
J. Geom. 106 (2015), 1–17
c© 2014 Springer Basel
0047-2468/15/010001-17
published online April 29, 2014
DOI 10.1007/s00022-014-0224-4 Journal of Geometry

New types of estimates for the smallest
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Abstract. New types of upper bounds for the smallest size t2(2, q) of a
complete arc in the projective plane PG(2, q) are proposed. The value
t2(2, q) = d(q)

√
q ln q, where d(q) < 1 is a decreasing function of q, is

used. The case d(q) < α/ ln βq + γ, where α, β, γ are positive constants
independent of q, is considered. It is shown that

t2(2, q) < (2/ ln
1

10
q + 0.32)

√
q ln q if q ≤ 67993, q prime, and q ∈ R,

where R is a set of 27 values in the region 69997...110017.
Also, for q ∈ [9311, 67993], q prime, and q ∈ R, it is shown that

√
q(ln q)a1−bq < t2(2, q) <

√
q(ln q)a2−bq,

a1 = 0.771, a2 = 0.752, b = 2.2 · 10−7. In addition, our results allow us to
conjecture that these estimates hold for all q. An algorithm FOP using
any fixed order of points in PG(2, q) is proposed for constructing com-
plete arcs. The algorithm is based on an intuitive postulate that PG(2, q)
contains a sufficient number of relatively small complete arcs. It is shown
that the type of order on the points of PG(2, q) is not relevant.
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1. Introduction

Let PG(2, q) be the projective plane over the Galois field Fq. An n-arc is a set
of n points no three of which are collinear. An n-arc is called complete if it is
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not contained in an (n + 1)-arc of PG(2, q). For an introduction to projective
geometries over finite fields; see [25,45,47].

In [27,53] the close relationship among the theory of n-arcs, coding theory and
mathematical statistics is presented. In particular, a complete arc in a plane
PG(2, q), the points of which are treated as 3-dimensional q-ary columns, de-
fines a parity check matrix of a q-ary linear code with codimension 3, Hamming
distance 4, and covering radius 2. Arcs can be interpreted as linear maximum
distance separable (MDS) codes [51, Sec. 7], [54] and they are related to opti-
mal coverings arrays [23] and to superregular matrices [28].

One of the main problems in the study of projective planes, which is also
of interest in coding theory, is the finding of the spectrum of possible sizes of
complete arcs. In particular, the value of t2(2, q), the smallest size of a complete
arc in PG(2, q), is interesting. Finding estimates of the minimum size t2(2, q)
is a hard open problem.

This paper is devoted to upper bounds for t2(2, q).

Surveys of results on the sizes of plane complete arcs, methods of their con-
struction, and comprehension of the relating properties can be found in [4,5,
7,8,11,12,17,24,25,27,29,32,38,40–42,45–52]. Some problems connected with
small complete plane arcs are also considered in [1,3,13,14,18–21,24,25,27,29,
30,37,39,44,55].

The exact values of t2(2, q) are known only for q ≤ 32; see [2,16,22,25,26,
31,33,34] and the work [9] where the equalities t2(2, 31) = t2(2, 32) = 14 are
established.

There are the following lower bounds; see [3,17,44,45]:

t2(2, q) >

⎧
⎪⎨

⎪⎩

√
2q + 1 for any q,√
3q + 1

2 for q = ph, p prime, h = 1, 2, 3,
q−13+

√
8q3−15q2+6q+1

2(q−3) for any q > 3,

Let t(Pq) be the size of the smallest complete arc in any (not necessarily
Galois) projective plane Pq of order q. In [29], for sufficiently large q, the
following result is proved by probabilistic methods (we give it in the form of
[27, Tab. 2.6]):

t(Pq) ≤ D
√

q logC q, C ≤ 300, (1.1)

where C and D are constants independent of q. The logarithm basis is natural,
see [29, p. 10]. The authors of [29] conjecture that the constant can be reduced
to C = 10 but this conjecture is not proved. A survey and an analysis of
random constructions for geometrical objects can be found in [19]; see also the
references therein.

Regarding complete arcs of sizes smaller 1
2q obtained by algebraic construc-

tions, following [27, p. 209], complete arcs in PG(2, q) have been constructed
with sizes approximately 1

3q (see [1,4,30,48,49,55]), 1
4q (see [4,30,50]), 2q0.9
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(see [48] where such arcs are constructed for q > 710). It is noted in [19, Sec.
8], that the smallest size of a complete arc in PG(2, q) obtained via algebraic
constructions is cq3/4 where c is a universal constant; see [50, Sec. 3] and [51,
Th. 6.8].

In [4,5], for large ranges of q, the form of the bound of (1.1) has been applied
but the value of the constant C was essentially reduced to C = 0.75 [4] and to
C = 0.73 [5] whereas D < 1. In particular, the following results are obtained
in [4,5] using randomized greedy algorithms; see Sect. 2.1:

t2(2, q) <
√

q ln0.75 q for 23 ≤ q ≤ 5107 [4], (1.2)

t2(2, q) <
√

q ln0.73 q for 109 ≤ q ≤ 13627 [5]. (1.3)

In this work we improve the known upper bounds on t2(2, q) and propose new
types of upper bounds on t2(2, q).

The main results of the paper are the following. In the first, we propose a new
algorithm FOP (fixed order of points); see Sect. 2.2.

In addition, using this algorithm we obtained Theorems 1.1 and 1.3 below. Let

R = {69997, 70001, 79999, 80021, 81001, 82003, 83003, 84011, 85009,

86011, 87011, 88001, 89003, 90001, 91009, 92003, 93001, 94007,

95003, 96001, 97001, 98009, 99013, 99989, 99991, 109987, 110017}. (1.4)

We denote

θup(q) =
2

ln(0.1q)
+ 0.32. (1.5)

Theorem 1.1. Let d(q) < 1 be a decreasing function of q. Then

t2(2, q) = d(q)
√

q ln q, d(q) < θup(q), (1.6)

where q ≤ 67993, q prime, and q ∈ R; see (1.4). Complete arcs with sizes
satisfying (1.6) can be obtained by the algorithm FOP with lexicographical
order of points represented in homogenous coordinates.

We also formulate the following conjecture, based on previous results.

Conjecture 1.2. The upper bound (1.6) holds for all q.

Let tL2 (2, q) be the minimum order of complete arcs in PG(2, q) obtained using
FOP algorithm with lexicographical order of points; see Sect. 2.2. In order to
compare our results with a bound of type (1.1), we introduce the functions
c(q) and cL(q), defined as

t2(2, q) =
√

q lnc(q) q, tL2 (2, q) =
√

q lncL(q) q (1.7)

or equivalently

c(q) =
ln t2(2,q)√

q

ln ln q
, cL(q) =

ln tL
2 (2,q)√

q

ln ln q
. (1.8)
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Let R be as in (1.4).

Theorem 1.3. Let c(q) be a decreasing function of q. Let a1 = 0.771, a2 =
0.752, b = 2.2 · 10−7 be absolute positive constants independent of q. Then

t2(2, q) =
√

q lnc(q) q, c(q) ≤ cL(q), a1 − bq < cL(q) < a2 − bq, (1.9)

for q ∈ [9311, 67993], q prime, and q ∈ R. Complete arcs with sizes satisfying
(1.9) can be obtained by algorithm FOP with lexicographical orders of points
represented in homogenous coordinates.

Some results of this paper were briefly presented in [8].

The paper is organized as follows. In Sect. 2 the new algorithm FOP is pre-
sented, while Sect. 3 describes the results obtained with the algorithm. These
results improve the upper bounds on t2(2, q) and allow us to propose new types
of upper bounds on t2(2, q).

2. Randomized greedy algorithms and FOP algorithm

In [4,5,11,15], the authors used randomized greedy algorithms to obtain results
on small complete arcs in PG(2, q). In this work we propose and use a different
type of algorithm; see Sect. 2.2. We called it FOP (fixed order of points). In this
section we summarize the main features of the randomized greedy algorithms
used in [4,5] and we give a description of the FOP algorithm we used in our
search.

2.1. Randomized greedy algorithm

A randomized greedy algorithm maximizes at every step an objective function
f but some steps are executed in a random manner. The number of these steps,
their ordinal numbers and some other parameters of the algorithm (see, e.g.
dq,i below) have been taken intuitively. Also, if the same maximum of f can
be obtained in distinct ways, one way is chosen randomly.

We begin to construct a complete arc by using a starting set S0 of points. As
S0 we can take the frame or a subset of points of an arc obtained in previous
stages of the search. At the i-th step one point is added to the set Si−1 and
we obtain a point set Si. As the value of the objective function f we consider
the number of covered points in PG(2, q), that is, points that lie on bisecants
of the set obtained.

On every “random” i-th step we take dq,i randomly chosen points of PG(2, q)
uncovered by Si−1 and compute the objective function f adding each of these
dq,i points to Si−1. The point providing the maximum of f is included into
Si. On every “non-random” j-th step we consider all points uncovered by Sj−1

and add to Sj−1 the point providing the maximum of f .
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A generator of random numbers is used for a random choice. To get arcs
with small sizes, usually a few attempts should be made with distinct starting
conditions of the generator for the same set S0.

2.2. Algorithm FOP

The new type of algorithm proposed in this work is described in the following.
Consider the projective plane PG(2, q) and fix a particular order on its points.
The algorithm builds a complete arc iteratively.

Let K(i−1) be the arc obtained on the (i−1)-th step. On the next step, the first
point in the fixed order not lying on the bisecants of K(i−1) is added to K(i−1).
Suppose that the points of PG(2, q) are ordered as A1, A2, . . . , Aq2+q+1. Con-
sider the empty set as root of the search and let K(j) be the partial solution
obtained in the j-th step, as extension of the root. We put

K(0) = ∅, K(1) = {A1}, K(2) = {A1, A2}, m(1) = 2, K(j+1) = K(j) ∪ {Am(j)},

m(j) = min{i ∈ [m(j − 1) + 1, q2 + q + 1] | � P, Q ∈ K(j) : Ai, P, Q are collinear},

that is m(j) is the minimum subscript i such that the corresponding point Ai

is not saturated by K(j). The process ends when a complete arc is obtained.

Effectiveness of algorithm FOP is based on the following intuitive postulates
that we formulated by experience on our previous works; see e.g. [4,5].

• B1. In PG(2, q), there are relatively many complete k-arcs with size of
order k ≈

√
q ln q.

• B2. In PG(2, q), a complete k-arc, chosen in arbitrary way close to the
random way, has the size of order k ≈

√
q ln q with high probability.

• B3. The sizes of complete arcs obtained by algorithm FOP vary insignif-
icantly with the respect to the order of points.

In our work we used two different types of order on the points of PG(2, q), the
lexicographical order and the Singer order.

2.2.1. Lexicographical order. Let q be prime and let the elements of the field
Fq = {0, 1, . . . , q − 1} be treated as integers modulo q. Let the points Ai of
PG(2, q) be represented in homogenous coordinates so that Ai = (x(i)

0 , x
(i)
1 , x

(i)
2 ),

x
(i)
j ∈ Fq, where the leftmost non-zero element is 1. For Ai, we put i =

x
(i)
0 q2 + x

(i)
1 q + x

(i)
2 . So, the homogenous coordinates of a point Ai are treated

as its number i written in the q-ary scale of notation.

2.2.2. Singer order. The plane PG(2, q) has a cyclic Singer group of order
q2 + q + 1. The order associated to the Singer group is the following:

A1 = (1, 0, 0), Ai+1 = T (Ai), i = 1, 2, . . . , q2 + q, (2.1)



6 D. Bartoli et al. J. Geom.

where T ∈ PGL(3, q) is the collineation with associated matrix

T̄ =

⎛

⎝
0 0 c
1 0 b
0 1 a

⎞

⎠ , (2.2)

with x3 − ax2 − bx − c minimal polynomial of a primitive element of Fq3 .

Remark 2.1. In Coding Theory, greedy codes (or lexicographical codes, or lex-
icodes) are considered, see e.g. [10,35,36,43,56] and the references therein.
These codes are constructed by two ways. The first kind of greedy codes is
considered in most works on this topic. In order to obtain a q-ary code of
length n with minimum distance d one writes all q-ary n-vector in a list using
a certain order. The first vector of the list should be included to the code.
Then step-by-step, one takes the next vector from the list which has distance
d or more from all vectors already chosen.

In another kind, see [10,35,36], one creates a parity check matrix of a code with
codimension r and parameters q, d as above. All q-ary r-vectors are written as
columns in a list in some order. The first column of the list should be included
into the matrix. Then step-by-step, one takes the next column from the list
which cannot be represented as a linear combination of d−2 or smaller columns
already chosen. The process is finished when no new column may be included
to the matrix.

If a point of PG(2, q) is treated as a column 3-vector then formally FOP
algorithm is an algorithm of the second kind creating a parity check matrix
with r = 3, d = 4. But this viewpoint is only formal. In Coding Theory, for
given r, d the aim is to get a long code while our goal is to obtain a short
complete arc. Moreover, our estimates and computer search show that for
r = 3, d = 4, the FOP algorithm gives “bad” codes that are essentially shorter
than “good” codes corresponding to ovals and hyperovals. Finally, note that we
do not use the word “greedy” in a name of the FOP algorithm as in Projective
Geometry the terms “greedy algorithm” and “randomized greedy algorithm”
are traditionally connected with other approaches, see [4,5,11,15].

3. Results on the smallest size of complete arcs in PG(2, q),
q ≤ 67993, q prime, and q ∈ R

In this paper we investigate the minimum size of complete arcs in PG(2, q), q ≤
67993, q prime, and q ∈ R, where R is a set of 27 values in the interval
[69997, 110017]. To do this we performed a computer-based search using the
FOP algorithm described above. In [6] the sizes of complete arcs found are
listed.

The main result of this paper is Theorem 1.1, where the values t2(2, q) are
presented as d(q)

√
q ln q. It is also possible to compare the results obtained

with lexicographical order (see Sect. 2.2) with a bound of type (1.1) (here
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Figure 1 The functions
√

q ln0.75 q (the top curve), tL2 (2, q)
(the second curve), and

√
q ln0.6 q (the bottom curve), for q ≤

67993, q prime, and q ∈ R

Figure 2 The functions tL2 (2, q) (the top curve) and tG2 (2, q)
(the bottom curve)

we take the absolute constant D equal to 1): in particular Fig. 1 shows the
comparison among the functions tL2 (2, q),

√
q ln0.75 q, and

√
q ln0.6 q, q ≤ 67993,

q prime, and q ∈ R. Note that our experimental results are very close to
the function

√
q ln0.75 q: this bound is similar to the bound obtained using

randomized greedy algorithms; see [4,5].

In the following we use the notations tS2 (2, q) and tG2 (2, q) in order to represent
the results obtained with Singer order (see Sect. 2.2) and greedy randomized
algorithms (see [4,5]), respectively.
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Figure 3 Difference in percentage between tG2 (2, q) and tL2 (2, q)

Figure 4 The functions θup(q) (the top curve) and dL(q)
(the bottom curve), for q ≤ 67993, q prime, and q ∈ R

The comparison with the execution time using randomized greedy algorithms
justifies the use of FOP algorithm in order to investigate the behavior of the
function t2(2, q): in Fig. 2 the functions tG2 (2, q) for q ≤ 14009 or q ∈ S, where
S is a set of 700 prime powers in the region [14107, 170503], and tL2 (2, q) for
q ≤ 67993, q prime, and q ∈ R, are shown. The values of tG2 (2, q) for q ≤ 13627
and a part of the set S are taken from [5], the rest of tG2 (2, q) values in Fig. 2
are obtained in this work via randomized greedy algorithms.

When q grows, the difference in percentage between the results obtained with
algorithm FOP and the randomized greedy algorithms presented in [4,5] de-
creases; see Fig. 3: for q approximately equal to 14000 the difference is very
close to 8 %, while for q approximately equal to 60000 the difference is close
to 5 %.
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Figure 5 The functions Mup = θup
√

q ln q (the top curve)
and tL2 (2, q) (the bottom curve), for q ≤ 67993, q prime, and
q ∈ R

Figure 6 Difference between Mup = θup
√

q ln q and tL2 (2, q),
for q ≤ 67993, q prime, and q ∈ R

In Remark 4.1 in [5] it is pointed out that the difference between
√

q ln0.73

and the results obtained with randomized greedy algorithms tG2 (2, q) increases
when q grows. This fact allows the authors to suppose that the upper bound on
t2(2, q) is more complicated than the bound of type (1.1), that is D

√
q lnC q,

where C and D are absolute constants. In order to investigate the existence of
different types of estimates for the smallest size of complete arcs in PG(2, q),
in this section we also compare our experimental results with other types of
bounds. The functions d(q), see also Theorem 1.1, and dL(q) are defined as

d(q) =
t2(2, q)√

q ln q
; dL(q) =

tL2 (2, q)√
q ln q

. (3.1)

It is clear that t2(2, q) ≤ min{tL2 (2, q), tS2 (2, q)} and d(q) ≤ dL(q).
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Figure 7 Difference in percentage between Mup = θup
√

q ln q

and tL2 (2, q), for q ≤ 67993, q prime, and q ∈ R

Figure 8 Difference between Mmid = θmid
√

q ln q and
tL2 (2, q), for q ≤ 67993, q prime, and q ∈ R

The function θup defined in (1.5) is a good upper bound for dL(q). Figure 4

shows the comparison between the values dL(q) = tL
2 (2,q)√
q ln q , obtained with FOP

algorithm using lexicographical order, and the function θup(q).

The curves tL2 (2, q) and Mup = θup
√

q ln q practically coalesce with each other,
but always tL2 (2, q) < Mup; see Fig. 5: in Fig. 6 it is shown that the difference
Mup − tL2 (2, q) is greater than 0 for each q ≤ 67993, q prime, and q ∈ R; in

Fig. 7 the values Mup−tL
2 (2,q)

Mup
100 % are presented. Note that this difference is

less that 3 % for q ≥ 20000.
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Figure 9 Difference in percentage between Mmid =
θmid

√
q ln q and tL2 (2, q), for q ≤ 67993, q prime, and q ∈ R

Figure 10 The functions cL(q), a1 − bq, and a2 − bq,
q ≤ 67993, q prime, and q ∈ R, a1 = 0.771, a2 = 0.752,
b = 2.2 · 10−7

Since we are interested in an approximation for dL(q), the function θmid defined
as

θmid(q) =
1.79

ln(0.121q)
+ 0.342 (3.2)

can represent a good example. Let Mmid = θmid
√

q ln q. Figure 8 shows that
the difference |Mmid −tL2 (2, q)| ≤ 17 for each q ≤ 67993, q prime, and q ∈ R; in
Fig. 9 the values Mmid−tL

2 (2,q)
Mmid

100 % are presented. Note that Mmid is a good
approximation for tL2 (2, q), since their difference in percentage is approximately
in the interval [−1,+1] for q ≥ 20000.
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Figure 11 Difference in percentage between tL2 (2, q) and
tS2 (2, q) for q ≤ 40009, q prime

Figure 10 shows the linear approximations for the function cL(q); see (1.8) for
the definition.

Assumption B3 in Sect. 2.2 states that in general there exists no particular
order on the points of PG(2, q) that can be used to obtain better results
than the others for every q. The goodness of this assumption is proven by our
experimental results: we searched using FOP algorithm with Singer order for
q ≤ 40009. The results obtained using Singer order are close to those obtained
using lexicographical order, since the difference in percentage is approximately
in the interval [−2,+2] for q ≥ 5000; see Fig. 11. This fact strengthens our
confidence in the validity of Assumption B3: every randomized order can be
used and the results will not essentially be influenced by the choice.

In Table 1, the values tL2 (2, q), cL(q) and dL(q), with q ∈ R are given.
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