OPTIMIZATION OF SHORTENED HAMMING CODES
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Optimization is treated as reduction of the number of words of weight d, where d is the code
distance. For d = 3, the authors propose methods of synthesizing codes of arbitrary length
with minimum number of words of weight 3. For expanded codes with d = 4, asymptotically
coincident upper (guaranteed attainable) and lower bounds are constructed for the minimum

number of words of weight 4. Classes of codes that attain the lower bound or are close to it
are indicated.

1. -Intraduction

Shortened binary Hamming codes are extensively employed in practice, e.g., in computer storage
devices [1-3]. One widespread mode of use involves correction of a single error with simultaneous deduction
of multiple errors. In this case the probability of erroneous decoding basically depends on Aq4(n, r), the num-
ber of words of minimum weight d in the shortened Hamming code of length n obtained from the complete
Hamming code with r check symbols. To optimize the code, therefore, it is necessary to minimize Ag(n, ).

Papers [L, 4-8] posed the problem of choosing a check matrix for a shortened Hamming code to reduce
Ag(n, r). For some lengths, inspection algorithms were employed to obtain the corresponding matrices for
Hamming codes proper (H-codes) with d = 3 [5, 7] and for expanded Hamming codes (EH-codes) withd =4
having a common parity check [4, T].

In this paper we investigate some properties of these codes. For H-codes we derive a formula that
enables us to determine the minimum value (for specified n and r) of As(n, r). Constructive methods for
setting up the corresponding matrix are given.

For EH-codes, we prove a property of A,(n, r) that simplifies its minimization and estimation. A
lower bound for A,(n, r) is obtained by using the MacWilliams relations and linear programming. Classes
of codes that attain this bound or are close to it are pointed out. By averaging over all codes, an upper bound
is obtained for the minimum value of A,(n, r) that can be achieved by stepwise optimization. It is shown that
the upper and lower bounds coincide asymptotically.

We introduce some notation. For the initial code (the code to be shortened), r is the redundancy; N is
the length; and HN(I') is the check matrix. For the shortened code, n isthelength (r+1=n SN),H(r) is the
check matrix. We denote by Hl(qun the "complementary" matrix to H(I) in the sense that IlHn(r)Hl\}'_)nll = HN(T).
The number of words of weight d in specific codes specified by check matrices Hy(T) and Hl(\}‘ln will be denoted

by Ag(n, r) and Ag(N—n, r) respectively. The minimum (over all n, n —r)-codes) of A 4(n, r) will be denoted
by ag(n, r).

2. Minimization of Aj(n, r) in Shortened H-Codes

For an H-code N =2r—1, d = 3.

LEMMA 1. Among matrices Hn(r) of minimum rank* ]log, (n + 1)[ there is a matrix with maximum
(for given n) value of Az(n, r).

LEMMA 2. For any n and r we haveT
As(n,r) +A;(N—n,r) =(C,*+Cy—,_.) / (27=3).

* 1x[ is the nearest integer not larger than x. =
1 The proofs of the lemmas are given in the Appendix.
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Remark. Lemma 2 is equivalent to thefollowing assertion. Assume that the space of binary vectors
of length r is arbitrarily divided into two subsets M; and M, of cardinality n and (2¥—n), respectively. Then
the sum of the number of linearly dependent (LD) triples of vectors in set M, and of the number of LD triples
of vectors in M, is completely determined by r and n and is independent of the specific vectors that appear

in M, and M,.

Now we can detern.‘ne a3(n, r) by employing the following considerations. In accordance with Lemma 2,
to minimize Ag(n, r) we should maximize A3(N—n, r); this can be done by taking (in accordance with Lemma
1) matrix HI\%‘) of minimum possible rank r' = Jlog, (N—n + 1)[. Then, if we consider an H-code of length N'=

2T'—1 with redundancy r' and again use Lemma 2, we can reduce the problem to optimization of a "strongly"
shortened H-code of length lecs than N'/2. This optimization can readily be performed by taking a check
matrix that does not contain LD triples of columns (e.g., a matrix all of whose columns have an odd number

of 1's).

THEOREM 1. The minimum number of words of weight 3 in a shortened (n, n —r) Hamming code is
as(n, ) ="/s(2"—2") (2" +3n—2"+1), )
where r' = Jlogy(2¥—n)[. To attain as(n, r) it is sufficient to take H(r_)n =” 0 ” , where 0 is a null matrix of

dimensions (r —r') x(N —n); G= 1 G,;G, Il ; G, is anr'x (2T'-!'—1) matrix; and all columns of G, contain an even
number of 1's

Proof. It follows from Lemma 2 that az(n, r) = F3(n, r) — max A3(N—n, r), where F3(n, r) = (Cn3 +
Cz <-p/2rf = 3), max A4(N —n, r) is the maximum (over all N —n, N —n —r)-codes) of A 3(N —n, r), Taking
account of Lemma 1, to attam max A3(N —n, r) is it sufficient to consider matrices H(r) of rankr' = ]'logz(N -
n + 1)[ = Jlog,(2F —n)|[,

In H,V_’,. ” G ” we eliminate zero rows and consider the resultant matrix G as the check matrix H(r )

of a shortened (n', n'— r') Hamming code, wheren'= N — n. The corresponding "complementary" matrix Hl(\Ir"-)n'

(where N'=2T'—1andN'—n'< 1/2N') consists onlyof columns with an odd number of 1's, since all nonzero
columns of length r' with an even number of 1's appear in G;. Therefore, matrix Hl(\lr"-)n' does not contain LD

triples of columns. Consequently,A;(N —n',r') =0 and taking account of Lemma 2 for matrix G = Hnu(r') we

> 0
obtain max Az(n', r') = F3(n', r') = F3(N —n,r'), But this means that for matrix H = " G ” we have obtained

max Ag(N —n,r)=maxA;(n',r')=F;(N —n, r'). Consequently, Ay(n, r) has been minimized, where
aa(ny r) =F8(n1 r)—F,(N—n, r/)y
and from this, after some manipulations, we obtain (1). The theorem is thus proved.

It is not hard to see that Theorem 1 is also valid when the requirement on G is formulated more gener-
ally: i.e., matrix HI(\Ir"-)r' does not contain LD triples of columns. Let us consider two cases.

1. Assume that matrix G; to which a zero column has been ascribed in a subspace of dimension r' —1
1
of the space of columns of length r'. In this case all columns of HI(\II; -)-n' belong to a coset with respect to the

subspace, and hence HI(~II;'-)n' does not contain LD triples of columns. This generalization does not generate

new codes, since the corresponding matrices G; are equivalent to matrix G, described in the theorem. With
this approach, however, we can readily set up differing matrices H(r) for which a3(n, r) is attained and which
are convenient from certain particular standpoints (simplicity of 1mplementat1on, convenience of description,
etc.). For example, we can require that all columns of G; contain an even number of 1's in/ fixed positions.
For I =1 we have the following.

COROLLARY 1. The minimum number of words of weight 3 is attained in a shortened Hamming code
for which the columns of the check matrix are the binary representation of numbers from 2T —n to 2F — 1,

In the case under consideration, nonequivalent codes can be obtained by different choice of the columns
for generating G,.
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2. The case in which n = 2Y-! + r is of importance from the standpoint of use in working storages.
Here r' = r — 1 and expression (1) yields

a, (2 +r, ry=r2-%
In this case the form of the check matrix can be as stated in the following corollary.

~ COROLLARY 2. Ifn= 2T-1 4+ r, then to attain ay(n, 1) it is sufficient that matrix Hy(T) contains 27~
columns with a 1 in the first position, r —1 linearly independent (LIN) columns with 0 in the first position,
and one column that is the sum of the indicated r —1 LIN columns.

For the proof, it is sufficient to note that the last r columns of Hp () make up matrix HI(\II‘")n' in this
case; obviously, for r = 4 it does not contain LD triple of columns.
There is reason to assume that for n = 2¥-1 + r, from among all nonequivalent matrices Hn(r) described

in Corollary 2 yields the minimum value of A4(n, r) as well. This hypothesis is valid at least for r =6, 7.

3. Minimization of Ay(n, r) in Shortened EH-Codes

For EH-codes N =2T-1 d =4,
LEMMA 3. For any n and r we have
Au(n, 1) —A (N=n,1) = (Cat—Cyr-1_a) / (2"-'=3).

It can be seen from Lemma 3 that the problem of minimizing A4(n, r) is equivalent to that of minimizing
A4(N =5 r)o’

We introduce the following notation:
Fi(n,r)=(C.*—Cy-1_s)/ (2~*=3).
COROLLARY 3. a(n, r) =ay (N—n, ) + Fy(n, 1).
COROLLARY 4. We have the bound
A,(n, r)=max {0; Fi(n,r)}. (2)

This bound is attained in the following cases: (assuming that r = 7):* -

2=+ (r odd ), ‘gz(r—z)/2+2[r/;] (r even), @)
n>2r-1—2(-1)/2—1 (r odd ), n=>2r—1=2(r=2)2_2Ur/41 (r even ). (4)

Proof. In case (3) we have Fy(m, r) < 0 and it is sufficient to take Hn(r) to be the check matrix of the
expansion of a BCH code with minimum distance d = 5 [9]. Here the shortened EH-codé has d = 6 and A4(n, r)=
0. In case (4) it is sufficient to use the matrix in question as HI(\Irln Then we obtain Ay (N —n,r)=0and A,(n,
¥y =F;@a, 1)>0. -

If linear codes are known with d = 5 and a length greater than for the corresponding BCH code, rela-
tions (3) and (4) can be improved. As an example, we note that the codes cited in [9] enable us to attain bound
(2) for the following values of randn: r =10, n =24 andn = 2°—24;r=14,n <75 andn = 2% — 95, r =18,

n < 279 and n = 2!T — 279, Note also that for r = 5.6 bound (2) is attained forn=r +1 and n = or-l —p —1q,
For those n and r for which a code with d = 5 cannot be found (or cannot be constructed), a lower bound is ob-
tained using the MacWilliams relations and linear programming (LP).

We denote by {Aj(n, r)} and {Aj' (n, 1)} (j =0, n) the weight spectra of the shortened EH-code and its
dual code, respectively. The MacWilliams relations for these spectra have the form

4 : > ==
M(mr)=2- Y A P =0, (5)
j=0
where Py (x) is a Kravchuk polynomial [9].
LEMMA 4. Among matrices Hn(r) of maximum rank r there is a matrix with minimal value (for given

n and r) of Ay(n, T).

* [x] is the integer part of x.
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On the basis of Lemmas 3 and 4 we can conclude that to minimize A (n, r) it is sufficient to consider
the case in which the ranks of matrices Hy(T) and HI(\Ir—)n are equal to r. This is the case that will be considered

below.

Allowing for the fact that the rank of Hn(r) is equal to r and that the dual code contains a word consisting

of all 1's, we can write
A (1) =4, (n,r)=1; A/ (1) =Auss(n,7) ©)

(i=1,m; m=[n/2]); A.'(2m,r) odd.
It follows from (6) that the number of different spectral components in (5) can be halved. We introduce
the variable
gl ir 6 e : ™
=

L4/ (n,r) for j=m, n=2m.

Now, allowing for the fact that
Ay(n, r)=1, 4;(n, r)=0, Asis,(n, r)=0 and A;(n, r)=0, (8)

we can formulate the LP problem for bounding the minimum of A4(n, r) (i.e., for bounding a4(n, r)): minimize
the functional

n'  3n'-2n 1 o (9)
A = — — “Z —2j)tz;
dar=sP® —u v L(" e
=1
under the following constraints:
m m = 1
Yomzmet; Y tim=@-tonin 230 G=Tm); o
j=1 J=1
1 : m
Az (n, r)=—2—,_T(C..“+ZI Pz;(i)xj)>0; (11)
=1
1 m—1{
Ain(n,1) = g (m° (=) 2+ B (0 (n=20)75;) =0 or 1; -
2 (12)

j=1

Xj, Aji(n, 1) are integers;i=1, m;j=1, m;m= /2] v=n—2m.

Expressions (9)-(11) were obtained from (5) using (6)-(8) and simple manipulations. Constraint (12)
follows from (5)-(8) and from the relation Ap_ (n, r) + Aj(n, r) =< 1, which is valid for any linear code with
d =3.

We denote the solution of LP problem (9)-(12) by K4(n, r). It is understood that a(n,r) = &(n, 3
LEMMA 5. We have the following lower bound:
A.(n,r)=L(n,r)=max{0; AL (n,1r); AN n},

where A,(D) (n, r) = 22T (gnV + % (m + 2)m (m —2) (m +2v)) —C% | — gv; g = m — 2[m/2];

an nt 3n*—2n 1
e
4 B0 N 122

(n(2'—n) (s*+(s—2)%) —(2-'—1)s*(s—2)?); s=n—2u;

- [ —21- (=Y @ —m)n(Z——1)-1) ] :

COROLLARY 5. We have the lower bound
a.(n, r)=M(n, r)=méx {L(n, r); L{(N—n, r)+F.(n, r)}. 13)

Bound (13), which follows from Lemma 5 and Corollary 3, is useful for n values of practical interest. The
asymptotic behavior of the lower bound can be conveniently studied using the relation
nt 3n*—2n n*(2-'—n)? (14)

>A(U) ,r)=D - -
a(n, 1) =4 (n,r) =D (n, 1) 129 2% (2—*—1)-12-2r
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obtained by transforming the expression for A4(H)(n, r). By averaging over all matrices H,(T), we can read-
ily obtain the following upper bound for a4(n, r).

LEMMA 6.
as(n, r)<C,/(2~'-3). (15)

Lemma 6 and expression (14) imply that the upper and lower bounds for a4(n, r) are asymptotically
coincident.

THEOREM 2. Let n~'2Y-! = o(n). Then
lim a,(n,r)2-Y/C,*=1.

N> 0o

Let us return to the construction of codes with minimal or quasiminimal value of Ay(n, r). It can be
seen from (7), (9) that to construct a "good" matrix Hn(T) it is desirable that the spectrum of nonzero weights
of the corresponding binary code (except for a word of all 1's) lie in the range n/2 +6, where 6 is relatively
modest. This property is possessed [9] by codes that are dual to the BCH codes with d = 5, employed in Cor-
ollary 4, Other classes of codes with this spectrum are also known. By using the generating matrices of
such codes as matrix Hp(T) and H(Z) (and adding, if necessary, a word of all 1's), we can obtain values of
A4(n, r) less than upper bound (1 and close to lower bound (13).

Examples. 1. Letr=17. As H(7) we take the generating matrix of the (21, 7)-code obtained from the
(21, 6)-code of [9, Sec.8.4] by addmgéword of all 1's. Then A('(21,7) = A,'(21,7) =1; Ag'(21,7) = A;3' (21,7)
=215 Ay' (21,7) =A,'(21,7) = 42, i.e., 6 = 2.5 £ 0.55Vn. In this case A,(21,7) = 84 and it attains bound (13).
Other similar examples can be constructed by using the codes considered in [9, secs. 8.4 and 15.4].

2. We generate matrix Hl(\lrzn’ by adding a row of all 1's to the check matrix of the code of Example 4 in

[10]. As a result we obtain an EH-code of length n = 2b-! (2b + 1) with r =2b + 1, b = 1. The weight spec-
trum of the binary code A;' (n, r) = Ap' (n, 1) =1; AJ in, r) — Ajz'(n’ T = 22b—1, where j, = n/2 — 2b'2. i =
n/2 +20-2 je., 6 =2b- 1S2‘/2\/n

This code is interesting in that for any b we have A (n, r) = A4(H)(n, r) = D(n, 1), i.e., bound (13) is
attained.

L

3. Consider codes of the following class: the generating matrix of (n, k)-code w(k) Hidsy oo, i)

consists of all columns of weight iy, iy, ..., ig (e=1, n=Z C,). Simple combinatorial considerations yield

u=={

that code W(K) (i, iy, ..., ig) contains CiV words of weight ZZ c"‘—z' e , where v =0, k.

u=1 j

As Hy (") we take the generating matrix of (36,7)-code W(") (3,7). Then Ay' (36,7) = Agg' (36,7) = 1; A,
(36,7) = Ay (36,7) =63, i.e., 6 =2 =Vn/3. Here A, (36,7) = 945 and the code attains bound (13).

In the general case, attainment of upper bound (15) is guaranteed with stepwise optimization: at each
step a column that yields the smallest number of LD quadruples is added to some initial array of columns.

Indeed, assume that after the i-th step Ay(i, r) = C;*/(2T~! — 3) —¢j, wheregj = 0. At the (i + 1)-th step
we can generate 2T-1 — i different matrices Hy (r). The total number of "additional" LD quadruples columns in
all these matrices (i.e., quadruples contammg a new (i + 1)—th column) amounts to Cj® —4Aj(i, r). Averaging
the "addition" over all matrices, we obtain

A+, ) <[AG ) H(C2—44.(i, 1))/ (2 —i) ] = [C““/(Z’-’—3) —g

l'+l]1

i.e., g =cil= 4/ —i)). Withallowance for Corollary 4, we have €i = 0, and this proves that bound
(15) is attained with stepwise optimization.

In practice, stepwise optimization allows us to come fairly close to lower bound (13) as well, and some-
times to attain it. This fact is illustrated by the accompanying table, which gives computer-obtained matrices
Hy(T) using stepwise optimization and the corresponding values of A,(n, r), A; (N —n,r). Each column of the
matrix, considered as a binary number, is replaced by the corresponding decimal number (e.g., the number
39 corresponds to column [100111]T). A notation of the form 64-69 means that the matrix includes columns
64, 65, 66, 67, 68, 69.
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TABLE 1

=
= & =
: iy s ey
= & | < =3 £ E
2 < < < =
4 16 16 | 34—42, 44, 48-50, 53, 56, 57 59 59 59 | .59
b 17 15 | 33-42, 44, 48-50, 53, 56,57 79 44 79 79
6 18 14 | 33—42, 44, 48-50, 53, 56, 57, 63 102 31 102 102
6 19 13 | 33-42, 44, 45, 48-50, 53, 56, 57, 63 131 22 131 131
6 20 12 | 33-42, 44, 45, 48-51, 53, 56, 57, 63 164 14 | 164 | 164
6 21 11 | 33-42, 4446, 48-51, 53, 56, 57, 63 204 9 204 204
6 22 10 | 32-34, 36-43, 45, 46, 48-52, 54, 56, 250 5 250 250
57, 60
6 23 9 | 33-46, 48-51, 53, 54, 56, 57, 63 304 3 304 304
6 24 8 |33-46, 48-54, 56, 57, 63 365 1 365 | 365
7 39 25 | 64—69, 72, 74, 7678, 80-82, 85, 1335 194 | 1332 | 1332
87-93, 96—102, 106, 108, 110114,
116, 120, 127
8 72 56 128—139, 141147, 149, 150, 153, 154, | 8166 | 2874 | 8157 | 8151
156, 160164, 166, 168, 170, 175,
177, 178, 181, 182, 184, 186, 188,
189, 192—-194, 196, 197, 199, 202,
204, 211, 212, 214, 215, 218-221,
224-227, 232, 234, 236, 237, 241,
245, 248, 249, 252-254

We should note that for the shortened (72, 64) EH-code that is important in practical applications (e.g.,
for protection of the working storage of Unified Series computers [3]), we have obtained the bound a, (72.8) =
K4 (56,8) + ¥, (72,8) = 8157, and have found a (72, 64)-code with A, (72,8) = 8166 (see Table 1). Papers [4, 6,
3, 2] gave (72, 64)-codes with A, (72,8) values of 8175, 8392, 8754, 9251, respectively.

The authors are grateful to G. A. Kabatyanskii for useful discussions and remarks, and in particular
for Corollary 1 which was proposed by him. '

APPENDIX
Proof of Lemma 1. If n = 2T-!, then the rank of Hn(r) is always equal to r, and the validity of the
lemma is obvious. Now let n < 2T~!. The quantity A;(P) (n, r) is equal to the number of LD triples of columns
in matrix Hy(T) of rank p. First we construct from Hp(Y) the matrix Hp(Y) = || HyHp, ... Hpyll of rank (r — 1)

with different nonzero columns, for which A3r“ o, = A3(r) (n, r) , V> 0. Matrix Hno consists of cQlumns
¢j(") €Hp(T) (the superscript is equal to the value of the first digit of the column). Matrix Hp; consists of all
columns of the form cj;(®) = cij®) +¢;(!), where cj;() €H,(T); cij(")EHns, s=0,i—1;i=1, V. It is possible

to do this, since if we allow for the fact that r > ]log, (n + 1)[ we have Z n,<n<2-' ; in other words, there

always exists a column ci(o)gﬂns, and hence a column ¢;() = ¢j;() +¢;;® (s =0, i—-1,i=1, V).

Thus, LD triple of column (coj1(°), cojgo), cojéo) from Hy(Y) corresponds to an analogous LD triple from

H,(¥); LD triple (Cojl(o)’ Cijgi)’ cij§°)) from Hp(T) corresponds to LD triple (Cojl(o)v cijé"), cijgo)) from Hy (T);

LD triple (cojl("), csjgo), cij§°)) from Hp(Y) corresponds to LD triple (cojfo), cqjio), csjgo)) from H,(Y). Column
cqj,fo) = cijgi) +cg) always exists in Hpg, since otherwise this column would appear in Hp, 0 = g < s <i. On
the other hand, given this construction two different LD triples of columns from Hn(r) do not become the same
LD triples of columns from Hy(T). Assume, for example, that LD triple (coj§°), csjé‘), cilj,f’)) from Hy (%) has

become (cojl(o), cqj‘fo), csjgo)). Then, by definition, coj5(°)= °0j1(0)’ Csjé1)= csjél), and consequently, (cojéo), csjél)’
ci1j'§1)) = (00]'1(0)' csjgl)’ cijgl))- Thus, A;(T(m, 1) = A,(F)(n, r) and obviously, A,(r-1(n, r) = max 4,%)(n, 1),
where the maximum is taken over all matrices of rank r — 1 and r, respectively. If we similarly reduce the
rank of H,(T) to the minimum possible value, we can prove the lemma.

Proof of Lemma 2. Since Ag(n, r) and Az (N —n,r)are, respectively, the numbers of LD triples of
columns in Hy(T) and Hl(vrzn, we have Ag(n, 1) + A3 (N —n,r)=S; — s,, where S; is the number of words of weight

3 in H-codes, s; is the number of LD triples containing columns of both matrices. We have S; = (2T —1) (2T —
2)/6 [9]. To determine s; we assume that we have written out all possible pairs of columns (ci, ¢i), ci€ Hn(r),
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cj¢ (r) . their numberisn(N —n) =n(@F —1 =n). Then, to obtain an LD triple, by adding a single column to
-n

fixed pair (cj, cj) (e.g., cJ-EHn(r)), we will eliminate pair (c]-, €j) from consideration each time. Therefore,
85 —nlds—1 n)/2, and, after some manipulations, we obtain the statement of the lemma.

Proof of Lemma 3. For n = 0 the assertion of the lemma is valid, since in EH-code the number of LD
quadruples is equal to (=F,(0, r)). Let us assume that the assertion is valid forn=i—1 > 0. We transfer
column cj from matrix (rziﬂ to Hﬁfz and consider the new matrices Hl(\Ir—)x and H;(¥). We will show that

F (i, r)=F.(i—1, r)+Fs(i—1, r—1), (Al)

where F3(n, r) = (Cn3 + C%EI_n)/(2r —3) (see Lemma 2). Obviously, Fy(i, r) = F; (i—1, r) + A, where A is
the number of LD quadruples containing column cj and three columns that belong simultaneously to H;(T) or

(rz__ Adding column cj to matrices Hi(r) and (r)., we obtain that A is equal to the overall number of LD
triples of columns that appear entirely in H(f;i) or_lH‘;:})_i in H code of length 2r-1 =1, i.e., A=F3 (i—1,
r—1). Now, after transforming (Al), we olbtain the assertion of the lemma forn =1.

Proof of Lemma 4. If n > 2T, then the rank of Hn(r) is always r and the validity of the lemma is ob-
vious. Now let n = 2T-2. The value of A;(n, r) is equal to the number of LD quadruples of columns in Hy =
Assume that matrix Hn(r) of minimum rank r' contains A4(r')(n, r) LD quadruples of columns, where the
minimum is taken over all matrices of rank r'. We transform H,(T) in such a way that it contains a zero row.
The number of LD quadruples of columns remains unaltered. We replace the zero row by a nonzero one that
does not appear in the linear span of Hp(T). In the new matrix of rank r' + 1 the number of LD quadruples of
columns A,(r'*)(n, r) is obviously unaltered. Consequently, min A" )@, r) = min A;(T")(n, ). By
similarly increasing the rank of Hp(Y) to the maximum rank r, we can prove the lemma.

Proof of Lemma 5. To obtain analytic bounds for K,,(n, r), we consider functional (9) in two cases: T)
only with constraint (10) and (12); II) only with constraint (10). In casel the basis unknowns are fixed: xm-2,
Xm-1» Xm- In case II the basis unknowns are taken to be xy, xy+. For both cases, in the expression of the
target function A4(n, r) in terms of free unknowns, the coefficients for them are nonnegative. Consequently,
by setting the free unknowns equal to zero [11], we obtain values A, D@, 1) (in case I), and A;ID(n, 1) (in
case II) that bound the optimal solution from below. '
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