
Fourteenth International Workshop on Algebraic and Combinatorial Coding Theory
September 7–13, 2014, Svetlogorsk (Kaliningrad region), Russia pp. 7–13

Incremental calculation of decoding failure
probability for iterative decoding of Reed-
Solomon product code

Valentin B. Afanassiev afanv@iitp.ru

Alexander A. Davydov adav@iitp.ru

Institute for Information Transmission Problems (Kharkevich Institute), Russian Aca-

demy of Sciences, Bol’shoi Karetnyi per. 19, GSP-4, Moscow, 127994, Russia

Abstract. Products of Reed-Solomon codes are important in applications because
they offer a combination of large blocks, low decoding complexity, and good perfor-
mance [3,4]. We give exact and approximate methods for calculation of an increment
of failure probability for any iteration.

1 Product code construction and decoding algorithm

We consider an (n×m) product code over GF (q) with the component RS codes
CC(n, k, d) for columns and CR(m,k, d) for rows of a codeword matrix. Let A
be a k × k message matrix then C = GT

CAGR is a codeword of product code,
where GR, GC are generating matrixes of row and column component codes.
The product code has the minimal distance d2 and has applicable decoding
algorithm [1] that corrects all configurations up to d2−1

2 errors and much more.
Investigation of iterative decoding for product codes has a long history,

nevertheless J. Justesen and T. Høholdt [2, 3] gave a new explanation of the
iterative process. Their main idea is in estimation of unavoidable degradation
of the error model during iterative process. We will follow this idea might be
in more constructive way.

At first, suppose that the component code decoder works without decoding
errors. So the decoding result can be correct decoding (with correction up to
t = d−1

2 errors) or decoding failure (when there are more than t errors). It is
not so extravagant supposition because probability of decoding error is always
less 1/t! [2, 3].

Next, in a simplified version product code decoder works as follows. We
use list of undecoded rows LR and list of undecoded columns LC . At the
beginning, all rows and columns are undecoded with error density equal to
channel error probability in average. During iteration, the column component
decoder examines undecoded columns from the list LC for correction ≤ t errors
if size of the list LR is more (d− 1), or corrects ≤ (d− 1) erasures (and errors)

8 ACCT 2014

from the list of undecoded rows, and deletes all successfully decoded columns
from the list LC . The similar rules work for the row component decoder.

Remark 1. After the first iteration error density in all the rows and columns
remaining in the lists LC and LR is higher than the channel error probability

and higher than min
{

t+1
|LC | ,

t+1
|LR|

}
.

Remark 2. The product code decoding failure condition: size of the list LC

(or LR) has not changed during iteration (except the first one). Additionally,
detection of necessary correction of position out of the lists LC and LR by any
component decoder means detection of incorrect decoding on some of earlier
iteration.

Remark 3. De facto, component decoders work on shortened component codes
length of which is equal to size of the lists.

2 General scheme of probabilities calculation

The probability of correct decoding of the product code after I iterations we

define as the following sum PrC (I) =
I∑

i=1
∆i, where ∆i is an increment of

the probability on i-th iteration. Decoding failure probability (under accepted
suppositions) is just supplement of PrC (I) to one.

Let we start from column decoding and let ℓi be the number of undecoded
“bad” blocks after i-th iteration. Initial values are |LC | = ℓ0 = m, |LR| =
ℓ−1 = n.

After the first iteration, we get ℓ1 undecoded “bad” columns. If ℓ1 < d,
than on the next step the row component decoder corrects as erasures all n
rows. Other case the row decoder corrects all possible rows with ≤ t errors and
defines the value ℓ2 of undecoded “bad” rows.

After each iteration, we have to recalculate estimate of the error density ρi in
the remaining “bad” blocks taking into account their real (shortened) length.
Initial value ρ1 is the channel error probability. After the first iteration, we
define ρ2 as ratio of average number of errors in “bad” columns to their height
m. We will continue in this manner on the next iterations.

Afanassiev, Davydov 9

3 Exact formulas for calculation

Definition 1. Error density on the i-th iteration is as follows:

ρi =
1

ℓi−2

λ∗ (ℓi−2, ρi−1)

λ (ℓi−2, ρi−1)
, λ∗ (ℓ, ρ) =

ℓ∑

j=t+1

j

(
ℓ
j

)
ρj (1− ρ)ℓ−j,

λ (ℓ, ρ) =
ℓ∑

j=t+1

(
ℓ
j

)
ρj (1− ρ)ℓ−j.

Definition 2. Probability of correct decoding of a block is

γ (ℓj−1, ρj) =
t∑

v=0

(
ℓj−1

v

)
(ρj)

v (1− ρj)
ℓ−v.

Definition 3. Probability of ℓj undecoded blocks conditioned to the state (ℓj−1, ℓj−2)
of two last iterations is

Pr (ℓj|ℓj−1, ℓj−2) =

(
ℓj−2

ℓj

)
(γ (ℓj−1, ρj))

ℓj−2−ℓj (1− γ (ℓj−1, ρj))
ℓj .

Definition 4. Increment of the probability of correct decoding of the product
code on the i-th iteration is as follows:

∆i =
n∑

ℓ1=d+δ(i,1)

Pr (ℓ1|m,n)
m−1∑

ℓ2=d+δ(i,2)

Pr (ℓ2|ℓ1,m)
ℓ1−1∑

ℓ3=d+δ(i,3)

Pr (ℓ3|ℓ2, ℓ1) . . .×

×

ℓi−3−1∑

ℓi−1=d+δ(i,i−1)

Pr (ℓi−1|ℓi−2, ℓi−3)
d−1∑

ℓi=0

Pr (ℓi|ℓi−1, ℓi−2), δ (i, j) =

⌊
i− j − 1

2

⌋
.

The upper and lower limits for summation are defined in accordance with
the rules of the product code decoding failure.

Complexity of calculation ∆i is exponential with iteration number i (it is
more or less evident).

Example of exact formulas for few first iterations see in Table 1. Examples
of calculation of increments and probabilities see on Figure 1.

4 Approximate recursive scheme calculation

To decrease the complexity from exponential to a polynomial function we can
use the following way. Let see on the last three terms in general expression for

10 ACCT 2014

increment ∆i. They are as follows:
ℓi−4−1∑

ℓi−2=d+δ(i,i−2)
Pr (ℓi−2|ℓi−3, ℓi−4),

ℓi−3−1∑

ℓi−1=d+δ(i,i−1)
Pr (ℓi−1|ℓi−2, ℓi−3),

d−1∑

ℓi=0
Pr (ℓi|ℓi−1, ℓi−2) . All the previous terms

give a trace to calculate the probabilities Pr (ℓi−2|ℓi−3, ℓi−4), Pr (ℓi−1|ℓi−2, ℓi−3).
These terms are related with a random shortened (ℓi−1 × ℓi−2) subcode of the
given product code. So, we could find the probability Pr (ℓi−1, ℓi−2) and es-
timate the ∆i in the following form for i ≥ 3 (initial values ∆1 and ∆2 are
calculated by exact formulas):

τ (i) = ℓ−(i mod 2) − ⌊i/2⌋ , ℓ−1 = n, ℓ0 = m,

∆i ≈
τ(i−2)∑

ℓi−2=d

τ(i−1)∑

ℓi−1=d

Pr• (ℓi−1, ℓi−2)
d−1∑

ℓi=0
Pr (ℓi|ℓi−1, ℓi−2),

Pr (ℓi|ℓi−1, ℓi−2) =

(
ℓi−2

ℓi

)
(γ (ℓi−1, ρi))

ℓi−2−ℓi (1− γ (ℓi−1, ρi))
ℓi ,

γ (ℓi−1, ρi) =
t∑

v=0

(
ℓi−1

v

)
(ρi)

v (1− ρi)
ℓi−1−v,

ρi (ℓi−2, ρ̂i−1) =
1

ℓi−2

λ∗ (ℓi−2, ρ̂i−1)

λ (ℓi−2, ρ̂i−1)
⇒ ρi,

λ (ℓi−2, ρ̂i−1) =

ℓi−2∑

j=t+1

(
ℓi−2

j

)
ρ̂ji−1 (1− ρ̂i−1)

ℓ−j,

λ∗ (ℓi−2, ρ̂i−1) =

ℓi−2∑

j=t+1

j

(
ℓi−2

j

)
ρ̂ji−1 (1− ρ̂i−1)

ℓ−j.

In order to prepare the next iteration we should calculate the following:

Pr• (ℓi, ℓi−1) =
τ(i−2)∑

ℓi−2=d+1
Pr• (ℓi−1, ℓi−2) Pr (ℓi|ℓi−1, ℓi−2; d ≤ ℓi < ℓi−2) ,

d ≤ ℓi ≤ τ(i);

Pr• (ℓi−2) =
τ(i−1)∑

ℓi−1=d+1
Pr• (ℓi−1, ℓi−2) , d ≤ ℓi−2 ≤ τ (i− 2) ,

ρ̂i (ρ̂i−1) =

τ(i−2)∑

ℓi−2=d+1
Pr• (ℓi−2)λ∗ (ℓi−2, ρ̂i−1)

τ(i−2)∑

ℓi−2=d+1
Pr• (ℓi−2) ℓi−2λ (ℓi−2, ρ̂i−1)

⇒ ρ̂i.

Afanassiev, Davydov 11

0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error probability P by symbol in channel

P
ro

b
a
b
il
it
y

o
f
co

rr
ec

t
d
ec

o
d
in

g

∆1 = P1 P2 P3 P4 P6

∆2 ∆3 ∆4

0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4

−2

−1.5

−1

−0.5

0

Error probability P by symbol in channel

log(1 − P1) log(1 − P2) log(1 − P6)

Figure 1: Probability of correct decoding and logarithm of failure

probability for [30, 16, 15]64 × [30, 16, 15]64 product code with compo-

nent RS codes. probabilities P1, P2, . . . , P6 of correct decoding (the solid
curves); increments ∆1,∆2, . . . ,∆6 of probabilities Pi (the dashed-dotted
curves); 1, 2, . . . , 6 are the numbers of iterations

In the last expression, we define average density of error in a “bad” block
as ratio of average number of errors in that block to its average length.

Examples and comparison of exact and approximate calculations see on
Figure 2.

Complexity of approximate procedure is linear on iteration number and
approximately cubic on the product code size.

5 Conclusion

We have defined here exact and approximate procedures for calculation of prob-
abilities of correct decoding or decoding failure for a product of Reed-Solomon
codes under the strong condition that the probability of error of component
decoder is negligible. The point of suggested method is definition of degrada-
tion of error model (error density ρi) during iterative decoding. As we can see
from Figure 2 approximation error by iteration is small and accumulation of
errors with the iteration number is visible which is usual effect for recurrent
calculation.

We are sure that this way for probability calculation can be expanded on
other product codes.

12 ACCT 2014

0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Error probability P by symbol in channel

log(1 − P1)

log(1 − P2)
log(1 − P6)

Figure 2: Logarithm of failure probability for [30, 16, 15]64 × [30, 16, 15]64
product code with component RS codes. exact calculations (solid curve)
and approximation (dashed curve); 1 − Pi is failure probability after the i-th
iteration

Table 1: Increments ∆i of correct decoding probability
ℓ1 ℓ2 ℓ3 ℓ4 ℓ5

∆1

d−1∑
ℓ1=0

Pr (ℓ1)

∆2

n∑
ℓ1=d

Pr (ℓ1)
d−1∑
ℓ2=0

Pr (ℓ2|ℓ1)

∆3

n∑
ℓ1=d

Pr (ℓ1)
m−1∑
ℓ2=d

Pr (ℓ2|ℓ1)
d−1∑
ℓ3=0

Pr (ℓ3|ℓ2ℓ1)

∆4

n∑
ℓ1=d+1

Pr (ℓ1)
m−1∑
ℓ2=d

Pr (ℓ2|ℓ1)
ℓ1−1∑
ℓ3=d

Pr (ℓ3|ℓ2ℓ1)
d−1∑
ℓ4=0

Pr (ℓ4|ℓ3ℓ2)

∆5

n∑
ℓ1=d+1

Pr (ℓ1)
m−1∑

ℓ2=d+1

Pr (ℓ2|ℓ1)
ℓ1−1∑
ℓ3=d

Pr (ℓ3|ℓ2ℓ1)
ℓ2−1∑
ℓ4=d

Pr (ℓ4|ℓ3ℓ2)
d−1∑
ℓ5=0

Pr (ℓ5|ℓ4ℓ3)

Afanassiev, Davydov 13

References

[1] R. E. Blahut, Theory and practice of error control codes, Add-Wil. Pub-
lishing company reding, Massachusets, 1984.

[2] J. Justesen and T. Høholdt, Iterative Decoding of Product Codes, in Proc.
XII Int. Workshop on Algebraic and Combin. Coding Theory, ACCT2010,
Novosibirsk, Russia, 2010, 5–11.

[3] J. Justesen and T. Høholdt, Iterated Decoding of Product Codes and
Graph Codes with RS Component Codes, ISIT 2010.

[4] J. Justesen, K. J. Larsen, and L.A. Pedersen, Error Correcting Coding for
OTN, IEEE Commun. Magaz. September 2010

