
ISSN 1064�2269, Journal of Communications Technology and Electronics, 2014, Vol. 59, No. 6, pp. 639–646. © Pleiades Publishing, Inc., 2014.
Original Russian Text © L.I. Rubanov, 2013, published in Informatsionnye Protsessy, 2013, Vol. 13, No. 4, pp. 295–305.

639

1. INTRODUCTION

In most computer programs, loop operators are
quite rare in comparison with arithmetic and logical
operators although the computations in the loop are
predominantly performed with the aid of the former. If
the next iteration in a loop depends on the results of
previous iterations, the computations can be acceler�
ated only with the aid of loop optimization, which is
beyond the scope of this work. We consider algorithms
with independent iterations in a loop. Thus, an arbitrary
order of iterations is allowed. Such algorithms are often
employed in the simulation of physicochemical and
biological processes, processing of large data arrays,
numerical integration, etc. For example, each trajec�
tory in the Monte�Carlo simulation of a random pro�
cess aimed at the estimation of probabilities of final
states can be represented as a single iteration of an
external loop that is used for the calculations. A rela�
tively large number of the corresponding iterations is
needed for reliable and accurate estimations, so that the
high�performance computing becomes necessary. A
natural method for acceleration of loop calculations
involves simultaneous execution of several iterations at
different processors (i.e., parallelization of loops (PL)).

The PL possibilities and methods significantly
depend on the architecture of the multiprocessor sys�
tem that is used for computations. In shared�memory
supercomputers, in which each processor has an inde�
pendent access to the shared RAM, the PL is often
implemented using an OpenMP system of parallel
programming [1], which is user�friendly and efficient.
The shared�memory systems are widely distributed

(most desktop workstations and PCs are equipped
with multicore CPUs) but the total number of proces�
sors is rarely greater than 64, which substantially
impedes an increase in the efficiency. The rate of com�
putations can be increased by a factor of several hun�
dreds or thousands only with the aid of distributed�
memory systems (clusters), in which individual mem�
ory of a node is unavailable for the remaining proces�
sors of the cluster. The contacts of processes on differ�
ent nodes that can be spatially separated are provided
by communication libraries of parallel programming.
Below, we consider a standard message�passing inter�
face (MPI), which is widely used in such systems [2].
Note a possibility of PL in a single node using the
OpenMP. However, such a complication of the loop
structure is unnecessary, since the communications
within a node are efficiently performed via shared
memory in most MPI systems. Thus, a programmer
may develop a single code for parallel execution in a
single node and cluster in general.

Another important aspect that must be taken into
account in PL involves the comparison of processing
times for different iterations (i.e., loop uniformity).
The iterations can be synchronous provided that the
duration of each iteration is roughly constant. Such an
approach is used in systolic architecture. However, the
processing times of iterations in the above problems
are varied in wide ranges depending on the dimension
of data that are processed at the corresponding itera�
tion or a current value of a pseudo�random sequence.
A similar scenario corresponds to identical processing
times and different performances of the cluster nodes.

PROGRAMMING

Parallelization of Nonuniform Loops in Supercomputers
with Distributed Memory

L. I. Rubanov
Institute for Information Transmission Problems, Russian Academy of Sciences,

Bolshoy Karetnyi per. 19, Moscow, 127994 Russia
e�mail: rubanov@iitp.ru
Received October 17, 2013

Abstract—A template algorithm for parallel execution of independent iterations of the repetitive loop on a
multiprocessor computer with distributed memory is constructed. Regardless of the number of processors,
the algorithm must provide efficient utilization of computing capacity under essentially different complexities
of iterations and/or performance of processors. The interprocessor data communication and control of par�
allel computations are assumed to be implemented using a standard message�passing interface (MPI), which
is widely used in such systems. Existing methods for the loop parallelization are analyzed and the correspond�
ing efficiencies are empirically estimated for various models of iteration nonuniformity.

Keywords: high�performance computing, parallelization, distributed memory, MPI, nonuniform loops

DOI: 10.1134/S1064226914060175

640

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS Vol. 59 No. 6 2014

RUBANOV

In this case, the application of the PL algorithms that
involve the processing with the aid of the systolic prin�
ciple leads to relatively low efficiencies (see below). We
primarily consider the parallelization of significantly
nonuniform loops in the systems with distributed
memory.

2. GENERAL FORMULATION
OF THE PROBLEM AND METHODS

FOR EFFICIENCY ESTIMATION

The problem under study can be algorithmically
represented using the following 1D loop that must be
parallelized (without loss of generality, we use the
C syntax):

Algorithm 1.
for (n = 0; n < N; n++){

f = Func (param[n]);

Merge (f);

}

Here, Func is a side�effectless function, in which
the computational complexity of the loop is concen�
trated. A scalar function is used in the example but
Func may return a pair of values or vector. The same
holds true for param, which is a parameter rather than
argument that can be absent in a particular case. We
assume that the function contains the data that are
needed for the calculations (e.g., a static array or the
data that are generated using a pseudo�random
sequence). Note the possibility of loop processing of
data arrays, since loop variable n may serve as the
parameter of the function.

Computationally simple function Merge exhibits a
side effect that leads to the result of the general com�
putation. For example, such a function can calculate a
sum or product of the values of f, search for minimum
or maximum value, construct a histogram, etc. In the
framework of such a problem, the results of each iter�
ation are not stored (the storage is a problem at rela�
tively large N) and we obtain general statistical data
using a sample of calculated values.

The formulation of the problem differs from that in
the CENTAUR project [3], in which the side effect is
absent in the loop and the main function provides
coordinate�wise transformation of the original data
vector whose dimension is repeat number N. They
implicitly assume that the computational complexity
of the transformation is almost independent of n
(remains constant). Thus, a search for the most effi�
cient PL is reduced to selection of the appropriate dis�
tribution of data elements over the nodes of computa�
tional network with hybrid architecture. With allow�
ance for complexity of this problem, we concentrate
on the efficient parallelization of significantly nonuni�
form loops in which repeat number is weakly related to
the dimension of input data. Note a possibility of the
nested loops, which are useful in combinatorial algo�
rithms (e.g., the processing of all possible pairs of orig�

inal data can be conveniently implemented as a double
nested loop).

The efficiency of the above PL methods is esti�
mated using the following procedure. We employ
function Func that provides almost 100% loading of
the processor and memory�access channel over a given
time interval whose duration serves as a parameter.
Immediately prior to and after the end of the loop, the
processors are synchronized and a time difference
between these time moments, which serves as the
computation time of the loop, is measured. The mea�
surement accuracy is preserved under a wide�range
variation in the number of processors if an increase in
the number of processors is accompanied by a propor�
tional increase in the duration of the working interval
of function Func. Thus, the computation time of a
loop must be constant in a perfect PL regardless of the
number of processors. For a uniform loop with itera�
tion time τ for one processor, the computation time
must be Nτ at any number of processors. Tables
present the deviations from this value in percents.
Naturally, the deviation is positive, since the above
level cannot be reached in a real system.

For comparison, we present the results for constant τ
(model C). In addition, we consider the following
models of the loop nonuniformity:

U, iteration time is a random quantity that is uni�
formly distributed over interval (0, 2τ);

P, iteration time is determined by the time interval
between sequential events of a Poisson process with
intensity τ;

L, the iteration has linear complexity with respect
to n, so that the iteration time is C1(n + 1), where con�
stant C1 ≈ 2τ/N is chosen in such a way that the mean
iteration time is τ;

Q, the iteration has quadratic complexity with
respect to n, so that the iteration time is C2(n + 1)2,
where constant C2 ≈ 3τ/N2 is chosen in such a way that
the mean iteration time is τ.

For these models, the expected calculation time is
Nτ for any number of processors.

The results are obtained using an MVS�100K
supercomputer of the Joint Supercomputer Center,
Russian Academy of Sciences [4].

3. DIVISION OF THE DOMAIN OF VARIATION
OF LOOP VARIABLE

The iterations of the loop are mutually indepen�
dent, and PL can be implemented using the execution
of a part of iterations on each processor. The domain
of variation of integer loop variable [0, N) is divided
into m approximately identical parts with respect to
the number of processors, so that the kth processor
executes iterations with numbers [ks, (k + 1)s), where
s = ⎣(N + m – 1)/m⎦ is the size of a part and ⎣⋅⎦ denotes
integer part. Thus, Algorithm 1 is represented as (evi�
dent declarations of variables are omitted)

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS Vol. 59 No. 6 2014

PARALLELIZATION OF NONUNIFORM LOOPS IN SUPERCOMPUTERS 641

Algorithm 2.
MPI_Comm_size (MPI_COMM_WORLD, &m);

MPI_Comm_rank (MPI_COMM_WORLD, &k);

int s = (N+m–1)/m;

double f0 = –1.0;

double *ff = (double*)malloc(m*sizeof(double));

for (n = k*s; n < (k+1)*s; n++) {

f = n < N ? Func (param[n]) : f0;

MPI_Gather (&f, 1, MPI_DOUBLE, ff, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);

if (k==0)

Merge1(ff);

}

Here, root branch with number k = 0 collects the
values that result from the calculation of f in each
branch. For this purpose, we employ function
Merge1 that differs from the original merge function.
The difference lies in the fact that the former has vec�
tor argument and the dimension of vector is equal to
the total number of processors. Note that N can be
indivisible by m. Therefore, we introduce specific f0 =
–1 that is transferred by inactive branches of parallel
program in the last loop pass. An additional task of the

Merge1 function is identification and rejection of
such data.

Algorithm 2 corresponds to a relatively compli�
cated scenario in which the merge function acts spe�
cifically (e.g., constructs the histrogram of the values
of f). For simpler scenarios, the MPI standard provides
complete functions of collective data exchange with
merging and a possibility of defining new types of
functions. For example, the loop of Algorithm 2 can
be simplified for the calculation of the mean value of f:

Algorithm 3.
double sum = 0;

double r;

for (n = k*s; n < (k+1)*s; n++) {

f = n < N ? Func(param[n]) : 0.0;

MPI_Reduce (&f, &r, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

if (k==0)

sum += r;

}

When the loop is terminated, variable sum in the
root branch contains the value of f that results from the
summation over all iterations of the loop. Then, this
variable must be divided by number of iterations N. In
Algorithm 3, specific value f = 0 does not change the
accumulated sum.

Table 1 presents the results of PL using Algorithms 2
and 3 for different models of nonuniformity of the loop
iterations. Hereafter, we use N = 106 and τ = 1 ms, so
that the ideal computation time is always 1000 s.

Table 1 shows that such PL can be used for uni�
form iterations and is hardly applicable for the above
models of nonuniform loop. The PL efficiency
decreases by a factor of no less than 2 when the num�
ber of processors increases. This is an expected result,
since the MPI standard [2] allows the library devel�
oper to implement collective operations (including

MPI_Gather and MPI_Reduce) with the synchroniza�
tion of all processes. Thus, the collective data exchange is
terminated not earlier than function Func is calculated
in the most difficult of m parallel iterations. The remain�
ing branches wait for this moment (Table 1). If the com�
putational complexity of each iteration can be estimated
a priori, the effect can be compensated for using rear�
rangement of iterations in such order that iterations with
almost identical complexities are performed simulta�
neously. However, the above scheme for the division of
the domain of loop variable is inconvenient in this case
and an alternative solution is discussed below.

Thus, the main possibility for an increase in the
PL efficiency using Algorithms 2 and 3 lies in the
elimination of the collective input/output inside the
loop and application of the corresponding external
operations. The merging of the results of function

642

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS Vol. 59 No. 6 2014

RUBANOV

Func is locally performed in each parallel branch.
When the loop is terminated in all branches, the

merging of general data is performed and a collective
operation is employed. Thus, we obtain

Algorithm 4.
double *ff = (double*)malloc(m*sizeof(double));

double r;

for (n = k; n < N; n+=m) {

f = Func(param[n]);

r = Merge(f);

}

MPI_Gather(&r, 1, MPI_DOUBLE, ff, 1, MPI_DOUBLE,0, MPI_COMM_WORLD);

if (k==0)

Merge1(ff);

In this algorithm, we employ an alternative
method for the division of the domain of loop vari�
able in which the division into subdomains is per�
formed with interleaving. A specific numerical indi�
cator of going beyond the loop limits (Algorithms 2
and 3) becomes unnecessary and the code is signifi�
cantly simplified. In addition, such an approach is

more convenient in the parallelization of the nested
loops. For this purpose, the interleaved scheme is
modified using, for example, the mapping of the vec�
tor of loop indices on a natural series and assignment
of the elements of the kth class of residues with
respect to the modulus of the number of processors to
the kth processor:

int n = 0;

for (i = 0; i < M; i++) {

for (j = 0; j < N; j++) {

if (n++ % m != k)

continue;

f = Func(...)

...

}

}

Table 1. Deviation (in percents) from an ideal computation time for PL using Algorithms 2 and 3

Number of processors
Model of nonuniformity of loop iterations

C U P L Q

1 0.25 0.18 0.16 0.19 0.17

2 0.25 17.5 33.5 50.1 75.1

4 0.13 26.9 62.1 75.1 131

8 0.34 33.5 89.7 87.6 164

16 0.36 33.5 89.8 93.8 182

32 0.07 33.7 90.0 96.9 191

64 0.06 33.9 91.4 98.4 195

128 0.06 34.6 92.2 99.2 198

256 0.04 35.0 95.4 99.6 199

512 0.06 36.4 98.9 99.8 199

1024 0.06 37.5 101.4 99.9 200

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS Vol. 59 No. 6 2014

PARALLELIZATION OF NONUNIFORM LOOPS IN SUPERCOMPUTERS 643

Similarly to Algorithm 2, Algorithm 4 can be
substantially simplified if the merging operation of
individual iterations is defined in the MPI standard

or can be specified by the programmer. Thus, the
algorithm for calculation of the mean value is repre�
sented as

Algorithm 5.
double sum;
double r = 0;
for (n = k; n < N; n+=m)
r += Func(param[n]);
MPI_Reduce(&r, &sum, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

Table 2 presents the PL results for the improved
algorithm.

It is seen that the elimination of the collective MPI
operations inside the loop with nonuniform iterations
leads to a significant increase in the PL efficiency.
However, in the presence of significant random fluctu�
ations of the complexity of iterations (models U and
P), the PL efficiency substantially decreases with an
increase in the number of processors and a further
improvement becomes possible.

4. CHANGE OF THE ORDER OF ITERATIONS

The results in Table 2 may seem confusing. The
mean iteration time in each case is τ, and the iteration
times for models U, L, and Q belong to intervals
(0, 2τ), (0, 2τ), and (0, 3τ), respectively. For the P
model (Poisson flow), the upper boundary cannot be
determined in spite of the fact that the probability of
relatively large values is extremely low. For definite�
ness, note that the data for model P are obtained using
a pseudo�random series with the length N = 106 that is
realized on interval (0, 13.3τ), which partly accounts
for worse results for this model. However, the PL effi�
ciency for model U is lower than the efficiencies for
model L with the same interval of iteration times and
model Q in which the iteration time is varied in the
wider interval.

This effect can be interpreted with allowance for a
monotonic increase in the iteration time in models L

and Q with an increase in n. Therefore, the total itera�
tion times in parallel branches of Algorithms 4 and 5
are almost identical (at least, commensurable). In
model U, the iteration times are uniformly distributed
with respect to n, so that iterations with different dura�
tions can be obtained in different branches. Evidently,
the total computation time of the loop is determined
by the worst result, since the remaining branches wait
for the termination of the collective operation that fol�
lows the termination of the loop. The effect is less
developed at relatively large N, since the sum is nor�
malized in accordance with the central limit theorem,
but still must be taken into account owing to relatively
slow convergence.

A natural solution can be used in scenarios in
which an a priori estimation is possible for the com�
plexity of iterations. The iterations can be ordered
with respect to complexity in such a way that the iter�
ation times monotonically decrease in each parallel
branch of Algorithms 4 and 5. Thus, the working times
of the branches become almost equal and, hence, the
pauses at the ends of the working sessions decrease.

The advantage of such an approach can be demon�
strated using Algorithm 3, which employs a collective
operation inside the parallelized loop. We change the
scheme of division of the domain of loop variable (see
Algorithm 5), since the original scheme does not bal�
ance the loading of branches, and obtain

Table 2. Deviation (in percents) from an ideal computation time for PL using Algorithms 4 and 5

Number
of processors

Model of nonuniformity of loop iterations

C U P L Q

1 0.25 0.18 0.17 0.19 0.17
2 0.10 0.11 0.22 0.11 0.09
4 0.05 0.18 0.24 0.07 0.06
8 0.20 0.22 0.36 0.21 0.17

16 0.29 0.37 0.64 0.14 0.18
32 0.06 0.83 1.17 0.12 0.09
64 0.05 1.14 2.13 0.07 0.06

128 0.06 2.20 2.70 0.04 0.04
256 0.05 2.74 4.04 0.04 0.05
512 0.06 4.29 6.24 0.06 0.08

1024 0.05 6.06 9.28 0.10 0.15

644

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS Vol. 59 No. 6 2014

RUBANOV

Algorithm 6.
MPI_Comm_size(MPI_COMM_WORLD, &m);

MPI_Comm_rank(MPI_COMM_WORLD, &k);

double sum = 0;

double r, f;

int s = ((N+m–1)/m)*m;

for (n = k; n < s; n+=m) {

f = n < N ? Func(param[n]) : 0.0;

MPI_Reduce(&f, &r, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

if (k==0)

sum += r;

}

Table 3 presents the results for Algorithm 6 in the
case when the iterations are ordered with respect to a
decrease in iteration time with increasing n. It is seen
that the PL efficiencies are lower than the ideal effi�
ciency by less than 1% in spite of the presence of the
collective MPI operation inside the loop.

Finally, note that the a priori estimation of the
computation complexity of loop iterations is possible
in several cases. In particular, the computation com�
plexity of the processing of large data arrays can be
related to the dimension of the processed data element
and the corresponding relationship can be available.
For example, the dynamic programming is needed for
each iteration in the problem of protein clusterization
[5] for the pairwise alignment of two amino�acid
sequences with lengths m and n (the computation
complexity is O(mn)). The pairs of sequences can be
ordered with respect to a decrease in quantity mn using
the above PL procedure. Note also that the a priori
estimation of the complexity of iterations makes it
possible to construct more complicated (in compari�
son with simple ordering) dynamic strategies for plan�
ning of processing for the given number of processors.
However, the problem is beyond the scope of this
work.

5. FUNCTIONAL SEPARATION
OF BRANCHES

The analysis of parallelization of a nonuniform
loop should be supplemented with the analysis of the
PL methods based on the functional specificity of pro�
cessors (i.e., branches of a parallel code). The methods
employ the master/slave architecture in which the
slave groups execute loop iterations and the master
group (normally, a single root process) provides
administration of computations (i.e., task distribution
for working processors).

The fact that several processors are not involved in
the data processing becomes insignificant when the
total number of processors increases. Note that the
method is convenient for the loop with significantly
different complexities of iterations, since new tasks are
assigned to idle processors. In this case, two�point data
exchange is employed and collective operations are
unnecessary. The corresponding algorithms become
more complicated but the method remains generally
clear.

By way of example, Fig. 1 demonstrates a fragment
of the total text of such a parallel code. Control branch
(with rank = 0) sends parameter for function Func or

Table 3. Deviation (in percents) from an ideal computation time for PL using Algorithm 6

Number
of processors

Model of nonuniformity of loop iterations

C U P L Q

1 0.25 0.21 0.18 0.19 0.19
2 0.25 0.15 0.15 0.18 0.15
4 0.17 0.10 0.09 0.09 0.16
8 0.35 0.31 0.10 0.36 0.31

16 0.36 0.20 0.20 0.24 0.17
32 0.06 0.12 0.15 0.12 0.21
64 0.06 0.08 0.11 0.06 0.06

128 0.07 0.05 0.13 0.04 0.05
256 0.05 0.05 0.22 0.05 0.06
512 0.06 0.06 0.45 0.06 0.09

1024 0.05 0.12 0.93 0.12 0.16

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS Vol. 59 No. 6 2014

PARALLELIZATION OF NONUNIFORM LOOPS IN SUPERCOMPUTERS 645

Fig. 1. PL using the master/slave scheme.

646

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS Vol. 59 No. 6 2014

RUBANOV

a specific value of –1 as a signal of termination to the
idle working branch. These messages are sent with a
tag of 1. The working branches wait for parameter (or
signal of termination), call the basic function of the
loop, and send the value of f to the root branch. These
messages are sent with a tag of 2. The control branch
performs the merging of the results of individual itera�
tions (summation in the given example) up to the end
of the loop. At the beginning, the control branch sends
tasks to available working branches (and termination
signal to the remaining branches if any), waits for the
result from the branch, sends a new task, etc. up to the
moment when all iterations have been executed.

Table 4 presents the characteristics of the PL algo�
rithm of Fig. 1. It is seen that the elimination of collec�
tive operations and more efficient control of working
branches lead to the PL efficiency that is lower than
the ideal efficiency by less than 1% when the number
of processors is no less than 128. However, the method
is worse than the above methods when the number of
processors is no greater than 64. As was expected, the
parallelization quality weakly depends on the type of
nonuniformity and is primarily determined by the
number of processors. A further increase in the effi�
ciency is possible due to reordering of iterations (see
Section 4).

The above PL method must be implemented with
allowance for the fact that the efficiency naturally
decreases due to overloading of the control branch,
which interacts with the working branches, at a rela�
tively large number of processors (several or several
tens of thousands) and/or complicated algorithm of

the data merging. Note that the code of Fig. 1 can be
easily transformed in such a way that two processors
with ranks of 0 and 1 control working branches with
even and odd numbers, respectively.

6. CONCLUSIONS

The proposed PL methods have been employed at
the Laboratory of Mathematical Methods and Models
in Bioinformatics, Institute for Information Transmis�
sion Problems, Russian Academy of Sciences in sev�
eral problems [6–9] for which original parallel algo�
rithms have been developed (see Laboratory web site
http://lab6.iitp.ru for further details).

ACKNOWLEDGEMENTS

This study was supported by the Ministry of Educa�
tion and Science of the Russian Federation, grant
no. 8481.

REFERENCES

1. The OpenMP API specification for parallel programming
http://openmp.org/wp/

2. Message�passing Interface Forum. MPI Documents
http://www.mpi�forum.org/docs/docs.html

3. CENTAUR Software Tools for Hybrid Supercomputing
http://centaur.botik.ru/home

4. Joint Supercomputer Center of Russian Academy Sci�
ence. Computing Systems http://www.jscc.ru/scomput�
ers.shtml

5. O. A. Zverkov, A. V. Seliverstov, and V. A. Lyubetskii,
“Albuminous families typical of plastoms of small taxo�
nomic groups of algas and protozoa,” Molekulyar.
Biologiya 46, 799–809 (2012).

6. V. A. Lyubetsky, L. I. Rubanov, and A. V. Seliverstov,
“Lack of conservation of bacterial type promoters in
plastids of Streptophyta,” Biology Direct 5 (34) (2010).

7. V. A. Lyubetsky, O. A. Zverkov, L. I. Rubanov, and
A. V. Seliverstov, “Modeling RNA polymerase compe�
tition: the effect of σ�subunit knockout and heat shock
on gene transcription level,” Biology Direct 6 (3)
(2011).

8. V. A. Lyubetsky, O. A. Zverkov, S. A. Pirogov,
L. I. Rubanov, and A. V. Seliverstov, “Modeling RNA
polymerase interaction in mitochondria of chordates,”
Biology Direct 7 (26) (2012).

9. V. A. Lyubetsky, L. I. Rubanov, L. Yu. Rusin, and
K. Yu. Gorbunov, “Cubic time algorithms of amalgam�
ating gene trees and building evolutionary scenarios,”
Biology Direct 7 (48) (2012).

Translated by A. Chikishev

Table 4. Deviation (in percents) from an ideal computation
time for PL using the master/slave scheme

Number
of processors

Model of nonuniformity
of loop iterations

C U P L Q

2 100 100 100 100 100

4 33.5 33.5 33.4 33.5 33.4

8 14.5 14.6 14.3 14.4 14.4

16 6.86 6.76 6.76 6.84 6.85

32 3.30 3.36 3.30 3.28 3.28

64 1.64 1.66 1.71 1.67 1.70

128 0.85 0.83 0.90 0.86 0.96

256 0.43 0.44 0.55 0.47 0.71

512 0.25 0.29 0.53 0.30 0.47

1024 0.24 0.31 0.84 0.44 0.78

