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Abstract. We present a universal method for algorithmic trading in
Stock Market which performs asymptotically at least as well as any sta-
tionary trading strategy that computes the investment at each step us-
ing a continuous function of the side information. In the process of the
game, a trader makes decisions using predictions computed by a random-
ized well-calibrated algorithm. We use Dawid’s notion of calibration with
more general checking rules and some modification of Kakade and Fos-
ter’s randomized rounding algorithm for computing the well-calibrated
forecasts. The method of randomized calibration is combined with Vovk’s
method of defensive forecasting in RKHS. Unlike in statistical theory, no
stochastic assumptions are made about the stock prices.

1 Introduction

Predicting sequences is the key problem of machine learning and statistics. The
learning process proceeds as follows: observing a sequence of outcomes given
on-line a forecaster assigns a subjective estimate to future outcomes.

A minimal requirement for testing any prediction algorithm is that it should
be calibrated (see Dawid [4]). Dawid gave an informal explanation of calibra-
tion for binary outcomes as follows. Let a binary sequence ω1, ω2, . . . , ωn−1 of
outcomes be observed by a forecaster whose task is to give a probability pn of
a future event ωn = 1. In a typical example, pn is interpreted as a probability
that it will rain. Forecaster is said to be well-calibrated if it rains as often as he
leads us to expect. It should rain about 80% of the days for which pn = 0.8, and
so on.

A more precise definition is as follows. Let I(p) denote the characteristic
function of a subinterval I ⊆ [0, 1], i.e., I(p) = 1 if p ∈ I, and I(p) = 0,
otherwise. An infinite sequence of forecasts p1, p2, . . . is calibrated for an infinite
binary sequence of outcomes ω1ω2 . . . if for characteristic function I(p) of any
subinterval of [0, 1] the calibration error tends to zero, i.e.,

1

n

n∑
i=1

I(pi)(ωi − pi)→ 0



as n→∞. The indicator function I(pi) determines some “checking rule” which
selects indices i where we compute the deviation between forecasts pi and out-
comes ωi.

If the weather acts adversatively, then Oakes [10] shows that any determin-
istic forecasting algorithm will not always be calibrated.

Foster and Vohra [5] show that calibration is almost surely guaranteed with
a randomizing forecasting rule, i.e., where the forecasts pi are chosen using inter-
nal randomization and the forecasts are hidden from the weather until weather
makes its decision whether to rain or not. Mannor and Stoltz [9] obtained the
upper bound for the rate of convergence of the calibration error. Foster et al. [7]
obtained convergence rates which depend on the complexity of the class of check-
ing rules without providing a computationally efficient forecasting algorithms.
Vovk ([14], [15], [16]) developed the method of calibration for the case of general
RKHS and Banach spaces. Vovk called his method defensive forecasting.

Kakade and Foster and others considered a finite outcome space and a proba-
bility distribution as the forecast. In this paper, the outcomes ωi are real numbers
from the unit interval [0, 1] and the forecast pi is a single real number (which
can be an output of a random variable). This setting is closely related to Vovk’s
defensive forecasting approach.

Several applications of well-calibrated forecasting have been proposed, includ-
ing convergence to correlated equilibrium (see Foster and Vohra [6]), recovering
unknown functional dependencies (see Vovk ([14], [15], [16]) and predictions with
expert advice (see Vovk [16]).

In this paper we present a new application of the method of calibration to
computational finance. We develop an algorithmic trading strategy that is in
some sense always guaranteed to perform well. In competitive analysis, the per-
formance of an algorithm is measured to any trading algorithm from a broad
class. Given a particular performance measure, an adaptive algorithm is strongly
competitive with a benchmark class of trading algorithms if it achieves the
maximum possible regret over all input sequences. Unlike statistical theory, no
stochastic assumptions are made about the stock prices.

This line of research in finance was pioneered by Cover (see Cover [1], Cover
and Ordentlich[2]) who designed universal portfolio selection algorithms that can
provably do well (in terms of their total return) with respect to some benchmark
algorithms. Such algorithms are called universal algorithms.

We construct in Theorem 1 a universal strategy for algorithmic trading in
Stock Market which performs asymptotically at least as well as any not “too com-
plex” trading strategy. By “performance” we mean return per unit of currency
on an investment.

The empirical results obtained on historical markets provide strong evidence
that this type of technical trading can beat some generally accepted trading
strategies if transaction costs are ignored. Results of numerical experiments are
presented in V’yugin and Trunov [17].



2 Main result

Assume that outcomes (real numbers) S1, S2, . . . that are interpreted as prices
of a stock are given online. We assume that they are bounded and scaled such
that 0 ≤ Si ≤ 1 for all i.

We present the process of trading in a stock market in the form of the protocol
of a game with players called traders (see Fig. 1). We distinguish among Trader
M which uses a randomized trading strategy and a pool of Traders D using
stationary trading strategies: any such strategy D is a continuous real function
defined on [0, 1].

At the beginning of each step i, traders are given some data zi relevant to
predicting a future price Si of the stock. We call zi a signal or a piece of side
information. The real number zi belongs to [0, 1] and can encode any numerical
information. For example, it can even be the future price Si. There is a restriction
for Traders D: the functions D must be continuous.

In general, under a strategy we mean an algorithm (possibly randomized)
which at each step i of the game outputs the number of units of the financial
instrument that you want to buy (if the number is positive or equal to zero)
or sell (if it is negative).1 For Trader M, this number is a value of the random
variable M̃i that is the output of a randomizing algorithm, and for any Trader D
from the pool, this number equals D(zi), where D is a continuous function. We
suppose that traders can borrow money for buying shares and can incur debt.

At any step i, any Trader D from the pool uses only information zi; he buys
(or sells) D(zi) units of shares. A strategy of this type is called stationary.

For Trader M, this game is a game with perfect information. For defining the
random variable M̃i, Trader M may use all values of Sj−1 and zj for j ≤ i, as
well as their randomized values.

We use a specific randomization method for real numbers from the unit inter-
val. Given a positive integer number K, divide the interval [0, 1] into subintervals
of length ∆ = 1/K with rational endpoints vi = i∆, where i = 0, 1, . . . ,K. Let
V be the set of these points. Any number p ∈ [0, 1] can be represented as a linear
combination of two endpoints of the subinterval containing p: p =

∑
v∈V

wv(p)v =

wvi−1(p)vi−1 +wvi(p)vi. Define wv(p) = 0 for all other v ∈ V . Let p̃ be vi−1 with
probability wvi−1(p) or vi with probability wvi(p).

We emphasize that in the protocol presented on Fig 1 a value of the random
variable M̃i is hidden from Stock Market when it announces the price Si; it can
only use probabilities of events M̃i = 1 and M̃i = −1.

Trader M can buy or sell only one share of the stock. Therefore, in order
to compare the performance of the traders we have to standardize the strate-
gies D(x) of Traders D from the pool. Recall the norm ‖D‖∞ = sup

0≤x≤1
|D(x)|,

where D is a continuous function. We will use ‖D‖+ = max{1, ‖D‖∞} as a
normalization factor.

1 We assume that the number of units of a financial instrument purchasing by traders
may take any real value.



Define KD
0 = 0 and KM

0 = 0.
FOR i = 1, 2 . . .
Stock Market announces a signal zi ∈ [0, 1].
Define a precision of random rounding: ∆ = ∆s, where ns < i ≤ ns+1 (The sequences
ns and ∆s, s = 1, 2, . . ., are defined after (22) in the proof of Theorem 2 below).
Compute a forecast pi using algorithm presented on Fig. 2 with parameter ∆.
Randomize the forecast: p̃i.
Randomize the past price of the stock: S̃i−1.
Trader M buys M̃i shares of the stock by Si−1 each, where

M̃i =

{
1 if p̃i > S̃i−1,
−1 otherwise.

Trader D buys D(zi) shares of the stock by Si−1 each, where D is an arbitrary
continuous function on [0, 1].
Stock Market announces the price Si of the stock.
Trader M sells M̃i shares of the stock by Si each and updates his cumulative gain:
KM

i = KM
i−1 + M̃i(Si − Si−1).

Trader D sells D(zi) shares of the stock by Si each and updates his cumulative gain:
KD

i = KD
i−1 +D(zi)(Si − Si−1).

ENDFOR

Fig. 1. Protocol of trading game

The main result of this paper is presented in the following theorem, which
says that, with probability 1, the average gain of the universal trading strategy is
asymptotically not less than the average gain of any stationary trading strategy
from one share of the stock.

Theorem 1. A randomized algorithm for computing forecasts can be constructed
such that for any continuous function D the inequality

lim inf
n→∞

1

n

(
KMn − ‖D‖−1

+ KDn
)
≥ 0 (1)

holds almost surely with respect to the probability distribution generated by the
corresponding randomization.

We call any strategy M satisfying (1) universal. Note that (1) holds for all
continuous D if and only if the inequality:

lim inf
n→∞

1

n

(
KMn −KDn

)
≥ 0

holds for all continuous D such that ‖D‖∞ ≤ 1.
Since the condition (1) holds for trivial strategy: D(z) = 0 for all z, the

Trader’s M strategy is asymptotically non-risk.

Corollary 1. Universal strategy is asymptotically non-risk:

lim inf
n→∞

KMn
n
≥ 0 almost surely.



A proof of Theorem 1 is given in Section 5, where we construct the corre-
sponding optimal trading strategy based on the well-calibrated forecasts defined
in Section 4. In Section 3 we define benchmark classes RKHS.

3 Benchmark class: RKHS

First, we compete the universal trading strategy with stationary trading strate-
gies from a benchmark class F called RKHS. After that, we approximate any
continuous function D using the functions f ∈ F .

By a kernel function on a set X we mean any function K(x, y) which can
be represented as a dot product K(x, y) = (Φ(x) · Φ(y)), where Φ is a mapping
from X to some Hilbert feature space.

The reproducing kernels are of special interest. A Hilbert space F of real-
valued functions on a compact metric space X is called RKHS (Reproducing
Kernel Hilbert Space) on X if the evaluation functional f → f(x) is continuous
for each x ∈ X. Let ‖ · ‖F be the norm in F and cF (x) = sup

‖f‖F≤1

|f(x)|. The

embedding constant of F is defined: cF = sup
x
cF (x). We consider RKHS F with

cF <∞.
An example of RKHS is the Sobolev space F = H1([0, 1]), which consists of

absolutely continuous functions f : [0, 1] → R with ‖f‖F ≤ 1, where ‖f‖F =√∫ 1

0
(f(t))2dt+

∫ 1

0
(f ′(t))2dt. For this space, cF =

√
coth 1 (see Vovk [14]).

Let F be an RKHS on X with the dot product (f ·g) for f, g ∈ F . By Riesz–
Fisher theorem, for each x ∈ X there exists kx ∈ F such that f(x) = (kx · f).

The reproducing kernel is defined K(x, y) = (kx · ky). The main properties
of the kernel: 1) K(x, y) = K(y, x) for all x, y ∈ X (symmetry property); 2)
k∑

i,j=1

αiαjK(xi, xj) ≥ 0 for all k, for all xi ∈ X, and for all real numbers αi,

where i = 1, . . . , k (positive semidefinite property).
Conversely, kernels define RKHS: any symmetric, positive semidefinite kernel

function K(x, y) on X defines some canonical RKHS F and a mapping Φ : X →
F such that K(x, y) = (Φ(x) · Φ(y)). Also, cF (x) = ‖kx‖F = ‖Φ(x)‖F . The
mapping Φ(x) is also called “feature map”.

For Sobolev space H1([0, 1]), the reproducing kernel is
K(t, t′) = (cosh min(t, t′) cosh min(1− t, 1− t′))/ sinh 1 (see Vovk[14]).

Well known examples of kernels on X = [0, 1]: Gaussian kernel K(x, y) =

exp{− (x̄−ȳ)2

σ2 }; K(t, t′) = cos(2π(t− t′)), t, t′ ∈ [0, 1].
Other examples and details of the kernel theory see in Cristianini and Shawe-

Taylor [3], Smola and Scholkopf [11].

4 Well-calibrated forecasting with side information

In this section we present a randomized algorithm for computing well-calibrated
forecasts using a side information.



We use tests of calibration or checking rules of general type. For any subset
R ⊆ [0, 1]2 = [0, 1]× [0, 1], define the checking rule IR(p, x) = 1 if (p, x) ∈ R and
IR(p, x) = 0 otherwise. In Section 4 we set R = {(p, y) : p > y} or R = {(p, y) :
p ≤ y}, where p, y ∈ [0, 1].

In the prediction protocol defined on Fig 1, let S1, S2, . . . be a sequence of
outcomes and z1, z2, . . . be the corresponding sequences of signals given online.

Let also, F be an RKHS on [0, 1] with a kernel K2(z, z′) and a finite embed-
ding constant cF .

Theorem 2. For any ε > 0, an algorithm for computing forecasts p1, p2, . . . can
be constructed such that the following three items hold:

– For any n, R ⊆ [0, 1]2, and δ > 0, with probability at least 1− δ,∣∣∣∣∣
n∑
i=1

IR(p̃i, x̃i)(Si − p̃i)

∣∣∣∣∣ ≤ 18(c2F + 1)
1
4n3/4+ε +

√
n

2
ln

2

δ
, (2)

where p̃i is the randomization of pi, xi = Si−1 and x̃i is its randomization.2

– For any D ∈ F and n,∣∣∣∣∣
n∑
i=1

D(zi)(Si − pi)

∣∣∣∣∣ ≤ ‖D‖F√(c2F + 1)n, (3)

where z1, z2, . . . are signals.

– For any R ⊆ [0, 1]2, with probability 1,

lim
n→∞

1

n

n∑
i=1

IR(p̃i, x̃i)(Si − p̃i) = 0. (4)

Proof. First, in Proposition 1, given ∆ > 0, we modify a randomized rounding
algorithm of Kakade and Foster [8] to construct some ∆-calibrated forecasting
algorithm, and combine it with Vovk’s [14] defensive forecasting algorithm. After
that, we revise it tending ∆→ 0 such that (4) will hold.

Proposition 1. Under the assumptions of Theorem 2, an algorithm for com-
puting forecasts can be constructed such that the inequality (3) holds for all D
from RKHS F and for all n. Also, for any n, R, and δ > 0, with probability at
least 1− δ,∣∣∣∣∣

n∑
i=1

IR(p̃i, x̃i)(Si − p̃i)

∣∣∣∣∣ ≤ ∆n+

√
n(c2F + 1)

∆
+

√
n

2
ln

2

δ
.

2 This theorem can be generalized for the case where xi = f(ci, zi) is k-dimensional
vector which is a function of the history ci = (p̃1, S1, . . . , p̃i−1, Si−1) and a signal zi.



Proof. We define a deterministic forecast and after that we randomize it.

The partition V = {v0, . . . , vK} was defined above. Recall that we round the
deterministic forecast pn to vi−1 with probability wvi−1

(pn) and to vi with prob-
ability wvi(pn). We also round the number xn = Sn−1 to vj−1 with probability
wvj−1(xn) and to vj with probability wvj (xn), where xn ∈ [vj−1, vj ].

Let Wv(p, x) = wv1(p)wv2(x), where v = (v1, v2) ∈ V 2. Let Wp, x) =
(Wv(p, x) : v ∈ V 2) be the vector of probabilities of rounding. Define the corre-
sponding kernel K1(p, x, p′, x′) = (W (p, x) ·W (p′, x′)).

The kernel K2(z, z′) can be represented as a dot product in a feature space
K2(z, z′) = (Φ(z) · Φ(z′)). Define

An algorithm for computing the deterministic forecasts p1, p2, . . . is presented
on Fig. 2 (see also Vovk et al. [13]).

Input parameter: ∆. Define p1 = 1/2.
FOR n = 1, 2 . . .

Define Un(p) =
n−1∑
i=1

(K1(p, xn, pi, xi) +K2(zn, zi))(Si − pi).

If Un(p) > 0 for all p ∈ [0, 1] then define pn = 1;
If Un(p) < 0 for all p ∈ [0, 1] then pn = 0.
Otherwise, define pn to be a root of the equation Un(p) = 0 (some root exists by the
intermediate value theorem).
ENDFOR

Fig. 2. Algorithm for computing deterministic forecasts

Now we continue the proof of the proposition.

Let forecasts p1, p2, . . . be computed by the algorithm presented on Fig 2.
Since U(pn)(Sn − pn) ≤ 0 for all n, we have for any N ,

0 ≥
N∑
n=1

Un(pn)(Sn − pn) =

=

N∑
n=1

n−1∑
i=1

(K1(pn, xn, pi, xi) +K2(zn, zi))(Si − pi)(Sn − pn) =

=
1

2

N∑
n=1

N∑
i=1

K1(pn, xn, pi, xi)(Si − pi)(Sn − pn)−

−1

2

N∑
n=1

K1(pn, xn, pn, xn)(Sn − pn)2 +

+
1

2

N∑
n=1

N∑
i=1

K2(zn, zi)(Si − pi)(Sn − pn)−



−1

2

N∑
n=1

K2(zn, zn)(Sn − pn)2 = (5)

=
1

2

∥∥∥∥∥
N∑
n=1

W (pn, xn)(Sn − pn)

∥∥∥∥∥
2

− 1

2

N∑
n=1

‖W (pn, xn)‖2(Sn − pn)2 + (6)

+
1

2

∥∥∥∥∥
N∑
n=1

Φ(zn)(Sn − pn)

∥∥∥∥∥
2

F

− 1

2

N∑
n=1

‖Φ(zn)‖2F (Sn − pn)2. (7)

In (6), ‖ · ‖ is Euclidian norm, and in (7), ‖ · ‖F is the norm in RKHS F .
Since (Sn − pn)2 ≤ 1 for all n and

‖(W (pn, xn)‖2 =
∑
v∈V 2

(Wv(pn, xn))2 ≤
∑
v∈V 2

Wv(pn, xn) = 1,

the subtracted sum of (6) is upper bounded by N .
Since ‖Φ(zn)‖F = cF (zn) and cF (z) ≤ cF for all z, the subtracted sum of

(7) is upper bounded by c2FN . As a result we obtain∥∥∥∥∥
N∑
n=1

W (pn, xn)(Sn − pn)

∥∥∥∥∥ ≤√(c2F + 1)N (8)∥∥∥∥∥
N∑
n=1

Φ(zn)(Sn − pn)

∥∥∥∥∥
F

≤
√

(c2F + 1)N (9)

for all N . Let us define µ̄n =
n∑
i=1

W (pi, xi)(Si − pi). By (8), ‖µ̄n‖ ≤
√

(c2F + 1)n

for all n.
Let µ̄n = (µn(v) : v ∈ V 2). By definition of µ̄n,

µn(v) =

n∑
i=1

Wv(pi, xi)(Si − pi) (10)

for any v ∈ V .
Let I(p, x) be an indicator function. Insert the term I(v) in the sum (10),

sum by v ∈ V 2, and exchange the order of summation. Using Cauchy–Schwarz
inequality for vectors Ī = (I(v) : v ∈ V 2), µ̄n = (µn(v) : v ∈ V 2) and Euclidian
norm, we obtain ∣∣∣∣∣

n∑
i=1

∑
v∈V 2

Wv(pi, xi)I(v)(Si − pi)

∣∣∣∣∣ =

=

∣∣∣∣∣ ∑
v∈V 2

I(v)

n∑
i=1

Wv(pi, xi)(Si − pi)

∣∣∣∣∣ =

= |(Ī · µ̄n)| ≤ ‖Ī‖ · ‖µ̄n‖ ≤
√
|V 2|(c2F + 1)n (11)



for all n, where |V 2| = (1 + 1
∆ )2 ≤

(
2
∆

)2
is the cardinality of the partition.

Let p̃i be a random variable taking values v ∈ V with probabilities wv(pi)
(only two of them are nonzero). Recall that x̃i is the random variable taking
values v ∈ V with probabilities wv(xi). Also, for v = (v1, v2), Wv(pi, xi) =
wv1(pi)wv2(xi).

For any i, the mathematical expectation of the random variable I(p̃i, x̃i)(Si−
p̃i) is equal to

E(I(p̃i, x̃i)(Si − p̃i)) =
∑
v∈V 2

Wv(pi, xi)I(v)(Si − v1), (12)

where v = (v1, v2). By Azuma–Hoeffding inequality (see (24) below), for any n
and δ > 0, with probability 1− δ,∣∣∣∣∣

n∑
i=1

I(p̃i, x̃i)(Si − p̃i)−
n∑
i=1

E(I(p̃i, x̃i)(Si − p̃i))

∣∣∣∣∣ ≤
√
n

2
ln

2

δ
. (13)

By method of rounding∣∣∣∣∣ ∑
v∈V 2

Wv(pi, xi)I(v)(Si − pi)−
∑
v∈V 2

Wv(pi, xi)I(v)(Si − v1)

∣∣∣∣∣ ≤ ∆
for all i, where v = (v1, v2). Summing (12) over i = 1, . . . , n and using the
inequality (11), we obtain ∣∣∣∣∣

n∑
i=1

E(I(p̃i, x̃i)(Si − p̃i))

∣∣∣∣∣ =

=

∣∣∣∣∣
n∑
i=1

∑
v∈V 2

Wv(pi, xi)I(v)(Si − v1)

∣∣∣∣∣ ≤
≤ ∆n+

√
(c2F + 1)n/∆2 (14)

for all n. By (13) and (14), with probability 1− δ,∣∣∣∣∣
n∑
i=1

I(p̃i, x̃i)(Si − p̃i)

∣∣∣∣∣ ≤ ∆n+ 2
√

(c2F + 1)n/∆2 +

√
n

2
ln

2

δ
. (15)

By Cauchy–Schwarz inequality∣∣∣∣∣
N∑
n=1

D(zn)(Sn − pn)

∣∣∣∣∣ =

∣∣∣∣∣
N∑
n=1

(Sn − pn)(D · Φ(zn))

∣∣∣∣∣ =∣∣∣∣∣
(

N∑
n=1

(Sn − pn)Φ(zn) ·D

)∣∣∣∣∣ ≤
∥∥∥∥∥
N∑
n=1

(Sn − pn)Φ(zn)

∥∥∥∥∥
F

· ‖D‖F ≤

≤ ‖D‖F
√

(c2F + 1)N.



Proposition is proved. 4
Now we turn to the proof of Theorem 2.
The expression ∆n + 2

√
(c2F + 1)n/∆2 from (14) and (15) takes its mini-

mal value when ∆ =
√

2(c2F + 1)
1
4n−

1
4 . In this case, the right-hand side of the

inequality (14) is equal to

∆n+ 2
√
n(c2F + 1)/∆2 = 2∆n = 2

√
2(c2F + 1)

1
4n

3
4 . (16)

In what follows we use the upper bound 2∆n in (14).
To prove the bound (2) choose a monotonic sequence of real numbers ∆1 >

∆2 > . . . such that ∆s → 0 as s→∞. We also define an increasing sequence of
positive integer numbers n1 < n2 < . . . For any s, we use on steps ns ≤ n < ns+1

the randomization grid of [0, 1] defined by subintervals of length ∆s.
We start our sequences from n1 = 1 and ∆1 = 1. Also, define the numbers

n2, n3, . . . such that the inequality∣∣∣∣∣
n∑
i=1

E(I(p̃i, x̃i)(Si − p̃i))

∣∣∣∣∣ ≤ 4(s+ 1)∆sn (17)

holds for all ns ≤ n ≤ ns+1 and for all s ≥ 1.
We define this sequence by mathematical induction on s. Suppose that ns

(s ≥ 1) is defined such that the inequality∣∣∣∣∣
n∑
i=1

E(I(p̃i, x̃i)(Si − p̃i))

∣∣∣∣∣ ≤ 4s∆s−1n (18)

holds for all ns−1 ≤ n ≤ ns, and the inequality∣∣∣∣∣
ns∑
i=1

E(I(p̃i, x̃i)(Si − p̃i))

∣∣∣∣∣ ≤ 4s∆sns (19)

also holds.
Let us define ns+1. Consider all forecasts p̃i defined by the algorithm given

above for the discretization ∆ = ∆s+1. We do not use first ns of these forecasts
(more correctly we will use them only in bounds (20) and (21); denote these
forecasts p̂1, . . . , p̂ns . We add the forecasts p̃i for i > ns to the forecasts defined
before this step of induction (for ns). Let ns+1 be such that the inequality∣∣∣∣∣

ns+1∑
i=1

E(I(p̃i, x̃i)(Si − p̃i))

∣∣∣∣∣ ≤
∣∣∣∣∣
ns∑
i=1

E(I(p̃i, x̃i)(Si − p̃i))

∣∣∣∣∣+

+

∣∣∣∣∣
ns+1∑
i=ns+1

E(I(p̃i, x̃i)(Si − p̃i)) +

ns∑
i=1

E(I(p̂i, x̃i)(Si − p̂i))

∣∣∣∣∣+

+

∣∣∣∣∣
ns∑
i=1

E(I(p̂i, x̃i)(Si − p̂i))

∣∣∣∣∣ ≤ 4(s+ 1)∆s+1ns+1 (20)



holds. Here the first sum of the right-hand side of the inequality (20) is bounded
by 4s∆sns – by the induction hypothesis (19). The second and third sums are
bounded by 2∆s+1ns+1 and by 2∆s+1ns, respectively, where∆ = ∆s+1 is defined
such that (16) holds. This follows from (14) and by choice of ns.

The induction hypothesis (19) is valid for

ns+1 ≥
2s∆s +∆s+1

∆s+1(2s+ 1)
ns.

Similarly, ∣∣∣∣∣
n∑
i=1

E(I(p̃i, x̃i)(Si − p̃i))

∣∣∣∣∣ ≤
∣∣∣∣∣
ns∑
i=1

E(I(p̃i, x̃i)(Si − p̃i))

∣∣∣∣∣+

+

∣∣∣∣∣
n∑

i=ns+1

E(I(p̃i, x̃i)(Si − p̃i)) +

ns∑
i=1

E(I(p̂i, x̃i)(Si − p̂i))

∣∣∣∣∣+

+

∣∣∣∣∣
ns∑
i=1

E(I(p̂i, x̃i)(Si − p̂i))

∣∣∣∣∣ ≤ 4(s+ 1)∆sn (21)

for ns < n ≤ ns+1. Here the first sum of the right-hand inequality (20) is
also bounded by 4s∆sns ≤ 4s∆sn – by the induction hypothesis (19). The
second and the third sums are bounded by 2∆s+1n ≤ 2∆sn and by 2∆s+1ns ≤
2∆sn, respectively. This follows from (14) and from choice of ∆s. The induction
hypothesis (18) is valid.

By (17) for any s∣∣∣∣∣
n∑
i=1

E(I(p̃i, x̃i)(Si − p̃i))

∣∣∣∣∣ ≤ 4(s+ 1)∆sn (22)

for all n ≥ ns if ∆s satisfies the condition ∆s+1 ≤ ∆s(1− 1
s+2 ) for all s.

We show now that sequences ns and ∆s satisfying all the conditions above
exist. Let ε > 0 and M = d2/εe, where dre is the least integer number ≥ r. Define

ns = (s + M)M and ∆s = (c2F + 1)
1
4n
− 1

4
s . Easy to verify that all requirements

for ns and ∆s given above are satisfied for all s ≥ s0, where s0 is sufficiently
large. We redefine ni = ns0 for all 1 ≤ i ≤ s0. Then all these requirements hold
for these i trivially.

We have in (22) for all ns ≤ n < ns+1

4(s+ 1)∆sn ≤ 4(s+M)∆sns+1 =

= 4
√

2(c2F + 1)
1
4 (s+M)(s+M + 1)M (s+M)−

M
4 ≤

≤ 18(c2F + 1)
1
4n

3
4 +2/M
s ≤

≤ 18(c2F + 1)
1
4n

3
4 +ε.

Therefore, we obtain∣∣∣∣∣
n∑
i=1

E(I(p̃i, x̃i)(Si − p̃i))

∣∣∣∣∣ ≤ 18(c2F + 1)
1
4n

3
4 +ε (23)



for all n. Azuma–Hoeffding inequality says that for any γ > 0

Pr

{∣∣∣∣∣ 1n
n∑
i=1

Vi

∣∣∣∣∣ > γ

}
≤ 2e−2nγ2

(24)

for all n, where Vi are martingale–differences. We define Vi = I(p̃i, x̃i)(Si− p̃i)−
E(I(p̃i, x̃i)(Si − p̃i)) and γ =

√
1

2n ln 2
δ , where δ > 0.

Combining (23) with (24), we obtain that for any n and δ > 0, with proba-
bility 1− δ, ∣∣∣∣∣

n∑
i=1

I(p̃i, x̃i)(Si − p̃i)

∣∣∣∣∣ ≤ 18(c2F + 1)
1
4n

3
4 +ε +

√
n

2
ln

2

δ
.

The asymptotic relation (4) can be proved using the Borel–Cantelli lemma. This
proof is similar to the final part of the proof of Theorem 1 below. Theorem 2 is
proved. 4

5 Proof of Theorem 1

At any step i we compute the deterministic forecast pi defined in Section 4 and
its randomization to p̃i using the parameters M = d2/εe, ∆ = ∆s =

√
2(cF +

1)
1
4 (s+M)−

M
4 and ns = (s+M)M , where ns ≤ i < ns+1. Let also S̃i−1 be the

randomized past price Si−1. In Theorem 2, we have zi = Si−1 and z̃i = S̃i−1.
The following upper bound directly follows from the method of discretization:∣∣∣∣∣

n∑
i=1

I(p̃i > S̃i−1)(S̃i−1 − Si−1)

∣∣∣∣∣ ≤
s∑
t=0

(nt+1 − nt)∆t ≤

≤ 4(c2F + 1)
1
4n

3
4 +ε
s ≤ 4(c2F + 1)

1
4n

3
4 +ε, (25)

where ns ≤ n < ns+1. Here I(p > S) = 1 if p > S and I(p > S) = 0 otherwise.
Let D(z) be an arbitrary function from the RKHS F . Clearly, the bound

(25) holds if we replace I(p̃i > S̃i−1) with ‖D‖−1
+ D(zi).

First, we give the proof for the case, where D(x) ≥ 0 for all x and M̃+
i =

max{M̃i, 0}, where M̃i is defined on Fig 1. We use the notation

ν1(n) = 4(c2F + 1)
1
4n

3
4 +ε, (26)

ν2(n) = 18n
3
4 +ε(c2F + 1)

1
4 +

√
n

2
ln

2

δ
. (27)

ν3(n) =
√

(c2F + 1)n (28)

All sums below are considered for i = 1, . . . n. Also, we use the Azuma–Hoeffding
inequality (24).



For any δ > 0, the following chain of equalities and inequalities is valid with
probability 1− δ:

KMn =

n∑
i=1

M̃+
i (Si − Si−1) =

∑
p̃i>S̃i−1

(Si − Si−1) =

=
∑

p̃i>S̃i−1

(Si − p̃i) +
∑

p̃i>S̃i−1

(p̃i − S̃i−1) +
∑

p̃i>S̃i−1

(S̃i−1 − Si−1) ≥ (29)

≥
∑

p̃i>S̃i−1

(p̃i − S̃i−1)− ν1(n)− ν2(n) ≥ (30)

≥ ‖D‖−1
+

n∑
i=1

D(zi)(p̃i − S̃i−1)− ν1(n)− ν2(n) =

= ‖D‖−1
+

n∑
i=1

D(zi)(pi − Si−1) + ‖D‖−1
+

n∑
i=1

D(zi)(p̃i − pi)−

−‖D‖−1
+

n∑
i=1

D(zi)(S̃i−1 − Si−1)− ν1(n)− ν2(n) ≥ (31)

≥ ‖D‖−1
+

n∑
i=1

D(zi)(pi − Si−1)− 3ν1(n)− ν2(n) = (32)

= ‖D‖−1
+

n∑
i=1

D(zi)(Si − Si−1)− ‖D‖−1
+

n∑
i=1

D(zi)(Si − pi)−

−3ν1(n)− ν2(n) ≥ (33)

≥ ‖D‖−1
+

n∑
i=1

D(zi)(Si − Si−1)− 3ν1(n)− ν2(n)− ‖D‖−1
+ ‖D‖Fν3(n) =

= ‖D‖−1
+ KDn − 3ν1(n)− ν2(n)− ‖D‖−1

+ ‖D‖Fν3(n). (34)

To pass from (29) to (30), inequality (2) of Theorem 2 and the bound (25) were
used, and so the terms (26) and (27) were subtracted. To pass from (31) to (32),
the bound (25) was twice applied to intermediate terms, and so the term (25)
was subtracted twice. To pass from (32) to (33), inequality (3) of Theorem 2 was
used, and so the term (28) was subtracted.

In general case, we represent M̃i = M̃+
i + M̃−i , where M̃+

i = max{M̃i, 0}
and M̃−i = min{M̃i, 0}, and M̃i is defined on Fig 1. Also, define D = D+ +D−,
where D+ = max{D, 0} and D− = min{D, 0}. After that, we obtain (34) for
any pair M+

i , D+ and M−i , D− separately and add the results.

Therefore, for any D ∈ F a constant c > 0 exists such that for any n, with
probability 1− δ,

KMn ≥ ‖D‖−1
+ KDn − cn

3
4 +ε −

√
n

2
ln

2

δ
. (35)



Inequality (1) will follow from (35). We apply Borel–Cantelli lemma and the

Hoeffding inequality. Denote γ =
√

1
2n ln 2

δ . Then δ = 2e−2nγ2

. Rewrite (35) in

the form
1

n
KMn − ‖D‖−1

+

1

n
KDn ≥ −cn−

1
4 +ε − γ. (36)

According to (35), for any n and γ > 0, inequality (36) is violated with proba-

bility 2e−2nγ2

. Since the series
∞∑
n=1

e−2nγ2

converges, inequality (36) for a fixed γ

can be violated no more than for finitely many different n. By the Borel–Cantelli
lemma the event

lim inf
n→∞

1

n

(
KMn − ‖D‖−1

+ KDn
)
≥ 0

holds almost surely. Theorem 1 is proved for any D ∈ F .
Using a universal kernel and the corresponding canonical universal RKHS, we

can extend our asymptotic results for all continuous stationary trading strategies
D. An RKHS F on X is universal if X is a compact metric space and every
continuous function f on X can be approximated arbitrarily well in the metric
‖ · ‖∞ by a function from F : for any ε > 0 there exists D ∈ F such that
sup
x∈X
|f(x)−D(x)| ≤ ε (see Steinwart [12], Definition 4).

We use X = [0, 1]. The Sobolev space F = H1([0, 1]) is the universal RKHS
(see Steinwart [12], Vovk [14]).

Existence of a universal RKHS on [0, 1] implies a full version of Theorem 1.
This result directly follows from inequality (36) and from the possibility to ap-
proximate any continuous function f on [0, 1] arbitrarily closely by a function D
from the universal RKHS F .

The universal consistency property (1) is strictly asymptotic and says noth-
ing about finite data sequences. The convergence bound (35) was obtained for
functions from narrower RKHS classes.

6 Conclusion

This impressive efficiency of the trading strategy M̃i can be explained by the
restrictive power of continuous functions. A continuous stationary trading strat-
egy D cannot respond sufficiently quickly to information about changes of the
value of a future price Si. The optimal trading strategy M̃i is a discontinuous
function, though it is applied to the random variables.

A positive argument in favor of the requirement of continuity of D is that it
is natural to compete only with computable trading strategies, and continuity is
often regarded as a necessary condition for computability (Brouwer’s “continuity
principle”).

If D is allowed to be discontinuous, we cannot prove (1) in general case.
Moreover, we can prove that for any randomizing trading strategy M̃i, which
randomly takes values 1 and −1 with probabilities varying with time, a (discon-
tinuous) function D(z) also taking values 1 and −1 and the sequences of signals



zi and outcomes Si, i = 1, 2, . . ., exist in the protocol presented on Fig. 1 such
that with probability one:

lim sup
n→∞

1

n

(
KMn −

1

2
KDn
)
≤ 0.

We can also prove that (1) remain valid in case of discontinuous D if we use
randomized signal z̃i, i.e., if we use the value D(z̃i) in the protocol presented on
Fig. 1.
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research: 13-01-00521.

References

1. Cover, T.: Universal portfolios. Mathematical Finance. 1 (1991) 1-29
2. Cover, T., Ordentlich, E.: Universal portfolio with side information. IEEE Trans-

action on Information Theory. 42 (1996) 348–363
3. Cristianini, N,, Shawe-Taylor, J.: An Introduction to Support Vector Machines

and other kernel-based learning methods. Cambridge University Press. Cambridge
(2000)

4. Dawid, A.P.: The well-calibrated Bayesian [with discussion]. J. Am. Statist. Assoc.
77 (1982) 605–613

5. Foster, D.P., Vohra, R.: Asymptotic calibration. Biometrika. 85 (1998) 379–390
6. Foster, D.P., Vohra, R.: Calibrated learning and correlated equilibrium. Games

and Economic Behavior. 21(1-2) (1997) 40–55
7. Foster, D.P., Rakhlin, A., Sridharan, K., Tewari, A.: Complexity-based approach

to calibration with checking rules. Journal of Machine Learning Research - Pro-
ceedings Track. 19 (2011) 293–314

8. Kakade, S.M., Foster, D.P.: Deterministic calibration and Nash equilibrium. LNCS
3120 (John Shawe Taylor and Yoram Singer. ed) (2004) 33–48

9. Mannor, S., Stoltz, G.: A geometric proof of calibration. Mathematics of Operations
Research. 35(4) (2010) 721–727

10. Oakes, D.: Self-Calibrating Priors Do not Exist [with discussion]. J. Am. Statist.
Assoc. 80 (1985) 339–342

11. Scholkopf, B., Smola, A.: Learning with Kernels. MIT Press. Cambridge MA (2002)
12. Steinwart, I.: On the influence of the kernel on the consistency of support vector

machines. Journal of Machine Learning Research 2 (2001) 67-93
13. Vovk, V., Takemura, A., Shafer, G.: Defensive forecasting. Proceedings of the 10th

International Workshop on Artificial Intelligence and Statistics (ed. by R. G. Cow-
ell and Z. Ghahramani) – Cambridge UK: Society for Artificial Intelligence and
Statistics (2005) 365–372

14. Vovk, V.: On-line regression competitive with reproducing kernel Hilbert spaces
(extended abstract). TAMS Lecture Notes in Computer Science – Berlin: Springer.
3959 (2006) 452–463

15. Vovk, V.: Predictions as statements and decisions. Theoretical Computer Science.
405(3) (2008) 285–296

16. Vovk, V.: Defensive Forecasting for Optimal Prediction with Expert Advice.
arXiv:0708.1503v1 (2007)

17. V’yugin, V., Trunov, V.: Universal algorithmic trading. Journal of Investment
Strategies. 2 (1) (2012/13) 63–88


