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Abstract. The topic of the paper are developments of 𝑛-dimensional Coxeter
polyhedra. We show that the surface of such polyhedron admits a canonical
cutting such that each piece can be covered by a Coxeter (𝑛− 1)-dimensional
domain.
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1. Introduction. Coxeter groups

1.1. Coxeter groups in spaces of constant curvature

Consider a Riemannian space𝕄𝑛 of constant curvature, i.e., a Euclidean space ℝ𝑛,
a sphere 𝕊𝑛−1, or a Lobachevsky space 𝕃𝑛 (on geometry of such spaces, see [1]).

Let 𝐶 ⊂ 𝕄𝑛 be an intersection of a finite or locally finite collection of half-
spaces1.

Consider reflections of 𝐶 with respect to all (𝑛− 1)-dimensional faces. Next,
consider “new polyhedra” and their reflections with respect to their faces, etc. The
domain 𝐶 is said to be a Coxeter domain if we get a tiling of the whole space in
this way. The group of isometries generated by all such reflections is said to be a
reflection group or a Coxeter group (in a narrow sense, see below). We say that a
Coxeter group is cocompact if the initial domain 𝐶 is compact. In this case, we say
that 𝐶 is a Coxeter polyhedron.
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1A natural example with an infinite collection of half-spaces is given in Figure 9.
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Evidently, if 𝐶 is a Coxeter domain, then the dihedral angles between two
neighboring faces of 𝐶 are of the form 𝜋

𝑚 , where 𝑚 ⩾ 2 is an integer. In particular,
they are acute, i.e., ⩽ 90∘.

Denote the faces of the polyhedron 𝐶 by 𝐹1, . . . , 𝐹𝑝, denote by 𝑠1, . . . , 𝑠𝑝
the corresponding reflections. Denote by 𝜋/𝑚𝑖𝑗 the angles between adjacent faces.
Evidently,

𝑠2𝑗 = 1, (𝑠𝑖𝑠𝑗)
𝑚𝑖𝑗 = 1. (1)

1.2. More terminology

Consider a Coxeter tiling of 𝕄𝑛. Below a “chamber” is any (𝑛-dimensional) poly-
hedron of the tiling. A “face” or “facet” is an (𝑛 − 1)-dimensional face of some
chamber; a hyperedge is an (𝑛 − 2)-dimensional edge; a stratum is an arbitrary
stratum of codim ⩾ 1 of some chamber; a vertex is a vertex.

Also “mirrors” are hyperplanes of reflections. They divide the space 𝕄𝑛 into
chambers. The group 𝐺 acts on the set of chambers simply transitively. We denote
the reflection with respect to a mirror 𝑌 by 𝑠𝑌 .

Each facet is contained in a unique mirror.

1.3. General Coxeter groups

Take a symmetric 𝑝× 𝑝 matrix 𝑀 with positive integer elements, set 𝑚𝑗𝑗 = 1; we
admit 𝑚𝑖𝑗 =∞. An abstract Coxeter group is a group with generators 𝑠1, . . . , 𝑠𝑛
and relations (1).

For such a group we draw a graph (we use the term “Coxeter scheme”) in
the following way. Vertices of the graph correspond to generators. We connect 𝑖
and 𝑗th vertices by (𝑚𝑖𝑗 − 2) edges. In fact, we draw a multiple edge if 𝑘 ⩽ 6,
otherwise we write a number 𝑘 on the edge.

This rule also assign a graph to each Coxeter polyhedron.

1.4. Spherical Coxeter groups

By definition, a spherical Coxeter group, say Γ, acts by orthogonal transformations
of the Euclidean space ℝ𝑛+1. A group Γ is said to be reducible if there exists a
proper Γ-invariant subspace in ℝ𝑛+1. Evidently, the orthogonal complement to a
Γ-invariant subspace is Γ-invariant.

The classification of irreducible Coxeter groups is well known2, see Bourbaki
[2]. The list consists of Weyl groups of semisimple Lie algebras (= Killing’s list of
root systems) + dihedral groups + groups of symmetries of the icosahedron and
4-dimensional hypericosahedron (the table is given Section 3).

This also gives a classification of reducible groups.

2Actually, these objects were known to Ludwig Schläfli and Wilhelm Killing in XIX century. In

1924, Hermann Weyl identified these groups as reflection groups, in 1934 Harold Coxeter gave a
formal classification and also classified Euclidean groups.
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1.5. Coxeter equipments

Next, consider an arbitrary Coxeter polyhedron in ℝ𝑛, 𝕊𝑛, or 𝕃𝑛. Consider a
stratum 𝐻 of codimension 𝑘, it is an intersection of 𝑘 faces, 𝐻 = 𝐹𝑖1 ∩ ⋅ ⋅ ⋅ ∩ 𝐹𝑖𝑘 .
The reflections with respect to the faces 𝐹𝑖1 , . . . , 𝐹𝑖𝑘 generate a Coxeter group,
denote it by Γ(𝐻) = Γ(𝐹𝑖1 , . . . , 𝐹𝑖𝑘).

This group is a spherical Coxeter group. Namely, for 𝑥 ∈ 𝐻 consider the
orthocomplement in the tangent space at 𝑥 to the stratum 𝐻 and the sphere in
this orthocomplement. Then Γ(𝐻) is a reflection group of this Euclidean sphere.

If 𝐻 ⊂ 𝐻 ′, then we have the tautological embedding

𝜄𝐻′,𝐻 : Γ(𝐻 ′)→ Γ(𝐻).

If 𝐻 ⊂ 𝐻 ′ ⊂ 𝐻 ′′, then
𝜄𝐻′′,𝐻 = 𝜄𝐻′,𝐻𝜄𝐻′′,𝐻′ .

Such a collection of groups and homomorphisms is said to be a Coxeter equipment.

1.6. Cocompact Euclidean Coxeter groups

Here classification is also simple and well known, see Bourbaki [2]. Any such group
Γ contains a normal subgroup ℤ𝑛 acting by translations and Γ/ℤ𝑛 is a spherical
Coxeter group.

1.7. Coxeter groups in Lobachevsky spaces

We report from Vinberg [3], Vinberg, Shvartsman, [4]. The situation differs dras-
tically.

a) Coxeter polygons on Lobachevsky plane are arbitrary 𝑘-gons with angles of
the form 𝜋/𝑚𝑗. The sum of exterior angles must satisfy

∑
(𝜋−𝜋/𝑚𝑗) > 2𝜋. If

𝑘 > 5 this condition holds automatically. For 𝑘 = 4 this excludes rectangles,
also few triangles are forbidden (in fact, spherical and Euclidean triangles).
A Coxeter 𝑘-gon with prescribed angles depends on (𝑘 − 3) parameters.

b) In dimensions 𝑛 > 2 Coxeter polyhedra are rigid. There are many Coxeter
groups in spaces of small dimensions (𝑛 = 3, 4, 5), but for 𝑛 ⩾ 30 there is
no Coxeter group with compact fundamental polyhedron at all. For 𝑛 > 996
there is no Coxeter group of finite covolume (Prokhorov, Khovanskii, 1986, see
[5]); the maximal dimensions of known examples are: 8 for compact polyhedra
(Bugaenko), and 21 for a polyhedron of finite volume (Borcherds). For 𝑛 = 3
there is a nice Andreev description [6] of all Coxeter polyhedra, it is given in
the following two subsections.

1.8. Acute angle polyhedra in 𝕃
3

First, we recall the famous (and highly non-trivial) Steinitz Theorem (see, e.g.,
[7]) about possible combinatorial structure of convex polyhedra in ℝ3.

Since the boundary of a polyhedron is a topological sphere 𝑆2, edges form a
connected graph on the sphere, it divides the sphere into polygonal domain (we
use the term ‘face’ for such a domain).
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There are the following evident properties of the graph:

– each edge is contained in 2 faces;
– each face has ⩾ 3 vertices;
– the intersection of any pair of faces can by the empty set, a vertex, or an
edge.

Theorem (Ernst Steinitz). Any graph on the sphere 𝑆2 satisfying the above condi-
tions can be realized as a graph of edges of a convex polyhedron.

Our next question is the existence of a convex polyhedron in 𝕃3 of a given
combinatorial structure where each dihedral (i.e., between two adjacent faces)
angle is a given acute angle (‘acute’ or also ‘non-obtuse’ means ⩽ 𝜋/2) There are
the following a priori properties of such polyhedra:

1) All spatial angles are simplicial, i.e., each vertex of the graph is contained in
3 edges. The angles 𝜑1, 𝜑2, 𝜑3 in a given vertex satisfy

𝜑1 + 𝜑2 + 𝜑3 > 2𝜋. (2)

2) At each vertex, the set of all dihedral angles determines all other angles in
each face at this vertex (by the spherical cosine theorem). A face must be a
Lobachevsky polygon, i.e., the sum of its exterior angles must be ⩾ 2𝜋. Since
all dihedral angles are acute, angles in each face are also acute. Therefore our
conditions forbid only rectangles and some triangles.

3) The following restriction is non-obvious: We say that a 𝑘-prismatic element
of a convex polyhedron 𝐶 is a sequence

𝐹1, 𝐹2, . . . , 𝐹𝑘, 𝐹𝑘+1 := 𝐹1

of faces such that 𝐹𝑘 and 𝐹𝑘+1 have a common edge, and all triple intersec-
tions 𝐹𝑖 ∩ 𝐹𝑗 ∩ 𝐹𝑘 are empty.

Lemma (Andreev). For any prismatic element in an acute angle polyhedron, the
sum of exterior dihedral angles is > 2𝜋.

Theorem (Andreev). Consider a Steinitz-admissible 3-valent spherical graph with
> 4 vertices3. Prescribe a dihedral acute angle to each edge in such a way that:

– the inequality (2) in each vertex is satisfied;
– all 3- and 4-prismatic elements satisfy the previous lemma;
– we forbid the configuration given in Figure 1.

Under these assumptions, there exists a unique convex polyhedron ⊂ 𝕃3 of
the given combinatorial structure and with the given acute angles.

The uniqueness is a rigidity theorem of Cauchy type (see [8],[7]). The exis-
tence is a deep unusual fact; it is a special case of a theorem of Aleksandrov type
[8] obtained by Rivin, see [9], [10].

For some applications of the Andreev and Rivin Theorems to elementary
geometry, see Thurston [11], Rivin [12].

3Simplices are exceptions. However, their examination is simple, Lanner, 1950, see, e.g., [4].
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Figure 1. The following configuration with dihedral angles = 𝜋/2 on
thick edges is forbidden in the Andreev Theorem. In this case, we would
get a quadrangle with right angles, but such quadrangles do not exist
in Lobachevsky space.

1.9. Andreev polyhedra

Andreev’s Theorem provides us a description of all Coxeter polyhedra in 𝕃3. Now
all angles have the form 𝜋/𝑚𝑖𝑗 with integer 𝑚𝑖𝑗 > 1. We simply write the labels
𝑚𝑖𝑗 on the corresponding edges.

Below the term “Andreev polyhedron” will mean a compact Coxeter polyhe-
dron in 𝕃3.

All possible pictures at vertices of Andreev polyhedra are given in Figure 2.
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Figure 2. We draw all possible types of vertices of an Andreev poly-
hedron. We present the labels 𝑚𝑗 on the edges and flat angles in faces.

Here 𝜓 = arctan
√
2 and 𝛼, 𝛽, 𝛾 are explicit angles with 𝛼+𝛽+𝛾 = 𝜋/2.

Evaluations of all these angles are given in figures in Section 2.
We draw a thick line iff the label is even.

1.10. Results of the paper

Consider a convex polyhedron 𝐶 in a space 𝕄𝑛 of constant curvature. Following
Alexandrov [8], we regard the boundary Ξ = ∂𝐶 of 𝐶 as an (𝑛 − 1)-dimensional
manifold of constant curvature with singularities. In the case 𝑛 = 3, we get a
two-dimensional surface with conic singularities of negative curvature (see, e.g.,
Figure 2, in all the cases the sum of angles at a singularity is < 2𝜋).

Now, cut Ξ along hyperedges with even labels (i.e., hyperedges with dihedral
angles 𝜋/2𝑘). Let Ω1,Ω2, . . . be the connected pieces of the cut surface.

Theorem 1. The universal covering Ω∼𝑗 of each Ω𝑗 is a Coxeter domain in 𝕄
𝑛−1.

Proof for Andreev polyhedra. We simply look at Figure 2. In all the cases, angles
between thick edges are Coxeter. □
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We also describe tiling of mirrors, groups of transformations of mirrors in-
duced by the initial Coxeter group (Theorem 3) and the Coxeter equipments of
Ω∼𝑗 (Theorem 4).

The addendum to the paper contains two examples of ‘calculation’ of devel-
opments, for an Andreev prism ⊂ 𝕃3 and for a Coxeter simplex ⊂ 𝕃4. The proof of
the Andreev Theorem is nonconstructive. In various explicit cases, our argumen-
tation allows to construct an Andreev polyhedron from the a priori information
about its development. Our example illustrates this phenomenon.

On the other hand, there arises a natural problem of elementary geometry:

–Which Andreev polyhedra are partial developments of 4-dimensional Coxeter
polyhedra? Is it possible to describe all 3-dimensional polyhedra that are faces of
4-dimensional Coxeter polyhedra?

Our main argument (Rolling Lemma 1) is very simple, it is valid in a wider
generality, we briefly discuss such possibilities in the next two subsections.

1.11. Polyhedral complexes and projective Coxeter polyhedra

Theorem (Tits). Any Coxeter group can be realized as a group of transformations
of an open convex subset of a real projective space ℝℙ𝑛 which is generated by a
collection of reflections 𝑠1, . . . , 𝑠𝑝 with respect to hyperplanes

4 intersecting the
subset. The closure of a chamber is a convex polyhedron.

See also Vinberg [13].

1.12. A more general view

Nikolas Bourbaki5 proposed a way to build topological spaces from Coxeter groups.
M. Davis used this approach in numerous papers (see, e.g., [15], [16]) and the book
[17]; in particular he constructed nice examples/counterexamples in topology.

Also it is possible to consider arbitrary Riemannian manifolds equipped with
a discrete isometric action of a Coxeter group such that the set of fixed points of
each generator is a (totally geodesic) hypersurface, and such that the generators
act as reflections with respect to these submanifolds. In this context, a chamber
itself can be a topologically non-trivial object, see [17], [18].

2. Rolling of chamber

In this section, 𝕄𝑛 is a space 𝕃𝑛, 𝕊𝑛, ℝ𝑛 of constant curvature equipped with a
Coxeter group Γ or, more generally, any space described in Subsection 1.11.

Fix a mirror 𝕏𝑛−1 in 𝕄𝑛. Consider intersections of 𝕏𝑛−1 with other mirrors
𝑌𝛼. The set 𝕏

𝑛−1 ∖∪𝑌𝛼 is a disjoint union of open facets. Thus, we get a tiling of
𝕏𝑛−1 by facets.

Our aim is to describe this tiling in the terms of the geometry of a chamber.

4A reflection is determined by a fixed hyperplane and a reflected transversal line.
5Apparently, he used the work by Jacque Tits [14]; the latter text is inaccessible for the authors.



Rolling of Coxeter Polyhedra Along Mirrors 73

2.1. Rolling Lemma

Lemma 1. Let 𝐼 ⊂ 𝕏𝑛−1 be an (𝑛 − 2)-dimensional hyper-edge of our tiling. Let
𝐹 , 𝐻 ⊂ 𝕏

𝑛−1 be the facets adjacent to 𝐼.

a) If the label 𝑚𝐼 of 𝐼 is even, then 𝐼 is contained in a certain mirror 𝑌𝛼
orthogonal to 𝑋. In particular 𝑠𝑌𝛼𝐹 = 𝐻.

b) Let the label 𝑚 be odd. Let 𝐶 be a chamber adjacent to the facet 𝐹 . Let 𝐺 be
another facet of 𝐶 adjacent to the same hyper-edge 𝐼. Then 𝐺 is isometric to
𝐻. More precisely, there is 𝛾 ∈ Γ fixing all the points of 𝐼 such that 𝛾𝐺 = 𝐻.

The Proof is given in Figure 3.

𝐹 𝐻

𝐶

𝐼

𝑌𝛼

𝐹

𝐺

𝐶

𝐻

Figure 3. Even and odd labels. Proof of the Rolling Lemma.

2.2. Algorithm generating the tiling

Let 𝐶 be a chamber adjacent to a facet 𝐹 ⊂ 𝕏𝑛−1. Consider an hyper-edge 𝐼 of
𝐶 lying in 𝕏𝑛−1.

Operation 1. Let the hyper-edge 𝐼 be odd. Consider a facet 𝐺 ∕= 𝐹 of 𝐶 adjacent
to 𝐼, consider the corresponding 𝛾 from Lemma 1 and draw 𝛾𝐺 on 𝕏

𝑛−1.

Operation 2. If the hyper-edge 𝐼 is even, then we reflect 𝐹 in 𝕏𝑛−1 with respect
to 𝐼.

We perform all the possible finite sequences of such operations. By the Rolling
Lemma, we get the whole tiling of the mirror 𝕏𝑛−1.

Remark. Let 𝕄𝑛 = ℝ
3, 𝕊3, 𝕃3 be a usual 3-dimensional space of constant curva-

ture. Operation 1 corresponds to rolling of a polyhedron 𝐶 along the hyperplane
𝕏𝑛−1 ∼𝕄2 over the edge 𝐼. □

2.3. The group preserving the mirror 𝕏𝒏−1

For a mirror 𝕏𝑛−1, consider the group Γ∗ = Γ∗(𝕏𝑛−1) of all the isometries of 𝕏𝑛−1

induced by elements of Γ preserving 𝕏
𝑛−1.

If 𝛾 ∈ Γ preserves 𝕏𝑛−1, then 𝑠𝕏𝑛−1𝛾 also preserves 𝕏𝑛−1 and agrees with 𝛾
on 𝕏𝑛−1. Thus each element of Γ∗ is induced by two different elements of Γ.

Observation 1. Let 𝐹1, 𝐹2 ⊂ 𝕏𝑛−1 be equivalent facets. There is a unique element
𝜇 ∈ Γ∗(𝕏𝑛−1) such that 𝜇𝐹1 = 𝐹2.



74 D.V. Alekseevski, P.W. Michor and Yu.A. Neretin

A B

CD

A B

CD

MIROR

trace of miror

trace of miror

Figure 4. Example of rolling: the reflection group A3 in ℝ3. The mir-
rors are planes passing through opposite edges of the cube. There are
24 Weyl chambers, which are simplicial cones with dihedral angles 𝜋/3,
𝜋/3, 𝜋/2 (we draw them as simplices). Rolling of a Weyl chamber by
the mirror 𝐴𝐵𝐶𝐷 produces a half-plane.
We can also regard A3 as a reflection group on the 2-dimensional

sphere 𝕊2.

2.4. Reflections in mirrors and the new chamber

Consider all the mirrors 𝑍𝛼 ⊂ 𝕄𝑛 orthogonal to our mirror 𝕏𝑛−1. The corre-
sponding reflections 𝑠𝑍𝛼 generate a reflection group on 𝕏𝑛−1; denote this group
by Δ = Δ(𝕏𝑛−1).

Observation 2. Δ is a normal subgroup in Γ∗(𝕏𝑛−1).

Indeed, if 𝑠 is a reflection, then 𝛾−1𝑠𝛾 is a reflection. □
Consider a chamber 𝐶 of 𝕄𝑛 lying on 𝕏𝑛−1 (i.e., having a facet in 𝕏𝑛−1)

and consider all possible sequences of admissible rolling, i.e., we allow Operation
1 of Algorithm 2.2 and we forbid Operation 2. Denote by 𝐵 ⊂ 𝕏𝑛−1 the domain
obtained by rolling, tiled by the traces of facets of 𝐶 making contact with 𝕏𝑛−1

during rolling.

Theorem 2. 𝐵 is a chamber of the reflection group Δ(𝕏𝑛−1).

Proof. We can not roll further if and only if we meet a “vertical” mirror. □
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Figure 5. Example of rolling: the icosahedral group H3. It is generated
by reflections with respect to bisectors of segments connecting midpoints
of opposite edges of the icosahedron. The bisectors separate ℝ3 into 120
simplicial cones with dihedral angles 𝜋/2, 𝜋/3, 𝜋/5. In the figure the
simplicial cones are cut by the surface of the icosahedron.
We show an admissible rolling of a Weyl chamber along a mirror. The

final chamber in the mirror is a quadrant.

Examples of rolling. Some examples of rolling corresponding to the usual
spherical Coxeter groups
A3 : H3: H4:

Euclidean group Ã4: and hyperbolic group

are given in figures 4–9. In these figures, we also evaluate the new chamber 𝐵.

Lemma 2. Each (𝑛− 3)-dimensional stratum of our tiling of 𝕏𝑛−1 is contained in
a mirror of the group Δ(𝕏𝑛−1).

Proof. This stratum is equipped with a finite 3-dimensional Coxeter group (i.e.,
A3, BC3, H3, A1⊕G𝑚2 , A1⊕A1⊕A1, see the table below). For each mirror of such
a group there exists an orthogonal mirror. □
2.5. Rolling scheme

Denote by Ξ(𝐶) the surface of the initial chamber 𝐶, let Ξ′(𝐶) be the surface with
all even edges deleted.
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𝐴

𝐶

𝐵

𝐷

𝜋/3 𝜋/3

𝜋/3𝜋/3

𝜋/2
𝜋/2

𝐴 𝐵 𝐴 𝐵 𝐴

𝐶 𝐷 𝐶 𝐷

Figure 6. Example of rolling: the (affine) Euclidean reflection group

𝐴4 in ℝ3. A chamber is the simplex 𝐴𝐵𝐶𝐷. Rolling through 𝐴𝐵 and
𝐶𝐷 is forbidden. Deleting these edges from the surface of the simplex,
we get a non-simply connected surface. Hence, the process of rolling
is infinite. The arrow shows the deck transformation induced by the
generator of the fundamental group.

𝐴 𝐵

𝐶

𝐷

𝜋/5

𝜋/3

𝜋/3

𝐴 𝐵 𝐷 𝐵

𝐴

𝐶

𝜋/5𝜋/3

Figure 7. Example of rolling: the hypericosahedral group H4 acting
on the 3-dimensional sphere 𝕊3. The chamber is the spherical simplex
drawn in the figure (we omit all labels 𝜋/2 on edges).
The angle = 𝜋 on the development at 𝐷 was evaluated in Figure 4.

The right angle at 𝐶 was evaluated in figure 5.
The spherical triangle 𝐴𝐵𝐶 is present on the circumscribed sphere in

the next figure (in spite of the absence of the sphere itself).

Lemma 3. Ξ′ does not contain (𝑛− 3)-dimensional strata of 𝐶.

This is rephrasing of Lemma 2. □
Consider the graph, whose vertices are the facets of Ξ′; vertices are connected

by an edge if the corresponding facets are neighbors in Ξ′. We call this graph the
Rolling scheme. In fact, the Rolling scheme is the Coxeter scheme 1.3 with removed
even (and infinite) edges.

Proposition 1. The surface Ξ′ is homotopically equivalent to the Rolling scheme.

2.6. Proof of Proposition 1

Let 𝑈 be a convex polyhedron in ℝ𝑛, denote by Ξ its surface. Choose a point 𝐴𝑗

in interior of each (𝑛− 1)-dimensional face. Choose a point 𝐵𝑘 in interior of each
(𝑙 − 2)-dimensional boundary stratum (hyperedge) of 𝑈 .

Draw the segment [𝐴𝑗 , 𝐵𝑘] iff the face contains the hyperedge. Thus we get
a graph 𝑇 on the surface of the polyhedron 𝐶 whose vertices are enumerated by
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Figure 8. Example of rolling: the hypericosahedral group H4 acting in
ℝ4. The figure presents the tiling of a mirror, i.e., of ℝ3, by simplicial
cones. We draw intersections of simplicial cones with the boundary of
the icosahedron. Consider 3 types of ‘axes’ of the icosahedron:
A) segments connecting midpoints of opposite edges;
B) segments connecting central points of opposite faces;
C) diagonals connecting opposite vertices.
Consider bisectors of all such segments. Type A bisectors are mirrors.

They divide ℝ3 into 120 simplicial chambers. Six chambers are presented
in the front face of the icosahedron.
Adding bisectors of type B and C we obtain a partition of ℝ3 into

480 simplicial cones. This is the desired tiling.
In this figure, we present subdivisions of two chambers. A proof of

this picture is contained in Figure 7

faces of 𝑈 and edges are enumerated by hyperedges of 𝑈 . Denote by Ξ▽ the surface
of the polyhedron 𝑆 without boundary strata of dimension (𝑛− 3).

Lemma 4. The graph 𝑇 is a deformation retract of Ξ▽. Moreover, it is possible to
choose a homotopy that preserves all faces and all hyperedges.

Proof. See Figure 10. □

Proposition 1 follows from Lemma 4. □
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𝐵
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𝜋/3 𝜋/5

𝜋/3𝜋/3

𝜋/2
𝜋/2

𝐵

𝐶

𝐵

𝐶

𝐵

𝐶

𝐵

𝐶

𝐷

𝐴

𝐷

𝐴

𝐷

𝐴

Figure 9. Example. A Coxeter simplex in 𝕃3. Its development is an
infinite ‘strip’ ⊂ 𝕃

2 bounded by two infinite polygonal curves, interior
angles between segments of polygonal curves are 𝜋/2 and 𝜋.

a)

𝐴𝑗

𝐵𝑘𝐵𝑚

b)

𝐴𝑗

𝐵𝑘

𝑃1

𝑃2

Figure 10. Proof of Lemma 4.
a) 𝑛 = 3. Graph on a surface of a 3-dimensional polytop and a re-

traction. Recall that we have removed vertices.
b) 𝑛 = 4. A piece of a 3-face of 4-dimensional polyhedron. Recall

that 1-dimensional edges are removed. Inside a simplex 𝑃1𝑃2𝐴𝑗𝐵𝑘 the
retraction is the projection to 𝐴𝑗𝐵𝑘 with center on the segment 𝑃1𝑃2.
Note that all segments connecting 𝐴𝑗𝐵𝑘 and 𝑃1𝑃2 are pairwise non-
intersecting.

2.7. Action of the fundamental group on mirror

Let 𝐹 be a facet in 𝕏𝑛−1, let 𝐶 be a chamber of 𝕄𝑛 lying on 𝐹 , and let 𝐵 ⊃ 𝐹 be
the chamber of the reflection group Δ(𝕏𝑛−1) obtained by rolling 𝐶, as described
in Subsection 2.4.

Let Ω be a connected component of Ξ′ containing the facet 𝐹 .

Let 𝐹1, . . . , 𝐹𝑟 be facets ⊂ Ω. We can think that each facet has its own color;
thus the mirror 𝕏𝑛−1 is painted in 𝑟 colors. Moreover, for each facet 𝐻 ∈ 𝕏𝑛−1

there is a canonical bijection (‘parametrization’) from the corresponding 𝐹𝑖 ⊂ Ω
to 𝐻 . We say that a bijection 𝕏𝑛−1 → 𝕏𝑛−1 (or 𝐵 → 𝐵) is an isomorphism if it
preserves the coloring and commutes with the parameterizations.
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Figure 11. A graph of vicinity of (𝑛−1)-dimensional facets in the new
(𝑛− 1)-dimensional chamber 𝐵 is a tree.

Proposition 2.
a) The chamber 𝐵 ⊂ 𝕏𝑛−1 is the universal covering of Ω.
b) Any deck transformations of 𝐵 is an isomorphism 𝐵 → 𝐵 and admits a
unique extension to an isomorphism of the mirror 𝕏𝑛−1.

c) Each isomorphism 𝜇 ∈ Γ∗(𝕏𝑛−1) preserving 𝐵 is induced by a deck transfor-
mation.

Proof. a) Denote by Ω∼ the universal covering of Ω. The chamber 𝐵 was con-
structed as the image of Ω∼. Moreover, the map Ω∼ → 𝐶 is locally bijective. On
the other hand, a chamber on a simply connected manifold is simply connected
see (see [18], 2.14); therefore 𝐵 ≃ Ω∼.

b) A deck transformation 𝐵 → 𝐵 is an isometry by the rolling rules. Let a
deck transformation send a facet 𝐹 to 𝐹 ′. Then the facets 𝐹 , 𝐹 ′ are Γ-equivalent,
and the corresponding map in Γ is an isometry of 𝕏𝑛−1.

c) Let 𝐹 ⊂ 𝕏𝑛−1 be a facet. We take the deck transformation sending 𝐹 to 𝐹 ′.
□

2.8. Description of Γ∗(𝕏𝒏−1)

Theorem 3. The group Γ∗(𝕏𝑛−1) is a semidirect product Deck(𝐵)⋉Δ(𝕏𝑛−1).

Proof. Indeed, the group Δ(𝕏𝑛−1) acts simply transitively on the set of chambers
in 𝕏𝑛−1; the group Deck(𝐵) acts simply transitively on the set of facets of a given
type in the chamber 𝐵. □

3. Reduction of equipment

We keep the notation of the previous section. Our aim is to describe the Coxeter
equipment of the new chamber 𝐵.

3.1. Combinatorial structure of the tiling of the chamber

Consider a graph 𝔉 whose vertices are enumerated by (𝑛 − 1)-facets lying in 𝐵,
two vertices are connected by an edge if they have a common (𝑛− 2)-dimensional
stratum (a former hyperedge in 𝕄

𝑛).
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H

𝑉𝛼

𝐷𝐻

Figure 12. Subdivision of the cone normal to a stratum.

Table. Reduction of spherical Coxeter schemes

A𝑛 : �→ A𝑛−2 ⊕ ℝ

BC𝑛 : �→ A1 ⊕ D𝑛−2 or BC𝑛−1

D𝑛 : �→ A1 ⊕ D𝑛−2

E6 : �→ A5

E7 : �→ D6

E8 : �→ E7

F4 : �→ BC3 or BC3

G
(𝑚)
2 :

𝑚
�→
{

A1 or A1 if 𝑚 is even

R, if 𝑚 is odd

H3 : �→ A1 ⊕ A1

H4 : �→ H3

Observation 3. 𝔉 is a tree.

Proof. Indeed, the universal covering of a graph is a tree. □

If the initial rolling scheme is a tree, then we get the same tree. If the rolling
scheme contains a cycle, then we get an infinite tree (examples: Figures 6, 9, the
rolling schemes contain 1 cycle).
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3.2. New equipment

All the strata of 𝐵 of dimension < (𝑛 − 2) are contained in the boundary of 𝐵.
These strata of 𝐵 have their own equipments (in the sense of the Coxeter manifold
𝕏𝑛−1).

For a boundary stratum 𝐻 of 𝐵 and some point 𝑦 ∈ 𝐻 , denote by 𝑁𝐻 ⊂
𝑇𝑦𝕏

𝑛−1 the normal subspace to 𝐻 ⊂ 𝕏𝑛−1. The normal cone 𝐷𝐻 ⊂ 𝑁𝐻 is the
cone consisting of vectors looking inside 𝐵. Some of (𝑛 − 2)-dimensional strata
(former hyperedges) 𝑉𝛼 contain 𝐻 and thus we get the subdivision of the normal
cone 𝐷𝐻 by tangent spaces to (𝑛− 2)-dimensional strata, see Figure 12.

We wish to describe the equipment of 𝐵 ⊂ 𝕏𝑛−1 and the subdivisions of
normal cones 𝐷𝐻 .

3.3. Finite Coxeter groups

Let Γ be a finite Coxeter group acting in ℝ𝑛. Let 𝕏𝑛−1
𝑗 be the mirrors, let 𝑣𝑗 be

the vectors orthogonal to the corresponding mirrors. For a vector 𝑣𝑘 denote by
𝑅 = 𝑅𝑘 the set of all 𝑖 such that 𝑣𝑖 is orthogonal to 𝑣𝑘.

The reflection group Δ(𝕏𝑛−1
𝑘 ) is generated by reflections with respect to

mirrors 𝕏𝑛−1
𝑖 , where 𝑖 ranges in 𝑅.

A. Let the Coxeter group Γ be irreducible. We come to the list given in the
table. Some comments:

1) G
(𝑚)
2 denotes the group of symmetries of a regular plane 𝑚-gon, R denotes

the one-element group acting in ℝ1; all other notations are standard, see [2].

2) In some cases, there are two Γ-nonequivalent mirrors, then we write both
possible variants.

The rolling scheme (see 2.5) is the Coxeter scheme without even edges.

Example. a) For the Weyl chamber E8, its complete development is the Weyl
chamber E7.

b) For the Weyl chamber BC𝑛, one of the facets is the Weyl chamber BC𝑛−1.
All the remaining facets are connected by the rolling graph; the development is
the Weyl chamber A1 ⊕ D𝑛−2.

Proof of the Table is a case-by-case examination of root systems; for the
groups H3 and H4 the proofs are given in Figures 5, 7, 8 (on the other hand the
reader can find a nice coordinate description of the hypericosahedron in [2].

B. If the Coxeter group Γ be reducible,

Γ = Γ1 × Γ2 × ⋅ ⋅ ⋅
then its Weyl chamber is the product of the Weyl chambers for the corresponding
chambers 𝐶 = 𝐶1×𝐶2×⋅ ⋅ ⋅ . The Coxeter scheme of Γ is the union of the Coxeter
schemes of Γ𝑗, hence the rolling graph of Γ is the union of the rolling graphs for
all the Γ𝑗 . Now we reduce one of factors 𝐶𝑗 �→ 𝐵𝑗 according to the rules given in
the Table, and we get a Weyl chamber 𝐵𝑗 ×

∏
𝑖∕=𝑗 𝐶𝑖.
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a) 2 2

2𝑘 + 1

b)
𝜓 4

2 3

c)
𝜓2 2

3 3

d)

2

2

3

5

Figure 13. Subdivisions of a Coxeter polygon on the Lobachevsky
plane (we also draw the labels on lines). There are only 4 possible vari-
ants of meetings between lines of a subdivision and the boundary. Here
tan𝜓 =

√
2; for case d) see Figure 5.

In cases c) and d), the corresponding trihedral angle of the Andreev
polytope is covered by our bended polygon.

3.4. Reduction of equipment

Let 𝐻 be an (𝑛 − 𝑘)-dimensional stratum of 𝐶 (𝑘 ⩾ 3), let Γ𝐻(𝐶) be the cor-
responding Coxeter group, and let 𝔑𝐻(𝐶) be its chamber in the normal cone.
Denote by Γ𝐻(𝐵) the corresponding group of the equipment of 𝐵 and by 𝔑𝐻(𝐵)
the corresponding chamber in the normal cone.

Theorem 4. The group Γ𝐻(𝐵) is obtained by reduction of the group Γ𝐻(𝐵) and
the subdivision of 𝔑𝐻(𝐵) is a partial development of the Weyl chamber 𝔑𝐻(𝐶)

Proof. Is obvious. We consider rolling of 𝐶 with fixed hyperedge 𝐻 . The sub-
division of the cone 𝐷𝐻 is obtained by rolling with respect to the hyperedges
containing 𝐻 . □

4. Addendum. Elementary geometry of Andreev polyhedra

4.1. Rolling of Andreev polyhedra and billiard trajectories in
Coxeter polygons

Firstly, our construction gives some information about developments of Andreev
polyhedra.

Let us roll an Andreev polyhedron ⊂ 𝕃
3 along a mirror ≃ 𝕃

2. In this case,
the chamber 𝐵 of a mirror is a convex plane Coxeter domain. By construction, 𝐵
is subdivided into several convex polygons by a certain family of lines.

Proposition 3. All the possible variants of meetings of lines of the subdivision and
the boundary of 𝐵 are presented in Figure 13.

Proof. We watch all the possible variants of reduction of 3-dimensional finite Cox-
eter groups to a mirror. The parts a), b), c), d) of Figure 13 correspond to G2𝑘+12 ,
BC3, A3 = D3, H3, respectively. □

Observation 4. The surface of an Andreev polyhedron is glued from several bended
Coxeter polygons; the rules of bending and the rules of gluing are very rigid.
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𝜋/3

𝜋/3

𝜋/3

𝜋/3

𝐴

𝐶

𝐷

𝐵

𝐹

𝐸

ℓ1

ℓ2

𝐹

𝐹

𝐸

𝐸

𝐸

𝐹

𝐵

𝐴 𝐶

𝐷

Figure 14. An example of an Andreev polyhedron in 𝕃3; we label the
dihedral angles 𝜋/3, all other dihedral angles are 𝜋/2.
Its development is a (nonregular) 6-gon, whose angles are 𝜋/2. The

lines ℓ1, ℓ2 are axes of symmetry. The polygonal curve 𝐴𝐵𝐷𝐶𝐴 is a
billiard trajectory.
It is easy to reconstruct the lengths of edges of the prism from the

combinatorial structure of the development and the billiard trajectory.
Indeed, we know the angles of the triangle 𝐴𝐸𝐶 and of the “trapezoids“
𝐴𝐵𝐹𝐸, and the equiangular quadrangle 𝐴𝐵𝐷𝐶.

Examples of rolling of a 3-dimensional Coxeter polyhedron are given in Figures
9 and 14. □

4.2. Example: Rolling along Andreev polyhedra

Secondly, take a Coxeter polyhedron in 𝕃4. Rolling it along the 3-dimensional
Lobachevsky space, we obtain a Coxeter polyhedron in 𝕃3 and also some strange
subdivision of this polyhedron.

We present an example. Consider the simplex Σ in 𝕃4 defined by the Coxeter
scheme

A B C D E
. (3)

By 𝐴,. . . , 𝐸 we denote the vertices of the simplex opposite to the corresponding
faces. See Figure 15.

Comments to Figure 15. The development of Σ is a prism drawn in Figure 15. We
write labels for the dihedral angles ∕= 𝜋/2. Below a “stratum” means a stratum
of the tiling; in particular, the vertical “edge” 𝐴𝐵 consists of two 1-dimensional
strata 𝐵𝐶 and 𝐶𝐴 and three 0-dimensional ones, 𝐴, 𝐵, and 𝐶.

1. This is a development. Hence any two strata (segments, triangles) having
the same notation are equal (for instance 𝐶𝐷 = 𝐶𝐷, 𝐶𝐸 = 𝐶𝐸, △𝐶𝐵𝐸 =
△𝐶𝐵𝐸, etc.).

2. Each stratum (a vertex, a segment) is equipped with a Coxeter group (this
group is visible from its dihedral angles).



84 D.V. Alekseevski, P.W. Michor and Yu.A. Neretin

B D

C
E

A

B

C

D

𝜋/5 𝜋/5

𝜋/3

𝜋/3

B
A

B

D

B
D

E

D
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D

Figure 15. This prism in 𝕃3 is a complete development of the Coxeter
simplex 𝐴𝐵𝐶𝐷𝐸 in 𝕃

4 described in 4.2. It carries all 2-dimensional
hyperedges of the initial simplex.
The development of the prism is the regular 10-gon with right angles

(it also carries all 1-dimensional strata of the 4-dimensional simplex).

3. Subdivision of the normal cone 𝐷𝐻 to a stratum 𝐻 (a vertex, a segment) is
determined by the reduction procedure from Subsection 3.3.

For instance, in the vertex 𝐴 we have the subdivision of the spherical
triangle H3 drawn in Figure 7,

B C D E �→ H3.

In the normal cone to the edge-stratum 𝐷𝐸 of the prism, we have the
icosahedral subdivision, see Figure 8,

A B C �→ 𝐴1 ⊕𝐴1.

The normal cone to the segment 𝐴𝐸 is drawn in Figure 4; in particular,
both angles of incidence are arctan

√
2,

B C D �→ 𝐴1 ⊕ R.

The “front” face 𝐴𝐵𝐷𝐵 is orthogonal to the sections 𝐶𝐷𝐸 and 𝐴𝐷𝐸
(since the lines 𝐶𝐷 and 𝐴𝐷 of intersection are equipped with the group
A1 ⊕ A1).

A B E �→ ℝ⊕ A1

etc., etc.
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4. The prism has two planes of symmetry. This is by chance, partially this is
induced by a symmetry of the initial Coxeter scheme 3. The latter symmetry
implies the equality of strata:

𝐴𝐵 = 𝐷𝐸, 𝐴𝐶 = 𝐶𝐸, 𝐴𝐷 = 𝐵𝐶, 𝐵𝐶 = 𝐶𝐷.

5. Our prism generates a reflection group in 𝕃
3. The reader can easily imagine

a neighborhood of our prism in 𝕃3. For instance, near the vertex 𝐴 we have
the picture drawn in Figure 8

6. The development of the prism is a regular 10-gon having right angles; the
reflection of the “billiard trajectory” 𝐴𝐵𝐸𝐷𝐴 is of type d) in Figure 13. The
regularity property follows by reduction from 𝕃4, but it is not self-obvious
from the picture of the 3-dimensional prism. Obviously, diagonals6 𝐴𝐵 are
orthogonal to diagonals 𝐷𝐸 at the points of intersection (see the left side of
the figure; but this is not a self-obvious property of this regular 10-gon).

7. We observe the second copy of the polygonal line 𝐴𝐷𝐸𝐵𝐴 in the develop-
ment. Bending the 10-gon by this line, we obtain a prism congruent to our
prism.

In fact, our 10-gon is the picture on the intersection of two mirrors,
denote them by 𝑌1, 𝑌2. We can roll the simplex Σ along each mirror 𝑌1, 𝑌2
and then we roll it again over the intersection 𝑌1∩𝑌2. We obtain two different
pictures on the 10-gon and both are presented in Figure 15.
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[3] Vinberg, E.B. Hyperbolic reflection groups, Russian Math. Surveys 40 (1985), 31–75.

[4] Vinberg, E.B.; Shvartsman, O.V. Discrete groups of motions of spaces of constant
curvature. Geometry, II, 139–248, Encyclopaedia Math. Sci., 29, Springer, Berlin,
1993.

[5] Khovanskii, A. Combinatorics of sections of polytopes and Coxeter groups in
Lobachevsky spaces. The Coxeter legacy, 129–157, Amer. Math. Soc., Providence,
RI, 2006.

[6] Andreev, E.M. Convex polyhedra in Lobachevsky spaces. Mat. Sb. (N.S.) 81 (123)
1970 445–478. English transl.: Math. USSR Sb., 10(5), 1970, 413–440.

[7] Lyusternik, L.A. Convex figures and polyhedra. Translated and adapted from the first
Russian edition (1956) by Donald L. Barnett, D.C. Heath and Co., Boston, Mass.
1966

6There are two diagonals 𝐴𝐵.



86 D.V. Alekseevski, P.W. Michor and Yu.A. Neretin

[8] Aleksandrov, A.D. Convex polyhedra. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow,
1950; German translation: Akademie-Verlag, Berlin, 1958; English translation:
Springer, 2005

[9] Rivin, I., Hodgson, C.D. A characterization of compact convex polyhedra in hyperbolic
3-space. Invent. Math. 111 (1993), no. 1, 77–111.

[10] Hodgson, C.D. Deduction of Andreev’s theorem from Rivin’s characterization of con-
vex hyperbolic polyhedra. Topology ’90 (Columbus, OH, 1990), 185–193, Ohio State
Univ. Math. Res. Inst. Publ., 1, de Gruyter, Berlin, 1992.

[11] Thurston, W. The Geometry and Topology of Three-Manifolds. The text is available
via http://www.msri.org/communications/books/gt3m

[12] Rivin, I. A characterization of ideal polyhedra in hyperbolic 3-space. Ann. of Math.
(2) 143 (1996), no. 1, 51–70.

[13] Vinberg, E.B. Discrete linear groups that are generated by reflections.Math. USSR
Izvestia 5 (1971), 1083–1119.
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