k, 2; 29+ —.
(4K, 2;q) =29 + q—1

Proof. Ford = 2k — 1, we want to show that any vect@, b, ¢, &) € FyFqFqa-1Fqacs
can be expressed as a linear combination with coefficients Fipof at most two columns
of (7). This can be done in the following ways:

a=0: Use the firsg?~* columns of (7) as shown in the proof of
Theorem 5, except for the cabe= 0,c = 0, when
(0,0,0,e) =(1,0,0,e) — (1,0, 0, 0);

a=1,b=0: (1,0,0,e) + u(0,0,c/u, 0), wherec/u is a column vector oH_1;
a=1b#0: b0, 1 c/b (c/b)? + (10,0 e—c?/b);
a#0,1: Follows from the cases withh= 1 using

(a,b,c,e) =a(l,b/a,c/a, e/a).
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Hence the covering radius is 2. The length and the codimension of the codE oaer
obvious, so the proof is completed. ]

Fork = 1, Theorem 6 givebk(4, 2; q) < 29 + 1, which coincides with the result in [3,
Theorem 5.1] for oddy. Fork = 2, we getl(8,2; q) < 29° + g% + q + 1, whereas the
upper bound given in [4] and [5] isg? + g% + 29 + 2. The density of the codes from
Theorem 6 tends to

2 1

ask (andn) tends to infinity.

3. A g™M-Concatenating Construction

In [1], the authors conjectured that a construction from [3] could be applied to find further
improvements for ternary covering codes using the new codes. Here we shall see that this is
indeed the case. Constructions from [3] will successfully be applied to the codes obtained
here and in [1]. These constructions were termBetoncatenatingn [4], [5].

LetH = [h} h} --- h; ] be the parity check matrix of am[, n" — r],2 starting code.
The parity check matrix for the codes obtained in ¢ffeconcatenating construction here
has the following general form:

h, hy .- h; o h,
H = 0 ao ce . aqm_z e O ao P aqm_2 A S (8)
0 Ba® - Brad" 2| ... 0 Bna® -+ Byad"2

wherea is a generator oFgn and g € Fym with some further restrictions. We further
denoteH = [hy hy - - - hy]. The matrixA of size(r +2m) x n” varies in different variants
of this construction and the new code will be an£ n'g™ + n”, n — (2m 4+ r)]42 code
when the parameters are chosen carefully.

In the basic version of the construction, we let

0 0
A=|Hy, O )
0 Hm

and require thap; # B; wheni # j. This is a variant of Construction A32n [3,
Notation 6.1].

THEOREM7 Letq > 2 be a prime power and®> I(r, 2; g). Then

m_
Ir +2m,2;,q) <q™l(r, 2 q)+Lll).

Proof. We prove that the code with parity check matrix from (8) and (9) has covering
radius 2. Since the code with parity check matiixhas covering radius 2, every element
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a € Fy can be written as = shf + thj with i # j ands,t € Fq. When we want to
solve the equationh, + th; = x, with x = (a, b, ¢) € Fy FqnFqm, we get three subcases
depending on whetharandt are zero or nonzero:

Case 1: s=t = 0: (@ = 0) Now we can write(0,b,c) = (0,b,0) + (0,0,¢c) =
u(0, b/u, 0) + v(0, 0, c/v), whereb/u andc/v are column vectors dfl,.

Case 2: s# 0,t = 0: Herea = shf and we get thafa, b, c) = s(h;{, b/s, gi(b/s)) +
u(0, 0, (c — Bib)/u), where(c — gib)/u is a column vector oH .

Case 3: s# 0,t # 0: In this final case, whea = s + th;, we end up with the equation
system

s+ tv=b
SBiu+tBjv=c

which we want to solve fou, v € Fgm. Since the determinant of this equation system is
st(B; — Bi) # 0, there is a solution (remember that# §; wheni # j).

The proof is now completed. To minimize the lengtlve use a starting code of length
I(r, 2;q). |

Actually, by slightly altering the parity check matrig" > I(r, 2; q) could be replaced
byg™+ 1 > I(r, 2, q) in Theorem 7 (see [3, Condition A3]). However, this would not
affect the results in this paper.

In the second)™-concatenating construction used here (which is Construction D12
[3]), we let

0
A=| 0 |. (10)
Hm

Since this matrix has fewer columns than (9), we need further requiremegts bnfact,
we want

{B1. B2, ..., B} = Fgm. (11)

We must then have’ > g™, and sincen’ = g™ would be very restrictive, we would like to
allow some of the values ¢ to be the same. This is indeed possible under the following
conditions.

We partition the sefl,2,...,n"} = SU S U --- U §n_1 such that all elements iRy
which are not obtainable as the multiple of one columhbfan be obtained &y + tth,
wherei andj belong to different subsets of the partition. If this is possible we say that the
code has a@M-partition. We define a one-to-one correspondence between th§ satd
the elements ifrqm. In the construction, if € S, we letg; take the corresponding value in
Fam.

THEOREM8 Letq > 2be a prime power. If thereis dm’, n" —r]q2code C, ' < n’, and
C has a ¢-partition, then

qgm -1
q—-1"

[(r +2m,2;q) < g™’ +
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Proof. We consider the cod€ with parity check matrix from (8) and (10), and assume
thatg™ < n” and thaiC has ag™-partition. We shall show tha has covering radius 2. We
know that every elemeft € Fy can be written aa = shf + thj withi # j ands, t € Fq

with i and j belonging to different subsets of tlgg'-partition. When we want to solve
shy +th) = x, with x = (a, b, ¢) € Fy FqnFgm, we get three subcases:

Case l: s=t =0: (a = 0) If b= 0, then we have a solution using one column from (10).
If b # 0, then we tak&0, b, c) = (h, b, pb) — (hy,, 0, 0), whereg, = c/b. Such ap
exists because of (11).

Case 2: s# 0,t = 0: Coincides with the proof of Theorem 7.

Case 3: s# 0,t ## 0: Coincides with the proof of Theorem 7 after noticing that due to the

q™M-partition, 8 # B;. [ |

Note that, compared to Theorem 7, we now usand notl(r, 2; q) in the statement
since—for given values aif, r, andm—occasionally Theorem 8 can only be applied to
codes of some lengthl > I(r, 2; q) (this is clearly always the caselifr, 2; q) < q™).

Applying theg™-concatenating construction to the new code families gives several code
families, which will be presented in the following theorems. We define the parity function
p(xX) = x (mod 2, p(x) € {0, 1}.

THEOREM9 Letq > 3 be an odd prime power andk 2. Then

(2q _ 1)q2k+1 4 3qk+1+p(k) —4
20-1 '

l(dk+3,2;,q) <

Proof. From Theorem 4, we have that ffr > 1,1(4k + 1,2; q) < @=D9=1 gjnce

20-1
/ _1Na2 _ , . .
g% < %ﬂbl < gq%*1 Theorem 7 can be applied when> 2k’ +1; we shall consider

m = 2k’ + 1 andm = 2k’ 4+ 3. In these two cases we get (after substituking 2k’ and
k = 2k’ + 1, respectively) that whek > 2 is even,
(2q _ 1)q2k+1 + 3qk+1 —4

[(4k+3,2,q) <
( o) 20-1)

and wherk > 3 is odd,

(2q _ 1)q2k+1 4 3qk+2 —4
14k +3,2;Q) < ;
( v 201D

which can be unified to get the desired result. ]

Calculation reveals that the asymptotic densityndaends to infinity of the codes from
Theorem 9 (withr = 4k + 3) coincides with that of the starting codes (with= 4k + 1),
given in (5). (But the density of a new code is slightly greater than that of the starting
code.) Forg = 3 andr = 4k + 3, the asymptotic density for the codes obtained in [4] is
approximately 1178 whereas it is 224 ~ 1.042 here.

The codes from Theorem 5 can also be used as starting codes, and we can in fact use the
construction in Theorem 8.
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THEOREM10 Let q> 5be an odd prime power andk 1. Then

qk+l— pk) _ 1

l(4k+1,2,0) < g™ +1(k— 1+ p(k), 2 g 7PY + (2 — p(k)) =1

Proof. From Theorem 5, we have thatfdr> 0,1(4k'+3, 2; q) < g +1(2k'+1, 2; ).
From the proof of Theorem 5, it is clear that the code obtained g &-partition (in
each subset, take one column frdfrand at most one column fro). We can then apply
Theorem 8 withm = 2k’ + 1 and we get that whek> 1 is odd,

k _
|4k +1.2:9) < g™ +1(k. 2 q)qk+‘l—_11.

By further applying Theorem 7 wittn = 2k’ 4+ 3 we get that whek > 2 is even,

z(qk+1 _ 1)

l4k+1,2,q) < q*+1(k—1,299“ "+ a=1

Again, the asymptotic density of the new codes (with- 4k 4+ 1) coincides with that
of the starting codes (with = 4k + 3) given in (6). In the calculation of the density,
we need bounds fdir, 2; q); cf. remark after Theorem 5. We can here use, for example,
0 < I(r, 2;9) < 2q9'/2, which follows froml(2k + 1, 2; q) < 2g* used earlier and the
boundl (2k + 2, 2; q) < 29*+! derived usind (k + 1, 2; @) < ql(k, 2; g). It turns out that
for the density calculations, the only significant term on the right side of the inequality in
Theorem 10 ig)*. For example, fog = 5 withr = 2k + 1, the density is B compared
to 2.304 for the family constructed in [4].

THEOREM11 Letk> 3. Then

5. 9k 3k+27 p(k)
(4K, 2: 3) < —+6 _1

Proof. We now start from codes obtained by applyirg + 1, 2; 3) < 2I(r, 2; 3) [4],

[8] to the codes from [1, Theorem 1] (or, from Theorem 4 witk= 3). For such codes
[(4k' +2,2;3) < (5-9¥ —1)/2,k' = 1. By using Theorem 7 witm = 2k’ + 1 and

m = 2k’ 4+ 3, respectively, and combining the results, the theorem is proved similarly to
Theorem 9. [ ]

The density of the codes from Theorem 11 (as well as that of the starting codes) tends
to 25/18 ~ 1.389 ask (andn) tends to infinity (cf. [1]). This improves on the asymptotic
density obtained in [4], which is approximately 1.447. Note that we can also try to apply
Ir +1,2,3) < 2(r, 2; 3) to Theorem 9 to get bounds for the same parameters, but the
results will turn out to be slightly worse than by using Theorem 11 (the asymptotic density
is the same).
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Table 1.Upper bounds oi(r, 2; q) forr < 24,9 =3,5.

ro 1,23 I(r,25) r 1(r,2;3) 1(r,2;5)
3 4 6 14 1822 35000
4 ah 11° 15 2914 78256
5 112 28 16 5584 175000
6 22 56¢ 17 820F 41093F
7 409 131 18 16409 875000
8 76 281° 19 24789 1953828
9 102 70% 20 49328 4375000
10 202 1400 21  7381% 9853906
11 328 3153 22 147629 21875008
12 620 703F 23 223078 48831278
13 91P 16406 24 443960 109375000

Key to Table 1.

a—Theorem 4 (also [1, Theorem 1] fgr= 3)
b—Theorem 5

c—Theorem 6

d—Theorem 9

e—Theorem 10

f—Theorem 11

g—I1, Theorem 2]

h—(r+1,23 <2, 23 [4],[8]
i—See [9, Table I]

j—I[3]

k—{5]

4. A New Table

We conclude the paper by presenting upper boundgroR; q) forr < 24, R = 2, and

g = 3,5in Table 1. For recent tables of linegyary codes with these parameters, see [1],
[4], [5]. The boundd (11, 2; 3) < 323 and(15,2; 3) < 2915 and(4,2;5) < 11 were
also obtained in [3], the boundi§l2, 2; 3) < 620 and (16, 2; 3) < 5588 in [4], and the
boundl (12, 2;5) < 7031 in [5].
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