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QUASIPERFECT LINEAR BINARY CODES WITH DISTANCE 4 AND
COMPLETE CAPS IN PROJECTIVE GEOMETRY

A. A. Davydov and L. M. Tombak UDC 621.391.15

We prove that if a linear binary code with distance d = 4 is quasiperfect (i.e., has a covering radius 2) and the
code length is N = =2 + 2, where r is the number of check symbols, then the check matrix is symmerric in the
following sense: the matrix columns may be partitioned into N/2 pairs so that the sum of the columns in each pair
is constant. As a corollary, we derive all possible values of the length N of a binary linear quasiperfect code with
d =4 for N 2 22 + 1 and construct all such nonequivalent codes for N > 2~2 + =5, The results are extended
to complete caps in the projective geomenry PG(r — 1, 2).

1. INTRODUCTION. THE MAIN RESULTS

All codes considered in this paper are linear binary block codes. A code with minimum distance d = 4 is quasiperfect
[1, 2] if the covering radius of the code is 2. The covering radius is understood in the sense of [1, Sec. 6.6, p. 174].

In this paper, we investigate the structure of the check matrix and the possible lengths of quasiperfect codes with d =
4. We consider "long" codes of length greater than Npax/2, where N, is the maximum length of a code with d = 4 for given
redundancy. As the main result, we show that check matrices of all these codes are symmetric (in the sense defined below).
This has enabled us to identify all the possible lengths of such codes and to construct their check matrices from matrices of
codes of length N../2 + 1.

All nonequivalent check matrices are listed for codes of length greater than Nax/2 + Npay/32. (We also give
without proof all the nonequivalent check matrices for codes of length Npax/2 + N /32.) The results are extended
to complete caps in projective geometry utilizing the one-to-one correspondence between complete caps and the check
matrices considered.

‘We introduce some notation: [n, n — 1, dlp code is a code of length n with r check symbols, minimum distance d,
covering radius p, and cardinality 2°~F (this notation is close to that used in [3]); N is the length of a quasiperfect code with
d =4 [N, N - r, 4]2 code is a quasiperfect code with d = 4. : :

Proposition 1 [4, 5]. A code has covering radius 2 if and only if any nonzero column not included in the check matrix
is representable as the sum of two columns of the matrix.

Conversely, in a code with d = 4, no column of the check matrix is a sum of two other matrix columns [1, 2].
Therefore, quasiperfect codes with d = 4 are "non-lengthening" in the sense that no column can be added to the check matrix

Translated from Problemy Peredachi Informatsii, Vol. 25, No. 4, pp- 11-23, October-December, 1989. Original article
submitted October 26, 1987.
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without reducing the code distance. Any linear code with d = 4 is either a quasiperfect code or a shortening of some quasi--
perfect code with d = 4.

A cap in projective geometry is the collection of points no two of which lie on the same line [6-12]. A complete cap
is a cap to which no point may be added so that the resulting set remains a cap.

If a column of length r is considered as a point in the projective geometry PG(r — 1, 2), then a straight line
corresponds to any three columns, one of which is the sum of the other two; an N-point complete cap corresponds to
the check matrix of a quasiperfect [N, N —r, 4]2 code [9, 11] (see Proposition 4, Sec. 6).

In general, the following questions remain open:

L. What is the structure of the check matrices of [N, N — r, 4]2 codes and the corresponding complete caps?

Il. What are the possible values of N, the length of a [N, N — r, 4]2 code? What is the possible number of points N
in a complete cap?

The following results are currently known.

In [6] and [10, Lemma VII, p. 167] it is shown that

N<2='=N_p... : (1)

For N = 27~! we have the extended Hamming code. Following [12], let m,'(r — 1, 2) be the number of points in the com-
plete cap of maximum cardinality among all the complete caps with strictly fewer than N_ . points. In [10, p. 168] it is shown
that

If N<2-', then N<m, (r—1, 2) < (2'—1)/3. )
In this paper, we consider the range of code lengths
N di=th g

A somewhat unexpected answer (in our view) is obtained to question I, which is stated below in the form of Theorem
1, the main result of this paper.
Definition 1. The check matrix H of a [n, n — 1, 4]p code is called symmetric if it is representable in the form

-~ Ve s 3)
= —————em————.— ¥
e |
where H, is the check matrix of the [n/2, n2 — (r - 1), d,]p, code.
The construction (3) is usually called the Plotkin construction (see [13-16]). Define the matrices P, and H(n):
10001
01001
— e
Pa=1 00101 @
00011
is the check matrix of the [S, 5 — 4, 5]2 code;
[ the check matrix of a quasiperfect [N = n, N — R, 4]2 code,
ifn#2andn#5,
H/(n) = P,ifn=5andr =4, ©)

”?;“ ifn=2andr =2 :
THEOREM L. For N 2 272 + 2 the check matrix H of a quasiperfect [N, N — 1, 4]2 code is necessarily symmetric,
i.e., representable in the form (3). Here H, is the matrix H _;(N/2). .
Complete caps have similar symmetry.
Proof of Theorem 1 utilizes the results of [17] from abelian group theory.
Corollary 1 for N = 27=2 + 1 provides an exhaustive answer to question II (improving bound (2) in the process).
COROLLARY 1. In the range N = 272 + 1 with r > 5, the length N of a.quasiperfect [N, N = 1, 4]2 code may take
any value from the series

Nop=lp =it for guf), 2.8, 4.5,....r=2. 6)

The length N may not take any value other than those listed in (6).
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From (6) we obtain an exact value of m,'(r — 1, 2):
e (r=1 2)=Dr=2 Dr=x

Corollaries 2 and 3 refine the answer to question L

Let M,(v, i) be the matrix locator [18], i.e., the matrix consisting of i identical columns of length r where each column
is a binary representation of the number v.

COROLLARY 2. In the range N = 27~2 + 2 with r = 5, the check matrix of any [N, N — 1, 4]2 code is representable
in the form :
Mogasl0. ¥ + 9 EM,-H (1,25 + 1) | E My g5 (D, 2% + 1)

Baiten | @'y | | Hal'eh
where D =2""%"2_1,g=0,2,3,4,5, ..., r —2 — 1, and the lower g + 2 rows are the 278~ 2-fold repetition of the same
matrix.

H (2 4+ "= (7

Matrix (7) is obtained by (r — g — 2)-application of construction (3).

By Corollary 2, the structure of the check matrices of [N = (28 + 1)2"7872, N — r, 4]2 codes in the range N =
2r=2 + 2 is completely determined by the structure of the matrices H,,2(28 + 1). The answer to question I thus reduces to
an answer to an essentially more restricted question:

Ia. What is the structure of the matrices Hy,5(28 + 1)?

In this paper, we compute all the matrices Hg,»(28 + 1) for g = 0,2,3, which in turn makes it possible to enumerate
for N > 2r=2 + 2r=6 all the nonequivalent [N, N — r, 4]2 codes (and the corresponding complete caps) and thus to obtain an
exhaustive answer to question I for this range. Corollary 3 provides the sought answer.

Let X, P, and L be the matrices obtained from (7) for g = 0, 2, and 3, respectively. The matrix X, is the check
matrix of the extended Hamming code and it contains 27~! distinct columns of length r — 1 and a column of ones. The matrix
P_ was proposed by Panchenko [15]:

Mr3(0,2) | Moy (1,2) ). . .1 Mg (272 — 1,2)

|
r-! H | o
X,=HQ@)=| 0t | o1 | ¢ 01 . ®
L T B 11
-'Vr—4(0v5)l|Mr—4(1’5)}---!Mr—4(2r—4"‘1v5)
- 10001 1 10001 | ! 10001
Po=H,-27=| 01001 | 01001 { | 01001 £ 9
00101 | 00101 [--*] 00101
| ooot1 | ooott | T 00011
Mo 00, .. M8 =19)
Eenpty- o ot (10)
Hs,(g) ssaay 115(9)
where 00000 1111
10001 0000
Hy (9)={01001 1001 |-
00101 0101
l00011 0011

Denote by I, the code defined by the check matrix P, of the form (4) or (9).

COROLLARY 3. For N > 2r=2 + 2r=6 r > 6, there exist precisely three nonequivalent quasiperfect [N, N -1, 4]2
codes: [N = 2r=1, N — r, 4]2 Hamming code with check matrix X; [N = 2f=2 + 2r=4 N — r, 4]2 code II, with check matrix
P;and [N = 2r=2 4+ 2r-5 N — 1, 4]2 code Q, with check matrix L

Remark 1. Equivalent codes, in the usual way, are codes whose check matrices can be transformed into one another
by interchanging columns and performing elementary operations on rows [2, Sec. 2.6]: interchanging any two rows and adding
one row to another. In the same sense we understand the expressions "up to equivalence” and "matrix is reducible to the form".

Remark 2. We will list without proof all the nonequivalent matrices H,,,(2* + 1), thus providing an exhaustive answer
to question I for the range N > 2r=2 + 2r=7 (see Sec. 5).
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Remark 3. Enumeration of all [N > 2*~2 + 8, N — r, 4]2 codes is of interest in providing an answer to question
I, but it also may be used for other purposes, such as solving the extremal problems of [15, 19-21] in the class of linear
codes (minimization of the number of minimum-weight words).

This enumeration also may be useful for studying codes with d > 5, given the results of [8], say.

The results of this paper may be used for construction and analysis of covering codes with p = 2 [3-5]. Quasiperfect
codes with d = 4 are examples of codes for which p = t[n, k], where t[n, k] is the minimum covering radius of [n, k] linear
binary code [3, 5].

Remark 4. The methods of this paper may be applied to show that quasiperfect [N = 27=2, N — r, 4]2 codes do not
exist.

The paper is organized as follows. Section 2 introduces the necessary notation. Section 4 provides sufficient conditions
of symmetry. One of the lemmas is proved in the Appendix. Section 5 proves the main results: Theorem 1 and Corollaries 1-
3. Section 6 extends the results to caps in the projective geometry PG(r — 1, 2).

2. NOTATION

All symbols, vectors, columns, and matrices in this paper are binary. A matrix (depending on context) may be treated
as a set whose elements are the matrix columns.

We use the following notation: [n, n — r, d] code is a code of length n with r check symbols and distance d; p(V) is
the covering radius of the code V; EF is the space of r-dimensional column vectors; ET is the space EF with the zero vector
removed; H is the check matrix of the [n, n — r, d] code; H = || hyh,...h, ||, where h; is a matrix column, h; € E,;; V+ is the
[n, 1, d*] code dual to the [n, n - r, 4] code V; d+ is the minimum distance of the code V<, T denotes the transpose; h() or
h® is column h with the symbol i or the column (i, j)T adjoined at the top (if column h is of length r, then columns h() and
h(9) are respectively of length r + 1 and r + 2); (B} or (B)(1) is the matrix B (a collection of columns of B) with symbol
i or column (i, j)T respectively adjoined at the top of each column; |F| is the cardinality of the set F (in particular, the
number of columns in the matrix F considered as a collection of columns); [x] is the whole part of x; [x] is the smallest
integer not less than x.

Let H be the check miatrix of the [n, n — r, 4] code V and respectively the generating matrix of the [n, r, d+] code
V<. If the code V+ contains a word of weight w, then the matrix H is representable in the form

Ny=N—w w
0.0l .1
Sl &
where B(w) and Aare (r — 1) X (n — w) and (r — 1) x w matrices, respectively. The matrix B(w) is called the residual matrix.
B(w) is the generating matrix of the [ny =n — w,r — 1, dg*] code Vjt, which is called the residual code [22]. We know (see

[1, Sec. 17.5] and [22]) that

H= : (11)

dt=[d4/2], if w=d* (12)

3. SYMMETRIC CHECK MATRICES OF BINARY CODES WITH d = 4

Definition 2. The check matrix H = [|hjhy...hy || of the [n, n — r, 4] code V is called symmetric relative to the column
s from Ey not included in the matrix if the matrix columns can be partitioned into n/2 pairs so that the sum of the columns
in each pair equals s, i.e., up to column numbering we have the relationship

h1+hg=h3+hg= ke =h,.,_1+h,.=s. s€ {Eor\H} . (13)
From (13) it follows that the sum of column s with any column h; is also a column of the matrix H, i.e.,
s+hi=h;, s€{E,\H}, h,, h,¢H, i=1, n. (14)

Denote by S(H) the collection of columns relative to which the matrix H is symmetric.
Definition 3. The check matrix H of the code V is called symmetric if the set S(H) is nonempty.
LEMMA 1. Definitions 1 and 3 are equivalent.
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Proof. If the matrix H is of the form (3), then it is symmetric relative to the column (10...0)T. Let the matrix H
be symmetric relative to the column s. Then, simultaneously applying the elementary operations of [2, Sec. 2.6] (addition
and transposition) to the rows of the matrix and to the corresponding coordinates of the column s, we can reduce s to
the form (10...0)T. As a result (see (13)) the matrix H is transformed to a matrix (3) up to the order of columns.

LEMMA 2. For r = 4 there exist two codes with d = 4, p = 2: the [5, 5 — 4, 5]2 code with check matrix (4) and the
[8, 8 — 4, 4]2 code — extended Hamming code with check matrix X4

The proof is straightforward. For complete caps, the corresponding facts are presented in [10, pp. 167, 169].

LEMMA 3. In the construction (3) with r > 5, the matrix H is the check matrix of a quasiperfect [N, N — r, 4]2 code
if and only if H, is the matrix H._,(N/2).

Proof. Let H be the check matrix of the [N, N - r, 4]2 code V. Then H; = [[h;;..hyy, || is the check matrix of the
[N;, Ny = 1 + 1, dyJo, code V; with Ny = N/2. If the column s € {Ey*~\H,}, then s©) € {E A\H}. Since p(V) = 2, then by
Proposition 1 there are two columns by, h; in H such that h; + h; = s(). This means (see (3)) that h{, +4( =h!2) + 4% =5,
where hyp,, hy, are some columns from H,. Therefore hy, + h;, = s and, by Proposition 1, p1 = 2. Since the code V has

= 4, then d; 2> 4. Thus, either d; = Sord; = 4. Ifd; = 5, then V, is the [5, 5 — 4, 5]2 code I, If d; = 4, then V, is a
[Ny, Ny = (r = 1), 4]2 code of length N; > 5 (by Lemma 2 and an obvious argument, N, = r). This proves the lemma in one
direction.

The proof in the other direction relies on the same ideas.

4. SUFFICIENT CONDITIONS OF SYMMETRY OF THE CHECK MATRIX
OF A CODE WITH d = 4

LEMMA 4. If the check matrix H of the [N, N — r, 4]2 code V is represented in the form (11) and the residual matrix
B(w) is symmetric, then the matrix H is also symmetric, and S(H) 2 {S(B(w))}©. v

Proof. Consider the columns from Eg"~1: b; € B(w), 3; € A, s € S(B(W)). Assume that s() & S(H). Then (see (14))
there is a column a, such that a,() + s(® ¢ H. Since p(V) = 2, then by Proposition 1 there exist columns b, and a, such
that 5" +az“)=af”+s‘”’. Hence b; + s = a; + a,, where b; + s € B(w) but a; + a, & B(w). A contradiction. Therefore,
s € S(H).

LEMMA 5. If a symmetric submatrix Q has been identified in the matrix X, then the matrix X \Q is also symmetric,
and S(X,\Q) = S(Q).

The proof follows from (13), (14) and the fact that S(Xp) = {Eg"X;} D S(Q).

The following facts from the theory of abelian groups (Definition 4 and Proposition 2 from [17]) are needed for the
proof of Lemma 6.

Definition 4 [17). The subset Y of an additive abelian group G is called periodic if there exists a nonzero element g
in G such that its sum with any element y; of Y is again an element of Y (compare with (14)):

UgEG, g0 : Vy.€Y, g+y.€Y. (15)

Proposition 2 [17, Theorem 3.1]. Let F and E be subsets of the additive abelian group G and F + E the sum of the

subsets F and E that consists of all the elements of the form f + e, where f € F and e € E. We have the following proposi-
tion:

if |F+E| = |F| + |E| — 2, then F + E is a periodic subset. (16)

LEMMA 6. Assume that the check matrix H of the [N = 2r~2 + 2, N — 1, 4]2 code V is representable in the form
(11), where the residual matrix B(w) is a submatrix of Kooy 1n

| ————
c e d- GE e AR e
0.8 - ‘ !
H=! ______ S l= y 0. vt ke
. B(w)l A = 1 i
B b E

B, F, E are some matrices with (r — 2) rows. Then the matrix H is symmetric.
Proof. Define the matrix B, = ET~2B,. Since p(V) = 2, then using Proposition 1 and treating the sum of matrices
3 the sum of two sets whose elements are columns (see Proposition 2), we obtain from (17) {F}(10 + {E}(1D) = {B,}(0D),
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whence it follows that {F}(%) + (E}(1) = (B,)(1) and F + E = B,. Consider F, E, and B, as subsets of the abelian group E*-2.
Since N=|X,_,|—|B,|+|F|+|E|, N>2"-*+2 and |X,_;| =2""% wehave |B,| = |F+E| < |F| + |E| —2,and
from Proposition 2 it follows that B, is a periodic subset, or equivalently (see (14) and (15)) the matrix B, is symmetric.
But then the matrix {Bz}(l) is also symmetric and therefore, by Lemma 5, the matrix {Bl}(l) = B(w) is symmetric and,
by Lemma 4, the matrix H is symmetric.

Definition 5. The code V has property Z if the dual code V<4 contains at least one pair of words in which zeros do
not occur in identical positions (i.e., a pair of words whose bitwise disjunction gives ‘an all-one word).

Property Z is clearly sufficient for the check matrix H of the code V to be representable in the form (17).

Define a r x (22 + 1) matrix

0 v )

! !
]
Xr—l\{alv e .,(11.) { | z-a

H.(ay, - "vav;x) o

’ (18)

where ay, ..., a,, x are some columns of the matrix X _;.

The following lemma is used in the proof of Lemma 8 and Corollary 3.

LEMMA 7. For r = 5, the matrix Hs(23 + 1) = Hs(a;; x) is the only (up to equivalence) matrix Hg(9) and it is
reducible to the form (10).

Proof. Represent the matrix Hg(9) in the form (11), where w = d+ = 1. In this case, V+ is the [9, 9 — 4, d*] code.
With four check symbols, N, = 8 (see (1)). Therefore, d* < 3. Hence, 8 2 ny = 9 —d+ = 6. In view of the above, B(d+)
is the check matrix of some [8 = ny = 6, ny — 4, 4] code. By Lemma 2, this is either an extended Hamming code or its
shortening, i.e., B(d+) © X,. The equality B(d+) = X, (when n, = 8) contradicts Lemma 4. Assume that n, = 6, i.e.,
B(d+) = X,\{a,, a,}, where a,, a, are columns from X,. Since X,_, contains an all-one row (see (8)), the sum of two columns
from 1'-2'_1\)(,_1 again produces a column that does not belong to X,_,. Therefore, by Proposition 1, in the case B(d+)
C X,—;, the matrix A in (11) should include columns that belong to X__, and at the same time columns that do not belong
to this matrix. Therefore, for ny = 6, the matrix Hg(9) is reducible to the form Hg(a,, a,; x). But the column (1, x + a,
+ 2,)T is not the sum of two columns of the matrix Hg(a,, a,; x). Thus, the case ng = 6 is ruled out.

e
&

It remains to consider ny = 7, i.e,, B(d+) = X,\a;. It is clear from the previous argument that the only possibility is
Hs(9) = Hs(ay; x). It is easy to see that all the matrices Hg(a,; x) are equivalent and any of them can be reduced to the form
(10) by elementary row operations.

LEMMA 8. Let the check matrix H of the [N = 2=2 + 2, N — r, 4]2 code V be representable in the form (11) so
that the residual matrix B(d+) is a submatrix of the matrix P._; of the form (4) or (9). Then the code V has property Z and
the matrix H is symmetric.

Lemma 8 is proved in the Appendix.

5. PROOF OF THE MAIN RESULTS

We will first prove Corollaries 1-3 on the assumption that Theorem 1 holds. Corollaries 1-3 are proved before
Theorem 1, because the theorem is proved by induction on r. In making the inductive hypothesis that Theorem 1 holds for
r — 1, it is useful to have the corollaries of the theorem that are true for r — 1.

LEMMA 9. If r > 5, then a [N = 27=2 + 1, N — r, 4]2 code exists.

Proof. It is easy to verify that the matrix H (a;; x) (see (18)) is the check matrix of the sought code for r > 5.

LEMMA 10. The [2=2 + 1, r = 5, d] codes have d < 2r~3 — 1,

The lemma follows from the result of [23] on the nonexistence of codes on the Griesmer bound [1, Sec. 17.5] for
3sds2?2-2

Proposition 3 (see [1, 2] and [10, Lemma VII, p. 167]). The extended Hamming code is the only [27~1, 2r=1 — r, 4]2
code.

Proof of Corollaries 1 and 2. Let N = 2r=2 + 2. Then the check matrix H/(N) of a quasiperfect [N, N — r, 4]2 code
can be constructed, by Theorem 1 and Lemma 3, in the form (3) from the matrix H,_;(N;), where N; = N/2. The matrix
H,_;(N,) in turn can be constructed in the form (3) from the matrix H,_,(N,), where N, = N/22, and so on. The process
stops with the matrix U = H;_,(N,), where N, = N/2X =28 + 1,x=1r - 2 — g, g € {234,..,r — 2 — 1}. By Lemma 9, the
matrix U = Hg+2(28 + 1) exists. The matrix locators Mr_g_z(i, 28 + 1) in (7) are obtained by construction. The code length
is N=2"N,=2r"*"*(2%+1), g=2, 3, 4,... . For g = 0 we obtain the [2r~1, 2r~1 — r, 4]2 Hamming code (see (5)-(8)).

Corollary 1 for N = 2r~2+1 follows from Lemma 9.
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Proof of Corollary 3. Consider the matrix (7) for g = 0, 2, 3, using respectively Proposition 3, Lemma 2, and Lemma 7.

Proof of Theorem 1. From (1) and Proposition 3 (see also (8)) it follows that the theorem is true for N = 27~ and
we need to consider the case 2°~1 > N > 2f=2 + 2. The proof in this case is by induction on the number of check symbols
r. If 2r=1 > 2r=2 4+ 2 then r = 4. The theorem is true forr = 4 (see Lemma 2). Assume that Theorem 1, and hence also
Corollaries 1-3, hold for r — 1 check symbols and prove that the theorem holds for r check symbols.

Represent the check matrix H in the form (11) so that w = d+. By Griesmer’s bound, seeing that 2-~! > N, we have
dt < N/2. Hence ng = N —d+ > N2 2 273 + 1, i.e, ny = 273 + @, where a > 2. The matrix B(d+) is the check matrix of
the [ng, ny — (r — 1), dy = 4] code V,, which is either quasiperfect or is obtained by shortening of some quasiperfect [N,
Nq — (r = 1), 4]2 code Q. (The inequality dy < 5 follows from the sphere packing bound [1, Sec. 1.5].)

In the first case, by the inductive hypothesis, the matrix B(d+) is symmetric and therefore, by Lemma 4, the matrix H
is symmetric.

In the second case, by the inductive hypothesis, Ng = 2r-3 4 2r-3-g where g = 0,2,34,... .

Let g = 0. Then (see (5), (7), (8)), the code Q is the extended Hamming code, B(d+) is a submatrix of the matrix
X;_1» and by Lemma 6 the matrix H is symmetric.

For g = 2, the code Q is obtained by (r — 3 — g)-fold application of the construction (3) to the [28 + 1, 28 +
1 - (g +2),d = 4]2 code Q,. Clearly, do* = 2"3‘8dgl, where dg* and dgi are the distances of the codes Q+ and Qgi,
respectively.

Let g > 3. Thenr > 6 and by Lemma 10, d‘-L < 2871 _ |, Therefore do* <2'-*-#(2¢~'—1)=2"-*—27-3~+ _ Hence,
for the given code with the check matrix H, using (12), we obtain d+<2d,*<2do* <2'~°—27-*-¢ . Thus, n,=N—d+>
or-34-97=2-s>N, A contradiction. The case g > 3 is ruled out.

Let g = 2. Then Ng = 273 + 255, the code Q is IT
the matrix H is symmetric. Q.E.D.

Remark 5. 1t can be shown that there exist precisely five nonequivalent matrices Hg(17), which all have the structure

(see (18), (8)) :
Helay 05 . a-2) for v={ 3: 450 (19)

r—1» B(dt) is a submatrix of the matrix P._,, aqd by Lemma 8

Here the columns a;, a,, a3, a4, a5 are linearly independent in all the matrices.

A specific choice of the columns a; and x does not produce new nonequivalent matrices. Using the matrices (19) in
construction (7), we obtain five nonequivalent [N = 2r=2 + 2r=6, N — r, 4]2 codes. Together with Corollary 3, this provides
an exhaustive answer to question I (Sec. 1) for N > 2r=2 4 2r=7,

Remark 6. The following extremal problem is considered in [15, 19-21]: minimize Ay (the number of minimum-weight
words) in a code with given parameters — length, distance, and cardinality. Our results simplify the solution of this extremal
problem in the class of linear codes with d = 4. For instance, using the results of [15], we can show that of the three codes in
Corollary 3, it is the code II, that ensures the least A, for a given length n. Therefore, in the range 22+ 2™¢> n >
272 4 275, the absolute minimum of A, among linear codes for given n and r is attained on the shortened codes IT_. The
[n =224 r, n —r, 4] codes widely used in memories [18] fall in this range for r = 7-9. The codes I1, therefore provide
a reasonable alternative to the extended Hamming code while ensuring reliable storage of information [15, 24].

6. COMPLETE CAPS IN THE GEOMETRY PG(r — 1, 2): SYMMETRY OF STRUCTURE
AND NUMBER OF POINTS

A column from E is associated to a point in the projective geometry PG(r — 1, 2). Then [1, 6-12] a line is three
linearly dependent columns (i.e., three columns one of which is the sum of the other two); a cap is a collection of columns
no three of which are linearly dependent; a complete cap is a cap to which no column may be added; an exterior point is a
column from E¢* not contained in the cap; a chord is a line containing two points from a cap and an exterior point; a rangent
is a line containing a column from a cap and two exterior points.

Any exterior point lies at least on one chord of a complete cap (compare with Proposition 1). Proposition 1, Lemma
2, and the results of [7], [9], [10, pp. 167, 169], and [11] lead to

Proposition 4. Let a column of length r be considered as a point in the projective geometry PG(r — 1, 2). Then there
is a one-to-one correspondence between complete caps of N points and the matrices H (N) (see (5)).



For N = 5, r = 4, we have the dual case of Qwist’s cap [7]; for N = 2, r = 2 the geometry is a straight line with
two points belonging to the cap.

We preserve the same notation for caps and points as for matrices and columns. H(N) is a complete cap of N points
in the geometry PG(r — 1, 2). Equivalence of caps is understood in the sense of Remark 1.

Definition 6. The cap H containing n points is symmetric relative to the exterior point s if this point lies on n/2 chords.
The point s is called a symmetry point of the cap H.

Denote by S(H) the collection of symmetry points of the cap H.

Definition 7. The cap H is symmetric if the set S(H) is nonempty.

The Plotkin construction (3) corresponds in projective geometry to the following method of construction of the cap
Hin PG(r - 1, 2) from the cap H, in PG(r - 2, 2). In the section of the geometry PG(r - 1, 2) by the hyperplane PG(r — 2,
2) construct a cap H, containing n/2 points. Through an exterior point s, not in PG(r — 2, 2), draw n/2 tangents to the
cap H,. All the points of these tangents, except the point s, jointly form a symmetric cap H containing n points. The

point s € S(H).
Applying Proposition 4 and noting that for N = 5, r =4and N = 2,r = 2 complete caps exist although the cor-

responding [N, N — r, 4]2 codes do not exist, we can extend the results of this paper to complete caps in the following way.

THEOREM 2. In the projective geometry PG(r — 1, 2), any complete cap containing N = 2r~2 + 2 points is sym-
metric, i.e., has an exterior point that lies on N/2 chords.

COROLLARY 4. In the geometry PG(r — 1, 2), r > 2, in the range N > 27=2 + 1, the number of points N contained
in a complete cap may take any value from the series (6) and no other value.

COROLLARY 5. In the geometry PG(r — 1,2), r = 3, any complete cap H,(N) with N = 2=2 + 2 may be represen-
ted as the result of (r — 2 — g)-fold application of the Plotkin construction to the complete cap Hy,5(28 + 1) from the
geometry PG(g + 1, 2), where g =0234, .1 — 2 — 1

COROLLARY 6. In the geometry PG(r — 1,2) for r = 6, N > 2r=2 + 2=6, there exist precisely three nonequivalent
complete caps H (N) corresponding to the check matrices X, P, and L, (see (8)-(10)).

APPENDIX

Proof of Lemma 8. By the condition of the lemma, the matrix H is representable in the form

ny=6-2""5—1 g N=2T-248
Sasise kst TR e O
e i 11 |;|U - 1”
=) ——— =l F, | F, |=I F l : (A1)
Bd-)i A | |---2-- froien o L
| Ly L, L |

where B(d+) is a submatrix of the matrix P._1sLpL;,and L are 4 x ng, 4 X d4, and 4 x N matrices, respectively; B By,
and Fare (r — 5) X ng, (r — 5) x d*,and (r — 5) x N matrices, respectively; n,+d-=N; N=2"~+8, B>2: n,=3. 27— —A.
A>0.

1. A pair of words in the code V+ without zeros in the corresponding positions will be sought in the linear hull U
of the four bottom rows of the matrix H, denoted by L in (A.1). The existence of such a pair depends on the type of the
columns in L, but not on the number of columns of each type. If L only contains columns from P, (see (4)) of the type
(1000)7, (0100)7, (0010)7, (0001)7 , and (1111)T (these columns are of weight 1 or 4), then we can easily count that U
contains 30 pairs of words ensuring property Z. Now assume that the submatrix L contains only columns from P, (this
is possible by the condition of the lemma), and the submatrix L, contains (in addition to columns from P,) m, varieties
of columns of weight i, where i = 0, 2, 3. It can be directly verified that for m, + m3 < 2 and m, = 0, pairs of words
ensuring property Z are preserved in U. For example, if m, = 2, mg = my = 0, and L, contains two columns of the type
(1100)T and (0011)T, then 12 pairs of words with the required properties are preserved in U.

Thus, in proving the lemma, it suffices to show that

mytm,<2, m,=0. (A2)
(If property Z holds, symmetry of the matrix H follows from Lemma 6.)
2. B(d+) is the generating matrix of the [ng, r — 1, d;.;*(A)] code dual to the code II._; shortened by A symbols.
Using (9), we transform the matrix B(d+) by interchanging columns to the form

F ORI B e R
i 11...1{0 0...0[0 0...0[0 0...0[1 1...1}
B (dt)=| =100...011 1...110 0...0/0 0...0]1 1...1}: (A3)
Ly [00...0/00...0/1 1...1|0 0...0|1 1...1]
L 1 o . pjeu.. .ojoo..of L. fj11.. .1
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where W, is the matrix consisting of 2r=5 = A, distinct symbols of lengthr — 5,i=1,...,5; A, +A.+A,+A,+A,=A=5-2""%—n,.

Considering the linear hull of the submatrix L, we note that di—, (A) <2"-* — max {A:+A;}<27-*—2A/5, where the maximum
% ]

is over a pair of indices. On the other hand, ng = 52™% — A. Using (12), we obtain dt, (A) = d*/2 = (N—n,)/2 = (3.2 *+8+

A)/2. Combined with the previous inequality, this gives

AS2™—p—2max{A+4;), A<5(2-°—p)/9. (A4)
i,j

Let W be a submatrix of the matrix H; Y(W) a collection of columns with top coordinate 1 which cannot be included
in the matrix H without reducing the distance if it contains the submatrix W. Then (see (A.1)) we have

|Y (W) <2 —d*=2"~'— (N—n,) =13-2"5—A—p. (A5)

The proof of (A.2) is by contradiction. We will assume that (A.2) does not hold and show that this violates (A.5).

3.Since |W;| =275 — A;and A; + .. + Ag = A, then from (A.4) it follows that there exists a column that occurs
in all the five matrices W;. Therefore elementary row operations in the matrix H will produce a new zero column in each
submatrix W;, without altering L. For example, by adding the bottom row of the submatrix Ly to the corresponding rows of
the submatrix Fy, we transform one of the columns of the matrix W to zero column. Some column is still common to all the
matrices W;. Adding the sum of all rows of the submatrix L, to the corresponding rows of Fy, we transform this column to
zero in the matrices W, ..., W, without altering the matrix Ws. These elementary operations are naturally performed at the
same time on the rows of the matrix A in (A.1).

Since d* = 3-2°+p+A=3-2°+3, then the matrix locator (Sec. 1) M, (v, i) with i > 4 can be identified in
the (r — 5) x d+ submatrix F, containing at most 275 distinct columns. By adding the top row of the matrix H, we can
always make v = 0.

It follows from the above that a matrix G of the form

i>4
00000{ 111 ... 1
00000| 000 ...0
— 000001 000...0 : (A.6)
10001
01001
ooto1| Kii
00011

can be identified in the matrix H (A.1), where K;isa 4 x i matrix, i 2 4; j is the index of the matrix Kj;; the number of zero
rowsisr — S,

Consider the matrix ¢ consisting of the top and the four bottom rows of the matrix G. Here, @ is the check matrix
of some [n = 9,n - 5, 4] code R. The situation ¢ C Xj is impossible, because an all-one row cannot be formed in ¢. There-
fore (see (2)), the code R is a [9,9 = 5, 4]2 code, or a [10, 10 — 5, 4]2 code D, or a shortening of the code D by one symbol.
In the first case, by Lemma 7, the matrix  coincides with the matrix Hg(9) in (10). For the second case, represent ¢ in the
form (11) with w = d-+. By Griesmer’s bound, d+ < 4. Therefore, ny = 10 —d+ = 6, and by Lemma 2, B(d+) C X,. Thus (by
Lemma 6), the matrix ¢ is symmetric, and (by Lemma 2) the only possibility is K; = Py, i, ¢ = Ps and D is the code I1,. In
the third case, it is easy to verify that all shortenings of the code I15 by one symbol are equivalent to one another.

Thus, it suffices to consider three variants of the matrix Kij in (A.6):

0000 | [ 10001 | 1000
1001 | 101001 0100
Bk s . @7
a '0101" 52 )00101" 1w =] 0010 -
0011 | 00011 | 0001
4. The submatrix W of the matrix H from (A.1) is constructed in the form
n, i=4 Or 5 .
puc el th
| i 0
e I : ! s Lo ts i
')B(d’){u. 0 !
| | |
b 8 e
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Let Y, be the collection of columns from Y(W) for which the four bottom coordinates constitute the binary represen-
tation of the number v; Y, the collection of columns of length r — 5 obtained from the columns of Y," by eliminating the top
and the four bottom coordinates (|Y,"| = |Y,|);

_where t; is a column of length r — 5 and f; is a column of length4,s =1, ..,v,v 2 1.

8,=2'-—

¥,

: A\hh...ik: {VV-‘.U Werll 2 UW:‘,J

El

where the matrices are treated as sets (Sec. 2). Clearly,

|Y0yu=462~h-21a_ (A.9)

om=0

If Y.2Ai,.., then we have the inequalities

8,<A:i,  for p=1,k; 6, < min{Ai, A, ..., Ay }. (A.10)

5. Now it suffices to show that (A.2) holds in each of the three alternative specifications of the submatrix K;;
in (A.8): ;

a) Kjj = Kq3; b) Kjj = Ky; ©) K;j = Kg3.

Consider variant a). In (A.8), let v = 1, f; = (0000)7, i.e., my = 1. Then (see (A.3), (A.7), (A.8)), Y, 2A,,., v=0, 3, 5.
6; Yi=A,, Y.2A; ¥, 2Aq; Yi2A, j=8, 15; Ya=A,, k=9, 10:-12: Y.=2A,, 1=11,13, 14. Using (A.].O), let 0.:<A,, v=1.D,
B; x4, k=8. 9, 10, 12; 8:<As, I=11, 13.14, 15; 8,<A.,, p=0, 4; 6,<As, 5=2, 3: 6,<2-°. Now from (A.9), the second
inequality in (A.4), and the equality A; + ... + As = A,we have |Y(W)|=>15-2""" —(4A,+4A:+2A; +2A, + 3A,) = 15-2-° —
48 = 15-27°= A —3(5-2""*/9) >13-2"*~A—B.  This contradicts (A.5). Therefore, mq # 1. Thus, my = 0, the second
relationship in (A.2) holds, and we have §, = 0. We similarly show that for v = | we cannot take f 1€ ((0011)T, (0101)T,
(0110)T}, ie., 63 = 35 = d¢ = 0. :

Now in (A.8) let v = 2, f; = (1100)T, f, = (1110)7, ie,, m, + m; = 3. Reasoning as before, we have Y ,2A,, =1, 11:
Yi2Mous; Yi2A,, k=4, 9; Y2A,;; Yi2As:; Yi2Ay; Yis2As; Yi2As; YA Let 6,.<A,v=4, 9; 6,<A., p=38, 10;
8.<A4s, s=12, 14; §;<4,, j=13. 15; 8:<As, I=1, 11; §,<27-%, g=2, 7. Using (A.4), (A.9), and the equalities A; + ... + As =
A, d) =03 =35 = d¢ = 0, we obtain 1Y 2 |214-2"5;2A;14-2"’—A—5-2"‘/9 . Again (A.5) is violated. Thus, for the
given f,, f;, the first relationship in (A.2) must hold.

Examining similarly the remaining pairs of columns fy, f; of weight 2, 3, we conclude that m, + m; < 2 for K; =
K41, i.e,, condition (A.2) holds and the matrix H has property Z.

Similar methods, using when necessary the first inequality in (A.4), will show that (A.2) also holds in cases b and c.
QED;

We would like to acknowledge the valuable advice and comments of E. M. Gabidulin. We also acknowledge the useful

and constructive discussion of the paper by P. Yu. Smelyanskii and the participants of the IPPI AN SSSR seminar on algebraic
coding theory.
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