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On “The Optimal Linear Receiving Filter for 
Digital Transmission Over Nonlinear Channels” 

William A. Gardner, Senior Mcniher, IEEE 

Abstract -A recent paper shows that the matched-filter/tapped- 
delay-line structure is optimum not only for linear pulse-modulated 
signals and linear channel distortion, hut also for nonlinear finite- 
alphabet pulse-modulation and some nonlinear channel distortion. This 
has important practical applications. Therefore, its connection with 
other work reported in the literature is brought to light in this note. 

Index Terms -Optimum receivers, matched filters, nonlinear chan- 
nels. 

The optimal linear receiving filter for digital transmission 
derived in the recent paper [ l ]  is closely related to that derivcd 
in [2]. The structure of the filter derived in [1]-a parallel bank 
of matched filters, each followed by a tapped delay line-is 
identical to that derived in [2]. However, this structure is shown 
in [2] to bc a special case of a more general structure that can be 
used for MMSE data-symbol estimation, MMSE signal-wave- 
form estimation, or MMSE estimation of the a posteriori proba- 
bilities of the data symbols. Also, the solution presented in [ l ]  is 
not as explicit as that prcsented in [2], which is expressed 
directly in terms of symbol correlation, pulse shape, and noise 
spectrum. The important practical ramifications of less than full 
dimensionality of the signal set, which is discussed briefly in [l], 
is treated at length in [3]. In  addition, the derivation in [2] 
accommodates unlimited transmitted-signal pulse-duration and 
channel memory, whereas that in [ I ]  is restricted to finitc 
duration pulses (infinitc excess bandwidth) and finite channel 
memory. 

On the other hand, it is explained in [ l ]  that the signal model 
adopted (in both [ l ]  and [2]) can be used to model some 
nonlinear channels, which were not explicitly considercd in [2], 
by expanding the symbol alphabet and reinterpreting the signal 
pulscs. This has important practical applications. 

Other work related to [I] includes [4], where thc related 
signal-waveform estimation problem is studied and it is shown 
that the optimum waveform estimator functions like a regenera- 
tive repcater; [5], where an analogous receiver structure is 
derived for optical digital data transmission (which can be 
interpretcd in terms of a random nonlinear channel); [h] ;  where 
a novel interpretation delay of the matchcd-filter tapped-line 
structurc as a means for exploiting the inherent frcquency 
diversity in pulse-modulated signals that results from the spec- 
tral correlation that is characteristic of cyclostationary processes, 
is given, and the value of this for suppression of co-channel 
intcrfercnce and distortion due to frequency-selective fading is 
explained, and wherc thc role of the fractionally spaccd equal- 
izer for implementing this is clarified; and [7] and [8], wherc the 
functions Gi”’(f)  that arise in the receiving filter design equa- 
tion [ I ,  (2.8)] are shown to be spectral correlation density 
functions and are explicitly calculated for many types of commu- 
nication signals. 
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Linear Codes with Covering Radius 2 and Other 
New Covering Codes 

Ernst M. Gabidulin, Alexander A. Davydov, and 
Leonid M. Tombak 

Abstract -This work gives infinite families of linear hinary codes with 
covering radius R = 2 and minimum distance d = 3 and d = 4. Using 
the constructed codes with d = 3 ,  R = 2, families of covering codes with 
R > 2 are obtained. The parameters of many constructed codes with 
R 2 2 are better than the parameters of known codes. The parity check 
matrices of constructed codes with d = 4, R = 2 are equivalent to com- 
plete caps in projective geometry. 

I. INTRODUCTION 
Covering codes are being extensivcly studied, see, e.g., [l], [2], 

We consider linear binary covering codes. 
Let a n  [ r r , k , d ] R  code be a linear binary code of length n ,  

dimension k ,  minimum distance d and covering radius R, 
Denote by t [ n , k ]  the smallest covering radius of any linear 
binary code of length n and dimension k .  Let r be the number 
of check symbols of a code. Let p < , [ n ,  RI denote the density of 
the covering of binary n-dimensional space by spheres with 
radius R,  whose centers correspond to the [ n ,  k ,  d ] R  codewords 
(cf. [5]). Let 

[4]-[7], [10]-[12], and [17]. 

jZ,[R] = liminfp<,[n,R]. (1)  
I 1  + r  
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'This correspondence is mostly devoted to codes with R = 2. If 
R = 2 then d = 3 or d = 4 excepting thc [ S ,  1.512 code. 

Graham and Sloane [71 described [9, 4, 312, [13, 7, 312, 
[19,12,3]2,[55,49,3]2 codes and the infinite family of codes with 
parameters 

R = 2 , d = 3 .  r l 7 . 1 1 = 2 " ' + 2 ' - " ' - 4 , m = r r / 2 ] .  (2)  

Brualdi, Pless, and Wilson [l] obtained [13,-7,4]2,[41,29,3]3 

R = 2 ,  d = 3 .  r = 4 u + 6 2 8 ,  n = ( 2 " - 1 ) ( 2 " + ' + l ) + c p ( S ) ,  

codes and the infinite family of codes with parameters 

( 3 )  

where 6 E {m), ( ~ ( 6 )  = 2 2 " + 6 S 1  - 1 if 6 2 I ,  cp(0) = 0. 
Codes in ( 3 )  provide t[27,19] = t[42,33] = t[58,48] = 2. Using 

results in [l], Calderbank and Sloane [2] proved that t[56,43]= 
t[57,44]= 3, f[49,30]= t[64,44]=5, t[63,40]=6. 

Codes with R = 2, d = 4, n > 2" -' were described in [6]. It is 
an open problem to establish an existence and to design all 
[ n . n  - r.412 codes for n < 2'-'. 

Szonyi [ 161 described maximal 3-independent sets in the ele- 
mentary abelian p-group of order p' (see Section IV). For p = 2 
these sets are parity check matrices of an infinite family of codes 
with parameters 

R = 2 , d = 4 . r 2 5 , n = 2 " ' + 2 ' - " ' - 3 , m = [ r / 2 ] .  (4) 

Codes in (2) provide jT3[2] = 2, where the limit in (1) is taken 
over a subsequence of codes with r = 2m,  n = 2" '+ '  -4, m +x. 
Similarly, codes in ( 3 )  with r = 4u and codes in (4) with r = 2m 
provide respectively i13[2] = 2 and jT4[2] = 2. 

It is interesting to construct codes with R = 2, which provide 
p1.,,[2] < 2 for d = 3,4, and codes, which for fixed r have smaller 
length than the codes in (2), ( 3 )  (if d = 3 )  and than the codes in 
(4) (if d = 4). 

Codes with R = 2 ,  d = 4 are useful also for projective geome- 
try (see Section IV). 

In Sections 111, IV we construct infinite families of codes with 
parameters 

R = 2 ,  d = 3 ,  r 2 7 ,  

n = f ' ( r ) a  (5)  
-2 ,  i f r = 2 m  7 2"'-z 

5 2"'- 2 - I ,  i f r = 2 m - I ,  ( 
R = 2 ,  d = 4 ,  r 2 1 0 ,  

(6) 
-3, i f r = 2 m  15 2"' - 3 

I 1  = ( 
23X2"'-'-3, if r = 2 m - 1 .  

In Sections IV we describe also [28,20,4]2, [43,34,4]2 codes and 
(using directly the methods from [ 161) codes with parameters 

R = 2 ,  d = 4 ,  r 2 5 ,  n = 2 ' + 2 " - ' - 3 ,  
r - 2  2 I '  2 2. ( 7 )  

For fixed r ,  the codes in (5) have smaller length than the 
codes in (2), ( 3 )  and the codes in (6) have smaller length than 
the codes in (4). 

In Section V, using the codes in (5) and Hamming and Golay 
codes in amalgamated direct sum (ADS) constructions [7] ,  we 
obtain families of codes with d = 3, R > 2. 

Many improvements of Graham and Sloane's table [7 ]  (see 
also [l], [2]) follow from results of Sections I11 and V: 

f [ 2 6 , 1 8 ] = t [ 3 9 + i , 3 0 + i ] = t [ 5 4 + j , 4 4 + j ] = 2 .  
- -  

i = 0 , 2 .  j = 0 , 3 .  

i = 0 , 2 .  

i = 0 , 1 .  

i = 0 , 2 .  

- 
t[40,28] = t[53+ i , 4 0 +  i ]  = 3, 

t [ 51+  i , 35+ i ]  = t[64,47] = 4,  
- 

t[48,29] = t [61 + i ,41+ i ]  = 5,  

t[62,39] = 6. (8) 

In  the table in [7] of linear covering codes thc respective 
values are ~ 2 -- 3.3 - 4,4 ~ 5.5  - 6 , 6  - 7, where the first item is 
the lower bound on t [ n , k ]  and thc second one is the covering 
radius of the best known code. 

In Section VI the density of a covering for codes described in 
Sections 111, IV is determined. 

If wc use the codes in (5) with I I  = 7 ~ 2 " ' - '  -2, m -JX, and 
the codes in ( 6 )  with ti = 15x2"' -3 .  n.2 + x ,  then we obtain 

jT3[2] = 49/32, p4[2]  = 225/128. (9)  

11. No-r.i\-rroNs 

Throughout this correspondence all columns and matrices are 
binary. An upper index in denotation of a matrix (column) is the 
number of rows (coordinates) in the matrix (column). 

We associate with a matrix A the set { A )  that has its columns 
as elements. In this case an expression of a form { A ) + { G ) ,  
where A and G are matrices, is treated as 

{ A }  + {G} = { x :  x = a + g ,  a E { A } ,  g E {G}). ( I O )  

Let (e,)" be the column vector that is the binary h-bit presen- 
tation of element e, of the field GF(2'), where i E{m). B = 
2' - I ,  e,, = 0, and if i # j then e ,  # e, .  

For definiteness. in examples we assume that column (e , )h  is 
the h-bit binary number equal to i. 

Let E" and F Z h ( e , )  denote the following matrices, 

E" = [(e , , ) '  ( e 1 ) "  ' ' ' ( e , , " ] ,  (11) 

/' (12) 

where e,,, e,, e,, e ,  ' e ,  E GF(2'), i =-, B = 2" - 1 (cf. the par- 
ity check matrix of the Melas code [13, Section 7.61, [14]). 

Let E::, be a matrix E" with punctured columns (e,)',(e,)'. 
Let E,f be a matrix E h  with punctured column (e,Qh. Let 
F,:"(e,) be a matrix F"(e,) with punctured column (e, ,)- ' .  

Denote by P " ( e , )  a matrix with unique repeated column ( e l l h .  
The number of columns of this matrix is determined by context. 

The following matrices and column are used later. 

111. CONSTKUC-IIONS OF CODES W I - I I I  R = 2, d = 3, r 2 7 

A code with parity check matrix H' has R = 2 if any column 
from ( E ' )  is a sum of two or  fewer columns of matrix H' [4, p. 
3281, i.e., 

{ H " } U { { H r } + { H r } }  = ( E ' } .  (16) 

Lemma I :  Let wI + w, = w3, where w , ~  E GF(2"), g =n, 
w ,  # w2, w , , w 2  # 0. Let 
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- - 0 . . . 0  
0 . . . 0  
0 . . . 0  

C =  E r 3  
P'?, - I ( p ) 

- 1 . . . 1  - 
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- - - - 0 . . . 0  0 . . . 0  
1 " ' l  1 " . 1  
0 . . . 0  1 " '  1 

' I/= E"'-i 1 x= 7 1 

PI"- I( y )  P " ' - l ( 8 )  

- I . . .  1 -  - 0 . . . 0  - 

IV. PROJECTIVE G ~ O M E T R Y  A N D  CONSTRUCTIONS OF 

CODES W I T H  R = 2, d = 4 

An s-dimensional projective geometry PG(s,  q )  is described in 
191, 1131, [15]. We use also the papers [3], [6], [SI, and [16]. 

Let a binary column e ,  of length r be a point of the geometry 
PG(r  - 1,2). Then a set of three columns c l ,  c2 ,  and c j  such 
that c ,  + c2 = c3 is a line of this geometry. 

A cap in projective geometry is a set of points such that no 
three are collinear. A complete cap is a cap of n points that is 
not contained in any cap of n + 1 points. 

A bisecant of a cap of the geometry PG(r  - 1,2) is a line such 
that two points belong to this cap but the third point is external, 
i.e., it does not belong to the cap. If a cap is complete then every 
external point lies on a bisecant of the cap. 

On the other hand, for a parity check matrix H '  = [c lc2 . . . c,,] 
of a binary linear code with d = 4 it holds that 

c, + c, # c k ,  V i ,  j, k E {G}. (36) 

Hence (see also (16)) a parity check matrix of a code with 
d = 4, R = 2 is a complete cap. 

An open problem is the structure of complete caps with a 
number of points smaller than 2"-*. The results of p a p y  [16] 
and our constructions of [ n ,  n - r,4]2 codes for n < 2 ' - -  par- 
tially answer this question. 

The following results are obtained in [16, p. 163-1641. Let G 
be an elementary abelian p-group of order p ' ,  r 2 4 an integer. 
Subset X of this group is called a maximal 3-independent set if 
it holds that x I  + x2 + x3 f 0 for any three elements x l r  x2 ,  x 3  
E X and for any y E G \  X there exist x I ,  x 2  E X for which 

The group G is isomorphic to G I  XG,, where lGll=p"' ,  
lGll = p '  -'I1, m = [r/2].  Let p f 3; y ,  E G,, yf f 0, i = 1,2; X, = 

U X,. Then X is a maximal 3-independent set and 

y + X I  + x2 = 0. 

Ny, ,6) ISEG, ,  6+2y , ) :  X,={(5,Y2)15EGI7 5 # 2 Y l k  X=X, 

On the other hand, let p = 2 and let a binary column of 
length r be the binary representation of an element of G. Then 
(see (16), (36)) a parity check matrix of a code with d = 4, R = 2 
is a maximal 3-independent set and relation (4) follows from 
(37). 

If we take p = 2 ,  / G , I = p ' ,  IG,l=p'- ' ,  r - 2 2  ( ' 2 2 ,  then 
we obtain the codes in (7) with the construction described in 
Theorem 3. 

Theorem 3 /I61 Let the parity check matrix of a code be 

where r 2 5 and 

i, j f 0, r - 2 2 1' 2 2. Then this code has parameters R = 2, 
d = 4. n = 2' +2 ' - '  -3. 

Proof Code length n = 2' - 2 + 1 + 2' -' - 2. Let 

and 

a f i, c = 1,2"-" - 1 

and 
c # j .  

Hence, relations (16) and (36 )  hold. 0 

Remark 1: The construction of (38) may be considered as a 
modification of ADS constructions [7] under requirement d = 4. 

Example: Let r = 6, 1' = 3, i = 2 and j = 6. The matrix 

001111 0 000000 
010011 1 111111 
110101 0 000000 
111111 1 000111 
111111 1 011001 

~000000 0 101011 

(42) 

w I , w 2 , w j  E GF(2'f'-3), w I , w 2  # 0, w I  f w 2 ,  w 3  = w + w,;  n(p) 
is a matrix obtained by adding of column (p)" ' - '  to the last 
m - 1 coordinates of all columns of matrix R. Then this code 
has parameters R = 2, n = 15 X 2"'-' - 3, d = 4. 
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- 0 00 00 0000000 0000000 11111111 0 
0 11  11  0000000 0000000 00001111 0 
0 00 11 1 1 1 1 1 1 1  1111111 00110011 0 

1 00 11  1010100 1010100 01010101 0 

1 10 10 1010101 0101010 11111111 0 
1 01 01 0001111 1110000 00000000 0 
1 01 01 0110011 1001100 00000000 0 

HI  = 

- 1 11 00 0000000 1111111 00000000 1 - 

Proof: The value of length II follows from ( 1  l ) ,  (12), 

It is easy to see from (l0)-(12), (39)-(42), that relation (36) 
holds, i.e., d =  4. For example, ( { Y ) + { Y ) } n { { X } U { @ ) } = 0 ,  bc- 
cause 6 # 0, w ,  f 0 and matrix (1 uses matrix Fl f~” ’ -3Ywl) ,  i.e., 
the last m rows of matrix [ X @ ]  do  not contain column (e,,)’”. 
{{@)+(A}]n C =0, because matrix C uses matrix 

Similar to Theorems I ,  2 we show that R = 2. Let I = [@A], 

(39)-(42). 

etc. [:::::I 
e( r , t , u )  = I (  . . . U , r ,  t , l f  E (0, I} .  (43) 

E’,?, - 3 

Let @ ( ~ . , t , u ; f )  be a matrix containing all columns of matrix 
@I([,, t ,  10, which have f on the last position, f E (0, l}. 

The following relations show that the relation (16) holds, 

{ Y )  U { { Y )  + { {c} U {r})) = n2’y I ) ,  (44) 

(45) 

{ X }  U { { C )  + {XI} U {{VI  + {TI} = W O ,  1, I ) ,  

{V}u{{c}+{V})u{{x}+{r)) = W O ,  1>0), 

(46) 

{r>U({c)+ml U { { V ) + { W ) U ( { Y ) + { Y ) )  ’@(0>0,1) ,  
(47) 

(48) 

(49) 

{ { C )  + {C}} U {{@I + {@I} = 0 ( 0 , 0 , 0 ; 0 ) ,  

{C}u ( { @ } + { A ) )  = 0(0 ,0 ,0 ;  1). 

A proof of the relations (44)-(49) is analogous to the proofs 
of the Theorems I ,  2. 

The last m rows of matrix I contain all columns of length m 
cxcept the columns (e,,)”’ and X”’ ,  where -2”’’ is column, 
contained ( p ) ” ’ -  I on the first m - 1 position and one on the last 
position. Hence, from ( I  1), (131, (40), (411, we have (44)-(47). 

From (20), (22), (23), (25), (42), it follows that matrix 0 is 
matrix L ,  with punctured first row, where L ,  is obtained from 
Bf”’-’. Hence, we can prove relations (48) and (49), using (271, 
(29), and (34). (The relation (29) holds if instead of matrix D we 
use matrix D , .I The set {@)+{a} in (48) (respectively {@}+{A} 
in (49)) contains all columns from 0(0,0,0;  0) (respectively 
0(0,0,0;  1)) cxcept columns such that the last m positions equal 
to (e,,)”’ (respectively N“’0. But these columns are contained in 

0 

Example: Let r = IO, m = 5, i =  8 (for matrix Y ) ,  (P I4= 
the set {C} + (C} (respectively (C}). 

( 1 1 I 1 ) I r ,  ( y )A = ( 101 1 )“, = (0100)“, (w , I ,  = (01 ) I F ,  (w, )? = 
(w3)’ = (I1)lr. Then the parity check matrix 

U”’ = 

defines a [S7,47,4]2 eodc. 

Theorem 5: Let the parity check matrix of a code be 

y:Jpf-’=[T J ] ,  ( 5 0 )  
where 2m - 1 = r z 11 and 

v. CODES WIT11 C O V t K l N G  RADIUS R > 2 

Since linear codes with R = 2 arc normal [5, Theorem 221, the 
codes in (20), (31) can be used in ADS construction [7], which 
forms an [nl + n,  - 1, k ,  + k, - 1]R, + R 2  code from an 
[nl, k , ] R ,  and an [n:,k,]R, code. Using ADS construction 
codes in (20) and (31) with the parameters in (5) as [ n l , k , ] 2  
codes, we obtain families of codes with parameters 
R = 3 ,  n = f ‘ ( r , ) + 2 ’ ’ - 2 ,  r= r l+ r2 .  ~ 1 1 7 ,  (52) 

R = 4, I I  = f ( r l ) + f ’ ( r 2 ) -  I ,  r = r ,  + r : .  r l . r ,  z 7, 
( 5 3 )  

R = S ,  1 2 = f ( r 1 ) + 2 2 ,  r = r , + l I .  r l > 7 ,  (54) 

R = 6 ,  I I  = f ( r l ) + 2 ’ :  +20, r = r ,  + r ,  + 1 1 .  r1  2 7. 
( 5 5 )  

000 0000 
000 1 1  1 1  
000 0000 
0 I I 001 1 
101 0101 

I l l  1 1 1 1  
1 I 1 0000 
I l l  1 1 1 1  
I l l  1 1 1 1  

I l l  I I I I  

0000 
1 1 1 1  
1 1 1 1  

001 1 
0 IO 1 

0000 
1 1 1 1  
0000 
0000 

0000 

000000000000000 
000000000000000 
111111111111111 
01 1001 1001 10000 
10 IO I O  10 IO I0000 

10010101001 1100 
00 1 1 100 10 IO I O  IO 
1 1 I 1 1 1 100000000 
1 1 I0000 1 1 1 IO000 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

1111  ” ’  1 
0000 ‘ ‘ . 1 
0000 ‘ ‘ ’ I 
0011 . . .  1 
0101 ’ ‘ ’ 1 

0000 ‘ ’ ’ 0 
1 1 1 1  ’ . ’  1 
0000 ’ ’ . 0  
0000 ‘ ’ ’ 0 

0000 ‘ ’ ’ 0 
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Here the [n , , k , ]R ,  codc is the [ n  = 2 ’ 2  - 1,rz - r,]l Ham- 
ming code (52) or an [ n  = f ( r 2 ) , n  - r 2 ] 2  code (53) o r  the [23,12]3 
Golay code (54). In (55) the ADS construction is used twice. 
Equation (8) follows from (52)-(55). 

VI. DmsrrY O t  A COVtRlNG 

An [ n ,  n - r ,  d ] R  code provides a density of a covcring 

where V , ( r z )  is the number of points in a sphere of radius R in a 
n-dimensional binary space. 

For the codcs of (5), (6), it holds respectively that 

225 75 1 

128 
p 4 [ n , 2 ] = - - w + ~  for n=15x2”‘ -3 -3 .  (58) 

Equation (9) follows from (57), (58). 

VII. CONCLUSION 

New constructions of infinite families of linear binary codes 
with covering radius R = 2 and minimum distance d = 3, U‘ = 4 
are proposed. Using new codes with d = 3 in the ADS construc- 
tion we obtained infinite families of covering codes with R 2 3. 
Parameters of many constructed codes with R 2 2 arc better 
than parameters of previously known codes. The parity check 
matrices of constructed codes with d = 4, R = 2 are equivalent 
to complete caps in projective geometry. 
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