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Abstract—In the paper some problems related to computer studies of continuous objects are
considered. Examples are presented which demonstrate that even in trivial situations results of
computer modelling can differ drastically from properties of original continuous objects. This
observation is aggravated by the fact that often the situation cannot be improved by raise of
accuracy of approximating of considered continuous objects. The mathematical models are
offered which allow to a certain extent to explain originating phenomena and also to use and/or
parry their negative aftereffects.
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1. INTRODUCTION

The traditional approach to numerical methods is based on the fundamental hypothesis that
any required accuracy of solution of a problem and adequacy of discrete model to its continuous
analogue can be achieved by means of appropriate precision of computer arithmetic, which is often
supplemented by the following important remark: insufficient accuracy of computer arithmetic can
be compensated by extending computer memory and time of calculation.

These hypotheses are strongly supported by many rigorous theoretical methods of mathematics
and theoretical physics and many heuristic and empirical tools. The collection of examples which
support these hypotheses is too extensive to be detailed. Accordingly, the following scheme of
computer modelling became now typical:

– selection of a continuous model;
– computer realization of the selected model;
– interpretation of the numerical results, their application in practice and for

the further investigation.

Nevertheless, recently computer modelling is often applied just for the analysis of those problems
where the reliable theoretical methods of understanding the relationships between properties of the
continuous objects and their discretized counterparts are not applicable and, at the same time,
empirically justified tools are not yet adequate. For example, for investigation of systems with
chaotic behavior (calculation of phase portraits of the Lorentz attractor and other chaotic systems,
various plots with fractal-like structures), for providing the so-called “computer-aided” proofs and
so on. In such situations there only remains as an article of faith that results of computer modelling
are rather robust with respect to accuracy of calculation and increasing time of calculation, that
is in the validity of the hypothesis formulated above. Unfortunately such hopes are sometimes
deceptive. More than that it seems that the situations when the hypothesis is wrong are typical
1 This work was supported by the Russian Foundation for Basic Research, projects nos. 06-01-00256, 06-01-72552-

NCNIL-a.
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2 KOZYAKIN, KUZNETSOV

in some areas. It is paradoxically enough, but the development of the computers technology and
research methods did not reduce but, on the contrary, enforced the acuteness of the following
principal question:

to which degree we can rely upon the results of computer modelling?

There arise daily some new unexpected and shocking examples, which demonstrate that even in
seemingly trivial situations the results of computer modelling can be rather far from the theoretical
predictions. Even that the cause of the discrepancy can be pinned down in each particular case,
this situation indicates that “something is wrong in the Danish kingdom”. In our view, the root of
the troubles is that majority of the users of computers are bounded by the ideology of continuous
mathematics. It seems that, as it was in physics, to grasp the meaning of the relations between
continuous mathematical objects and their computer analogous, the sort of ideology of quantum
mathematics is necessary, when the object will be considered as a continuous-discrete object, not
only as a continuous one or only as a discrete one.

The concepts of proximity and continuity are the corner-stones of continuous mathematics.
Usually these notions are used rather formal in computer modelling. For example, a computer
realization is considered to be close to its continuous original, if it had been created through
discretization on a fine enough lattice. The main target of a computer experiment — to get an
information about the modelling object — is often lost of sight. Meanwhile, one should keep in
mind the following point: while a transition from one continuous model to another is often feasible
without any leakage of information (homeomorphic change of variables, etc.),

the transition from a continuous to a discrete model is usually impossible
without loosing of information.

A trivial example: discretization of an invertible linear system on a uniform lattice is as a rule
a non-invertible mapping. Another example: the main information characteristic of a dynamical
system, its entropy [56], measures the exponential rate of increasing of the quantity of distinct
trajectories against length of trajectories of the system under consideration. But for any single-
valued spatial discretized model of the system only a finite set of infinite trajectories is possible and
the definition of entropy is getting meaningless. Here the conflict is apparent and the necessity of
indirect methods to estimate entropy of continuous system in terms of its discretizations is evident.
Note, that also some powerful methods have been created, the problem is rather difficult up to
now. Often conflict is more disguised, but not less dangerous. We believe, that the first question
of computer experiment should be the following

what kind of information about underlying continuous system is probably/in-
evitably lost in a chosen scheme of computer realization?

The second fundamental question is connected with such notions of continuous mathematics as
robustness and structural stability. In continuous modelling it is actually the same as to understand
how robust are properties of the object with respect to continuous, smooth etc. disturbances. As
soon as we realized that the main problem in computer modelling is the problem about information,
than we should ask the question:

can we guarantee information robustness of discretization schemes?

It seems likely, that detailed analysis of these two questions and other related problems will
be one of the strategic direction in the development of the exact sciences. To give the detailed

AUTOMATION AND REMOTE CONTROL Vol. 68 No. 4 2007



FEASIBILITY OF NUMERICAL MODELLING 3

description of the situation in this field is hopeless and even more hopeless is to forecast its future
development. Some topics related to the problem of discretization of continuous mappings are
discussed in [7,41] where one can also find an extensive bibliography. We are going only to consider
some typical troubles, which arise in this area, and to discuss some perspective, in our opinion, gen-
eral ideas on a few examples. The chosen examples are connected with the very fact of embedding
a continuous system in finite computer arithmetic rather than with inevitable calculating errors.

The outline of the paper is as follows. In Introduction we have tried to explain necessity of the
“cautious attitude” to results of computer simulation of continuous systems.

In the second part of the paper (Sections 2.1, 2.2 and 2.3) three situations are discussed in
which computer modelling of simple continuous models results in unexpected effects. They are the
collapsing effects in discretization of dynamical systems, influence of discretizations on behavior of
plane rotations and aliasing effects during computer visualization of simple two-dimensional images.
These demonstrate also that arising effects reflect, maybe in a distorted way, properties of original
continuous models. We have chosen these examples by the following two reasons. At first, they may
by easily described and are rather spectacular, secondly, they are a good polygon for development
and check of the common methods of qualitative understanding and the quantitative investigation
of the discretization phenomena.

In Sections 3 and 4 the phenomenological models allowing precisely enough to compute statistical
characteristics of the collapsing effect, so as lengths of cycles and transients of discretizations of
dynamic systems are offered. At the heart of these models the theory of random maps with
one absorbing centre lays (Sections 3.1 and 4.1). As one of approaches to compensate negative
aftereffects of the collapsing effect various strategies based on application of the theory of stochastic
interval matrices are considered (Section 3.3).

Section 4.3 is devoted to discussion of the common principles to which discretization of a contin-
uous dynamic system should fulfil in order to its behavior reflect behavior of the original continuous
system. Here concepts of consistency of a discretization, and also the concept of shadowing and
mutual shadowing for a class of mappings are considered (Section 4.4). Application of the principle
of mutual shadowing is illustrated on the example of the so-called semihyperbolic Lipschitzian maps
(Section 4.5).

Section 5 is devoted to the models which explain, to a certain extent, effects arising during
discretization of the plain rotations considered in Section 2.2. Here the problem of invertibility
of discretizations of the linear maps of the plane is discussed (Section 5.1). It is noted, that
generally discretizations of the linear maps of the plane are not invertible, and namely this is one
of reasons of information losses under discretization of multidimensional systems. To describe the
frequency properties of discretizations of the linear maps and to get estimates of “gaps” not filled
by the trajectories of discretized planar rotation maps, the approach based on the analysis of the
quasiperiodic frequency measurable sets, properties of the so-called “quantizers” of the linear maps
and ergodic properties of discretizations of the linear maps is developed (Sections 5.2, 5.3 and 5.4).

In Section 6 we undertake an attempt to develop general approaches to estimate information
losses at a discretization of stochastic processes.

The paper is completed by Section 7 in which the general structure of moirés is investigated
(Section 7.1) and the problem how irregular may be the picture generated by a given function and
how to characterize numerically this irregularity is considered (Section 7.2). To evaluate the extent
of this regularity, the concept of aliasing dimension is introduced and some estimates of aliasing
dimension are obtained.

Last years a substantial proportion of all computer experiments is carrying out in networks when
a lot of processors work asynchronously. This leads to a superposition of discretization effects and
desynchronization effects. These effects are very important and recently to their analysis the
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increasing attention is paid. We did not discuss these effects partly because of restricted volume of
this text, and partly because these question were carefully considered in recent journal papers and
monographs, see bibliography in [4, 44].

Emphasize once more, that our purpose was not to sum recognized methods in the considered
field, but to discuss rather new phenomena and approaches to their description, application and/or
suppressing. Naturally we will base mainly on works which have been carried out during last 15
years in our small non-formal international team. The driving force of this team are Ph. Dia-
mond (Australia), P Kloeden (Germany), V. Kozyakin (Russia), A. Pokrovskii (Russia, Ireland),
A. Vladimirov (Russia), I. Vladimirov (Russia, Australia) and others. We would like also to thank
M. Blank for discussions of discretizations of rotations of the plane (see Section 2.2), A. Vladimirov,
who provided the first version of the Section 2.3, and M. Suzuki (Australia, Japan) for many nu-
merical experiments In preparation of this paper we used surveys [48, 50] supplementing them by
recent results.

One of incentive motives of writing this work was also the fact that overwhelming majority of
publications on the given subjects has been published in foreign magazines and until recently in
Russian-speaking magazines we did not meet similar works.

2. EXAMPLES

In this Section we give some typical examples in which the discordance between properties of
continuous objects and their discretizations are demonstrated. These examples are just illustrative.
They are simplified to the extent which makes possible, on the one hand, to proceed the thorough
theoretical analysis of underlying continuous mappings and, on the other hand, to carry out the
necessary experimental calculations, with a view of matching of the gained results.

Due to finiteness of internal computer arithmetic the natural computer representations of dy-
namical systems can be interpreted as mappings of finite sets into itself, that is by directed graphs.
Nevertheless, it should be emphasized that the classical graph theory methods are insufficient to
answer most interesting theoretically and important practically questions which arise in analysis
of computer representations of continuous dynamical systems. This is explained by the fact that
properties of procedures of a discretization of continuous systems are tightly linked to geometry
and topology of (continuous) phase space of a prototype system which is difficult enough to express
in terms of classical graph theory. Besides, as a rule, an individual discretizations appear to be not
very informative due to their high sensitivity to concrete choice of a procedure of discretization (to
a disposition of nodes of a lattice, its size, etc.). At the same time the averaged (or statistical)
characteristics of corresponding discretizations with respect to “sizable” enough families of dis-
cretizations are turned out to be rather robust and reflect properties of a prototype system (though
often and by not clear in some cases reasons in a distorted form). Therefore often the object of
the computer modelling should be not an individual discretization of some continuous system but
a family of discretizations generated by this system.

2.1. Collapsing effects in discretization of dynamical systems

We commence with the Feigenbaum–Cvitanovich mapping

F (γ)(x) = 1− |2x− 1|1/γ , x ∈ [0, 1], γ ≤ 1, (1)

playing an important role in theoretical physics. When γ = 1/2 this mapping is called also the
logistic mapping (see Fig. 1), when γ = 1 this mapping is called the “baker’s mapping” (see Fig. 2).

The “baker’s mapping” has the feature that for it the variability of the continuous system’s
behavior can “degenerate” during discretization into trivial and not interesting behavior. So, this
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Fig. 1. Plot of the logistic mapping. Fig. 2. Plot of the “baker’s mapping”.

mapping has the cycles of all periods, the Lebesgue measure is invariant and ergodic with respect
to F ≡ F (1), it is mixing etc. Consider an ideal computer model of this mapping: its restriction Fν
on the ν-digit binary lattice

L2ν =
{

0,
1
2ν
,

2
2ν
,

3
2ν
, . . . ,

2ν − 1
2ν

}
.

This restriction is asymptotically trivial: Fmν ≡ 0 for m ≥ ν (here Fm(·) denotes an operator
power of the mapping F (·)). Naturally, Fν has only zero cycle; only measure concentrated in zero
is invariant for Fν etc. In this case the cause of crash is clear: every next iteration “kills” the last
not–zero digit, i.e., “kills” information.

In general case the mapping F (γ)(x) so as the “baker’s mapping” has unique absolutely contin-
uous invariant measure µF (γ) . Therefore for almost all initial values x0 ∈ [0, 1] the sequence

x0, F
(γ)(x0), . . . ,

(
F (γ))n(x0), . . . (2)

is spreaded in the natural sense over the whole interval [0, 1] with the density µG.
Denote by Lν the uniform 1/ν–lattice on the interval [0, 1] and let

[x]ν =
round(νx)

ν
, x ∈ [0, 1],

where round(·) is the standard roundoff operator. Denote by F (γ)
ν : Lν 7→ Lν the Lν-discretizations

[66] of F (γ) defined by
F (γ)
ν (ξ) = [F (γ)(ξ)]ν , ξ ∈ Lν .

The point ξ ∈ Lν is called ν-collapsing for the mapping f if fnν (ξ) = 0 for some (and therefore
for all subsequent) ν. Denote by Y (ν; f) the set of ν-collapsing points. Denote by P (ν; f) the
proportion of collapsing points of the lattice Lν :

P (ν; f) =
#(Y (ν; f))

ν
. (3)

What kind of properties it is natural to expect from the discretization F
(γ)
ν (ξ) of the mapping

(1)? As is known, the mapping F (γ)(x) has cycles of arbitrary large periods, it is mixing, it
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has unique absolutely continuous invariant measure and so on. Hence, the typical sequence {xn}
satisfying

xn+1 = F (γ)(xn), n = 0, 1, . . . , (4)

is distributed with some density µγ over the whole interval [0, 1]. Then this sequence sometimes
will “come” close to the zero point spending, nevertheless, the main amount of time rather far
from it. Therefore it looks natural to suppose that the main bulk of trajectories of a sufficiently
fine discretization of the mapping (4) would behave similar. That is, the proportion P(F (γ)

ν ) of
collapsing elements of the mapping F

(γ)
ν should be small for large ν. On the other hand, for a

typical trajectory {xn} of the mapping (4) there exists an index n such that |xn| < 1
2ν . At the

same time, all the points x ∈ [0, 1] satisfying the inequality |x| < 1
2ν are “stuck” with the zero

fixed point under discretization on the lattice Lν . Therefore it seems reasonable to expect that the
main bulk of the points of the lattice Lν should be collapsing for the mapping F

(γ)
ν , that is the

proportion P(F (γ)
ν ) should be close to 1.

The two considered possibilities are incompatible and there arises a question which one of the
two heuristics above is the reliable one. Surprisingly, the experimental calculations demonstrate
that the proportions P(F (γ)

ν ) behave quite different for different γ and ν. For 1
2 ≤ γ < 1 under

appropriate conditions can happen either the first or the second possibility whereas for γ < 1
2

both the first and the second possibilities are wrong! In the latter case the mean value p(γ) for
the proportion of collapsing elements of the discretized mappings F (γ)

ν (with respect to ν) varies
from 0 at γ → 1

2 up to 1 at γ → 0. For instance, p(1
3) ≈ 0.6. Hence, the properties of a typical

trajectory (4) of discretized system can be quite different from the predictions of both heuristics
above and this conclusion remains unchanged for arbitrary fine lattices Lν , or for floating point
discretizations.

Below P̃ (ν; f) denotes the proportion of collapsing elements of the mapping f in a simple
sampling consisting of 100 elements ξ ∈ Lν . The value P̃ (ν; f) is statistically close to P (ν; f).
Figure. 3 graphs P̃ (ν+n;F (γ)) for γ = 1/3, ν = 227, n = 1, 2, . . . , 500. This graph is rather typical.
It is easy to notice that it represents a function with an irregular character and rather large mean
value. Thus the properties of the typical sequence of iterations of the discretized system are quite
different from those of a typical sequence (2). Perhaps we have chosen too rough lattice? Consider
instead of the lattice L227 the lattice L244 . How the corresponding graph will change? And here is
the first surprise: seemingly the graph did not change at all, see Figure 4.

Let us forget about the artificial discretization of the mapping F (γ) and let us calculate on the
computer the sequence (2) for random x0 using the standard floating point operations. The result
will support the observation above. Very often, in more than 90% experiments depending of the
specific program used, after a few thousands of iterations the sequence (2) collapses to zero. In
other rare cases the elements of the sequence are not zero for all n.

So, a conflict between behavior of underlying continuous system and behavior of its discretiza-
tions can not be explained by the insufficiently small step of discretization or a choice of specific
discretization procedure. It seems, the root of this conflict is in the very fact of discretization. To re-
solve this conflict we should develop methods for detailed qualitative and quantitative investigation
of combinatorics of discretizations of dynamical systems.

2.2. “Saturn rings”: discretizations of rotations of the plane

Consider the problem of the numerical modelling of the phase portraits of some mapping. Choose
as an example one of the most simple and well investigated mappings, a rotation of the plane on
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Fig. 3. Proportion of collapsing elements P̃ (ν +
n;F (γ)) for ν = 227, 1 ≤ n ≤ 500 for the mapping
F (γ) with γ = 1/3.

Fig. 4. Proportion of collapsing elements P̃ (ν +
n;F (γ)) for ν = 244, 1 ≤ n ≤ 500 for the mapping
F (γ)(x) with γ = 1/3.

an angle ϑ around some point (x0, y0):

x 7→ x0 + (x− x0) cosϑ− (y − y0) sinϑ,
y 7→ y0 + (x− x0) sinϑ+ (y − y0) cosϑ.

(5)

This mapping is, on one hand, rather “bad” for numerical investigation because it is not structurally
stable in a reasonable sense. On the other hand, this is a typical example of the mappings with
an invariant measure, which arise, for example, in conservative mechanics. The phase portrait of
the mapping (5) is quite simple — all its trajectories are situated on the concentric circumferences
with their centers in the point (x0, y0), filling in the corresponding circles dense for ϑ such that ϑ/π
is irrational and creating the finite set of points otherwise.

For the purpose of numeric modelling, consider the mapping (5) on the square lattice L1,1 with a
step h = 1 and let us try to construct the trajectories with the initial points, which are equidistant
from the point (x0, y0) with the step ∆.

In particular, consider two procedures of the numeric calculation for the modelling of the map-
ping (5):

x 7→ trunc(x0 + (x− x0) cosϑ− (y − y0) sinϑ),
y 7→ trunc(y0 + (x− x0) sinϑ+ (y − y0) cosϑ)

(6)

and
x 7→ round(x0 + (x− x0) cosϑ− (y − y0) sinϑ),
y 7→ round(y0 + (x− x0) sinϑ+ (y − y0) cosϑ),

(7)

where trunc(x) is the procedure of cutting off the fractional part of the number x, and round(x)
is the procedure of rounding the number x to the nearest integer.

Intuitive apprehension of computer modeling as “feasible” is reflected, in our mind, in the
situation when in a neighborhood of any real trajectory of the mapping (5) there exists at least
one computed trajectory (trajectory of the mappings (6) or (7)) and vise versa — when in a
neighborhood of any computed trajectory can be found at least one true trajectory of the mapping
(5).

Figure 5 graphs the results of numerics by formula (6) for ϑ = 17◦, x0 = y0 = 150, ∆ = 3.
It turned out that the trajectory started from rather distant from (x0, y0) points tend to some
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bounded region, which is not depending on the starting point. “Inside” this region the picture is
reminiscent the “Saturn rings” with typical “densifyings” of trajectories and “gaps” between them.
Stress, that the density of observed cyclic trajectories is turned out to be approximately 30% of
theoretical which evidences that some trajectories are sticked together.

Figure 6 graphs the results of numerics by formula (7) for ϑ = 7◦, x0 = y0 = 100, ∆ = 6.
Outwardly, the result is turned out to be more consistent with theoretical predictions. At the
same time, the resulting picture once again is similar to “Saturn rings” — some trajectories for
large number of iterations “float away” from their theoretical positions and as a result we can see
“gaps” between them. Another trajectories became very “cloudy” (up to 5% of the values of their
radii). At last, very often we can see “transposition” of trajectories — some trajectories starting
from points, more distant from (x0, y0), tend to cycles lying nearer to (x0, y0) than the trajectories
starting from points, nearer to (x0, y0).

Fig. 5. Phase portrait of the plain rotation map-
ping on integer lattice around the point (150, 150)
under truncating of errors of computed coordi-
nates; the angle of rotation ϑ = 17◦, the in-
crement of radii of initial points ∆ = 3. The
upper-right quadrant contains the fragment of
ideal phase portrait for ∆ = 12.

Fig. 6. Phase portrait of the plain rotation map-
ping on integer lattice around the point (100, 100)
under rounding of errors of computed coordi-
nates; the angle of rotation ϑ = 7◦, the increment
of radii of initial points ∆ = 6. The upper-right
quadrant contains the fragment of ideal phase
portrait for ∆ = 24.

Thus, the results are both typical and unsatisfactory in their extreme sensitivity to the mode of
rounding (more general, to the scheme of modeling). If we didn’t been know in advance the true
phase portrait of the system, we would possible interpret the computed results as indication to the
complicated structure of the phase portrait of the system under investigation. This leads to the
question:

which conditions guarantee the similarity of phase portraits of underlaying
continuous dynamical system and its spatial discretization?

Note that forming of bounded region of attraction under modeling by formulas (6) are easy to
explain (see Theorem 7 below); less clear theoretically is the behavior of trajectories inside this
region. It is unclear also how will behave the trajectories computed by formulas (7) — will they
be bounded, will they tend to zero, can they escape to infinity etc.
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FEASIBILITY OF NUMERICAL MODELLING 9

2.3. Moiré structures: artifacts in discretization of oscillating images

Consider the problem of numerical investigation of a smooth function f = f(x, y), x, y ∈ <2

with scalar values.1 Suppose we would like to represent the behavior of the function f on the
black-white digit monitor, which may be considered as a part of the integer lattice L1,1. The
natural way to do this is the following: first to draw the level lines of the function f(x, y), say, lines
Li(f) = {(x, y) : f(x, y) = i + 1/2}, and then to color one by one the gaps between the lines into
white and black. In other words we pain alternatively in black and white the Lebesgue sets

Si(f) = {(x, y) : i− 1/2 < f(x, y) ≤ i+ 1/2}, i = 0,±1,±2, . . . .

The resulting “zebra” represents the behavior of the function f ; for example, we can recognize its
points of local extremum, but we cannot distinct maximums of the function from its minimums.

It seems natural that for more detailed investigation of the function f it suffices to make the level
lines more frequent, i.e. to consider the sets Si(µf) = {(x, y) : i − 1/2 < µf(x, y) ≤ i + 1/2} and
to tend µ to infinity. But the discrete structure of the screen, which is essentially the rectangular
lattice, changes its qualitative portrait drastically just for rather moderate values of the parameter
µ: new parasitic regular and irregular structures arise. Figures 7, 8 and 9 represent the copy of
screens for the described procedure of the coloring of the level sets of the function

µf(x, y) = x2y − y4 − 1 ≤ x, y ≤ 1 (8)

On Figure 7 for µ = 10 everything is in order — we see the real level lines (more precisely the
Lebesgue sets) of the function f . But even for µ = 300, on Figure 8, the main fragment of the
picture reminds the sequences of the phase portraits of some conics. For µ = 288000 (Figure 9)
we can see only the “Persian carpet”, which seemingly does not have any relation to the initial
function.

Fig. 7. Computer screen with
bicolored level sets of the func-
tion 10(x2y−y4) on the lattice
300× 200 dots.

Fig. 8. Computer screen with
bicolored level sets of the func-
tion 300(x2y − y4) on the lat-
tice 300× 200 dots.

Fig. 9. Computer screen with
bicolored level sets of the func-
tion 288000(x2y − y4) on the
lattice 300× 200 dots.

This sort of artifacts are called moirés in the computer graphics. It is important (both for
reconstruction not distorted by the discretization image, as well as for reconstruction the lattice of
discretization itself) to create the system of the mathematical notions that can adequately describe
the asymptotic behavior of the moirés when the pixel is decreasing.

3. PHENOMENOLOGICAL MODEL OF COLLAPSING EFFECTS

It seems important to propose a simple phenomenological model which explains both qualita-
tively and quantitatively effects mentioned in Subsection 2.1. Such model should allow straight-
forward theoretical analysis and so provide a means of predicting the severity of such collapsing
1 We restrict our considerations only by functions of two variables for a convenient graphic representation of effects.
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effects in numerical simulation of chaotic dynamical systems. A special model proposed in [27] will
be discussed in this subsection.

3.1. Random mappings with single attracting center and equal transient probabilities

The main technical tools below are random mappings. First we consider the so-called random
mappings with a single attracting centre. Let us recall the definition. Let ∆ > 0. Define a random
mapping T∆,κ of the set (0, 1, 2, . . . , κ) into itself by the formula

P (T∆,κ(i) = j) =

{
∆

κ+∆ , j = 0,
1

∆+κ , j 6= 0

and the demand that the image of an element i is chosen independently of those of other elements
of (0, 1, 2, . . . , κ).

Define the collapsing component Z∆,κ of the mapping T∆,κ as a random subset of (0, 1, . . . , κ)
defined by

Z∆,κ = {i ∈ (0, 1, 2, . . . , κ) : Tn∆,κ(i) = 0 for some n}.

Introduce the random variable

Q∆,κ =
#(Z∆,κ)
κ+ 1

.

That is, Qκ,∆ is the proportion of elements of (0, 1, . . . , κ) belonging to the collapsing component
of the mapping T∆,κ.

Let f : [0, 1] 7→ [0, 1] be a function which has a unique absolutely continuous measure µf .
Suppose that the density of this measure is positive and only the end-points of the interval [0, 1]
are singular for the density, moreover, that for a given l ≥ 2 there exist limits

α0 = lim
s→0

µ([0, s])s1/l, α1 = lim
s→1

µ([1− s, 1])s1/l.

These assumptions hold for the Feigenbaum-Cvitanovich function (1) and many others, see [58]
and references therein.

Now, we are able to formulate the hypothesis linking the proportion of collapsing points of the
arbitrary mapping f : [0, 1] 7→ [0, 1] and the property of the collapsing component of the random
mapping T∆,κ as follows:

Hypothesis 1. There exist positive constants a = a(f), b = b(f) with the following property. For
large ν and 1� n� ν, the statistical characteristics of the sequence

P(ν, n; f) = P (ν; f), P (ν + 1; f), . . . , P (ν + n; f),

defined by (3) are similar to those of the random variable Q∆(ν;f),κ(ν;f). The parameters ∆(ν, f)
and κ(ν, f) are determined by

∆(ν; f) = a(f)
√
ν

ln ν
, κ(ν; f) =

[
b(f)

ν

ln(ν)

]
,

if l = 2, and by

∆(ν; f) =
a(f)
ν1/l

, κ(ν; f) =
[
b(f)

ν

ν2/l

]
,

if l > 2.
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The justification for this hypothesis “on the physical level” see in [27].
The properties of random mapping with a single attracting centre were studies in details in [10].

In particular the following assertion is valid.

Lemma 1. In the case l = 2 the distributions of random variables Q∆(ν;f),κ(ν;f)ln(ν), ν = 1, 2, . . .,
converge to the function

dc(x) = erfc(1/
√

2cx), (9)

where c = a(f)2/b(f) and erfc(y) is the complimentary error function [57]

erfc(x) =
2√
π

∫ ∞
x

e−t
2
dt, x ≥ 0.

In the case l > 2 the distributions of the random variable Q∆(ν;f),κ(ν;f), ν = 1, 2, . . ., converge
to the function

d∗c(x) = erfc

(√
c

2

(
1
x
− 1

))
, 0 < x < 1, (10)

where again c = a(f)2/b(f).

Lemma 2. Denote by q(ν; f) the probability of the event

Q∆(ν;f),κ(ν;f) = κ(ν; f) + 1.

i.e. the probability that the collapsing component is the whole set (0, 1, . . . , κ). Then

q(ν; f) =
∆(ν; f)

κ(ν; f) + 1
≈ a(f)
b(f)

1
ν1/l

for l ≥ 2.

3.2. Comparison with experimental data

Statistical analysis of results of experimental calculations is in a good agreement with Hypoth-
esis 1 and theoretical predictions which follow from Lemmas 1 and 2, see [40]. Let us discuss a few
examples.

Let S be a finite set of non-negative values and define the distribution function of the set S

D(a,S) =
#({s ∈ S : s ≤ a})

#(S)
, a ≥ 0.

Hypothesis 1 and Lemma 1 imply that D(a; ln(ν)P̃(ν, n;F (γ))) should be close, for reasonably large
ν and 1 � n � ν, to the function (9) with appropriate c if l = 2 and to the function (10) with
appropriate c if l > 2.

Figure 10 shows D(a; ln(ν)P̃(ν, n;F (γ))) for γ = 1/3, ν = 244, n = 1, 2, . . . , 500, and the
distribution function with density d∗1(x) (the smooth line). Here,

P̃(ν, n;F (γ)) = P̃ (ν;F (γ)), P̃ (ν + 1;F (γ)), . . . , P̃ (ν + n;F (γ)),

and the P̃ (ν + n;F (γ)) were calculated as described in Subsection 2.1.
Analogously, Figure 11 graphs the distribution of the set

P̃ (244;F ) ln(244), P̃ (244 + 1;F ) ln(244), . . . , P̃ (244 + 356;F ) ln(244) (11)
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Fig. 10. The graph of the distribution func-
tionD(a; ln(244)P̃(244, 500;F (γ))) for the mapping
F (γ)(x) with γ = 1/3 (step function) against the
graph of d∗1(x) (smooth function).

Fig. 11. The graph of the distribution function
D(a; ln(244)P̃(244, 356;F )) for the logistic map-
ping F (1/2)(x) = 4x(1− x) (step function) against
the graph of d2(x) (smooth function).

for the logistic mapping F (x) = 4x(1− x) (which has a quadratic singularity) and the function (9)
for c = 2. (It was proposed at first to consider the set

P̃ (244;F ) ln(244), P̃ (244 + 1;F ) ln(244), . . . , P̃ (244 + 500;F ) ln(244)

instead of (11). Unfortunately the computer experiment on Cray was terminated after 24 hours
of cpt–time, by the fault of operator who didn’t inform his colleague about high priority of this
experiment). Since each P̃ (ν +m;F ) ≤ 1, m = 0, 1, . . . , n, ln ν = ln(244) ≈ 30,

D27 := D(a; (ln ν)P̃(ν, n;F ))

is a truncated distribution as shown, with domain [0, 30.0]. On the other hand, d2(x) is a distribu-
tion with infinite domain [0,∞). Obviously, the truncated tail of D27 is inflated by the tail of d2

in [30.0,∞). When this is taken into account, the two distributions are in good agreement.
Say that the lattice Lν is absolutely collapsing for f if iterations of each point ξ ∈ Lν under

mapping f are eventually zero. Some general results about absolutely collapsing discretizations
were discussed in [24]. Hypothesis 1 and Lemma 2 imply that the quantity w(N ; f) of absolutely
collapsing lattices in the sequence L1, L2, . . . , LN should be of order (2a(f)/b(f))N (l−1)/l. In
particular, w(N ; f)l/(l−1) should be approximately linear in N . Figures 12 and 13 demonstrate the
corresponding graphs for the cases f = F and f = F (γ).

Many simulations of this type were performed, on grids of various sizes and with different non-
degenerated unimodal functions. All of them unambiguously justified the validity of Hypothesis 1.

3.3. Interval stochastic matrices in preventing collapsing effects

What can be done to avoid such collapsing effects described in Subsection 2.1? There are some
general strategies, including the following:

S1. To use special “anti–collapsing” discretizations.
S2. To use discretizations which include random perturbations; this is usually done

by replacing fν by a Markov chain on the lattice L.
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Fig. 12. Squared accumulated number, w(N ;F )2,
of absolutely collapsing points for the logistic map-
ping F (1/2)(x) = 4x(1− x).

Fig. 13. Powered accumulated number,
w(N ;F (γ))3/2, of absolutely collapsing points
for the for the mapping F (γ)(x) with γ = 1/3.

S3. To use multi–valued discretizations.

S4. To sweep the problem under the carpet.

All these strategies are quite reasonable though the fundamental theoretical questions concerning
each of them are still open.

The issues concerning the first strategy are quite clear:

to give recommendations, at least general, for choosing a discretization
which guarantees that collapsing effects are avoided.

Point out one of possible ways to resolve this problem. But firstly, let us present some terms and
definitions. Let Ω be a compact metric space endowed with metric ρ. Denote by Sep(y,X) =
infx∈X ρ(y, x) the separation of an element y ∈ Ω from the set X ⊆ Ω, and denote by Sep(Y,X),
Y,X ⊆ Ω, the Hausdorff separation2 of Y from X:

Sep(Y,X) = sup
y∈Y

Sep(y,X).

The same symbol Sep will be used for the Hausdorff separation between sets belonging to the
Cartesian product Ω× . . .× Ω with the metric

ρN ((x0, x1, . . . xN ), (y0, y1, . . . yN )) = max
0≤n≤N

ρ(xn, yn).

At last, by Gr(f) denote the graph of the map f .
Let now Td be the standard d–dimensional torus, let f : Td 7→ Td be a mapping with invariant

Lebesgue measure and let L be a lattice on Td induced by the standard uniform 1/ν lattice on the
cube.
2 The notion of Hausdorff separation should not be confused with the notion of Hausdorff metric which is χ(X,Y ) =

max{Sep(X,Y ), Sep(Y,X)}.
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14 KOZYAKIN, KUZNETSOV

Theorem 1 (see [21]). For every ε > 0 there exists a permutation π of the lattice Lν satisfying
Sep(Gr(π),Gr(f)) ≤ ε.

This theorem seems to be similar to Lax result from [52]. At the same time it is somewhat
surprising because in contrast to Lax theorem the mapping f is not even assumed to be injective.
It can be regarded as an example of how to choose a good approximation. Clearly, mappings such
as permutations avoid collapsing effects. It is important that there are rapid algorithms to find
such permutations corresponding to f constructively. They can be implemented as simple computer
programs.

Concerning the first strategy, there are some deep theoretical results (see for instance [9]),
mainly connected with using the Stetter discretization [66], but these are not always applicable to
the situation under consideration.

Strategies S2 and S3 are quite natural from the point of view of information theory. Indeed, as it
was told in Introduction, entropy of single–valued deterministic discretization is, formally speaking
zero. To restore the entropy we should add a certain source of information artificially. The evident
ways to do it are to introduce a random (Strategy S2) or multi–valued (Strategy S3) noise. There
are a number of deep theoretical results associated with the second strategy, especially general
theorems of Kifer [39] and Blank [6], but, again, the main question is open:

what is an appropriate level of randomness or “multi–valuedness” in strate-
gies S2 or S3?

If the stochastic component in the second strategy is too large then the dynamics of the model will
differ markedly from those of the original system, but if it is not strong enough, then collapsing
effects will be present.

With the strategy S4 the following theoretical question is connected:

when and why the strategy of ignoring the problem is justified?

That is, when are collapsing effects unlikely (although still possible by virtue of Theorem 5 from
[24]).

The approach which will be described below is useful when using either the second or the third
strategy and would possibly also be useful in a rigorous analysis of the first and the fourth strategy.
What is especially important is that it demonstrates that all these strategies are related.

Let Md denote the totality of all real square d× d matrices A = (aij) with nonnegative entries
aij ≥ 0. Vectors v ∈ Rd will be treated as columns and matrix multiplication Av will be on the
left. The set Md has a natural partial order given by

A ≤ B ⇔ aij ≤ bij , i, j = 1, . . . , d ,

where A = (aij) and B = (bij) are matrices fromMd. Recall that a matrix C = (cij) is a stochastic
matrix if

d∑
i=1

cij = 1, j = 1, . . . , d .

The class of all stochastic matrices in Md will be denoted by Sd.
Let M−d be the set of all matrices A = (aij) ∈Md satisfying

d∑
i=1

aij ≤ 1, j = 1, . . . , d
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and M+
d the set of all matrices B = (bij) ∈Md satisfying

d∑
i=1

bij ≥ 1, j = 1, . . . , d .

For any two matrices A ∈ M−d and B ∈ M+
d such that A ≤ B, let ÂB denote the set of all

stochastic matrices between A and B, that is

ÂB = {C ∈ Sd : A ≤ C ≤ B} .

The set ÂB will be called the interval stochastic matrix with boundaries A and B.
Finally, if σd is the standard simplex in Rd, that is,

σd =

{
(p1, . . . , pd) ∈ Rd : pi ≥ 0, i = 1, . . . , d and

d∑
i=1

pi = 1

}
,

then for any vector p ∈ σd and for any interval stochastic matrix ÂB define

ÂB p = {Cp : C ∈ ÂB}.

Our principal result is an explicit representation of the set ÂB p. Let Id be the class of all
subsets of {1, 2, . . . , d}. For any j ∈ {1, . . . , d} and I ∈ Id define

Hj(I, ÂB) = min

∑
i∈I

bij , 1−
∑
i 6∈I

aij

 .
Theorem 2. The set ÂB p is precisely the set of all vectors q ∈ σd satisfying

d∑
j=1

pjHj(I, ÂB) ≥
∑
i∈I

qi, ∀ I ∈ Id .

An important corollary to this theorem can be formulated as follows. A vector p ∈ σd is said to
be semi–invariant for the interval stochastic matrix ÂB if

d∑
j=1

pjHj(I, ÂB) ≥
∑
i∈I

pi, ∀ I ∈ Id .

For any stochastic matrix C, let Fix(C) denote the set of all vectors x ∈ σd such that Cx = x.

Corollary 1. The set
⋃
{Fix(C) : C ∈ ÂB} is precisely the set of all semi–invariant vectors of

the interval stochastic matrix ÂB.

Now we will show how Theorem 2 works in analysis of spatial discretizations.

Example 1 (Application to Strategy S2). Let P denote the totality of Borel probability mea-
sures on Ω. The Prokhorov metric ρP on P can be defined by

ρP (µ1, µ2) = inf{ε > 0 : µ1(Oε(S)) ≤ µ2(S)− ε, ∀S ∈ B}, (12)
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16 KOZYAKIN, KUZNETSOV

where Oε(S) is the ε–neighborhood of S. This metric is a standard in many branches of probability
theory (see, for instance, [32]). By virtue of Theorem 2 for any invariant measure µ of f there
exists a Markov chain on L with a stationary measure µ∗ satisfying

ρP (µ∗, µ) ≤ h(L), (13)

where h is defined by
h(L) = sup

x
inf
ξ
{ρ(ξ, x) : ξ ∈ L, x ∈ Ω},

and with transient probabilities p(ξ, η) satisfying

P (ξ, η) = 0 for Sep((ξ, η),Gr(f)) > h(L). (14)

Inequalities (13), (14) provide an estimate of the minimal level of stochasticity which is sufficient
to suppress collapsing effects. This level is surprisingly low. In an obvious sense it coincides with
the spatial step of the discretization under consideration. Certainly, it does not provide a full
answer to the question about randomization level, but it is a step in this direction. We mention
also that analogous assertions were useful in analyzing some algorithms to find interesting invariant
measures [25].

Example 2 (Reduction to a linear programming problem). From Theorem 2 it follows that for
any invariant measure µ of f there exists a measure µ∗ on L satisfying (13) and

µ∗(L∗) ≤ µ∗(Φ−1
∗ L) for L∗ ⊆ L.

This is interesting because often an invariant measure with certain extremal properties is of interest.
Above relations reduce the numerical search of such a measure to a linear programming problem.

Example 3 (Application to Strategy S3). Choose a fixed multi–valued discretization Φf of the
mapping f satisfying

Gr(Φf ) = {(ξ, η) : ρ((ξ, η),Gr(f) ≤ h(L)} ,

Then the points from the graph of Φf are points from the h(L)–tube around the graph of f .
In a sense it is a reasonable minimal multi–valued realization of f . From Theorem 2 it follows
that for any invariant measure µ of f there exists an invariant measure µ∗ of Φf satisfying the
inequality (13). This proposition estimates the minimal level of “multi–valuedness” sufficient to
suppress collapsing effects.

The results which have been discussed in this Subsection are based on the papers [22, 26].
Generally speaking, troubles in avoiding collapsing effects are similar to those in solving of incorrect
problems. In particular collapsing effect could be to a certain extend avoided if the computer
experiment will be stopped rather early. This question is discussed in particular in [9]. New
methods of estimating transition modes are necessary to understand constructively, when it is
reasonable to stop computational process. Possibly here will be useful the scheme proposed in [45].

4. PHENOMENOLOGICAL MODEL OF STATISTICS OF CYCLE LENGTHS AND FIRST
RECURRENCE TIMES FOR DISCRETIZATIONS OF DYNAMICAL SYSTEMS

Unfortunately, for the Feigenbaum–Cvitanovich mapping (so as for other systems with compli-
cated behavior) the straightforward theoretical analysis of combinatorics of their discretizations is
extremely difficult. For this reason we used a compromise approach based on rigorous analysis of
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phenomenological models for statistics of cycle lengths, first recurrence times and other combina-
torial characteristics of discretizations of dynamical systems. Naturally, this approach is not new.
In particular, a phenomenological model [31, 35, 53], based on the theory of completely random
mappings [8], has been most successful in the situations when a “typical” discretization of the con-
tinuous system does not have a strong algebraic structure and the underlying continuous system has
a stochastic attractor for which the Hausdorff dimension coincides with its correlation dimension
(see details in [28, 35]). The condition concerning the dimension of attractor is rather restrictive
and does not hold even for the simplest one-dimensional systems generated by the mappings from
the family (1) with γ < 1

2 , for which the Hausdorff dimension of the stochastic attractor [0, 1] is
equal to 1, whereas the correlation dimension is equal to 2γ.

The first successful models for systems with different Hausdorff and correlation dimensions of
stochastic attractors were suggested in [27,28]. These models were based on the theory of random
mappings [33, 42], in particular, random mappings with a single attracting centre [65] and was
refined in [29]. While these models gave better results than those in [33,42], they are still not quite
satisfactory quantitatively. Below a more appropriate class of models is presented and analyzed.

4.1. Random mappings with single absorbing center and different transient probabilities

In this Section we discuss the model based on the notion of a random mapping with single
absorbing center whose properties are recalled below.

Let N be a natural number, α > 0 and γ ∈ (0, 1/2). Consider the random mapping T (γ)
α,N of the

set X(N) = {0, . . . , N} into itself, which is defined by the following conditions. Define q0(α, γ) = αγ

and qi(α, γ) = (α+ i)γ − (α + i − 1)γ , i = 1, 2, . . . , N . Suppose that the point 0 is fixed for each
realization T̂ of the random mapping T (γ)

α,N and that the probability of the realization T̂ is equal to

N∏
i=1

(α+N)−γq
T̂ (i)

(α, γ).

In other words, in the construction of a realization T̂ the images T̂ (i) of the points i ∈ X(N)
are chosen independently (i)and equiprobably with the probability of the event T (γ)

α,N (i) = j to be
proportional to qj(α, γ). This definition is a natural analog of that for random mappings with a
single attracting centre [65] (see also [8, 10]) and thus T (γ)

α,N is natural to call the random mapping
with single absorbing center and different transient probabilities.

Each realization T̂ of the random mapping T
(γ)
α,N is a deterministic mapping. Thus for each

i ∈ X(N) the trajectory Tr(i, T̂ ), that is the sequence i0, i1, . . . , in, . . . which satisfies the equalities
i0 = i and in = T̂ (in−1), n = 1, 2, . . ., is uniquely defined. For each such trajectory Tr(i, T̂ ) the
first recurrence time Q(i, T̂ ) is defined to be the first n after which the trajectory is cyclic with the
minimal period, say C(i, T̂ ).

Let #(X) denote the number of elements in a finite set X and let

Q(x, T̂ ) =
1
N

#[{i : Q(i, T̂ ) < xNγ}], C(x, T̂ ) =
1
N

#[{i : C(i, T̂ ) < xNγ}], x ≥ 0 (15)

denote the scaled distribution functions of the first recurrence moments and of the minimal periods
for the totality of trajectories of the mapping T̂ . Also denote by P(T̂ ) the proportion of collapsing
elements of the mapping T̂ , i.e. the proportion of those i for which C(i, T̂ ) = 1. Note that for
fixed α, γ,N the quantities (15) are random functions; so let Q(γ)(x;α,N), C(γ)(x;α,N), x ≥ 0,
denote the corresponding mathematical expectations. Finally denote for x ∈ [0, 1] the distribution
function of the random variable P(T̂ ) by P (γ)(x;α,N).
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18 KOZYAKIN, KUZNETSOV

Theorem 3 (see [46,49]). For each α, β > 0 and 0 < γ < 1/2 there are valid the limit equalities

lim
N→∞

Q(γ)(x;α, βN) = 1− F (γ)(βx;α), lim
N→∞

C(γ)(x;α, βN) = H(γ)(βx;α),

lim
N→∞

∫ 1

0
(1− P (γ)(x;α,N)) dx = αγ

∫ ∞
0

F (γ)(x, α) dx,

where

F (γ)(x;α) = e−α
γx
∞∏
i=1

1 + qi(α, γ)x
eqi(α,γ)x

,

H(γ)(x;α) = 1− F (γ)(x;α) + αγ
∫ ∞
x

F (γ)(y;α) dy + x

∫ ∞
x

F (γ)(y;α)
∞∑
i=1

qi(α, γ)2

1 + qi(α, γ)y
dy.

Note that only one particular case of random mappings with a single absorbing centre and with
transient probabilities generated by discretizations of the function q(α, γ; t) = (t+ α)γ−1 has been
considered. The choice of this particular random mapping was conditioned by the heuristic reason
that the mapping F (γ) has the absolute continuous invariant Sinai–Ruelle–Bowen measure with the
singularity of power γ − 1 at the points t = 0, 1.

Proof of Theorem 3 is based on investigation of asymptotics of the elementary symmetric
functions on probability distributions of a special form. Let the function p(k, n) id defined for
k = 1, 2, . . . , n by the equality

p(k, n) =

k
n∫

k−1
n

q(t) dt,

where

q(t) = αβ(t)tγ−1 ≥ 0,
1∫

0

q(t) dt = 1, β(0) = 1, α > 0, 0 < γ ≤ 1.

Theorem 4 (see [49]). The following relations are valid for n→∞

π(m,n)→ e
− 1

2

(∫ 1

0
q2(t) dt

)
x2

for
m√
n
→ x,

1
2
< γ ≤ 1;

π(m,n)→ e−
1
2
α2x2

for
m√

n(log n)−1
→ x, γ =

1
2

;

π(m,n)→ L (γ, αx) for
m

nγ
→ x, 0 < γ <

1
2

where π(m,n) = m!σm(p(1, n), p(2, n), . . . , p(n, n)), σm(x1, x2, . . . , xn) is the mth elementary sym-
metric function and L(γ, z) is the entire analytic function defined by the infinite product

L(γ, z) =
∞∏
k=1

{[
1 +

kγ − (k − 1)γ

γ
z

]
e
− k

γ−(k−1)γ

γ
z
}
.

Remark that for 0 < γ < 1
2 and for the values |x| < γ

α the following more convenient represen-
tation

π(m,n)→ e
−
∑∞

r=2

(−1)r

r

{∑∞
k=1

(
kγ−(k−1)γ

γ

)r}
(αx)r

for
m

nγ
→ x .

is also valid.
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4.2. Principle of Correspondence

Let us come back to the analysis of discretizations of continuous dynamical systems from the
family (1). Every ν-discretization F

(γ)
ν maps a finite lattice Lν = {0, 1/ν, . . . , (ν − 1)/ν, 1} into

itself, so for each ξ ∈ Lν the first recurrence moment Q(ξ, F (γ)
ν ), and the corresponding minimal

period of a cyclic part of the trajectory Q(ξ, F (γ)
ν ), are well defined, as are the distribution functions

Q(x;F (γ)
ν ), C(x;F (γ)

ν ) and the number P(F (γ)
ν ).

As it was mentioned above, a theoretical study of the sequences {Q(x, F (γ)
ν )}∞n=1, {C(x, F (γ)

ν )}∞n=1

and {P(F (γ)
ν )}∞n=1 is more complicated than that of the sequences {Q(x; T̂ν)}∞n=1, {C(x; T̂ν)}∞n=1 and

{P(T̂ν)}∞n=1. Nevertheless, this difficulty can be overcome by means of the principle of correspon-
dence, to be formulated below. This principle is not a rigorous mathematical theorem, but admits
an heuristic explanation analogously to the reasoning in [27, Section 2], which in turn is not dis-
similar that in [35, 53]. Numerical experiments demonstrate that this principle hold with rather
high accuracy.

For each x ≥ 0 introduce the functions

q(γ)(x;N,M) =
1
M

N+M∑
ν=N+1

Q(x;F (γ)
ν ), c(γ)(x;N,M) =

1
M

N+M∑
ν=N+1

C(x;F (γ)
ν ).

which are the distribution functions Q(x;F (γ)
ν ) and C(x;F (γ)

ν ) averaged on M lattices LN+1, LN+2,
. . . , LN+M . Denote also the distribution function of the set {P(F (γ)

ν ) : N < ν ≤ N + M} by
p(γ)(x;N,M), x ∈ [0, 1]. A family of positive integers N is said to be dense if

lim
n→∞

#[{m ∈ N : m ≤ n}]
n

= 1.

Principle of Correspondence. There exist constants α(γ), β(γ) > 0 and a dense set of inte-
gers N (M) depending on a positive integer M such that the functions q(γ)(x;N,M), c(γ)(x;N,M)
and p(γ)(x;N,M) are close in the Levy metric [34] to the corresponding functions Q(γ)(x;α, βN),
C(γ)(x;α, βN), and P (γ)(x;α,N) for all sufficiently large N ∈ N (M).

The Principle of Correspondence for the sequences q and c, together with Theorem 3 suggest
that for randomly chosen 1 � M � N the functions q(γ)(x;M,N) and c(γ)(x;M,N) should be
similar to the functions 1− F (γ)(βx;α) and H(γ)(βx;α). This assertion can be tested numerically
through simulation. Furthermore the Principle of Correspondence for the sequences P together
with Theorem 3 suggest also that for 1�M � N the mean value

µ =
1
M

N+M∑
m=N+1

P(F (γ)
m ) =

∫ 1

0
(1− p(γ)(x;M,N)) dx

should be close to the value µ(γ) = αγ
∫ ∞

0
F (γ)(x, α(γ)) dx. Again the experimental result µ ≈

0, 675 appeared to be indeed quite close to the theoretical prediction µ(γ) ≈ 0, 678 which was
calculated for α = 0, 3.

Similar experiments were carried out also for other values of γ, such as γ = 2/5, 2/7 etc., and
also for other values of the parameters M,N . All of these experiments supported the Principle of
Correspondence.

The Principle of Correspondence formulated above for three concrete combinatorial charac-
teristics of the spatial discretizations of continuous dynamical systems is also applicable to the
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investigation of other combinatorial characteristics, such as statistics of absolutely collapsing dis-
cretizations [27, p. 566], basins of attractions etc. We don’t know any natural combinatorial char-
acteristics of discretizations of the mappings (1) for which the Principle of Correspondence is not
valid.

The Principle of Correspondence can be used without change for other quasi-chaotic systems
which have an invariant stochastic attractor for which the corresponding invariant measure has
a singularity on a preimage of a fixed point of the mapping. When the last condition does not
hold, the Principle of Correspondence should be modified slightly: in the definition of random
mapping T (γ)

α,N the requirement that 0 is a fixed point there must be omitted and, correspondingly,
the expression for transitive probabilities should be changed. Nevertheless, the problem of formal
justification of the Principle of Correspondence is still open [17,19,46,47].

4.3. Consistent discretizations and shadowing

Suppose that a mapping f : Ω 7→ Ω, on a compact metric space Ω endowed with metric ρ,
generates a discrete dynamical system. As was mentioned in Section 2.1, its set of all trajectories
can differ dramatically from that of any single–valued discretization ϕ, even very fine [11]. Such
effects are an inevitable consequence of discretization in the sense that there always exists some
discretization which collapses a given system f onto a given f–invariant set, in particular onto
a fixed point or cycle [23, 24]. At the same time, as it was mentioned it Subsection 3.3 we can
eliminate such degenerate, collapsing behavior if instead single–valued discretizations we will deal
with stochastic or multi–valued perturbations of the original system f . In this Subsection we
consider in more details the question about using multi–valued discretization to represent the flow
of trajectories of the underlying system. The choice of an appropriate model system ϕ introduces a
conundrum which frequently arises in the theory of ill–posed problems. If the perturbation that is
introduced is too large, then the behavior of the system ϕ, while not degenerate can differ markedly
from f . On the other hand, if the perturbation is not strong enough, collapsing effects will not be
avoided. Consequently, questions about the robustness of systems to various levels of stochastic or
multi–valued perturbation are very important. To make a reasonable choice, idea of consistence of
multi–valued discretization is often useful.

Below, a dynamical system is generated by a Borel mapping f : Ω 7→ Ω. Suppose that L is a finite
subset (lattice, grid) of Ω and consider a map ϕ : L 7→ 2L with the graph Gr(ϕ) ⊆ L×L ⊆ Ω×Ω as
a discretization of the system f . An estimate of the accuracy of such a discretization ϕ is provided
by the two quantities

d(ϕ, f) = Sep(Gr(ϕ),Gr(f)) and d(f, ϕ) = Sep(Gr(f),Gr(ϕ)).

Note that d is not a metric.
The mapping ϕ : L 7→ 2L will be called an α–consistent discretization of f if at least one of the

following two conditions hold:

C1. There exists a cover X(ξ), ξ ∈ L of Ω with X(ξ) ⊆ Oα(ξ), ξ ∈ L and

f(X(ξ)) ⊆ X(ϕ(ξ)).

C2. There exist nonempty sets Ξ(x), x ∈ Ω of L with Ξ(x) ⊆ Oα(x) and

ϕ(Ξ(x)) ⊇ Ξ(f(x)).

Consider some simple examples of α–consistent discretizations.
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Example 4. For any ξ ∈ L denote by X(ξ) the subset of Ω defined by

X(ξ) =
{
x : ρ(x, ξ) = min

η∈L
ρ(x, η)

}
,

and for any subset Ω∗ ⊆ Ω denote

Ξ(Ω∗) =
{
ξ : X(ξ)

⋂
Ω∗ 6= ∅

}
.

Then the multi–valued mapping ϕ : L 7→ 2L defined by ϕ(ξ) = Ξ(f(X(ξ)) for ξ ∈ L will be
an h(L)–consistent discretization of f with d(ϕ, f) ≤ h(L). In this example the condition C1 is
fulfilled.

Example 5. Denote A = Oh(L)(Gr(f))
⋂

(L×L) and consider the multi–valued mapping ϕ : L 7→
2L with the graph A. Then this map is a h(L)–consistent discretization of f with d(ϕ, f) ≤ h(L).
In this example the condition C1 holds. with the same cover as in the previous example.

Example 6. Let ψ : L 7→ 2L be a given mapping with d(f, ψ) ≤ α. Then the multi–valued
mapping ϕ(ξ) = O2α(ψ(ξ))

⋂
L will be an α–consistent discretization of f with d(ϕ, f) ≤ 3α. In

this example the condition C2 is fulfilled with Ξ(x) = Oα(x)
⋂

L.

Denote by C(ϕ, f) the greatest lower bound of those α for which ϕ is an α–consistent discretiza-
tion of f . Consider a mapping ϕ : L 7→ 2L with the graph Gr(ϕ) ⊆ L×L ⊆ Ω×Ω as a discretization
of the system f .

Recall definitions of trajectories and pseudo–trajectories for single– and multi–valued mappings.
A sequence y = y0, y1, . . . , yN is called a trajectory of a single–valued mapping f if yn+1 = f(yn)
for n = 0, 1, . . . , N − 1; it is called a trajectory of a multi–valued mapping ϕ if yn+1 ∈ ϕ(yn) for
n = 0, 1, . . . , N − 1. A sequence y0, y1, . . . , yN is called a γ–pseudo–trajectory of a single–valued
mapping f if ρ(yn+1, f(yn)) ≤ γ for n = 0, 1, . . . , N − 1; it is called a γ–pseudo–trajectory of a
multi–valued mapping ϕ if Sep(yn+1, ϕ(yn)) ≤ γ for n = 0, 1, . . . , N − 1. Denote by Tr(f) the
totality of trajectories of f and denote by Tr(ϕ) the totality of trajectories of ϕ. Sometimes it is
necessary to distinguish more accurately to which set belong elements of a trajectory, or to which
γ corresponds a given pseudo–trajectory. In this case we will denote by Tr(f, S, γ) the totality of
finite or infinite γ–pseudo–trajectories belonging entirely to a subset S ⊆ Ω. Since a true trajectory
can be regarded as a 0–pseudo–trajectory, the set of all finite or infinite trajectories of f which
belong entirely to S will be denoted by Tr(f, S, 0). Since a trajectory is also a γ–pseudo–trajectory
for any γ > 0, Tr(f, S, 0) ⊂ Tr(f, S, γ). The inclusion is strict because not every pseudo–trajectory
is a trajectory.

Pseudo–trajectories arise naturally due to the presence of roundoff error in computer calculations
of trajectories, though accumulated roundoff error can rapidly destroy any meaningful connection
between a computed pseudo-trajectory and an original trajectory. The concept of shadowing in-
troduced below provides an alternative, more practical form of comparison of trajectories and
pseudo–trajectories.

Pseudo-trajectories often arise as a result of roundoff errors during computation of real trajec-
tories. Moreover, accumulation of roundoff errors may result in quick loss of any relation between
computed pseudo–trajectory and original trajectory. The notion of shadowing given below provides
an alternative and more practical way to compare trajectories with pseudo–trajectories.

The system f is said to be shadowing with positive parameters α and β on a closed subset K
of Ω if for any given finite γ–pseudo–trajectory y ⊆ K with 0 ≤ γ ≤ β there exists a trajectory
x = {xn} ∈ Tr(f) such that

ρ(xn, yn) ≤ αγ
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for all n for which y is defined.
Many systems with chaotic behavior are shadowing for appropriate α, β. From this it is often

concluded that the behavior of a computed system reflects that of the original system, at least over
finite time intervals, in the sense that there will always be some true trajectory near any observed,
pseudo–trajectory. The classical examples of shadowing system are hyperbolic diffeomorphisms.

Theorem 5. (a) For any dynamical system f the relation

Sep(Tr(f),Tr(ϕ)) ≤ C(f, ϕ)

holds.
(b) If the system f is shadowing on Ω with constants α and β then for any ϕ with 2d(f, ϕ) ≤ β

the following relation holds

Sep(Tr(ϕ),Tr(f)) ≤ 2αd(f, ϕ) + d(ϕ, f).

This Theorem shows that the flow of the original system f is closely represented by the flow of
the multi–valued discretization ϕ provided that ϕ is consistent, the system f is shadowing, and the
graphs Gr(f),Gr(ϕ) are close in the Hausdorff metric.

From Theorem 5 a number of useful corollaries follow; let us mention one of them. A point
ξ ∈ L is called cyclic for ϕ : L 7→ 2L if there exists a natural number p such that ξ ∈ ϕp(ξ). Recall
that an infinite trajectory x = x0, x1, . . . of f is called recurrent if for any ε > 0 there exists a
natural N such that for any natural M , Sep(x,x∗) ≤ ε where x∗ = xM , . . . , xM+N−1. In other
words, a trajectory is recurrent if it is approximated with a given accuracy by each sufficiently long
subtrajectory.

Corollary 2. (a) Let a trajectory x = x0, x1, . . . be recurrent for f and suppose that ϕ is a
discretization. Then for any α > C(ϕ, f) there exists a periodic trajectory ξ1, ξ2, . . . of ϕ satisfying

ρ(xn, ξn) ≤ α, n = 0, 1, . . . .

(b) If the system f is shadowing on Ω with constants α, β and ξ0, ξ1, . . . is a periodic trajectory
of ϕ then there exists a recurrent trajectory x of f with

ρ(xn, ξn) ≤ 2αd(f, ϕ) + d(ϕ, f), n = 0, 1, . . . .

4.4. Concept of bi–shadowing

Now discuss an important point concerned the interpretation of shadowing property in numer-
ical modelling. Theorem 5 is sufficient for comparison of properties of original system and its
discretization would f described the dynamic of the system under consideration precisely. How-
ever, it is not the case in many practical situation. Often f itself should be considered as an
approximation/idealization of a certain unknown in explicit form dynamical system g. Information
about the system g can be usually summed as some qualitative properties of the mapping g, for
instance continuity, and some quantitative estimates, concerning the proximity between f and g
pretty often these are estimates of the uniform distance. In this situation it would be better to use
instead statements like Theorem 5 assertion about similarity between the flows of a discretization
ϕ of an ideal system f and a possible flow of a real, unknown explicitly, system g.

Here is more natural to use instead of the concept of shadowing the one of bi–shadowing. Recall
once more that the shadowing is often interpreted as the confirmation of the fact that the behavior
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of a computed system reflects that of the original system, at least over finite time intervals, in the
sense that there will always be some true trajectory near any observed, pseudo–trajectory.

The inverse question as to whether every true trajectory can be approximated by some pseudo–
trajectory is of no less practical importance. While any γ-pseudo-trajectory is possible in principle,
only those belonging to some particular class T occur in practice. These might be generated by
a discretization method being applied or arise from specific processes associated with computer
arithmetic. Typically, only general characteristics of such pseudo–trajectories will be known rather
than a complete definition of T itself. The problem of inverse shadowing with respect to such a
class T is to determine whether every true trajectory of a given system f can be approximated
by some pseudo–trajectories from T . A discussion of direct and indirect shadowing can be found
in [61, Appendix C].

The class of pseudo–trajectories T plays a somewhat different role in the two forms of shadowing.
In the classical Shadowing Lemma, T consists of all conceivable pseudo–trajectories of f and is
thus as large as possible. On the other hand, inverse shadowing should be compatible with more
restricted classes T , such as the trajectories of a continuous mapping ϕ that is sufficiently C0 close
to f . It will be shown that the two forms of shadowing with the respect to such classes are usually
both present (see also [12–15]).

Define the distance between two mappings f, g : Ω 7→ Ω by

ρ∞(ϕ, f) = sup
x∈Ω

ρ(ϕ(x), f(x)).

A dynamical system f : Ω 7→ Ω is said to be bi–shadowing with positive parameters α and β on a
subset K of Ω if for any given finite pseudo-trajectory y = {yn} ∈ Tr(f,K, γ) with 0 ≤ γ ≤ β and
any mapping ϕ : Ω 7→ Ω satisfying

γ + ρ∞(ϕ, f) ≤ β,

there exists a trajectory x = {xn} ∈ Tr(ϕ,Ω, 0) such that

ρ(xn, yn) ≤ α(γ + ρ∞(ϕ, f))

for all n for which y is defined.
Now, we can reformulate Theorem 5 in the following form:

Corollary 3. If the system f is bi–shadowing on Ω with constants α, β then for any ϕ with
2d(f, ϕ) + ρ∞(ϕ, f) ≤ β the estimate

Sep(Tr(ϕ),Tr(g)) ≤ α(2d(f, ϕ) + ρ∞(ϕ, f)) + max{d(ϕ, f),C(ϕ, f)}

holds.

4.5. Semi–hyperbolic Lipschitz mappings

Applications of Theorem 3 above and of many other assertions of such kind require constructive
theorems about bi–shadowing. Shadowing results (cf. [5, 15, 60, 62]) typically establish only direct
shadowing and involve rather stringent assumptions such as that the dynamical system is generated
by a hyperbolic diffeomorphism. Hyperbolicity, however, imposes far more structure on a dynamical
system than is required for shadowing, for example the continuity of the splitting and the existence
of invariant stable and unstable manifolds. In addition, as we have seen above there are many
important and interesting dynamical systems which lack either the smoothness or the invertibility.
Many useful properties of hyperbolic diffeomorphisms are retained by the semi–hyperbolic mappings
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that were introduced in [15] for local diffeomorphisms (see also Anosov [3] and Sataev [63] where
related concepts are discussed) and extended to Lipschitz mappings in [16].

Below is shown that semi–hyperbolicity of Lipschitz mappings implies bi–shadowing. A four-
tuple s = (λs, λu, µs, µu) of nonnegative real numbers is called a split if

λs < 1 < λu (16)

and
(1− λs)(λu − 1) > µsµu. (17)

Clearly, for any given λs, λu satisfying (16) the four-tuple s is a split if the product µsµu is small
enough.

Below Ω is a compact subset of Rd with non–empty interior. Let s = (λs, λu, µs, µu) be a split
and K a compact subset of interior of Ω. A Lipschitz mapping f : Ω 7→ Ω is said to be s–semi-
hyperbolic on the set K if there exist positive real numbers k, δ such that for each x ∈ K there
exists a splitting (decomposition)

Rd = Esx ⊕ Eux ,
with corresponding projectors P sx and P ux satisfying the following properties:

SH0. dim(Esx) = dim(Esf(x)) if x, f(x) ∈ K.
SH1. supx∈K{|P sx |, |P ux |} ≤ k.
SH2. The inclusion

x+ u+ v ∈ Ω

and the inequalities

|P sf(x) (f(x+ u+ v)− f(x+ ũ+ v)) | ≤ λs|u− ũ|,
|P sf(x) (f(x+ u+ v)− f(x+ u+ ṽ)) | ≤ µs|v − ṽ|,
|P uf(x) (f(x+ u+ v)− f(x+ ũ+ v)) | ≤ µu|u− ũ|,
|P uf(x) (f(x+ u+ v)− f(x+ u+ ṽ)) | ≥ λu|v − ṽ|

hold for all x ∈ K with f(x) ∈ K and all u, ũ ∈ Esx, v, ṽ ∈ Eux such that |u|, |ũ|, |v|, |ṽ| ≤ δ.

Note that continuity in x of the splitting subspaces Esx, E
u
x or of the projectors P sx , P

u
x is not

assumed here, nor is invariance of the splitting subspaces, as is the case in the definition of hyperbol-
icity (of a diffeomorphism). The smooth (s, k)–semi-hyperbolic mappings, as they were introduced
in [15] are, clearly, s–semi-hyperbolic for any split sε = (λs + ε, λu − ε, µs + ε, µu + ε), ε > 0. A
hyperbolic (with respect to the Euclidean metric) diffeomorphism on K is semi-hyperbolic in the
sense of the definition in [15] and hence in the above sense as a Lipschitz mapping for an appropriate
triple (s, k, δ).

The main result of this Section is that semi–hyperbolicity is sufficient to ensure bi–shadowing of
a dynamical system generated by a Lipschitz mapping with respect to perturbed systems generated
by continuous mappings.

Theorem 6. Let f : Ω 7→ Ω be a Lipschitz mapping which is s–semi–hyperbolic on a compact
subset K of Ω with constants k, δ. Then it is bi–shadowing on K with parameters

α(s, k) = k
λu − λs + µs + µu

(1− λs) (λu − 1)− µsµu
and

β(s, k, δ) = δk−1 (1− λs)(λu − 1)− µsµu
max{λu − 1 + µs, 1− λs + µu}

.

with respect to continuous mappings ϕ : Ω 7→ Ω.
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Other properties of semi–hyperbolic mappings see in [1, 2, 12–16,18]

5. DISCRETIZATION OF PLANAR LINEAR SYSTEMS WITH INVARIANT MEASURE

An impression can appear that the difficulties of investigating discretized systems are intrinsic
for systems with chaotic behavior only. However, that is not the case. Consider, for example, the
problem of numerical modeling of the dynamics of a linear mapping describing the rotation of the
plane by an angle ϑ:

x 7→ x0 + (x− x0) cosϑ− (y − y0) sinϑ,
y 7→ y0 + (x− x0) sinϑ+ (y − y0) cosϑ.

(18)

When treating the results of the numerical modeling, we again encounter paradoxical results.
As can be seen from 5, the phase portrait of the mapping (6) differs drastically from that of the

rotation mapping (18). The basic distinction consists in that the mapping (6) is dissipative. But
this is precisely the property of the mapping (6) that can be justified theoretically. Nevertheless,
the proof turns out to be not as easy as it might seem, and this illustrates how poorly we understand
the geometry of discretized (even linear) mappings for the time being!

Theorem 7 (see [20]). If ϑ = 0,±π,±π
2 then every trajectory of the mapping (6) is eventually

periodic with periods 1, 2, 4 respectively.
If (x0, y0) = 0 and ϑ 6= 0,±π,±π

2 then every trajectory of the mapping (6) eventually gets into
the zero point.

If (x0, y0) 6= 0, (x0, y0) ∈ L1,1 and ϑ 6= 0,±π,±π
2 then there exists a number r0 > 0 such that

every trajectory of the mapping (6) eventually gets into the disk of the radiusr0 centered at the point
(x0, y0).

The results of modeling by formulae (7) (see Figure 6) look closer to behavior of trajectories of
the continuous rotation mapping Tϑ, although qualitative distinctions can be seen in this case as
well. The obtained pattern turns out to resemble the “rings of Saturn” with characteristic zones of
condensation and rarefaction. To justify the obtained results formally and, in particular, to answer
the questions:

– what are the spatial densities of cycles of the mapping (7) or of points with
empty preimages?

– whether trajectories of the mapping (7) are all bounded or among them there
are those ones diverging to infinity?

etc., turned out to be substantially more difficult than in case of the mapping (6).
Investigation of the problem of invertibility of discretized plane rotations is fulfilled in the next

Section.

5.1. Problem of invertibility of the roundoff discretization of linear mappings

Let as usually Z be the set of integers and L1,1 := Z × Z be the lattice of points with integer
coordinates in R2. Denote by round(x) the roundoff operator to the nearest integer on R defined
by the equality

round(x) = i ∈ Z : x− 1
2
≤ i < x+

1
2
, x ∈ R,

and analogously define the coordinate-wise roundoff operator on the plane R2:

round(x) = (round(x1),round(x2)) ∈ L1,1, x = (x1, x2) ∈ R2.
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The standard scalar product in R2 will be denoted below by 〈·, ·〉.
Consider the linear mapping A : R2 → R2 and let A : L1,1 → L1,1 be its roundoff discretization

defined as
A(x) := round(Ax), x ∈ L1,1. (19)

In virtue of (19) the mapping A acts from R2 to L1,1; it can be also uniquely defined as such a
mapping A : L1,1 → L1,1 which satisfies the inclusion

A(x)−Ax ∈ Π :=
[
−1

2
,
1
2

)
×
[
−1

2
,
1
2

)
, z ∈ L1,1. (20)

The roundoff discretization is a particular case of the so-called Stetter or general discretizations.
Recall [66] that the mapping A : L1,1 → L1,1 is a Stetter or general discretization of the mapping
Ax on L1,1 if it satisfies

A(x)−Ax ∈ Π :=
[
−1

2
,
1
2

]
×
[
−1

2
,
1
2

]
, z ∈ L1,1. (21)

Remark that in contrast to (20) the mapping A is determined by (21) ambiguously.
In what follows we will be interested mainly in studying the properties of roundoff discretizations

although we will not avoid also investigating the properties of general discretizations. One of the
first problem arising during consideration of roundoff discretizations, the answer to which is not
quite obvious, is that about their invertibility:

are there such linear mappings A whose roundoff discretizations A are in-
vertible on L1,1?

Examples given below show that the answer to the above question is positive.

Example 7. Let

A =

[
m n
p q

]
, m, n, p, q ∈ Z,

where mq − np = ±1. Then the mapping A acts on the lattice L1,1, i.e. A ≡ A, and is invertible
on it.

Example 8 (see [55]). Let

A =

[
γ −1
1 0

]
, γ ∈ R, γ > 0.

Then the roundoff discretization A of the mapping A is invertible on the lattice L1,1, and the
mappings A, A−1 are of the form:

A(x) =

[
round(γx1)− x2

x1

]
, A−1(x) =

[
x2

−x1 + round(γx2)

]
, x =

[
x1

x2

]
∈ L1,1. (22)

So as in the previous case the assertion of Example 8 is proved by direct verification. Remark
that Example 8 is not so evident as it seems on the first glance. So, the representation (22) for A is
not valid for any negative rational γ of the form −m

2n ; this fact directly follows from the following
relation

round(−x) 6≡ −round(x), x ∈ R2. (23)

The same relation (23) implies also that A−1(x) 6≡ round(A−1x) for any negative rational γ of the
form −m

2n .
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Example 9. Let

A =

[ 4
5 −

3
5

3
5

4
5

]
.

Then the roundoff discretization A of the mapping A is invertible on the lattice L1,1 and A−1(x) =
round(A−1x).

Example 10. Let

A =

[
cosϑ − sinϑ
sinϑ cosϑ

]
,

and the angle ϑ is such that the values of cosϑ and sinϑ are irrational. Then the roundoff dis-
cretization A of the mapping A is not invertible on the lattice L1,1.

In connection with the examples presented above there arise a question about characterization of
linear mappings A possessing an invertible roundoff discretization A. One should keep in mind that
it is not clear a’priori whether the mapping invertible to A is the roundoff discretization of some
linear mapping of R2 into itself. If the answer is positive then we can pose further question: whether
it is possible to choose the corresponding mapping from the class of the roundoff discretizations
or from the broader class of general (Stetter) discretizations? So, the main question now can be
formulated more specific:

are there such linear mappings A whose roundoff discretizations A are invert-
ible on L1,1 in the class of roundoff discretizations of linear mappings, i.e. for
which there exists such a linear mapping B whose roundoff discretization B
satisfies A ◦ B ≡ I?

A more general form of the same question is as follows:

are there such linear mappings A whose roundoff discretizations A are in-
vertible on L1,1 in the class of general Stetter discretizations, i.e. for which
there exists such a linear mapping B whose Stetter discretization B satisfies
A ◦ B ≡ I?

The following Lemma demonstrates that the class of linear mappings possessing invertible dis-
cretizations is quite restrictive.

Lemma 3. Let A and B be general (Stetter) discretizations of linear mappings A and B, respec-
tively, and let A ◦ B = I on L1,1. Then AB = I and detA = detB = 1.

Lemmata 4, 5 and Theorem 8 below even more restrict the class of linear mappings discretizations
of which are invertible (in the class of discretizations of linear mappings).

Derive some auxiliary relations. Let A,B be linear mappings in R2 and A,B be their general
(Stetter) discretizations. Let also

(A ◦ B)(x) ≡ x, x ∈ L1,1. (24)

Then by Lemma 3 B = A−1 and one may write down the chain of equalities:

x = (A ◦ B)(x) = A(B(x)) = AB(x) + α(B(x)) =
= AA−1x+Aβ(x) + α(B(x)) = x+Aβ(x) + α(B(x)),
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where
α(x) = A(x)−A(x), β(x) = B(x)− B(x).

Then
Aβ(x) + α(B(x)) = 0

or
β(x) = −A−1α(B(x)), x ∈ L1,1. (25)

Since (24) is equivalent to
(B ◦ A)(x) ≡ x, x ∈ L1,1, (26)

then the latter relation implies:

α(x) = −Aβ(A(x)), x ∈ L1,1. (27)

Define now two sets:

A =
{
z ∈ R2 : z = α(x), x ∈ L1,1

}
, B =

{
z ∈ R2 : z = β(x), x ∈ L1,1

}
.

Then from the definitions of the mappings α(·) and β(·) it follows that

A,B ⊆ Π. (28)

On the other hand, relations (27) and (25) imply

A ⊆ −AB, B ⊆ −A−1A,

from which due to invertibility of the mapping A (see Lemma 3)

A = −AB. (29)

Finally, from (28) and (29) we get

A ⊆ −Π ∩AΠ, B ⊆ −Π ∩A−1Π. (30)

Lemma 4. If the mapping A has an invertible discretization and

A 6= ±I, A 6= ±
[

0 −1
1 0

]

then the polygons Π ∩ AΠ and Π ∩ A−1Π are proper subsets of the closed square Π, and therefore
A and B are not dense in Π (see Figure 14).

The next Lemma specifies the conditions under which the set A (or B) is dense in Π, and thus
by Lemma 4 the corresponding discretization of the mapping A is not invertible.

Lemma 5. Let A be the roundoff discretization of the mapping A. Then the set A is dense in
Π (or in Π) if and only if the following Vladimirov Condition (see, e.g., Theorem 9 below and
also [68, p. 28]) holds:

(A1) the matrix A ∈ R2×2 is such that the columns of the matrix
[
I, AT

]
∈ R2×4 are rationally

independent.
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( 1-  ,1) (0,1) (1,1)

( 1-  ,0) (1,0)

(1,-1)(0,-1)( 1-  ,-1)

П

-AП

Fig. 14. Disposition of the sets Π and AΠ for a linear mapping A with an invertible discretization.

Lemmata 4 and 5 imply the following

Theorem 8. Let A be the roundoff discretization of the linear mapping A, and B be a general
(Stetter) discretization of the linear mapping B such that A◦B = I. Then detA = 1 and there are
nonzero vectors z, w ∈ L1,1 such that AT z = w.

Remark that the statement of Example 10 immediately follows from the above Theorem.
So, results of this Section show that discretizations of linear mappings may be invertible in

exceptional cases. This means that in the course of numerical modelling of dynamics of invertible
continuous processes we inevitable will face the loss of information. How big this loss of information
and to which extent this loss of information may influence the results of modelling is another
problem to partial study of which the next Sections are devoted.

5.2. Algebra of quasiperiodic frequency measurable sets

Answering the questions related to the density of cycles of the mapping (7) or the points which
have no preimages requires developing and justifying probability theoretical constructions for mea-
sures that are not countably additive, i.e. for those ones not obeying the now classical Kolmogorov’s
axiomatics of the probability theory. Since the approach proposed in [68, 69] is applicable for dif-
ferent situations connected with the analysis of discretizations of continuous mappings, we will
describe it in this Section in more details.

One of the basic properties of the continuous rotation mapping Tθ to preserve the Lebesgue
measure is lost when we pass to its discretization round(Tθ(x)) whatever “reasonable” and “nat-
ural” definition of a measure on the lattice L1,1 ⊂ R2 is used. At the same time, it is clear that
the measure-preserving property plays a key role in the study of “frequency” properties of many
continuous dynamical systems. That is why one of the first questions which arise is whether it is
possible to define a measure on the lattice L1,1 in such a manner that the measure be preserved by
the mapping round(Tθ(x))? Only in the case of a positive answer to this question one may hope
to obtain substantive assertions on the properties of discretized continuous mappings.

The answer to the question turned out to be positive, and we shall give a brief description of the
construction of an appropriate measure. For a quadruple of integers a1, a2 and l1, l2 > 0 denote by
R(a1, a2, l1, l2) the rectangle ([a1, a1 + l1)× [a2, a2 + l2)) ∩ L1,1. A set A ⊂ L1,1 is called frequency
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measurable if there exists a number F(A), 0 ≤ F(A) ≤ 1 (a frequency of the set A) such that

sup
l1,l2≥N, a1,a2

∣∣∣∣# (A
⋂
R(a1, a2, l1, l2))
l1 l2

−F(A)
∣∣∣∣→ 0 for N → +∞.

Example 11. Obvious examples of frequency measurable sets are given by the lattice L1,1 for
which F (L1,1) = 1, and by any finite subset A ⊂ L1,1 of the lattice; for any such set F(A) = 0.

The totality S of frequency measurable sets is closed under unification of a finite number of
pairwise disjoint sets and complementation of a set to the lattice L1,1, but is not an algebra since
this totality is not closed under intersection of sets (and thus, the totality S is not a σ–algebra).
In addition, the functional F : S → [0; 1] is a finitely additive probability measure and hence the
triplet (L1,1,S,F) can be regarded as a probability space which does not obey the axiomatics of
Kolmogorov [43, 64].

Now, give an example of a less trivial and more essential to our goals class of frequency measur-
able sets.

Theorem 9. Let L ∈ R∞×2 be a matrix consisting of countable number of rows and two columns
whose every (m× 2)–submatrix Λ is such that

(A1) the columns of the matrix
[
I2,ΛT

]
are rationally independent,

with I2 standing for the identity matrix of the second order.
Then for any Jordan measurable set3 G ⊂ [0; 1)m and for any (m×2)–submatrix Λ of the matrix

L, the set
Qm(G,Λ) ≡ {x ∈ L1,1 : Λx ∈ G+ Zm} (31)

is frequency measurable and its frequency F (Qm(G,Λ)) coincides with the m–dimensional Lebesgue
measure mesG of the set G. In addition, the totality Q(L) of all the sets of kind (31) is an algebra
(entirely consisting of frequency measurable sets).

Note that the matrices Λ satisfying Condition (A1) form a set of full Lebesgue measure and,
hence, are typical in the sense.

5.3. Rules of interpretation

From the property that the frequency F of any finite subset of the lattice equals zero, it follows
that the functional F is substantially finitely additive. From here, it also can be seen that the
frequency F is concentrated on infinite subsets of the lattice. These rather unusual circumstances
aggravate perception of frequency measurable sets with frequencies different from 0 and 1. That
is why, when carrying out a computer experiment, one needs rules for interpreting assertions like
this: an event A ⊆ L1,1 holds with a frequency or probability p, 0 ≤ p ≤ 1, with respect to the
probability measure F . An appropriate interpretation should be consistent with the definition of
the frequency F and one of its simplest version is as follows.

For sequences of integers l(n)
1 , l

(n)
2 > 0 and a

(n)
1 , a

(n)
2 with l

(n)
1 and l

(n)
2 unboundedly increasing,

denote by p(A;R(n)) the proportion of those points x of the rectangle

R(n) = [a(n)
1 , a

(n)
1 + l

(n)
1 )× [a(n)

2 , a
(n)
2 + l

(n)
2 )

⋂
L1,1

for which the inclusion x ∈ A is valid. Then
3 Recall that a set G ⊂ Rn is called Jordan measurable if it is bounded and its boundary ∂G satisfies mesn ∂G = 0,

where mesn( · ) is the n–dimensional Lebesgue measure of a set.
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an event A ⊆ L1,1 holds with a probability p with respect to the probability measure F if and only
if the limiting relation limn→∞ p(A;R(n)) = p holds independently of the choice of the sequences
a

(n)
1 , a

(n)
2 .

When calculating the proportions p(A;R(n)), the sets R(n) are not allowed to be chosen arbitrar-
ily (satisfying the only condition that their cardinalities unboundedly grow). Nevertheless, there
may be a certain arbitrariness in choosing the sets R(n) for calculating the proportions p(A;R(n)).
For example, one can take, as the sets R(n), the unions of finite numbers of pairwise disjoint rect-
angles with jointly increasing lengths of sides. Some other ways of choosing the sets R(n) are also
allowed.

5.4. Quantizers and ergodic properties of discretized linear systems

The sets belonging to some algebra Q(L) have a fractal-wise structure, although they do not
formally possess the self-similarity property and that is why are not fractals. These sets will be
called L–quasiperiodic. The quasiperiodic sets naturally arise in considering a sufficiently wide class
of discretizations of linear mappings, quantized linear systems. Adduce appropriate definitions.

A mapping Q : R2 → L1,1 is called a quantizer if it commutates with the additive group of
translations of the lattice L1,1 (i.e. Q(x + z) = Q(x) + z for all x ∈ R2, z ∈ L1,1), and the
full preimage Q−1(0) ⊂ R2 of the zero vector is a Jordan measurable set. The superposition
Q ◦T : L1,1 → L1,1 of a nonsingular linear mapping T with a quantizer Q will be called a quantized
linear system.

The most interesting quantizer is the roundoff operator round to the nearest point of the lattice
L1,1 which generates a quantized linear system round ◦ Tθ. Note that the operator of truncation
trunc is not a quantizer and the mapping (6) is not a quantized linear system. It is precisely by
this reason that there is a difference in behavior of the discretized mappings (6) and (7).

The following theorem shows that the frequency functional F , when being considered on an
appropriately chosen algebra of frequency measurable quasiperiodic sets, is the finitely additive
probability measure invariant for a quantized linear system, and thus a quantized linear system
possesses strong ergodic properties.

Theorem 10. Let the matrix T ∈ R2×2 of the quantized linear system Q◦T be such that the rows
of the infinite dimensional matrix T + ≡ blockcolk≥0

(
T k
)
∈ R∞×2 are rationally independent.

Then the operator Q ◦T : L1,1 → L1,1 is measurable with respect to the algebra of T +–quasiperiodic
sets, preserves the frequency F on this algebra and possesses a mixing property, i.e.

(Q ◦ T )−1(A) ∈ Q(T +), F
(
(Q ◦ T )−1(A)

)
= F(A)

and
lim

k→+∞
F
(
(Q ◦ T )−k(A)

⋂
B
)

= F(A)F(B)

for all A,B ∈ Q(T +).

The collection of facts concerning the quantized linear systems is not exhausted by the assertions
of Theorem 10 only. By appropriately choosing algebras of frequency measurable quasiperiodic
sets (depending on the quantizer and Q matrix T ), one can also establish some other properties
of discretizations of linear systems. For instance, it turns out that quantization errors Ek ≡
(I − Q) ◦ T ◦ (Q ◦ T )k−1 : L1,1 → Q−1(0) are mutually independent, uniformly distributed on the
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set Q−1(0) and measurable with respect to the algebra of T +–quasiperiodic sets which allows to
compute frequency characteristics of the Nth deviation

∆(N)(x) def= TNx− (Q ◦ T )N (x) =
N∑
k=1

TN−kEk(x).

of trajectories of the quantized linear system Q ◦T from those of the original linear system T . One
can also compute the frequency of the points of the lattice L1,1 with full preimages consisting of a
given number of points, etc.

Now, discuss some corollaries from the above results for the quantized linear system with the
roundoff quantizer Q = round and the rotation matrix T = Tθ with the angle θ ∈ (0;π/2). An
exhaustive answer to the above asked question — is there a possibility of defining a measure on the
lattice L1,1 which is preserved by the mapping round ◦ T? — was given by Theorem 10. A rather
satisfactory answer to another question — what are the spatial densities of cycles of the mapping
(7) or points with empty preimages? — will be given by Theorem 11. Denote by an σn(R, θ) the
relative proportion of those points of a rectangle R whose n-th full preimages with respect to the
mapping round(Tθx) are empty. Then the following theorem is valid.

Theorem 11. Let the rotation angle θ ∈ (0;π/2) be such that the rows of all the nonnegative
powers of the matrix Tθ are rationally independent. Then, uniformly with respect to a1 and a2

lim
min{l1,l2}→∞

σ1(R(a1, a2, l1, l2), θ) = σ1(θ) ≡
(√

2 cos
(
θ − π

4

)
− 1

)2

.

From this theorem, it follows that, for sufficiently large rectangular fragments of the lattice
L1,1 ⊂ R2 the relative proportion of the points with empty full preimages is approximately equal
to 1 − σ1(θ). The upper estimates for the relative proportion of the points belonging to cycles of
the mapping round(Tθx) are given by the numbers 1−σn(θ), n = 2, 3, . . ., which can be computed
with the aid of explicit formulae.

The assertion of Theorem 11 seems sufficiently natural and, if we ignore a concrete shape of the
formula, trivial in essence. Nevertheless, this impression is not completely true. The nontriviality
of Theorem 11 is testified by the fact that the theorem is no longer valid if, when calculating the
relative proportions σ1(R, θ), arbitrary finite sets R with growing cardinalities are used instead of
the rectangles R = R(a1, a2, l1, l2). In a, sense, Theorem 11 resembles the method of computing
divergent integrals by means of taking their principal values.

As to the above asked question - whether the trajectories of the mapping (7) are all bounded, or
among them there are those ones diverging to infinity? - we succeeded in obtaining a partial answer
to the question. It turns out that for the overwhelming, in the sense of the measure F , majority of
trajectories of the discretized mapping (7), their deviation from corresponding trajectories of the
ideal system in N steps of evolution grows like

√
N with N increasing. This result follows from the

theorem below.

Theorem 12. Let the rotation angle θ be such that the rows of all the nonnegative powers of the
matrix Tθ are rationally independent. Then the Euclidean deviation of trajectories of the quantized
linear system round ◦ Tθ from those of the original linear system Tθ during N steps of evolution
is characterized by the following asymptotical distributions: for any α ≥ 0 there exist the limits

lim
N→+∞

F
{
x ∈ L1,1 :

√
12
N

∣∣∣T kθ (x)− (round ◦ Tθ)k(x)
∣∣∣ > α

}
= exp

(
−α2/2

)
,
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lim
N→+∞

F
{
x ∈ L1,1 : max

1≤k≤N

√
12
N

∣∣∣T kθ (x)− (round ◦ Tθ)k(x)
∣∣∣ > α

}
= τ(α),

where τ(α) stands for the probability of the random event that the maximal Euclidean deviation of
the two-dimensional standard Wiener process from the zero point on the time interval [0; 1] exceeds
the level α.

Note that the set Θ of all the values θ satisfying the assumption of Theorem 12 has full Lebesgue
measure, and moreover, the set(0;π/2) \Θ formed by “pathological” rotation angles is countable.
Also, note that for any θ ∈ Θ the number θ/π is irrational.

The first of the limiting relations from Theorem 12 can informally be rephrased as follows: if,
for a sufficiently large and fixed N , we calculate the empirical tail-distribution function

D
(N)
R (α) ≡ 1

#(R)
#

{
x ∈ R :

√
12
N

∣∣∣T kθ (x)− (round ◦ Tθ)k(x)
∣∣∣ > α

}

of the aforementioned normed deviations for a large rectangle R on the lattice L1,1, then this dis-
tribution will be close to the theoretically predicted function exp

(
−α2/2

)
uniformly in α ≥ 0. This

relation admits an experimental verification which for N = 10 and the rectangleR(−25,−25, 50, 50)
is in good agreement with the theoretical prediction.

6. ASYMPTOTICS OF INFORMATION LOSS UNDER DISCRETIZATION OF RANDOM
PROCESSES

Physical measurements with the aid of digital equipment and computer simulations of dynam-
ical systems involve a phase space which is the finite set of machine arithmetic and hence, are
accompanied by distortion of functional properties of original continual objects under spatial dis-
cretization. Development of information theoretical techniques for estimating the consequences of
modeling continual phenomena by their computer counterparts seems important in this circle of
problems [48, 50]. In this Section the asymptotic analysis of losses of the information is carried
out at an analogue-digital conversion of random data in arithmetics with the fixed point. In the
presentation of this part we follow [30,70].

6.1. Lattice discretization

Denote by R : Rn → Zn the roundoff operator which maps a vector u = (uk)1≤k≤n to the nearest
node R : Rn → Zn of the n-dimensional integer lattice Zn, where b · c is the floor integer part of a
number. Clearly, R commutes with the additive group of translations of Zn,

R(u+ z) = R(u) + z for all u ∈ Rn, z ∈ Zn,

and the preimage of the zero vector under the mapping is the half-open cube

V = R−1(0) = [−1/2, 1/2)n. (32)

For any ε > 0, define the mapping Rε = εR ◦ ε−1 : Rn → εZn which can be interpreted as a model
for the computer discretization procedure in fixed-point arithmetic with accuracy ε.

6.2. Entropy of discretized random vector

Let ξ : Ω→ Rn be a random vector on a probability space (Ω,F , P ). Suppose that its probability
distribution is absolutely continuous with density p : Rn → R+ with respect to the n-dimensional
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Lebesgue measure. Then the ε-discretization ξε = Rε(ξ) of the vector is distributed with probabil-
ities

pε(x) = εnEp(x+ εθ), x ∈ εZn, (33)

where θ is the random vector uniformly distributed over the cube (32) and E( · ) is the mathematical
expectation. The entropy of the vector ξε

H(ξε) = −
∑
x∈εZn

pε(x) ln pε(x) (34)

coincides with the information I(ξε; ξ) in this vector about ξ. From (33) and (34) it follows that

H(ξε) = −n ln ε− εn
∑
x∈εZn

fε(x), (35)

where
fε(x) = Ep(x+ εθ) ln Ep(x+ εθ). (36)

By the Jensen inequality and convexity of the function u lnu in u ≥ 0, from (36) it follows that
fε(x) ≤ E(p(x+ εθ) ln p(x+ εθ)), and then by (35)

H(ξε) ≥ −n ln ε− εn
∑
x∈εZn

E(p(x+ εθ) ln p(x+ εθ)) = −n ln ε+ h(ξ), (37)

where
h(ξ) = −

∫
Rn

p(x) ln p(x)dx (38)

is the differential entropy [56] of the vector ξ. To state the theorem below which gives an asymptotic
estimate for the proximity of the inequality (37) to equality, some auxiliary notions are needed.

A function f : Rn → R is called supersummable if∫
Rn
Uε(f)(x)dx < +∞

for some ε > 0, where the function Uε(f) : Rn → R+ is defined by

Uε(f)(x) = sup
y∈V
|f(x+ εy)|.

Note that the supersummability of a function f : Rn → R is a stronger property than its
Lebesgue summability. For example, the function f : R→ R+ of the form

f(x) =
∑
r≥0

g

(
2r
(
|x| −

r∑
k=1

1
k

))
,

where g(x) = max(0, 1−2|x|), is integrable by Lebesgue but not supersummable. Indeed,
∫
R f(x)dx =

3/2, although U1/r(f)(x) = 1 for any r ∈ N, |x| >
∑r
k=1

1
k , and therefore

∫
R Uε(f)(x)dx = +∞ for

all ε > 0.
The role of the supersummability of a function f : Rn → R is clarified by the inequality

εn
∑
x∈εZn

|f(x)| ≤
∫

Rn
Uε(f)(x) dx ,

due to which supersummability implies absolute summability of the above series for all sufficiently
small ε.

For any N ∈ Z+, denote by FN the class of N times continuously differentiable functions
f : Rn → R, Lebesgue summable together with all their partial derivatives up to order N and such
that the N -th order partial derivatives are all supersummable. In particular, F0 is the class of
continuous supersummable functions.
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Theorem 13. Let the probability density function p of the random vector ξ satisfies the conditions:

(a) p is strictly positive and four times continuously differentiable everywhere in Rn;
(b) p ln p ∈ F4;
(c) (1 + ln p)4p ∈ F2 where 4 =

∑n
k=1

∂2

∂x2
k

is the Laplacian;

(d) the functions Uε(1 + ln p)Uε
(

∂4p
∂xi∂xj∂xk∂xl

)
and Uε

(
1
p

)
Uε

((
∂2p

∂xi∂xj

)2
)

are Lebesgue summable

for some ε > 0 and any 1 ≤ i, j, k, l ≤ n.

Then the entropy (34) is asymptotically related with the differential entropy (38) by

H(ξε) = −n ln ε+ h(ξ) + D(ξ) ε2 +O(ε4) ε→ +0,

where

D(ξ) =
1
24

∫
Rn

|∇p(x)|2

p(x)
dx =

1
24

E |∇ ln p(ξ)|2 (39)

and ∇ = ∂
∂x denotes the gradient operator.

The quantity D(ξ) is further on called the entropy shifting factor. For example, suppose that
the random vector ξ is Gaussian distributed with mathematical expectation µ and nonsingular
covariance matrix Σ. That is, its probability density function is given by

p(x) = (2π)−n/2(det Σ)−1/2 exp
(
−1

2
(x− µ)TΣ−1(x− µ)

)
(40)

where ( · )T denotes the transpose. Any partial derivative ∂rp(x)
∂xi1 ...∂xir

of the function p is the product
of p(x) and some algebraic polynomial in the coordinates of x. Then the conditions (a)–(d) of
Theorem 13 are satisfied. Furthermore, (40) implies that ∇ ln p(x) = Σ−1(x − µ) and so the
entropy shifting factor (39) is

D(ξ) =
1
24

E
∣∣∣Σ−1(ξ − µ)

∣∣∣2 =
1
24

TrΣ−1,

and does not depend on µ (here, Tr( · ) denotes the trace of a matrix).

6.3. Information in discretized random vectors

Let ξ and η be two random vectors of dimensions n1 and n2, respectively. Suppose that the
probability distribution of the n-dimensional vector

ζ =

[
ξ
η

]
(41)

is absolutely continuous with density p : Rn → R+ where n = n1 + n2. Then the marginal
probability density functions p1 : Rn1 → R+ and p2 : Rn2 → R+ of the vectors ξ and η are given by

p1(x) =
∫

Rn2

p(x, y)dy, p2(y) =
∫

Rn1

p(x, y)dx. (42)

For any ε > 0, denote by ξε and ηε the discretizations of the vectors ξ and η onto the ε-grids εZn1

and εZn2 so that

ζε = Rε(ζ) =

[
ξε
ηε

]
.
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Then the information
I(ξε; ηε) = H(ξε) +H(ηε)−H(ζε)

in ξε about ηε does not exceed the information

I(ξ; η) = h(ξ) + h(η)− h(ζ)

in ξ about η. Therefore, the non-negative quantity

Lε(ξ, η) = I(ξ; η)− I(ξε; ηε) (43)

measures the loss of the mutual information between ξ and η under the discretization of these
vectors onto the corresponding ε-grids.

Theorem 14. Let the probability density functions p and (42) of the vector (41) and its subvectors
ξ and η satisfy the conditions of Theorem 13. Then the loss of information (43) is asymptotically
described by

Lε(ξ, η) = L(ξ, η) ε2 +O(ε4) for ε→ +0,

where

L(ξ, η) = D(ζ)−D(ξ)−D(η)

=
1
24

E
(
|∇x,y ln p(ζ)|2 − |∇x ln p1(ξ)|2 − |∇y ln p2(η)|2

)
(44)

with ∇x = ∂
∂x , ∇y = ∂

∂y and ∇x,y =

[
∇x
∇y

]
denoting the gradient operators.

The non-negative quantity L(ξ, η) is further on called the information loss factor. For example,
suppose that the vector (41) is Gaussian distributed with zero mean and nonsingular covariance
matrix

Σ =

[
Φ Π
ΠT Ψ

]
(45)

where
Φ = E(ξξT ), Ψ = E(ηηT ), Π = E(ξηT ).

Since Σ is positive definite, so are the covariance matrices Φ and Ψ, and the matrix

G = Φ−1/2ΠΨ−1/2

is contracting which implies the nonsingularity of the matrices In1 −GGT and In2 −GTG.

Theorem 15. For the subvectors ξ and η of the Gaussian vector (41) with nonsingular covariance
matrix (45), the information loss factor (44) is computed as

L(ξ, η) =
1
24

(
Tr
(
Φ−1GH2G

T
)

+ Tr
(
Ψ−1GTH1G

))
, (46)

where
H1 =

(
In1 −GGT

)−1
, H2 =

(
In2 −GTG

)−1
. (47)

In particular, if ξ and η are scalar Gaussian random variables with variances Φ,Ψ > 0 and
correlation coefficient G ∈ (−1, 1), the formulas (46)–(47) yield

L(ξ, η) =
1
24

(
1
Φ

+
1
Ψ

)
G2

1−G2
.
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6.4. Entropy and information for discretized Gaussian sequences

Let Z = (ζk)−∞<k<+∞ be a n-dimensional stationary Gaussian sequence with zero mean and

covariance function σk = E
(
ζkζ

T
0

)
. For any N ∈ N, the initial fragment

ZN = (ζk)1≤k≤N (48)

of the sequence is a Gaussian distributed vector with block Toeplitz covariance matrix

ΣN = block
1≤j,k≤N

(σj−k) .

Suppose that the matrix spectral density

S(ω) =
+∞∑

k=−∞
σk eikω

of the sequence Z is continuous and positive definite for any ω ∈ [−π, π]. Then by the well-known
property of Toeplitz forms [36]

lim
N→+∞

(
1
N

TrΣ−1
N

)
=

1
2π

π∫
−π

Tr(S(ω))−1dω.

Hence, there exists the average value of the entropy shifting factor D(ZN ) = 1
24TrΣ−1

N of the
fragment (48) per unit of time,

D(Z) = lim
N→+∞

(
1
N

D(ZN )
)

=
1

48π

π∫
−π

Tr(S(ω))−1 dω. (49)

Let the Gaussian sequence Z be described by the state-space equations

sk+1 = Ask +Bvk, (50)
ζk = Csk +Dvk, (51)

where A,B,C,D are constant matrices of appropriate dimensions, with A asymptotically stable
(its spectral radius ρ(A) < 1) and DDT nonsingular; (vk)−∞<k<+∞ is the sequence of mutually
independent m-dimensional Gaussian distributed vectors with zero mean and identity covariance
matrix. Associate with (50)–(51) the matrix algebraic Riccati equation

Q = AQAT +BBT − ΛΘΛT , (52)
Λ = (BQCT +BDT ) Θ−1, (53)
Θ = CQCT +DDT , (54)

A solutionQ of this equation is called stabilizing if the matrix is symmetric and positive semidefinite,
and ρ(A − ΛC) < 1. As is well-known [51], such a solution of the Riccati equation (52)–(54) is
unique.

Theorem 16. For the stationary Gaussian sequence Z governed by (50)–(51), the average entropy
shifting factor (49) is computed as

D(Z) =
1
24

Tr
(
Θ−1(CMCT + In)

)
, (55)
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where the matrix M is the solution of the Lyapunov matrix algebraic equation

M = (A− ΛC)M(A− ΛC)T + ΛΛT , (56)

and the matrices Λ and Θ are determined by the admissible solution Q of the Riccati equation
(52)–(54).

Note that the quantity D(Z) defined by the equations (52)–(56) is a function F of the matrices
A,B,C,D from (50)–(51). Hence, if the elements of the sequence Z are partitioned into subvectors
ξk and ηk of dimensions n1 and n2 so that

ζk =

[
ξk
ηk

]
,

then the average entropy shifting factors of the stationary Gaussian sequences X = (ξk)−∞<k<+∞
and Y = (ηk)−∞<k<+∞ take the form

D(X) = F (A,B,C1, D1), D(Y ) = F (A,B,C2, D2)

where Ck and Dk are the blocks of the matrices C and D consisting of nk rows respectively,

C =

[
C1

C2

]
, D =

[
D1

D2

]
.

This allows to compute the average information loss factor of the sequences X and Y per unit of
time as

L(X,Y ) = D(Z)−D(X)−D(Y ) =
= F (A,B,C,D)− F (A,B,C1, D1)− F (A,B,C2, D2).

7. ANALYSIS OF MOIRE

Results of this Section were mainly published in [38].

7.1. General structure of moirés

Below µ is a big parameter. For any positive integer n denote by L(n; f, µ) the Lebesgue set

L(n; f, µ) = {(x, y) ∈ Z : n− 1/2 ≤ µf(x, y) ≤ n+ 1/2}.

Let Z be the set of integers and q ∈ Z be a fixed prime number. Denote

Lq(n, f, µ) =
⋃
k∈Z

L(qk + n, f, µ), n = 0, 1, . . . , q − 1.

and let Lh,α be a rectangular lattice in the plane with steps hx = αh and hy = h/α in x and y
directions; the number α is considered below as given. Introduce the sets

Lq(n; f, h, α, µ) = Lq(n; f, µ)
⋂

Lh,α.

Associate with each element (x0, y0) of the lattice Lh,α the rectangle

Q(x0, y0) = {(x, y) : |x− x0| < αh/2, |y − y0| < h/(2α)}.
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Let now M be a subset of the lattice Lh,α. Denote by Q(M) the union of rectangles Q(x0, y0)
for all points (x0, y0) from the set M. Let χ ∈ (0, 1]. The set M ⊆ <2 with a finite and pos-
itive Lebesgue measure is said to be χ–representable with the set M ⊆ Lh,α, if the inequal-
ity mes(Q(M))/mes(M) < 1 + χ is valid. If µ is fixed, then the sets Lq(n, f, h, α, µ) repre-
sent the corresponding Lebesgue sets Lq(n; f, µ) as better as smaller is h. But χ not necessar-
ily tends to 1, if decreasing of h is accompanied with rather fast increasing of µ (below usually
µh = σ, where σ is fixed). We will say that the sets, Lq(n; f, h, α, σ/h) asymptotically represent
an auxiliary function G(x, y) in a domain Ω, if for each sufficiently small h there exist ξ = ξ(h),
χ = χ(h), such that Lq(n; f, h, α, σ/h)

⋂
Ω χ–represents the set Lq(n;G(x, y) + ξ(h), σ/h))

⋂
Ω for

each n = 0, 1, . . . , q − 1, where χ → 1 as h → 0. Denote by Cx(i, f) and Cy(j, f) curves, which
are defined at all integer i and j by the equalities f ′(x, y) = iq/(ασ), f ′(x, y) = jqα/σ. Finally,
denote by D(f, σ) the totality of points d(i, j; f, σ) where curves Cx(i, f) intersect curves Cy(j, f)
transversally and bring to correspond to each such a point d = (x0, y0) ∈ D(f, σ) the function

Gd(x, y) = f(x, y)− f ′(x0, y0)(x− x0)− f ′(x0, y0)(y − y0).

Theorem 17. For each d ∈ D(f) there exist r > 0, such that the sets Lq(n, f, h, σ/h) asymptot-
ically represent the function Gd(x, y) in the ring |(x− x0)2 + (y − y0)2| < r2.

Level sets of the auxiliary function Gd are those that are perceived by an observer as moirés;
points from the set D(f, σ) coincides with the centres of moirés. If in a certain domain the Gessian
of the function f(x, y) is not degenerated and changes rather slowly, then the system of curves
Cx(i, f) and Cy(j, f) is sufficiently regular and the relations

d(i+ 1, j; f, σ)− d(i, j; f, σ) ∼ (q/(ασ))(f ′′(d(i, j; f, σ)))−1(1, 0),

d(i, j + 1; f, σ)− d(i, j; f, σ) ∼ (qα/σ)(f ′′(d(i, j; f, σ)))−1(0, 1).

hold. The matrix f ′′(d(i, j; f, σ)) so as the matrix (f ′′(d(i, j; f, σ)))−1 are symmetric; therefore two
last relations allow to estimate the parameter α by formula α ∼ (dx/dy)1/2, using the observable
vectors

dx = d(i+ 1, j; f, σ)− d(i, j; f, σ), dy = d(i, j + 1; f, σ)− d(i, j; f, σ).

If, on the contrary, the function f(x, y) is unknown, but the system of curves Cx(i, f), Cy(j, f)
is seen rather clearly, then the above relations can be used to estimate entries of the matrix
(σf ′′(d(i, j; f, σ))−1.

7.2. Aliasing dimension

One of main general questions which appear in analysis of moirés (see Sections 2.3 and Figure 9)
is the following:

how irregular may be the picture generated by a given function f(·) and how
to describe this irregularity, and how to connect regularity or irregularity
of the image with the complexity of its generating function?

Below some principal results in this direction will be discussed, see details in [37]. The paper
provides an insight to these problems. For the sake of simplicity the analysis is provided only for
one-dimensional case (functions f of single scalar argument). The notion of aliasing dimension
is introduced which naturally corresponds to the complexity of the visual images. The place
of aliasing dimension in the family of other well-known complexity characteristics is discussed.
Bilateral bounds for aliasing dimension polynomials f(·) are also provided.
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Given a number x, denote by [x] the integer part of x (i.e., the maximal integer number which
is less than or equal to x). Denote also by {x} = x− [x] the fractional part of x. Let Pk be the set
of all k-th degree polynomials of one variable.

A binary sequence (ui), where i ∈ Z, is a PG-sequence of k-th degree (polynomial generated) if
it may be represented as

ui = [2{f(i)}].
for some f ∈ Pk. The class of all such sequences (ui) is denoted by Bk. To describe the diversity of
the class Bk we have to define a measure of such diversity. The natural way to do it is to determine
what finite subsequences (words) can be extracted from the sequences of this class and what is the
number of these words. The next problem is what is the maximal N such that any binary N -word
may be found as a subsequence of some element of Bk?

Note that all finite N -subsequences

(f(i), f(i+ 1), . . . , f(i+N − 1)), qquadN > k,

considered as points in RN belong to some (k+1)-dimensional subspace PNk . For example, if k = 1
then

f(i+ 1)− f(i) ≡ f(i+ 2)− f(i+ 1).

However, this is not the case for N -subwords from (ui) ∈ Bk.
Let u = (ui), i ∈ Z be a binary sequence. Denote by wN (u) the set of all N -subwords of u and

denote by Su(N) (subword complexity of u) the number of elements in wN (u). Denote by B(k,N)
the set of all N -words contained in all PG-sequences of k-th degree, i.e.

B(k,N) =
⋃
u∈Bk

wN (u).

Let S(k,N) be the number of elements in B(k,N). Note that S(k,N) ≤ 2N .
Consider the largest integer N such that S(k,N) = 2N . This N is called aliasing dimension of

the class Pk and is denoted by D(k).
The notion of aliasing dimension is to some extent similar to the notion of Vapnik-Chervonenkis

dimension (VC-dimension) [67], it has much in common with ideas of Sturmian sequences (see, for
example, [59]), linear recurring sequences [54], and symbolic dynamics [56]. Note especially the
similarity with the fragmentary complexity as it was introduced in [17].

Theorem 18. The aliasing dimension of the class Pk satisfy the estimates

k + 1 ≤ D(k) ≤ 8k2 log k (57)

It is not easy to calculate exactly aliasing dimension even for small k. Let for the beginning
k = 1. Then the class P1 consists of linear polynomials.

Theorem 19. The aliasing dimension D(1) of the class P1 is equal to four.

Let k = 2. Then the class P2 consists of quadratic polynomials. We could not calculate it
so an attempt was made to establish a lower bound for D(2) by numerical experiments. In these
experiments for each N “random” polynomials ax2 +bx+c binary N -words were generated until all
possible 2N combinations of N -words are exhausted. The largest N found with this method was 13:
any binary word of length 13 may be generated by the appropriate quadratic polynomial. However,
the computer search failed to generate 32 “unused” binary words of length 14. Other modifications
of the program (using integer arithmetic with enlarged precision) produced exactly the same set
of unused words. For example, the program failed to generate the binary word “00001100011110”
using quadratic polynomials. Thus there are strong reasons to believe that D(2) = 13 though the
strict proof of that is yet unavailable.
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