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Preface

In the beginning of 90s the authors of this monograph proposed a generaliza-
tion of the concept of hyperbolicity, first for differentiable mappings and later
for Lipschitz mappings, which they called ‘semi-hyperbolicity’. This arose in-
directly in the context of their research at that time on the effect of spatial
discretization on the behavior of a dynamical system, in particular that of
finite machine arithmetic in a computer representation of a dynamical sys-
tem, and rapidly broadened into a series of papers in which differing aspects
and applications of the concept were explored. These papers form the basis of
this monograph, the aim of which is to present a more thorough and system-
atic development of the concept of semi-hyperbolicity, as well as to illustrate
its practicality. While the connection with the theory of hyperbolic systems
is important and will not be neglected, much of the motivation of the au-
thors comes from their interest and background in applications of dynamical
systems and this has naturally influenced the types of questions asked and
investigated.

As it often happens, our everyday duties and new interests at long last
distracted us from semi-hyperbolicity, bi-shadowing and all such things. So,
the manuscript, almost completed, remained not finished formally.

To our surprise and pleasure, the whole theme of semi-hyperbolicity and bi-
shadowing did not die. There appears a number of brilliant investigations. So,
we decided to finalize, at least formally, the manuscript and make it available
on the Web.

Brisbane–Frankfurt–Moscow–Cork Phil Diamond
1992–2007 Peter Kloeden

Victor Kozyakin
Alexei Pokrovskii
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1

Introduction

1.1 Modeling Dynamical Processes

Real world dynamical processes can be extremely complicated, yet numer-
ous quite simple idealized mathematical models often appear to capture the
essence of what is happening and allow useful predictions to be made. This
fact, which is to some extent justifiable mathematically, has been central to
the resounding success of rationalist scientific thinking over the past four hun-
dred years. Moreover, a large amount of mathematical analysis owes its origin
to the development of concepts and tools needed to formulate and investigate
such idealized mathematical models, which, though relatively simple, are by
no means trivial.

Traditionally mathematical models have involved differential equations,
both ordinary and partial, thus when relevant representing continuous time
dynamical systems on appropriately chosen state spaces. In contrast, much
of the modern theory of dynamical systems has focussed on discrete time
dynamical systems generated by iteration of a mapping f of a given state
space X into itself, that is on difference equations

xn+1 = f (xn) , n = 0, 1, 2, . . . . (1.1)

Though seemingly less complicated, their dynamical behavior can often be
richer without the restricting constraint of continuous time, but in any case
many results can often be transferred to the differential context by means of
suspensions, time–1 maps or Poincaré return maps. Indeed, motivated by the
properties of solutions of smooth differential equations, the mapping f in (1.1)
is often assumed to be a diffeomorphism and the state space X a compact
manifold.

Investigations of the long term or asymptotic behavior have preoccupied
the development of the theory of dynamical systems. Not only has the behavior
of individual systems been of interest, especially the existence of attractors,
but also the classification of classes of systems that share common behavioral
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characteristics or retain them under transformation or perturbation. Stability
is the crucial concept here, both within a given system and across a class
of systems, and can correspondingly be distinguished as either dynamical
stability or structural stability. Both types of stability here have connotations
of robustness of dynamical behavior.

An idealized mathematical model f is typically taken as a given and as the
starting point of a mathematical investigation, for which it remains a fixed
reference point. Approximation methods may be required, but an approximat-
ing system fh, for example difference equation (1.1) in the finite arithmetic
field of a computer, and its behavior are then usually always compared back
to that of the given idealized system.

In reality, an idealized mathematical model f is precisely that, a con-
veniently selected idealization of some nearby, but only imprecisely known
system f̃ . In applications it is thus desirable that the properties of an ap-
proximation fh to an idealized system f also say something about those of
possible underlying systems f̃ on which the idealization is based. Robustness
of dynamical behavior is thus a particulary important issue in mathematical
modeling.

1.1.1 Hyperbolicity

The concept of hyperbolicity in dynamical systems provides an elegant means
of addressing the fundamental problem raised in mathematical modeling, that
all systems close to an idealized system should share its essential dynamical
properties. In a sense it combines and subsumes the idea of total stability,
where all systems close to one with an asymptotically stable steady state have
a small attracting set about this steady state, and the analogous idea of total
instability. It is based on the elementary observation that a linear mapping
with a saddle point, hence with both contracting stable and expanding unsta-
ble directions, is robust under small parameter changes of the linear mapping
itself as well as under small nonlinear perturbations. This extends easily to a
hyperbolic cycle with the proviso that the corresponding stable and unstable
linear manifolds are successively mapped onto their counterparts under the
linearized mapping. The profound insight of Anosov [5, 7, 6] was to generalize
this idea to an arbitrary compact invariant subset (in his case a manifold) for
each point of which there is a splitting (of the tangent space) into such stable
and unstable linear manifolds.

Hyperbolicity and its implications have been intensively investigated since
the 1960s led by Smale and his coworkers, with interest being heightened by
the presence of chaos generating mechanisms within noncyclic hyperbolic sets
(see, e.g. [38, 39] and bibliography therein). Identifying and classifying such
sets have been fundamental tasks, as has been establishing their structural
stability in which all systems in some neighborhood of a system with such a
hyperbolic set are homeomorphic to it, thus generalizing the robustness as-
serted by the Hartman–Grobman theorem [39, 63, 64] for a system with a
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simple saddle point. Symbolic dynamics [72, 39] has been a key tool here, in
which the existence of a homeomorphism between a system restricted to a
hyperbolic set and the shift operator on a space of symbol sequences, that is
the conjugacy of these systems, is established, thus allowing the more trans-
parent complicated behavior of the latter system to be transferred back to the
original system. Shadowing [9, 15, 14, 16, 18, 17, 49, 74], which asserts the
existence of a true trajectory close to any approximate, pseudo-trajectory,
is another useful property, suggesting that computer simulations do indeed
reflect the dynamics of chaotic hyperbolic systems.

The importance of hyperbolicity in the theory of dynamical systems cannot
be understated, yet there remains a very wide gap between the deep theoreti-
cal understanding that it provides and the application of these mathematical
results to specific, practical dynamical systems. There are two reasons for
this, one concerning the assumptions made about the systems under investi-
gation and the other the nature of the mathematical assertions made and their
proofs. Much of the theory of hyperbolic systems deals with diffeomorphisms
on compact manifolds, yet many interesting systems lack the invertibility (eg.
difference equations in population modeling) or the smoothness (eg. systems
with hysteresis or control switchings) of diffeomorphisms. Of course, there
have been attempts to generalize hyperbolicity to homeomorphisms or to non-
invertible maps (eg. Ruelle’s pre-hyperbolicity), but then the second issue of
practicality becomes paramount. Hyperbolicity is an extremely difficult prop-
erty to verify for specific systems generating diffeomorphisms and even more
so for its more abstract generalizations to homeomorphisms and noninvert-
ible maps. Indeed, nearly all mathematically confirmed examples of hyperbolic
systems are artificial constructs. The nature of many theorems on hyperbolic
systems and their proofs is another obstacle to their applicability to specific
systems, particular as many proofs are nonconstructive or lack clear, tight es-
timates. Moreover, many assertions in theorems hold only ‘generically’, that
is for systems belonging to some residual subset of systems; though ‘typical’
in such a sense, it says little about a specific model at hand.

1.1.2 Semi-Hyperbolicity

As restrictive as it may seem, hyperbolicity is nevertheless an ubiquitous char-
acteristic of dynamical systems, at least in the sense that many dynamical
systems satisfy some if not all of its defining properties and enjoy many of
the dynamical consequences. In particular, smoothness and invertibility of
the system are not essential, nor are the continuity and equivariance of the
tangent space splitting at each point of a hyperbolic set, nor in fact is the
invariance of the hyperbolic set itself. As mentioned above, various general-
izations of the definition of hyperbolicity have been proposed, but their actual
applicability to specific systems is problematical. What is urgently required is
a pragmatic reformulation of the concept of hyperbolicity that is both widely
and effectively applicable and at the same time directly addresses both the
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practical and philosophical issues raised by the use and analysis of mathemat-
ical modeling.

Several years ago the authors of this monograph proposed such a refor-
mulation, first for differentiable mappings and later for Lipschitz mappings,
which they called ‘semi-hyperbolicity’. This arose indirectly in the context of
their research at that time on the effect of spatial discretization on the behav-
ior of a dynamical system, in particular that of finite machine arithmetic in a
computer representation of a dynamical system, and rapidly broadened into
a series of papers in which differing aspects and applications of the concept
were explored. These papers [2, 1, 3, 4, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 42, 43, 48] form the basis of this monograph, the aim of which is to present
a more thorough and systematic development of the concept of semi-hyper-
bolicity, as well as to illustrate its practicality. While the connection with the
theory of hyperbolic systems is important and will not be neglected, much of
the motivation of the authors comes from their interest and background in
applications of dynamical systems and this has naturally influenced the types
of questions asked and investigated.

1.2 Outline of Book

The book consists of eight Chapters, List of Notation, Index and Bibliography.
In Chapter 1 we explain the necessity of introducing notions of semi-

hyperbolicity and bi-shadowing from the point of view of mathematical mod-
eling of real processes.

In Chapter 2 we briefly review background material on dynamical systems,
particularly that involving differentiable hyperbolic mappings, and introduce
terminology and results that will be required later.

In Chapter 3 the concept of semi-hyperbolicity is introduced and some ex-
amples are considered. Here different variants of definitions of semi-hyperbol-
icity are given aimed to generalize definition of hyperbolicity to differentiable
mappings, which need not be invertible, so as to differentiable mappings on
a general compact subset of Rd and then for a Lipschitz mappings. In both
latter cases the subset on which the mapping is considered is not required to
be invariant. Further generalizations of the concept of semi-hyperbolicity to
mappings in Banach spaces will are given in Chapter 8.

The usefulness of first approximation methods to investigate the properties
of semi-hyperbolic mappings and their trajectories leads us naturally to con-
sider linear operators in spaces of sequences generated in one way or another
by derivatives of semi-hyperbolic mappings. Some elementary properties of
such linear operators that will be needed throughout the book are considered
in Chapter 4.

In Chapter 4 it is also shown that a semi-hyperbolic sequence of matrices
is hyperbolic, i.e. in the linear case semi-hyperbolicity implies hyperbolicity.
This is generally not true for the nonlinear mappings, which will be shown by
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an example in Section 5.1 which demonstrates that a semi-hyperbolic map-
ping may not possess an invariant splitting and so cannot be a hyperbolic.
Nevertheless, it is shown in Section 5.2 that a semi-hyperbolic mapping which
is smooth and invertible in a neighborhood of a compact invariant set is, in
fact, hyperbolic on that set. The proofs depend substantially on background
material and results of Chapter 4.

In Section 2.2 it was mentioned that hyperbolic systems possess some
rather strong and useful properties such as expansivity (see Definition 2.7
and Theorem 2.8) and shadowing (see Theorem 2.9). In Chapter 6 we will
show that these and other properties remain valid for semi-hyperbolic sys-
tems. Moreover, explicit values or sharp estimates of relevant parameters and
intervals of validity are obtained.

In Chapter 7 we consider properties of semi-hyperbolic mappings which
can be conditionally qualified as structure-stability-properties. More precisely,
it will be shown that topological entropy can only increase following to con-
tinuous perturbation of a Lipschitz semi-hyperbolic mapping. Then problems
of conjugation and factorization of semi-hyperbolic mappings will be studied.
And, at last, investigation of chaotic phenomena for semi-hyperbolic mappings
will be discussed.

In the last Chapter 8 we briefly consider several applications of semi-
hyperbolicity and its consequences, in particular to delay differential equa-
tions, systems with hysteresis and the numerical approximation of chaotic
attractors.





2

Smooth Dynamical Systems

In this chapter we briefly review background material on dynamical systems,
particularly that involving differentiable hyperbolic mappings, and introduce
terminology and results that will be required later.

2.1 Hyperbolic Mappings

Major theoretical advances in the theory of dynamical systems have resulted
from a proposal of D. Anosov in the early 1960s to extend the concept of a
hyperbolic set from a finite cyclic set to a general compact invariant subset
K. In particular, it was subsequently realized by S. Smale that such a general-
ization of hyperbolicity could be used to describe highly non-trivial recurrent
behavior in dynamical systems as well as the robustness of such behavior.
Their work and that of many others was in the context of diffeomorphisms
on smooth compact manifolds, motivated in part by the fact that time-one
mappings and return mappings of smooth differential equations are diffeo-
morphisms, and is now known as differentiable dynamics. An objective of this
book is to show that complicated dynamical behavior is also possible under
far less stringent assumptions.

In what follows ‖ · ‖ will denote a fixed, but otherwise arbitrary norm on
Rd.

2.1.1 Hyperbolic Cycles

Let X be an open subset of Rd and f : X 7→ X a differentiable mapping. Such
a mapping generates a discrete time dynamical system through successive
iteration, that is with

xn+1 = f (xn) , n = 0, 1, 2, . . . ,

determining the trajectory of the system starting at the point x0 ∈ X.
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A trajectory starting at x0 is called a cycle of f with period p ≥ 1 if the
successive points x0, x1, . . . , xp−1 are distinct and xp = x0. A point xk of such
a cycle is called a periodic point of f and a hyperbolic periodic point1 if all
of the eigenvalues λ(k)

j of the derivative Dfxk
satisfy the non-unit modulus

condition:
|λ(k)

j | 6= 1.

The eigenvalues of Dfxk
are, in fact, then the same at each of the points {x0,

x1, . . . , xp−1} of the cycle, so the superindex k can be omitted.
Suppose that the eigenvalues, after possible rearrangement, satisfy

|λj | < 1, 0 ≤ j ≤ ns, |λj | > 1, ns + 1 ≤ j ≤ d (2.1)

for some 0 ≤ ns ≤ d. Then the linear subspaces Es
xk

and Eu
xk

spanned by the
eigenvectors, and generalized eigenvectors if necessary, of Dfxk

corresponding
to the eigenvalues with modulus less than 1 and modulus greater than 1,
respectively, form a splitting or decomposition of Rd, that is with

Rd = Es
xk
⊕ Eu

xk
.

with dimensions

dimEs
xk

= ns, dimEu
xk

= nu := d− ns (2.2)

and projection operators

P s
xk

: Rd 7→ Es
xk
, Pu

xk
: Rd 7→ Eu

xk
.

Note that an equivalent norm ‖ · ‖xk
, which may depend on xk, can be found

such that Dfxk
|Es

xk
is contractive and Dfxk

|Es
xk

is expansive in the sense that
there is a constant λ > 1 such that

‖Dfxk
u‖f(xk) ≤ λ−1‖u‖xk

, ‖Dfxk
v‖f(xk) ≥ λ‖v‖xk

for any u ∈ Es
xk

and v ∈ Eu
xk

. The linear subspaces Es
xk

and Eu
xk

are thus
usually called the stable and unstable subspaces at xk, respectively. Condition
(2.1) is in fact satisfied at each point of the cycle with the same ns, so the
corresponding stable and unstable spaces for each point of the cycle have the
same dimensions (2.2). They are related by the equivariance property:

Dfxk
(Es

xk
) = Es

f(xk), Dfxk
(Eu

xk
) = Eu

f(xk)

for each k.
It is a trivial, yet nevertheless an important observation that a set

K = {x0, . . . , xp−1} of the points of a cycle of f is invariant under f , or
f -invariant, that is f(K) = K. In addition, the behavior of the dynamical
system generated by the mapping f is robust with respect to small perturba-
tions in the vicinity of such a cyclic a set K when its points are hyperbolic.
This robustness manifests itself globally when the mapping f has only a finite
number of cycles which are all hyperbolic.
1 A hyperbolic periodic point of period 1 is called a hyperbolic fixed point.
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2.1.2 Anosov Systems

Anosov began the investigation of non-cyclic hyperbolic sets with the concept
of a U -cascade, which is now called an Anosov system, for a diffeomorphism
f on an m-dimensional closed differentiable manifold M in Rd. Recall that a
diffeomorphism f : M 7→ M is an invertible mapping for which both f and
its inverse f−1 are continuously differentiable on M .

In an Anosov system the tangent space TxM ∼= Rm at each point x ∈M is
split into stable and unstable subspaces of the tangent mapping Tfx at x ∈M
with the separation

δ(Es
x, E

u
x ) = inf{‖u− v‖ : u ∈ Es

x, v ∈ Eu
x , ‖u‖ = ‖v‖ = 1}

between these linear subspaces being assumed uniformly bounded from below.

Definition 2.1 (Anosov System). A diffeomorphism f : M 7→M where M
is an m-dimensional closed differentiable manifold in Rd generates an Anosov
system on M if

A1: for each x ∈M there exists a splitting TxM = Es
x ⊕ Eu

x such that

dimEs
x ≡ k 6= 0, dimEu

x ≡ m− k 6= 0,

for some integer k independent of x ∈M , and

TfxE
s
x = Es

f(x), T fxE
u
x = Eu

f(x);

A2: there exist constants λ > 1 and %0 > 0 independent of x ∈M such that:

‖Tfn
x u‖ ≤ %0λ

−n‖u‖, ‖Tfn
x v‖ ≥ %−1

0 λn‖v‖, n ≥ 0,

u ∈ Es
x and v ∈ Eu

x ;
A3: there exists a constant %1 > 0 independent of x ∈ M such that the sepa-

ration
δ (Es

x, E
u
x ) ≥ %1

for all x ∈M .

An example of linear mapping f which generates an Anosov system and
is called an Anosov automorphism will be considered in Chapter 3.

Definition 2.1 does not assume that the splitting depends continuously on
x, by which it is meant that in a neighborhood of any point x0 ∈ M a set of
vectors e1(x), e2(x), . . ., em(x) ∈ TxM which depend continuously on x ∈M
can be chosen such that the vectors e1(x), e2(x), . . ., ek(x) form a basis of
the subspace Es

x ⊆ TxM and the vectors ek+1(x), ek+2(x), . . ., em(x) form a
basis of the subspace Eu

x ⊆ TxM . This continuity is in fact a consequence of
Condition A3 (cf. [6, 13]).
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Theorem 2.2. For an Anosov system generated by a diffeomorphism on a
closed differentiable manifold M of Rd the splitting TxM = Es

x ⊕Eu
x depends

continuously on x ∈M .

Note that only compact Riemannian manifolds M were considered in [6,
13], but the proof of Theorem 2.2 there does not make use of this extra
structure and in fact holds for a closed differentiable manifold.

2.1.3 Hyperbolic Diffeomorphisms

In an Anosov system the whole manifold M is a non-cyclic hyperbolic set.
Smale extended the idea to an f -invariant subset K of the manifold. The
term hyperbolic mapping will often be used loosely to refer to a mapping f
that possesses such a hyperbolic invariant set K.

The usual definition of hyperbolicity found in the literature now refers to
a diffeomorphism f : M 7→M where M is a compact manifold and a compact
f -invariant subset K of M . As for an Anosov system, the splitting is of the
tangent space TxM at each point x ∈ K, but the expansion and contraction on
the stable and unstable subspaces of the tangent mapping Tfx are expressed
in terms of a Riemannian norm ‖ · ‖x on TxM , which may vary with on the
point x ∈ K, thus allowing the constant %0 in Condition A2 of an Anosov
system to be set conveniently equal to 1.

Definition 2.3 (Hyperbolicity on a Manifold). A closed subset K of a
compact manifold M which is invariant for a diffeomorphism f : M 7→ M is
said to be hyperbolic if there exists a splitting TxM = Es

x⊕Eu
x for each x ∈ K,

which varies continuously in x ∈ K, a constant λ > 1 and a Riemannian norm
‖ · ‖x on TxM such that

H1∗: For all x ∈ K:

Tfx (Es
x) = Es

f(x), T fx (Eu
x ) = Eu

f(x),

H2∗: For all x ∈ K, u ∈ Es
x and v ∈ Eu

x :

‖Tfxu‖f(x) ≤ λ−1‖u‖x, ‖Tfxv‖f(x) ≥ λ‖v‖x.

Conditions H1∗ and H2∗ in Definition 2.3 together imply that the splitting
is continuous as in Theorem 2.2, which thus need not have been assumed,
as well as the constancy of the dimension of the splitting subspaces along a
trajectory of the mapping f .

Remark 2.4. The use of an equivalent adapted norm in Condition H2∗ in Def-
inition 2.3 allows the constant %0 in Condition A2 of an Anosov system to be
set equal to 1. This is convenient for many theoretical purposes, but can be
cumbersome for specific practical examples. The Whitney Embedding The-
orem provides one way of avoiding the problem and using the same norm
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at each point of x ∈ K in the inequalities in Condition H2∗. Essentially the
manifold M is embedded in a higher dimensional space Rd′ and the norm of
this space can be used everywhere. Alternatively, Smale has shown that there
is an iterate f l of a hyperbolic diffeomorphism f in the sense of Definition 2.3
such that f l is hyperbolic on the invariant set K with the inequalities in Con-
dition H2∗ satisfied with respect to a norm that does not depend on the point
of K.

The previous remark motivates the following variation of the definition
of hyperbolicity for a mapping f : X 7→ Rd, where X is an open subset of
Rd containing the f -invariant compact set K under consideration, which is a
diffeomorphism on a neighborhood of the set K.

Definition 2.5 (Hyperbolicity). A compact subset K ⊂ X which is in-
variant for a diffeomorphism f : X 7→ Rd is said to be hyperbolic if there
exist a splitting Rd = Es

x ⊕ Eu
x for each x ∈ K, which varies continuously in

x ∈ K, constants λ > 1 and %0 > 0, and a norm ‖ · ‖ on Rd such that

H1: For all x ∈ K:

Dfx (Es
x) = Es

f(x), Dfx (Eu
x ) = Eu

f(x),

H2: For all u ∈ Es
x and v ∈ Eu

x :

‖Dfn
x u‖ ≤ %0λ

−n‖u‖, ‖Dfn
x v‖ ≥ %−1

0 λn‖v‖, n ≥ 0.

2.1.4 Generalizations

Various generalizations of hyperbolicity to mappings other than diffeomor-
phisms have been proposed, in particular to homeomorphisms and to not
necessarily invertible continuous mappings. Instead of a splitting into stable
and unstable linear spaces, dynamically defined nonlinear stable and unstable
sets are used.

Let (X, %) be a compact metric space and let f : X → X be a homeomor-
phism of X onto itself. For an arbitrary point x ∈ X and any ε > 0, the local
stable and unstable sets of f of size ε at x are defined as

W s
ε (x) = {y ∈ X : %(fnx, fny) ≤ ε, n ≥ 0}

and
Wu

ε (x) = {y ∈ X : %(fnx, fny) ≤ ε, n ≤ 0},
respectively, while the stable and unstable sets of f at x are defined as

W s(x) = {y ∈ X : %(fnx, fny) → 0, n→∞}

and
Wu(x) = {y ∈ X : %(fnx, fny) → 0, n→ −∞},

respectively.
Note that # (W s

ε (x) ∩Wu
ε (x)) ≥ 1 for any ε > 0, where #A denotes the

cardinality of the set A.
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Definition 2.6 (Hyperbolic Homeomorphism). A homeomorphism f of
X onto itself is hyperbolic if there exist constants ε0 > 0, K > 0 and λ > 1
such that

%(fnx, fny) ≤ Kλ−n for all x ∈ X, y ∈W s
ε0

(x) and n ≥ 0,

%(f−nx, f−ny) ≤ Kλ−n for all x ∈ X, y ∈Wu
ε0

(x) and n ≥ 0,

and there exists δ0 > 0 such that

#W s
ε0

(x) ∩Wu
ε0

(y) = 1,

for all x, y ∈ X with %(x, y) ≤ δ0.

The case of noninvertible f can be handled by a suggestion of D. Ruelle.
Let f : X → X be a continuous mapping and for each x ∈ X define sequence
set

X† =

{
{xn}0n=−∞ ∈

0∏
n=−∞

X : f(x−n) = x−n+1, n = 1, 2, . . .

}

and the mapping f† : X† → X† by f†({xn}) = {f(xn)}. Then f† is a homeo-
morphism on X† with respect to the metric D({xn}, {yn}) = supn≤0 %(xn, yn)
and f is said to be hyperbolic on X if f† is hyperbolic on X†.

2.2 Fundamental Properties

The robustness of behavior of a dynamical system in the vicinity of a hy-
perbolic cycle is retained by dynamical systems with nontrivial hyperbolic
sets, but now considerably more complicated dynamical behavior is possible.
Some of the fundamental properties of hyperbolic diffeomorphisms will be
summarized here without proof, focusing on those properties that carry over
(possibly in modified form) to semi-hyperbolic mappings for which proofs will
be presented in later Chapters. To simplify the exposition, these results will
be stated in terms of a diffeomorphism f : X 7→ X ⊂ Rd with a compact in-
variant hyperbolic subset K. Homeomorphisms will also be considered below.

2.2.1 Expansivity and Shadowing

An immediate consequence of hyperbolicity and portender of complicated
dynamics within a hyperbolic set given its compactness and invariance is that
a diffeomorphism is expansive on a hyperbolic set.

Definition 2.7 (Expansivity). A homeomorphism f : K 7→ K is expansive
on an invariant set K if there exists an ε > 0 such that for all x, y ∈ K
condition

‖fn(x)− fn(y)‖ ≤ ε for all n ∈ Z
implies that x = y.
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Theorem 2.8. A diffeomorphism f with a hyperbolic set K is expansive on
K.

Thus no two distinct trajectories in a hyperbolic set can remain forever
within a certain threshold of each other. Nevertheless, within the hyperbolic
set there is always a true trajectory close to an approximate or pseudo-
trajectory. A sequence {yn} ⊂ X is called a δ-pseudo-trajectory of a dynamical
system generated by a mapping f if

‖yn+1 − f(yn)‖ < δ for all n ∈ Z

and a true trajectory {xn} is said to ε-shadow a pseudo-trajectory {yn} if

‖yn − xn‖ < ε for all n ∈ Z.

Theorem 2.9 (Shadowing Theorem). If f : X 7→ X is a diffeomorphism
with an f-invariant hyperbolic set K ⊂ X, then for every ε > 0 there exists
a δ > 0 and an open neighborhood U of K in X such that every δ-pseudo-
trajectory of f in U is ε-shadowed by a true trajectory of f in K.

A dynamical system satisfying the assertion of Theorem 2.9 will be said
to have the shadowing property . The following characterization of hyperbolic
homeomorphisms holds.

Theorem 2.10. A homeomorphism f on a compact metric space (X, %) is
hyperbolic if and only if f is expansive and has the shadowing property.

The pseudo-trajectories in the Shadowing Theorem are often interpreted
as being the true trajectories of a nearby approximating system, for exam-
ple generated by computation of the given system on a digital computer. In
fact hyperbolic diffeomorphisms enjoy a stronger relationship with systems
generated by nearby mappings.

2.2.2 Conjugate Systems

Let H (K) denote the space of homeomorphisms f : K 7→ K, where K is a
compact subset of Rd. Note that (H (K), %0) is a complete metric space with
the metric

%0(f, g) = max
x∈K

{
‖f(x)− g(x)‖ ,

∥∥f−1(x)− g−1(x)
∥∥} .

A mapping g ∈ H (K) is said to be topologically semi-conjugate to a mapping
f ∈ H (K) if there exists a continuous mapping h of K onto K such that
f ◦ h = h ◦ g and topologically conjugate when the mapping h : K 7→ K
is a homeomorphism. Many useful dynamical properties are preserved under
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topological conjugacy or semi-conjugacy, as is illustrated by the Hartman–
Grobman theorem in which the comparison is made between a mapping and its
linearization about a hyperbolic point. In fact, for a hyperbolic diffeomorphism
f there is a neighborhood in (H (K), %0) of homeomorphisms g which are
semi-conjugate to f under a common semi-conjugacy mapping h which is
close to the identity mapping on K.

Theorem 2.11 (Topological Stability). Let f ∈ (H (K), %0) be diffeo-
morphism which is hyperbolic on K. Then given ε > 0 there exists a unique
continuous mapping h : K 7→ K with ‖x − h(x)‖ < ε for all x ∈ K and a
δ = δ(ε) > 0 such that h ◦ g = f ◦ h for all g ∈ (H (K), %0) with %0(f, g) < δ.
Moreover, if ε is small enough and K is a compact manifold, then h maps K
onto K.

The assertion of this theorem is known as the topological stability of the
mapping f when ε is small enough to ensure that h is an onto mapping.
The neighboring dynamical systems g in (H (K), %0) are then also expansive
mappings with the shadowing property. Whether or not the diffeomorphisms
g in this δ-neighborhood of f in the space (H (K), %0) are also hyperbolic on
K or a subset of K is a much deeper question and has lead to an extensive
structural theory of differential dynamics which involves a stronger concept
of structural stability in the space D(K) of diffeomorphisms on K with a C1-
metric %1. In this theory generic properties possessed by diffeomorphisms in
a residual subset, that is in a countable intersection of open dense subsets, of
(D(K), %1) are of primary interest.

Topological conjugacies between mappings defined on different compact
sets Ki, which need not be subsets of a common space, are also useful in
comparing the dynamics of dynamical systems when that of one of them
is simple enough to be well understood. For example, Smale established a
topological conjugacy between his horseshoe diffeomorphism on the sphere
restricted to the hyperbolic horseshoe subset with the shift operator σ on a
space Σ of bi-infinite sequences x = {xn}n∈Z where xn ∈ {0, 1} with the
metric

%(x, x̃) =
∑
n∈Z

2−|n|‖xn − x̃n‖,

i.e. where (σx)n = xn+1 for each n ∈ Z. The dynamics of the system gener-
ated on Σ by the homeomorphism σ is such that σ is expansive on Σ, the set
Per(σ) of all periodic points of σ is dense in Σ and there is a trajectory of σ
which is also dense in Σ. These properties are carried over to the horseshoe
diffeomorphism on its hyperbolic horseshoe set by the conjugacy homeomor-
phism. Symbolic dynamics has become an indispensable tool in the theory of
dynamical systems.
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2.2.3 Hyperbolic Sets

Often a hyperbolic subset K of a mapping f defined on the set X is not
known in advance and needs to be determined. There are several natural
candidates for such a subset, the most obvious of which is the set Per(f,X)
of all periodic points x ∈ X of f all images fn(x) of which belong to X. More
useful are the sets Ω(f,X) of non-wandering points of f and CR(f,X) of
chain recurrent points of f . A point x ∈ X is a non-wandering point of f if
for every neighborhood U of x in X there exists an integer n ≥ 1 such that
U ∩ Un 6= ∅ for a sequence of nonempty sets {Uk} defined recurrently

U0 = U, Uk+1 = X ∩ f(Uk), k = 0, 1, . . . .

A point x ∈ X is chain recurrent for f if for every ε > 0 there exists an
ε-pseudo-trajectory {xn} ⊆ X of f with x0 = x and ‖xN − x‖ ≤ ε for some
N > 0.2 The sets Per(f,X), Ω(f,X) and CR(f,X) are closed in X, and

Per(f,X) ⊆ Ω(f,X) ⊆ CR(f,X),

where each subset is f -invariant.
Much of the structural theory of differential dynamics has focussed on the

Axiom A diffeomorphisms introduced by Smale, for whichΩ(f) is a hyperbolic
set and Per(f) is dense in Ω(f), since it turns out that a diffeomorphism
is structurally stable if and only if it is an Axiom A diffeomorphism and
its (nonlinear) stable and unstable manifolds satisfy a strong transversality
condition. Note that Per(f) = Ω(f) = CR(f) for a generic system f ∈ H (X)
and the mapping f 7→ Ω(f) is upper-semicontinuous on (H (X), %0) at such
an f in the sense that for every ε > 0 there exists a δ = δ(ε) > 0 such that

Ω(g) ⊂ Oε (Ω(f)) for all %0(g, f) < δ,

where Oε (Ω(f)) is the open ε-neighborhood of the subset Ω(f), i.e. the set

Oε (Ω(f)) =
⋃

x∈K

IntB(ε, x)

with IntB(ε, x) being the open ball of radius ε centered at x.
A variation of structural stability is Ω-stability in which a topological con-

jugacy is established between the restricted mappings f |Ω(f) and g|Ω(g). For
nonsmooth mappings to be considered later in this book conjugacies between
f |CR(f) and g|CR(g), and also between the sets of their trajectories, will be
important.

2 Sometimes (see, e.g. [68]) a slightly different, though equivalent, definition of
a chain recurrent point is used: a point x ∈ X is called chain recurrent for f
if for every ε, N > 0 there exists an ε-pseudo-trajectory {xn} ⊆ X of f with
x0 = xK = x for some K ≥ N .
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2.2.4 Entropy

The word ‘entropy’ refers to a variety of related concepts in mathematics.
In the book we are mainly concerned with that of topological entropy first
introduced by Adler, Konheim and McAndrew as an invariant of topological
conjugacy. Like other concepts of entropy, the topological entropy provides
an index of how complicated the dynamics of a system are. There are sev-
eral equivalent definitions [53, 80] of topological entropy and that used here
is based on Bowen’s scheme which allows the entropy to be defined for a uni-
formly continuous mapping on a subset of a metric space that need not be
compact (cf. [80]).

Let f : X 7→ X be a continuous mapping where X is an open bounded
subset of Rd and let K be a compact subset of X. For a fixed positive
integer N denote by Tr±N (f,K) the totality of finite trajectories x =
{x−N . . . , x0, . . . , xN} of f that are contained entirely in K and introduce
on Tr±N (f,K) the metric

%N (x, x̃) = sup
−N≤n≤N

‖xn − x̃n‖.

Let ε > 0 and denote by Cε(Tr±N (f,K)) the binary logarithm of maximal
number of elements x(1), . . . ,x(p) in Tr±N (f,K) such that3

%N (x(i),x(j)) ≥ ε for all i 6= j.

Definition 2.12. The topological ε-entropy hε(f,K) of f : X 7→ X on a
compact subset K of X is defined by

hε(f,K) = lim sup
N→∞

1
2N + 1

Cε(Tr
±N

(f,K)).

The topological entropy h(f,K) of f on K is defined to be the limit4

h(f,K) = lim
ε→0

hε(f,K) = sup
ε>0

hε(f,K).

One of the most difficult problems in investigating topological entropy is
its explicit evaluation. For an ξ-expansive mapping f with f(K) = K the
topological entropy in some cases is given by the following formula

h(f,K) = hθ(f,K), θ < ξ

which will be proved in Lemma 7.1 of Chapter 7.
The following theorem establishing the relation between entropy and the

number of periodic points of a mapping is worth to mentioning here.
3 If (Y, d) is a metric space and S is a compact subset of Y , then the ε-capacity of

the set S, the quantity Cε(S) = log sε(S), is the binary logarithm of the maximal
number s = sε(S) of elements y1, y2, . . . , ys ∈ S satisfying yi 6= yj for i 6= j.
Hence Cε(Tr±N (f, K)) is ε-capacity of the compact metric space Tr±N (f, K).

4 The second equality in the definition of topological entropy follows from the
obvious fact that ε-entropy hε(f, K) is non-increasing in ε.
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Theorem 2.13. If f is an expansive homeomorphism of a compact metric
space K, then

h(f,K) ≥ lim sup
n→∞

1
n

logNn(f)

where Nn(f) is the number of periodic points of f of period n.
If f is a diffeomorphism of a compact manifold M onto itself which satisfies

Axiom A, then

h(f,K) = lim sup
n→∞

1
n

logNn(f).

2.2.5 Chaos

The term ‘chaotic’ is usually used when one wants to describe rather compli-
cated behavior of a dynamical system that includes sensitive dependence on
initial conditions, an abundance of unstable periodic trajectories and an ir-
regular mixing effects. Although the term is frequently used by many authors,
there it seems no commonly accepted definition of ‘chaos’. Often the behav-
ior of the shift mapping σ on the space Σ of binary sequences, described in
Section 2.2.2, is used to provide a ‘pattern’ for chaotic behavior, which could
be called symbolic dynamics chaos or shift-mapping chaos. The behavior of
the Smale ‘horseshoe’ system and the closely related behavior of a dynamical
system near a transversal homoclinic point are famous examples of this kind
of chaos.

Definition 2.14. Let f : X 7→ X be a diffeomorphism where X is an open
subset of Rd. A point y ∈ X is called homoclinic if there exists a fixed point
x of f , x 6= y, such that y ∈ W s(x) ∩Wu(x). A homoclinic point y ∈ X is
called transversal homoclinic if TyW

s(x) + TyW
u(x) = Rd.

The following theorem shows that one can observe ‘chaotic’ behavior of
this kind in a neighborhood of any homoclinic point.

Theorem 2.15 (Smale’s Homoclinic Theorem). Let f be a C1 diffeo-
morphism and y a transversal homoclinic point for a fixed point x of f . Then
there is an integer n such that g = fn has a hyperbolic compact invariant set
K which is homeomorphic to a Cantor set and contains x and y. Moreover,
the mapping g|K is topologically conjugate to the shift σ acting on the space
Σ of binary sequences.

Chaotic behavior of this shift mapping kind is, however, quite restrictive.
A more descriptive a broadly applicable definition which retains the essential
features of shift mapping chaos was suggested by Li and Yorke [50] and gen-
eralized to higher dimensions by Marotto [52] and Shiraiwa and Kurata [71].

Definition 2.16 (Li–Yorke Chaos). Let X be a subset of Rd. A continuous
mapping f : X 7→ X is called chaotic if
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CH1: There exists a positive integer N such f has a periodic point of minimal
period p for any integer p ≥ N ;

CH2: There exists an uncountable f-invariant set S ⊆ X containing no peri-
odic points (called a scrambled set) such that

lim sup
n→∞

‖fn(x)− fn(y)‖ > 0

for every x, y ∈ S with x 6= y, and for every x ∈ S and a periodic point
y;

CH3: There exists an uncountable subset S0 of S such that

lim inf
n→∞

‖fn(x)− fn(y)‖ = 0

for every x, y ∈ S0.

The following theorem due to Shiraiwa and Kurata [71] expands ‘period 3
implies chaos’ result of Li and York to higher dimensional mappings.

Theorem 2.17. Let X be a subset of Rd and f : X 7→ X be a C1-map. Let
x0 ∈ X be a hyperbolic fixed point of f and assume that the following three
conditions are satisfied:

(i) dimEu
x0
> 0;

(ii) there exist an ε > 0, a point x1 ∈ Wu
ε (x0), x1 6= x0, and a positive

integer m such that fm(x1) ∈W s
ε (x0;

(iii) there exists a disk5 Du ⊂ Wu
ε (x0) such that Du is a neighborhood

of x1 in Wu
ε (x0), fm|Du : Du 7→ X is an embedding, and fm(Du) intersects

Wu
ε (x0) transversally at fm(x1).
Then the mapping f is chaotic.

5 A disk is a homeomorphic image of a ball from a coordinate space.
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Semi-Hyperbolic Mappings

The concept of semi-hyperbolicity is introduced in this Chapter and some
examples are considered. The first definition generalizes Definition 2.3 to a
differentiable mapping, which need not be invertible, on a compact manifold
and involves variable norms at each point of the compact invariant subset of
the manifold. The second and third definitions apply to a general compact
subset of Rd as in Definition 2.5, first for a differentiable mapping and then
for a Lipschitz mapping; in both cases a fixed norm is used and the subset is
not required to be invariant.

Further generalizations of the concept of semi-hyperbolicity to mappings
in Banach spaces will be given in Chapter 8.

3.1 Definitions

Consider a mapping f : X 7→ Rd where X is an open subset of Rd and let
K a nonempty compact subset of X such that K ∩ f(K) 6= ∅, or consider
a mapping f : M 7→ M where M is be a compact manifold and let K be
an f -invariant subset of M . The following definition is stated for a splitting
of Rd. An analogous definition holds for a splitting TxM = Es

x ⊕ Eu
x of the

tangent space TxM of a compact manifold M , in which case the projectors
P s

x : TxM 7→ Es
x and Pu

x : TxM 7→ Eu
x .

Definition 3.1. A splitting or decomposition Rd = Es
x⊕Eu

x with correspond-
ing projectors P s

x : Rd 7→ Es
x and Pu

x : Rd 7→ Eu
x defined by

P s
xRd = Es

x, P s
xE

u
x = 0, (3.1)

Pu
x Rd = Eu

x , Pu
xE

s
x = 0, (3.2)

is said to be uniform on the compact subset K with respect to a mapping f if

SH0: dimEu
x = dimEu

f(x) for x ∈ K with f(x) ∈ K;
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and there exists a positive real number h such that

SH1: supx∈K{‖P s
x‖, ‖Pu

x ‖} ≤ h.

Note that neither the invariance of the set K with respect to the mapping f
nor the continuity in x of the splitting subspaces Es

x, E
u
x or of the projectors

P s
x , P

u
x are assumed in Definition 3.1.

Parameters measuring expansion, contraction and other rates in the defi-
nition of a semi-hyperbolic mapping will be given in terms of a 4-tuple called
a split.

Definition 3.2. A 4-tuple s = (λs, λu, µs, µu) of nonnegative real numbers is
called a split if

λs < 1 < λu, (1− λs)(λu − 1) > µsµu.

The split s is called positive if all the values λs, λu, µs and µu are positive.

Clearly, for any given λs and λu satisfying λs < 1 < λu a 4-tuple of
nonnegative numbers s = (λs, λu, µs, µu) will be a split if the product µsµu

is small enough.
An alternative definition of a split with a geometrical interpretation is

possible: a 4-tuple (λs, λu, µs, µu) is a split if and only if the eigenvalues ∆1

and ∆2 of every matrix

∆ =
[
δ11 δ12
δ21 δ22

]
with components satisfying |δ11| ≤ λs, |δ12| ≤ µs, |δ21| ≤ µu, |δ22| ≥ λu are
real and satisfy |∆1| < 1 < |∆2|.

The problem how much the elements of a split can be perturbed in order
to resulting four-tuple of numbers remain be a split is of practical interest.
Set

ν(s) :=
(1− λs)(λu − 1)− µsµu

λu − λs + µs + µu
(3.3)

and note that

ν(s) ≤ (1− λs)(λu − 1)
λu − λs

≤ min{1− λs, λu − 1}, (3.4)

and so ν(s) < 1.

Lemma 3.3. If s = (λs, λu, µs, µu) is a split, then for λ̃s = λs + δ1, λ̃u =
λu − δ2, µ̃s = µs + δ3, µ̃u = µu + δ4 and real δ1, δ2, δ3, δ4 satisfying 0 ≤
δ1, δ2, δ3, δ4 < ν(s) the 4-tuple s̃ = (λ̃s, λ̃u, µ̃s, µ̃u) is also a split.

Proof. Clearly the elements of the 4-tuple s̃ are non-negative and by (3.3),
(3.4) we have δ1 < 1− λs and δ2 < λu − 1. Hence

λ̃s = λs + δ1 < λs + 1− λs = 1, λ̃u = λu − δ2 > λu − (λu − 1) = 1,
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and by (3.3)

(1− λ̃s)(λ̃u − 1)− µ̃sµ̃u

> (1− λs − ν(s))(λu − 1− ν(s))− (µs + ν(s))(µu + ν(s))
= (1− λs)(λu − 1)− µsµu − ν(s)(λu − λs + µs + µu) = 0.

The lemma is proved. ut

3.1.1 Differentiable Mappings on Compact Manifolds

Here the variable norm version of hyperbolicity on a manifold in Definition 2.3
is generalized to differentiable mappings on a manifold.

Definition 3.4. Let s = (λs, λu, µs, µu) be a split and let M be a compact
manifold in Rd. A differentiable mapping f : M 7→ M is said to be s-semi-
hyperbolic on a compact invariant subset K of M if there exists a uniform
splitting TxM = Es

x ⊕ Eu
x with projectors P s

x , Pu
x and a norm ‖ · ‖x on TxM

for each x ∈ K such that

SH2(Diff)∗: For all x ∈ K:

‖P s
f(x)Tfxu‖f(x) ≤ λs‖u‖x, u ∈ Es

x, (3.5)

‖P s
f(x)Tfxv‖f(x) ≤ µs‖v‖x, v ∈ Eu

x , (3.6)

‖Pu
f(x)Tfxu‖f(x) ≤ µu‖u‖x, u ∈ Es

x, (3.7)

‖Pu
f(x)Tfxv‖f(x) ≥ λu‖v‖x, v ∈ Eu

x , (3.8)

where Tfx denotes the tangent mapping of f at the point x.

Nonzero values of µs and µu allow for a possible leakage away from the
strict equivariance of the splitting subspaces Es

x and Es
x (i.e. Condition H1),

respectively, that holds when the f is a hyperbolic diffeomorphism on K in
the sense of Definition 2.3.

Comparing Definition 3.4 with Definition 2.3 of a hyperbolic diffeomor-
phism, it is clear that a hyperbolic mapping on K with expansivity parameter
λ > 1 is s-semi-hyperbolic on K as in Definition 3.4 with the same splitting
and the split s = (λ−1, λ, 0, 0), that is with µs = µu = 0.

3.1.2 Differentiable Mappings on Compact Sets

Consider now a differentiable mapping f : X 7→ Rd where X is an open
subset of Rd. Definition 2.5 of a hyperbolic diffeomorphism on a compact
subset K of Rd will be generalized to a differentiable mapping, which need
not be invertible, and to a nonempty subset K of X such that only satisfies
K ∩ f(K) 6= ∅ rather than being required to be f -invariant.
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Definition 3.5. Let s = (λs, λu, µs, µu) be a split and let K a compact subset
of an open subset X of Rd. A differentiable mapping f : X 7→ Rd is said to
be s-semi-hyperbolic on K if there exists a uniform splitting Rd = Es

x ⊕ Eu
x

with projectors P s
x , Pu

x for each x ∈ K and a norm ‖ · ‖ on Rd such that

SH2(Diff): For all x ∈ K:

‖P s
f(x)Dfxu‖ ≤ λs‖u‖, u ∈ Es

x, (3.9)

‖P s
f(x)Dfxv‖ ≤ µs‖v‖, v ∈ Eu

x , (3.10)

‖Pu
f(x)Dfxu‖ ≤ µu‖u‖, u ∈ Es

x, (3.11)

‖Pu
f(x)Dfxv‖ ≥ λu‖v‖, v ∈ Eu

x , (3.12)

where Dfx denotes the derivative of the mapping f at the point x.

Comparing Definition 3.5 with Definition 2.5, it is clear here too that a
hyperbolic diffeomorphism on K with expansivity parameter λ > 1 is s-semi-
hyperbolic on K as in Definition 3.5 with the same splitting and the split
s = (λ−1, λ, 0, 0), that is with µs = µu = 0.

Since the splitting Rd = Es
x ⊕ Eu

x in Definition 3.5 is uniform then for
projectors P s

x , Pu
x condition SH1 from Definition 3.1 holds with some constant

h. To stress this dependency on h, the s-semi-hyperbolic map f : X 7→ Rd

may be called also (s, h)-semi-hyperbolic.

3.1.3 Lipschitz Mappings on Compact Sets

To allow for nonsmooth applications, the following generalization of Defini-
tion 2.5 to Lipschitz mappings f : X 7→ Rd is proposed. A generalization of
Definition 2.3 to Lipschitz mappings on a manifold is also possible, but would
be rather cumbersome and will be omitted as it will not be used elsewhere in
this book.

As in Definition 3.5, the subset K is a nonempty compact subset of X
such that K ∩ f(K) 6= ∅ and a fixed norm is used.

Definition 3.6. Let s = (λs, λu, µs, µu) be a split and K a compact subset of
an open set X ⊆ Rd. A Lipschitz mapping f : X 7→ Rd is said to be s-semi-
hyperbolic on K if there exists a splitting Rd = Es

x⊕Eu
x on K with projectors

P s
x and Pu

x for each x ∈ K, a norm ‖ · ‖ on Rd and a positive real number δ
such that

SH0(Lip): dimEu
x = dimEu

y for all x, y ∈ K with ‖f(x)− y‖ ≤ δ;
SH1(Lip): supx∈K{‖P s

x‖, ‖Pu
x ‖} ≤ h;

SH2(Lip): The inclusion
x+ u+ v ∈ X

and the inequalities
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‖P s
y (f(x+ u+ v)− f(x+ ũ+ v)) ‖ ≤ λs‖u− ũ‖, (3.13)

‖P s
y (f(x+ u+ v)− f(x+ u+ ṽ)) ‖ ≤ µs‖v − ṽ‖, (3.14)

‖Pu
y (f(x+ u+ v)− f(x+ ũ+ v)) ‖ ≤ µu‖u− ũ‖, (3.15)

‖Pu
y (f(x+ u+ v)− f(x+ u+ ṽ)) ‖ ≥ λu‖v − ṽ‖. (3.16)

hold for all x, y ∈ K with ‖f(x) − y‖ ≤ δ and all u, ũ ∈ Es
x and

v, ṽ ∈ Eu
x such that ‖u‖, ‖ũ‖, ‖v‖, ‖ṽ‖ ≤ δ.

The first three inequalities in Condition SH2(Lip) of Definition 3.6 are just lo-
cal Lipschitz conditions on the projections of the mapping f while the last one
is an expansivity condition which implies a local invertibility in the unstable
direction of f at x. As in the two differentiable cases above (Definitions 3.4
and 3.5), nonzero values of µs and µu allow a possible leakage away from the
equivariance of the splitting subspaces Es

x and Es
x.

Remark 3.7. Condition SH0(Lip) in Definition 3.6 is more restrictive that in
uniform splitting Definition 3.1 while SH1(Lip) is the same as SH1 there.

Comparing inequalities (3.13)–(3.16) in Condition SH2(Lip) with corre-
sponding inequalities (3.5)–(3.8) or (3.9)–(3.12), we see that in the first case,
for Lipschitz mappings on compact manifolds, projectors P s

y and Pu
y are con-

sidered for y from some neighborhood of the point f(x), while in (3.5)–(3.8)
or (3.9)–(3.12) they are considered at the single y = f(x). This additional re-
striction can be regarded as a weak form of continuous dependence of splitting
Rd = Es

x ⊕ Eu
x in x (see also Section 3.1.4 and Remark there).

3.1.4 Continuous Splittings

The continuous dependence on x of the subspaces Es
x and Eu

x of a splitting
TxM = Es

x ⊕ Eu
x of a compact smooth manifold M or of a splitting Rm =

Es
x ⊕Eu

x of the space Rm is a fundamental property of hyperbolic mappings,
but does not follow automatically for semi-hyperbolic mappings.

Definition 3.8. A splitting TxM = Es
x ⊕ Eu

x of a compact smooth mani-
fold M is said to depend continuously on x if in a neighborhood of any
point x0 ∈ M a set of vectors e1(x), e2(x), . . . , em(x) ∈ TxM in local coor-
dinates which depends continuously on x can be chosen such that the vectors
e1(x), e2(x), . . . , ek(x) form a basis of the subspace Es

x ⊆ TxM and the vectors
ek+1(x), ek+2(x), . . . , em(x) form a basis of the subspace Eu

x ⊆ TxM .

For a splitting of the space Rm there is an alternative definition, which is
sometimes more convenient to use, is possible.

Definition 3.9. The splitting Rm = Es
x ⊕Eu

x is said to depend continuously
on x if the projectors P s

x and Pu
x defined by (3.1) and (3.2), respectively, are

continuous in x as linear-operator-valued functions.
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Neither the invariance of the set K with respect to the mapping f nor the
continuity in x of the splitting subspaces Es

x, E
u
x or of the projectors P s

x , P
u
x

are assumed in Definition 3.1 of a uniform splitting.
For hyperbolic mappings the continuity of the splitting is a direct con-

sequence of the definition, but this does not always follow from the weaker
assumptions of semi-hyperbolicity. In some cases such continuity may hold
and, as will be seen in later chapters, this allows stronger results to be ob-
tained. The following definition applies for semi-hyperbolic mappings with
respect to either a fixed norm or variable adapted norms.

Definition 3.10. A mapping f is said to be continuously semi-hyperbolic on
K if it is s-semi-hyperbolic on K as in any of Definitions 3.4, 3.5 or 3.6 for
some split s for which the uniform splitting is continuous in x on K in the
sense of Definitions 3.8 or 3.9.

Remark 3.11. A continuously s-semi-hyperbolic differentiable mapping as in
Definition 3.5 is sε-semi-hyperbolic as in Definition 3.6 for any split sε =
(λs+ε, λu−ε, µs+ε, µu+ε) for any sufficiently small ε > 0 and an appropriate
choice of δ = δ(ε) > 0.

Continuously semi-hyperbolic mappings form an open set in the variety
of all semi-hyperbolic mappings. To be more specific, we shall formulate the
corresponding stronger statement for the case of Lipschitz semi-hyperbolic
mappings.

Denote by C(X,Rd) with X ⊆ Rd the Banach space of all bounded con-
tinuous mappings f : X 7→ Rd with the usual C-norm

‖f‖C = sup
x∈X

‖f(x)‖.

Denote by Lip(X,Rd) with X ⊆ Rd the Banach space of all bounded Lipschitz
mappings f : X 7→ Rd endowed by the norm

‖f‖Lip = ‖f‖C + sup
x,y∈X, x6=y

‖f(x)− f(y)‖
‖x− y‖

.

Denote by Oε(K) the open ε-neighborhood of the subset K, i.e. the set

Oε(K) =
⋃

x∈K

IntB(ε, x),

where IntB(ε, x) is the open ball of radius ε centered at x.

Lemma 3.12. Let X ⊆ Rd be an open set and let the mapping f ∈ Lip(X,Rd)
be continuously semi-hyperbolic on a compact set K ⊂ X. Then there exists
an η = η(f,X) > 0, a split s, constants h and δ and a uniform splitting
Rd = Es

x ⊕ Eu
x such that Oη(K) ⊂ X and every mapping from the set
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Fη = {g ∈ Lip(X,Rd) : ‖g − f‖Lip ≤ η}

is semi-hyperbolic on Oη(K) with the split s, constants h and δ and the split-
ting Rd = Es

x ⊕ Eu
x .

Proof. Let Es
x ⊕ Eu

x be a continuous splitting of Rd for the mapping f such
that Conditions SH0(Lip)–SH2(Lip) of Definition 3.6 hold for f with the split
s∗ and positive constants h∗ and δ∗.

For each x ∈ X let π(x) be any one of nearest points in K to x. Since
K is compact, such a function π(x) is well defined, but possibly not in a
unique way, and generally it will be not continuous. For what follows it will
be important that

π(x) = x, x ∈ K,
and

‖π(x)− x‖ < η, x ∈ Oη(K).

Prolongate the splitting Rd = Es
x ⊕ Eu

x on the whole set X by

Es
x := Es

π(x), Eu
x := Eu

π(x), x ∈ X.

Then the splitting

Rd = Es
x ⊕ Eu

x ≡ Es
π(x) ⊕ Eu

π(x), x ∈ X, (3.17)

so obtained will satisfy Conditions SH0(Lip)–SH1(Lip) of Definition 3.6 with
the constant h = h∗.

Let η0 > 0 be such that Oη0(K) ⊂ X, choose

η < min
{
η0,

1
2
δ∗, h−1ν(s)

}
,

where ν(s) is as in (3.3), and set

δ = δ∗ − 2η, s = {λ∗s + hη, λ∗u − hη, µ∗s + hη, µ∗u + hη}

Then each mapping g in the set Fη satisfies Condition SH2(Lip) of Defini-
tion 3.6 on the compact set Oη(K) with the splitting (3.17), the split s and
constants h, δ just introduced. ut

Remark 3.13. In spite of continuity of the splitting Rd = Es
x ⊕ Eu

x for the
mapping f in Lemma 3.12, the splitting (3.17) is generally not continuous.
Continuity of the splitting (3.17) may be possible, for example, when the
compact K is a retract of a neighborhood of itself.

3.2 Examples

All diffeomorphisms with a hyperbolic invariant set are semi-hyperbolic on
that set provided the appropriate corresponding definitions are used. Of par-
ticular interest here therefore are examples of mappings which are semi-hyper-
bolic but not hyperbolic, and especially when the set K is not countable.
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3.2.1 Elementary Examples

Differential dynamics concentrates on the behavior of a diffeomorphism within
an invariant set. When one tries to approximate the dynamical behavior of a
mapping numerically, what is happening in the neighboring exterior of such
a set is often also of interest, particularly when the set itself is quite simple.
Consider, for example, the problem of replicating a phase portrait about a
saddle point using finite machine arithmetic. The shadowing results for semi-
hyperbolic mappings in Chapter 6 are useful in such contexts, while those for
hyperbolic diffeomorphisms are not applicable.

Example 3.14. Let A be a hyperbolic matrix, that is with eigenvalues λ1, . . . ,
λd satisfy |λi| 6= 1, and consider the splitting

Rd = Es ⊕ Eu (3.18)

where Es is the eigenspace of the matrix A corresponding to the eigenvalues
satisfying |λi| < 1 and Eu is the eigenspace corresponding to the eigenvalues
satisfying |λi| > 1. The linear mapping f : R2 7→ R2 defined by f(x) = Ax
is hyperbolic on the singleton set {0} with splitting (3.18), but is only semi-
hyperbolic on, say, the unit disk D2 since D2 is not invariant under f . The
splitting on D2 is obtained by translating that at {0} to each point x ∈ D2,
and is thus both uniform and continuous.

Nonsmooth perturbations of hyperbolic mappings are also another source
of examples of semi-hyperbolic mappings. These are more easily described as
in the following example where the hyperbolic set is a saddle point.

Example 3.15. Let A be a 2 × 2 hyperbolic matrix as in Example 3.14 and
consider the nonlinear mapping fε : R2 7→ R2 obtained as a perturbation of
the linear mapping f0(x) = Ax, such as

fε

(
x1

x2

)
=
[

2 0
0 1

2

](
x1

x2

)
+
(
ε|x1|
ε|x2|

)
for all x = (x1, x2)T ∈ R2 and some ε > 0. This mapping is Lipschitz every-
where, but is not differentiable at the origin. It is semi-hyperbolic in any set
containing the origin in its interior with Es

x = {0} ⊕ R1 and Eu
x = R1 ⊕ {0}

for all x.

Mappings formed by patching together other, often linear, mappings on
adjoining subsets are ubiquitous in electronic and control systems and can
behave very erratically. The switching points or sets can be problematical for
semi-hyperbolicity.

Example 3.16. The piecewise linear mapping f : R1 7→ R1 with

f(x) =
{

1
2x, x < 0
4x, x ≥ 0
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is not semi-hyperbolic on any set K containing the switching point x = 0 be-
cause there is no appropriate splitting of R1 at x = 0 for which the inequalities
in Condition SH2(Lip) are satisfied. Each component mapping is semi-hyper-
bolic on its subset of definition, with the splitting Es

x ⊕ Eu
x = {0} ⊕ R1 for

x ≤ 0 and with Es
x ⊕ Eu

x = R1 ⊕ {0} for x ≥ 0.
The piecewise linear mapping f : R1 7→ R1 with

f(x) =
{
− 1

2x, x < 0
4x, x ≥ 0

is also not semi-hyperbolic on any set K containing the switching point x = 0,
but any iterate f j for j ≥ 2 is. An admissible splitting is Es

x⊕Eu
x = {0}⊕R1

for x ∈ K and split s is (λs, λu, µs, µu) = (0, 22j−3, 0, 0). Here P s
x is the zero

mapping and Pu
x the identity mapping.

Note that the tent mapping f(x) = 1− |1− 2x|, which is Lipschitz, is not
semi-hyperbolic on any subset of R1 containing the point x = 1

2 .

3.2.2 Anosov Endomorphisms

Examples of semi-hyperbolic mappings with a uniform splitting that is ei-
ther not continuous or lacks the equivariance of a splitting for a hyperbolic
mapping are more difficult to describe explicitly. In the following examples, al-
gebraic Anosov automorphisms and noninvertible Anosov endomorphisms are
introduced and ultimately an example with the desired properties obtained as
a differentiable perturbation of an Anosov endomorphism on a torus. Struc-
tural stability is not contradicted here as neither the endomorphism which
is being perturbed nor the perturbations themselves, while differentiable, are
diffeomorphisms.

Write the elements of Rd as vectors x with coordinates x1, x2, . . ., xd and
let Td be the standard d-dimensional torus, that is the factorization of Rd by
the integer lattice. This torus Td is a closed differentiable manifold in Rd with
respect to the locally Euclidean metric

%(x, y) =
√
|x1 − y1|2mod 1 + |x2 − y2|2mod 1 + · · ·+ |xd − yd|2mod 1

on Td where

|t− s|mod 1 = min {|t− s+ 2k| : k = 0,±1} , 0 ≤ t, s < 1.

The tangent space TxTd can then be identified with Rd by an appropriate
choice of natural coordinates generated by those of Rd, so TxTd = Rd for each
x ∈ Td.

Denote the natural projection from Rd onto Td by

Π(x) = (x1 mod 1, x2 mod 1, . . . , xd mod 1), x = (x1, x2, . . . , xd)
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and associate the mapping f : Td 7→ Td defined by

f(x) = Π(Ax) (3.19)

with a given d× d matrix A with integer components aij .
In addition, suppose that the matrix A is hyperbolic and Rd = Es⊕Eu is

the splitting described in Example 3.14. Since the eigenvalues of the restriction
A|Es lie inside the unit circle while those of the restriction A|Eu lie outside
the unit circle, there exist constants C > 0 and λ > 1 such that

‖Anu‖ ≤ Cλ−n‖u‖, ‖Anv‖ ≥ C−1λn‖v‖ (3.20)

for all u ∈ Es and v ∈ Eu, where ‖ · ‖ is the Euclidean norm on Rd.

Example 3.17 (Anosov Automorphisms and Endomorphisms). Let A be an
invertible hyperbolic matrix with integer components. The mapping f defined
by (3.19) is called an algebraic hyperbolic automorphism of the torus Td if
|detA| = 1 and an the algebraic hyperbolic endomorphism of Td otherwise.

An algebraic hyperbolic automorphism of a torus Td is clearly globally
invertible mapping and is a diffeomorphism on Td, but an algebraic hyper-
bolic endomorphism is generally not a diffeomorphism since it is only locally
invertible.

Since TxTd has been identified with Rd, the tangent mapping Tfx can be
identified with A and the linear subspaces Es

x := Es, Eu
x := Eu for x ∈ Td

are invariant under Tfx ≡ A. Thus

TxTd = Rd = Es ⊕ Eu = Es
x ⊕ Eu

x (3.21)

is an equivariant splitting for the tangent mapping Tfx.
Let P s

x and Pu
x be projectors corresponding to the splitting (3.21) (see

Definition 3.1) and for each x ∈ Td define a norm

‖v‖x = max
n≥0

λn‖AnP s
xv‖+ min

n≥0
λ−n‖AnPu

x v‖,

on TxTd = Rd, where λ is as in (3.20) (in fact, this norm ‖·‖x does not depend
on x). Then

‖Tfxu‖x ≤ λ−1‖u‖x, ‖Tfxv‖x ≥ λ‖v‖x (3.22)

for all u ∈ Es
x, v ∈ Eu

x and x ∈ K, that is Conditions H1∗ and H2∗ of
Definition 2.3 are valid for the endomorphism f on the torus Td; if the mapping
f is an automorphism, then it is a hyperbolic diffeomorphism on Td.

The relations (3.21) and (3.22) for the Anosov hyperbolic endomorphism
f defined in Example 3.17 can be rewritten in the form

‖P s
f(x)Tfxu‖f(x) ≤ λ−1‖u‖x, u ∈ Es

x,

‖P s
f(x)Tfxv‖f(x) = 0, v ∈ Eu

x ,

‖Pu
f(x)Tfxv‖f(x) = 0, u ∈ Es

x,

‖Pu
f(x)Tfxv‖f(x) ≥ λ‖v‖x, v ∈ Eu

x .



3.2 Examples 29

By Definition 3.4 this means that every Anosov hyperbolic endomorphism f is
semi-hyperbolic on the torus Td. This property of semi-hyperbolicity is robust
under small C1-perturbations, as will be proved in a more general context in
Theorem 5.2 in Chapter 5.

Lemma 3.18. Given an Anosov hyperbolic endomorphism f : Td 7→ Td, there
exists an ε > 0 such that every differentiable mapping fε : Td 7→ Td which is
ε-close to the f in C1-metric is semi-hyperbolic.

This extends a classical result of Anosov on the robustness of the hyper-
bolicity property when f is an automorphism (i.e. invertible endomorphism),
in which case a nearby diffeomorphism fε : Td 7→ Td is hyperbolic and has, in
particular, a hyperbolic splitting. Theorem 5.1 will show that invertibility is
essential in this case.

It is sometimes more convenient to consider semi-hyperbolic mappings
on a compact subset of Rd rather than on a manifold. This is also possible
for Anosov mappings and their perturbations, but the transition from one
approach to the other is often not trivial in practice. The following example
illustrates how it can be done for one particular mapping which will be used
later in the proof of Theorem 5.1.

Example 3.19. Consider the 3× 3 matrix

A =

2 3 0
1 2 0
0 0 2


which has eigenvalues λ1 = 2 −

√
3, λ2 = 2 +

√
3 and λ3 = 2 with corre-

sponding eigenvectors v1 = (1,−1/
√

3, 0), v2 = (1, 1/
√

3, 0) and v3 = (0, 0, 1),
respectively. Denote by f : T3 7→ T3 the continuously differentiable mapping
defined by f(x) = Π(Ax).

Interpret a point z ∈ R6 as an ordered triplet (z1, z2, z3) of complex num-
bers with the norm ‖z‖ =

√
|z1|2 + |z2|2 + |z3|2 and let ı : T3 7→ R6 be

the immersion which maps the point ϕ = (ϕ1, ϕ2, ϕ3) ∈ T3 to the point
z = (eiϕ1 , eiϕ2 , eiϕ2) ∈ K, where

K =
{
z ∈ R6 : |z1| = |z2| = |z3| = 1

}
.

Consider the mapping

F (z) = f(P (z)), z1, z2, z3 6= 0,

where P is the natural projection on K defined by

P (z) =
(
z1
|z1|

,
z2
|z2|

,
z3
|z3|

)
, z1, z2, z3 6= 0.

The restriction of the mapping F to K is then topologically conjugate by the
immersion ı to the mappings f and fε, respectively.



30 3 Semi-Hyperbolic Mappings

It is not easy to find an explicit expression for F , but its restriction to K
has the form

F (z) = (za11
1 za12

2 za13
3 , za21

1 za22
2 za23

3 , za31
1 za32

2 za33
3 ) , z ∈ K,

where the aij are the components of the matrix A generating the Anosov
endomorphism f .

For each point z ∈ K the sets of vectors

et
1(z) =

(
iz1,−

i√
3
z2, 0

)
, et

2(z) =
(
iz1,

i√
3
z2, 0

)
, et

3(z) = (0, 0, iz3) ,

en
1 (z) = (z1, 0, 0) , en

2 (z) = (0, z2, 0) , en
3 (z) = (0, 0, z3)

are a basis for R6, for which the differential DFz of F satisfies

DFze
t
1(z) = (2−

√
3)et

1(F (z)),

DFze
t
2(z) = (2 +

√
3)et

2(F (z)),

DFze
t
3(z) = 2et

3(F (z)),
DFze

n
1 (z) = DFze

n
2 (z) = DFze

n
3 (z) = 0.

(3.23)

Consider the splitting TzR6 = Es
z ⊕ Eu

z for z ∈ K with subspaces

Es
z = span

{
et
1(z), e

n
1 (z), en

2 (z), en
3 (z)

}
,

Eu
z = span

{
et
2(z), e

t
3(z)

}
(i.e. spanned by the vectors indicated) with corresponding projectors P s

z and
Pu

z satisfying

P s
z R6 = Es

z , P s
zE

u
z = 0, Pu

z R6 = Eu
z , Pu

z E
s
z = 0.

The relations (3.23) imply that the splitting TzR6 = Es
z ⊕Eu

z is invariant for
the differential DFz. On the other hand, the inequalities

‖P s
F (z)DFzu‖ ≤ (2−

√
3)‖u‖, u ∈ Es

z ,

‖P s
F (z)DFzv‖ = 0, v ∈ Eu

z ,

‖Pu
F (z)DFzv‖ = 0, u ∈ Es

z ,

‖Pu
F (z)DFzv‖ ≥ 2‖v‖, v ∈ Eu

z ,

hold, so the differentiable mapping F is both hyperbolic and semi-hyperbolic
on the compact subset set K of R6 in the sense of Definitions 2.5 and 3.5.
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Semi-Hyperbolic Sequences of Matrices

The usefulness of first approximation methods to investigate the properties of
semi-hyperbolic mappings and their trajectories leads us naturally to consider
linear operators in spaces of sequences generated in one way or another by
derivatives of semi-hyperbolic mappings. Some elementary properties of such
linear operators that will be needed throughout the book are considered here.

Throughout this Chapter ‖ · ‖ will denote a fixed but otherwise arbitrary
norm on Rd and `∞(I,Rd) will denote the space of all bounded sequences of
vectors xn ∈ Rd with indices n taking values in ‘interval’ I in Z which can
be finite, uni- or bi-directionally infinite depending on context. The norm on
`∞(I,Rd) is defined as

‖{xn}‖∞ = sup
n∈I

‖xn‖.

4.1 The Split Matrix

Recall that by Definition 3.2 a split is a four-tuple s = (λs, λu, µs, µu) of
nonnegative real numbers for which

λs < 1 < λu, (1− λs)(λu − 1) > µsµu. (4.1)

Recall also, that the split s is positive if all of the numbers λs, λu, µs and µu

are positive. Clearly, without loss of generality, the split in Definitions 3.4, 3.5
and 3.6 can be assumed to be positive.

For a given positive split s define the 2× 2 split matrix M(s) by

M(s) :=
[

λs µs

µu/λu 1/λu

]
. (4.2)

Its spectral radius σ(s) is given by

σ(s) =
1
2

 1
λu

+ λs +

√(
1
λu

− λs

)2

+
4µsµu

λu

 (4.3)
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and, as simple but cumbersome calculation show,

σ(s) < 1− ν(s) < 1 (4.4)

where ν(s) was defined in (3.3). Moreover, since the entries of the matrixM(s)
are positive for a positive split s, it follows by the Perron–Frobenius Theorem
that σ(s) is the maximal eigenvalue of M(s) and that the corresponding
eigenvector has positive components. This eigenvector will be written here as
(1, γ(s))T , where

γ(s) :=
1

2µs

 1
λu

− λs +

√(
1
λu

− λs

)2

+
4µsµu

λu

 . (4.5)

When the split s is fixed, we shall writeM = M(s), γ = γ(s) and σ = σ(s),
so

M

(
1
γ

)
=
[

λs µs

µu/λu 1/λu

](
1
γ

)
= σ

(
1
γ

)
, (4.6)

and introduce a new norm ‖ · ‖∗ on R2 defined by

‖(y1, y2)‖∗ := max {γ|y1|, |y2|} .

The corresponding norm ‖M‖∗ of the linear operator with the matrix (4.2)
clearly coincides with the spectral radius σ of M , so ‖M‖∗ = σ < 1 by (4.4)
and ‖Mx‖∗ ≤ σ‖x‖∗ for all x ∈ R2.

Lemma 4.1. The following inequalities are valid.

min{γ, 1} max{|y1|, |y2|} ≤ ‖(y1, y2)‖∗ ≤ max{γ, 1} max{|y1|, |y2|}

Proof. By direct calculation. ut

The next lemma will play in what follows an important role.

Lemma 4.2. For m = 1, 2, . . . let the following inequalities be satisfied:

as
m ≤ λsa

s
m−1 + µsa

u
m−1 + hs,

au
m ≤ µu

λu
as

m−1 +
1
λu
au

m−1 + hu,
(4.7)

with as
m, a

u
m, h

s, hm ≥ 0 and as
0 = au

0 = 0. Then

lim sup
m→∞

(as
m + au

m) ≤ max{hs, λuh
u}

ν(s)
, (4.8)

with ν(s) defined by (3.3).



4.1 The Split Matrix 33

Proof. Define vectors am = (as
m, a

u
m)T for m = 0, 1, . . . and h = (hs, hu)T .

Then the inequalities (4.7) can be rewritten in the vector form

am ≤Mam−1 + h, m = 1, 2, . . . (4.9)

where a0 = 0 and the inequality between vectors is interpreted component-
wise. Since the entries of the matrix M = M(s) are non-negative, we preserve
inequality direction when applying the matrix M to the both sides of inequal-
ity (4.9).Hence

am ≤Mma0 + (I +M + · · ·+Mm−1)h, m = 1, 2, . . . ,

from which, in view of equality a0 = 0, we obtain

lim sup
m→∞

am ≤ (I −M)−1h (4.10)

where the lim sup is applied componentwise.
By direct calculation

(I −M)−1 =
1

(1− λs)(λu − 1)− µsµu

[
λu − 1 µsλu

µu (1− λs)λu

]
,

so (4.10) can be rewritten componentwise as

lim sup
m→∞

as
m ≤ (λu − 1)hs + µsλuh

u

(1− λs)(λu − 1)− µsµu
,

lim sup
m→∞

au
m ≤ µuh

s + (1− λs)λuh
u

(1− λs)(λu − 1)− µsµu
,

from which inequality (4.8) is an immediate consequence. ut

4.1.1 A Perturbation Theorem

Various proofs for semi-hyperbolic mappings will involve a matrix or a sequ-
ence of matrices that have similar semi-hyperbolic properties. This motivates
the next definition where s = (λs, λu, µs, µu) is a given split.

Definition 4.3 (Semi-Hyperbolic Matrix). A d × d matrix A is called a
(s, h)-semi-hyperbolic matrix if the corresponding linear mapping is s-semi-
hyperbolic on Rd with respect to a splitting Rd = Es ⊕Eu with corresponding
projectors P s and Pu satisfying ‖P s‖ ≤ h and ‖Pu‖ ≤ h.

The following Perturbation Theorem, which asserts that the class of semi-
hyperbolic matrices is an open set in the space of all matrices, indicates the
robustness of semi-hyperbolic matrices and provides explicit estimates of pos-
sible perturbations which do not affect the semi-hyperbolicity of a matrix.
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Theorem 4.4 (Perturbation Theorem). Let a d × d matrix A be (s, h)-
hyperbolic. Then every d× d matrix Ã satisfying

‖Ã−A‖ ≤ δ <
ν(s)
h

is (s̃, h)-hyperbolic with the split s̃ = (λs + δh, λu − δh, µs + δh, µu + δh).

Proof. In view of (s, h)-hyperbolicity of A there is a decomposition Rd = Es⊕
Eu with corresponding projections P s : Rd 7→ Es and Pu = I−P s : Rd 7→ Eu

such that
‖P s‖ ≤ h, ‖Pu‖ ≤ h

and

‖P sAP sx‖ ≤ λs‖P sx‖, ‖P sAPux‖ ≤ µs‖Pux‖,
‖PuAP sx‖ ≤ µu‖P sx‖, ‖PuAPux‖ ≥ λu‖Pux‖,

for all x ∈ Rd. Hence

‖P sÃP sx‖ ≤ ‖P s(Ã−A)P sx‖+ ‖P sAP sx‖ ≤ (δh+ λs)‖P sx‖

and

‖PuÃPux‖ ≥ ‖PuAPux‖ − ‖Pu(Ã−A)Pux‖ ≥ (λu − δh)‖Pux‖.

Similarly,

‖P sÃPux‖ ≤ (µs + δh)‖Pux‖, ‖PuÃP sx‖ ≤ (µu + δh)‖P sx‖.

Define

λ̃s = λs + δh, λ̃u = λu − δh, µ̃s = µs + δh, µ̃u = µu + δh.

By Lemma 3.3 these numbers form a split s̃, which completes the proof of
Theorem 4.4. ut

4.2 Semi-Hyperbolicity Implies Hyperbolicity

In this Section an investigation of the properties of sequences of semi-hyper-
bolic mappings, required later, will be started. Throughout this Section let
{An} be a sequence of d× d matrices defined for n ∈ I, a given interval of Z
which could be finite or infinite.

Definition 4.5 (Semi-Hyperbolic Sequence of Matrices). A bounded
sequence of d × d matrices {An} will be called (s, h)-semi-hyperbolic if for
each matrix An, n ∈ I, there is a splitting Rd = Es

n ⊕ Eu
n with
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dimEs
n = dimEs

n+1, dimEu
n = dimEu

n+1 (4.11)

and projections P s
n : Rd 7→ Es

n, Pu
n = I − P s

n : Rd 7→ Eu
n, with the uniform

matrix norm bounds

‖P s
n‖ ≤ h, ‖Pu

n ‖ ≤ h, n ∈ I, (4.12)

such that

‖P s
n+1AnP

s
nx‖ ≤ λs‖P s

nx‖,
‖P s

n+1AnP
u
nx‖ ≤ µs‖Pu

nx‖,
‖Pu

n+1AnP
s
nx‖ ≤ µu‖P s

nx‖,
‖Pu

n+1AnP
u
nx‖ ≥ λu‖Pu

nx‖,

(4.13)

for all n ∈ I and x ∈ Rd.

Conditions (4.11)–(4.13) are the obvious analogs of Conditions SH0–SH1
in Definition 3.1 of a uniform splitting and of Condition SH2 in the Defini-
tions 3.4 and 3.5 for a semi-hyperbolic mapping. With the index n dropped,
the projection bounds (4.12) and the inequalities (4.13) apply for single a
semi-hyperbolic matrix as in Definition 4.3.

Henceforth let {An} be an (s, h)-semi-hyperbolic bi-sequence of uniformly
bounded and invertible d× d matrices (cf. Definition 4.5, with I = Z here).

We can interpret inequalities (4.13) in Definition 4.5 as conditions that
ensure the existence of ‘almost equivariant’ splitting Rd = Es

n ⊕ Eu
n for the

sequence {An} with contracting subspaces Es
n and expanding subspaces Eu

n .
Here the word ‘almost’ means that the subspaces AnE

s
n+1 and AnE

u
n+1 are,

in fact, only close to Es
n and Eu

n , respectively, but generally do not coincide
with them.

The main objective of Section is to show that semi-hyperbolicity of a
matrix sequence {An} implies existence of a genuinely equivariant splitting
Rd = Ês

n ⊕ Êu
n .

4.2.1 Sequence Operators R and L

For each integer k ∈ Z we define on the sequence space `∞([k,∞),Rd) the
norm

‖x‖∗∞ = sup
n≥k

{‖P s
nxn‖, ‖Pu

nxn‖} ,

which is clearly equivalent to the norm ‖·‖∞. Similarly, on the sequence space
`∞((−∞, k],Rd) we define the norm

‖x‖∗∞ = sup
n≤k

{‖P s
nxn‖, ‖Pu

nxn‖} .

We now introduce an operator
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R := R[α,k,v] : `∞([k,∞),Rd) 7→ `∞([k,∞),Rd)

with parameters α a positive number, k an integer and v ∈ P s
k Rd that

maps a sequence x = {xn} ∈ `∞([k,∞),Rd) to the sequence v = {vn} ∈
`∞([k,∞),Rd) defined by

P s
kvk = v,

P s
nvn = αP s

nAn−1xn−1, n ≥ k + 1,
Pu

n vn = α−1(Pu
n+1AnP

u
n )−1Pu

n+1xn+1

− (Pu
n+1AnP

u
n )−1Pu

n+1AnP
s
nxn, n ≥ k.

(4.14)

In view of the split inequalities (4.1) there exists a positive number ω such
that for all α ∈ [1− ω, 1 + ω] the strict inequalities

αλs < 1 < αλu, (1− αλs)(αλu − 1) > α2µsµu (4.15)

hold. Hence the quantity

% = sup
α∈[1−ω,1+ω]

max
{
αµu + αλu − 1

αλu − 1
,

1− αλs + αµs

1− αλs

}
is well defined and for all α ∈ [1− ω, 1 + ω] the spectral radius σ(Mα) of the
matrix

Mα =
[
αλs αµs

µu/λu 1/(αλu)

]
is equal (cf. (4.3)) to

σ(Mα) =
1
2

 1
αλu

+ αλs +

√(
1
αλu

− αλs

)2

+
4αµsµu

λu

 .

and is less than 1.
Since the entries of the matrix Mα are positive (recall that we have re-

stricted ourselves to positive splits s), it follows by the Perron-Frobenius
Theorem that its spectral radius σ(Mα) is an eigenvalue and that the cor-
responding eigenvector has positive coordinates. Without loss of generality
this vector has the form (1, γα)T but the exact expression for the value of γα

is not important here so is omitted (cf. (4.5)). What is important is that for
each α ∈ [1− ω, 1 + ω] the norm

‖x‖α
∞ = sup

n≥k
{γα‖P s

nxn‖, ‖Pu
nxn‖}

on the space `∞([k,∞),Rd) is equivalent to the norm ‖ · ‖∞.

Lemma 4.6. For any α ∈ [1−ω, 1 +ω], any integer k and any v ∈ P s
k Rd the

operator R[α,k,v] is contracting with the constant σ(Mα) in the norm ‖ · ‖α
∞.

Moreover, the set
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V[α,k,v] =
{

x : ‖P s
nxn‖ ≤ ‖v‖, ‖Pu

nxn‖ ≤
αµu

αλu − 1
‖v‖, n ≥ k

}
(4.16)

is invariant under R[α,k,v].

Corollary 4.7. For any v ∈ P sRd the operator R[α,k,v] has a unique fixed
point x∗ = x[α,k,v] = {x∗n} for which P s

kx
∗
k = v and

‖P s
nx

∗
n‖ ≤ ‖v‖, ‖Pu

nx
∗
n‖ ≤

αµu

αλu − 1
‖v‖, n ≥ k.

Corollary 4.7 follows immediately from Lemma 4.6 by Banach Contraction
Mapping Theorem, so it is needed only to prove the Lemma 4.6.

Proof. Fix a value of α ∈ [1− ω, 1 + ω]. The definition of the vector (1, γα)T

gives the equality[
αλs αµs

µu/λu 1/(αλu)

](
1
γα

)
= σ(Mα)

(
1

γα

)
,

from which it follows that

αλs + αµsγα = σ(Mα),
µu

λu
+

1
αλu

γα = σ(Mα)γα. (4.17)

Given arbitrary x, x̃ ∈ `∞([k,∞),Rd) write v = R[α,k,v](x) and ṽ =
R[α,k,v](x̃). Then from (4.14) it follows that

P s
k (vk − ṽk) = 0,

P s
n(vn − ṽn) = αP s

nAn−1(xn−1 − x̃n−1), n ≥ k + 1,

Pu
n (vn − ṽn) = α−1(Pu

n+1AnP
u
n )−1Pu

n+1(xn+1 − x̃n+1)

− (Pu
n+1AnP

u
n )−1Pu

n+1AnP
s
n(xn − x̃n), n ≥ k.

In view of (4.13) the following relations are thus valid

‖P s
k (vk − ṽk)‖ = 0,

‖P s
n(vn − ṽn)‖ ≤ αλs‖P s

n(xn−1 − x̃n−1)‖
+ αµs‖Pu

n (xn−1 − x̃n−1)‖, n ≥ k + 1,

‖Pu
n (vn − ṽn)‖ ≤ µu

λu
‖P s

n(xn − x̃n)‖

+
1
αλu

‖Pu
n+1(xn+1 − x̃n+1)‖, n ≥ k,

from which and (4.17) it is clear that

‖R[α,k,v](x)−R[α,k,v](x̃)‖α
∞ ≤ σ(Mα)‖x− x̃‖α

∞,
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i.e. the operator R[α,k,v] is contracting in the norm ‖ · ‖α
∞ with contraction

constant σ(Mα).
It remains only to show that the set (4.16) is invariant for R[α,k,v]. Given

an arbitrary x = {xn} ∈ V[α,k,v], denote v = R[α,k,v](x). From (4.13) and
(4.14) it is apparent that

‖P s
kvk‖ = ‖v‖,

‖P s
nvn‖ ≤ αλs‖P s

nxn−1‖+ αµs‖Pu
nxn−1‖, n ≥ k + 1,

‖Pu
n vn‖ ≤

µu

λu
‖P s

nxn‖+
1
αλu

‖Pu
n+1xn+1‖, n ≥ k.

Hence, in view of the definition (4.16) of the set V[α,k,v], we have

‖P s
kvk‖ = ‖v‖,

‖P s
nvn‖ ≤ αλs‖v‖+

α2µsµu

αλu − 1
‖v‖, n ≥ k + 1,

‖Pu
n vn‖ ≤

µu

λu
‖v‖+

αµu

αλu(αλu − 1)
‖v‖, n ≥ k,

and thus, from (4.15), can conclude that

‖P s
kvk‖ = ‖v‖,

‖P s
nvn‖ ≤ ‖v‖+

α2µsµu − (1− αλs)(αλu − 1)
αλu − 1

‖v‖ ≤ ‖v‖, n ≥ k + 1,

‖Pu
n vn‖ ≤

αµu

αλu − 1
‖v‖, n ≥ k.

This completes the proof of invariance of the set (4.16) under R[α,k,v].
Lemma 4.6 is proved. ut

The next lemma follows immediately from Lemma 4.6 and from the defi-
nition of the operator R[α,k,v].

Lemma 4.8. The only bounded solution of the difference equation

xn+1 = αAnxn, n ≥ k, (4.18)

which satisfies the condition P s
kxk = v is the fixed point x[α,k,v] of the operator

R[α,k,v].

We can combine Lemmata 4.6 and 4.8 to show that the fixed point sequence
x[1,k,v] of R[1,k,v] is not only bounded one but is also exponentially convergent
to zero.

Corollary 4.9. The fixed point x∗ = x[α,k,v] = {x∗n} of the operator R[1,k,v]

satisfies
‖x∗n‖ ≤

%

(1 + ω)|n−k| ‖v‖, n ≥ k. (4.19)



4.2 Semi-Hyperbolicity Implies Hyperbolicity 39

Proof. According to the definition of the constant ω > 0 the operator
R[1+ω,k,v] has a fixed point x∗1+ω = {x∗1+ω,n}. By Lemma 4.8 {x∗1+ω,n} is
the bounded solution of equation (4.18) for α = 1 + ω. Hence the sequence
x∗ = {x∗n}, where x∗n = (1 + ω)k−nx∗1+ω,n, n ≥ k, is the solution of equation
(4.18) for α = 1. In view of Corollary 4.7 we have for any n ≥ k

‖x∗1+ω,n‖ ≤ ‖P s
nx

∗
1+ω,n‖+ ‖Pu

nx
∗
1+ω,n‖ ≤

αµu + αλu − 1
αλu − 1

‖v‖ ≤ %‖v‖

and so by the definition of x∗ the inequalities (4.19) are valid.
Thus, x∗ is the bounded solution of equation (4.18) for α = 1 and by

Lemma 4.8 it is the fixed point of the operator R[1,k,v] for which estimate
(4.19) is valid. ut

We now define an operator

L := L[α,k,w] : `∞((−∞, k],Rd) 7→ `∞((−∞, k],Rd)

with parameters α a positive number, k an integer and w ∈ Pu
k Rd that

maps a sequence y = {yn} ∈ `∞((−∞, k],Rd) to the sequence w = {wn} ∈
`∞((−∞, k],Rd) defined by

P s
nwn = αP s

nAn−1yn−1, n ≤ k,

Pu
k wk = w,

Pu
nwn = α−1(Pu

n+1AnP
u
n )−1Pu

n+1yn+1

− (Pu
n+1AnP

u
n )−1Pu

n+1AnP
s
nyn, n ≤ k − 1.

The proofs of the following two lemmata and corollaries are essentially
repetitions of those for Lemmata 4.6 and 4.8 and for Corollaries 4.7 and 4.9,
so will be omitted.

Lemma 4.10. For any α ∈ [1 − ω, 1 + ω], any integer k and any w ∈ Pu
k Rd

the operator L[α,k,w] is contracting in the norm ‖ · ‖α
∞ with constant σ(Mα).

Moreover, the set

W[α,k,w] =
{

x : ‖P s
nxn‖ ≤

αµs

1− αλs
‖w‖, ‖Pu

nxn‖ ≤ ‖w‖, n ≤ k

}
is invariant under L[α,k,w].

Corollary 4.11. For any w ∈ PuRd the operator L[α,k,w] has a unique fixed
point y∗ = y[α,k,w] = {y∗n} for which Pu

k y
∗
k = w and

‖P s
ny

∗
n‖ ≤

αµs

1− αλs
‖w‖, ‖Pu

n y
∗
n‖ ≤ ‖w‖, n ≤ k.
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Lemma 4.12. The only bounded solution of the difference equation

yn+1 = αAnyn, n ≤ k − 1,

which satisfies the condition Pu
k yk = w is the fixed point y[α,k,w] of the operator

L[α,k,w].

Corollary 4.13. The fixed point y∗ = y[α,k,w] = {y∗n} of the operator L[1,k,w]

satisfies
‖y∗n‖ ≤

%

(1 + ω)|n−k| ‖w‖, n ≤ k.

4.2.2 An Equivariant Splitting

Now let x[α,k,v] = {x[α,k,v],n} denote the fixed point of an operator R[α,k,v]

and define the operator X[α,k] : P s
k Rd 7→ Rd by

X[α,k]v = x[α,k,v],k.

Lemma 4.14. The operator X[α,k] is linear, P s
kX[α,k]P

s
k = P s

k and

‖Pu
k X[α,k]v‖ ≤

αµu

αλu − 1
‖v‖, v ∈ P s

k Rd. (4.20)

Proof. Let x = {xn} = x[α,k,v] be the fixed point of the operator R[α,k,v] and
x̃ = {x̃n} = x[α,k,ṽ] be the fixed point of the operator R[α,k,ṽ] for given v,
ṽ ∈ P s

k Rd. Then by Lemma 4.8 x = {xn} is the solution of equation (4.18)
satisfying the condition P s

kxk = v, while x̃ = {x̃n} is the solution of equation
(4.18) satisfying the condition P s

k x̃k = ṽ. Hence for any real numbers ξ and
ζ, the sequence z = ξx + ζx̃ = {ξxn + ζx̃n} ∈ `∞([k,∞),Rd) is the solution
of equation (4.18) satisfying the condition P s

k zk = ξv + ζṽ. Using Lemma 4.8
again, we find that z is the fixed point of the operator R[α,k,ξv+ζṽ], that is
z = x[α,k,ξv+ζṽ]. Thus

ξx[α,k,v] + ζx[α,k,ṽ] = x[α,k,ξv+ζṽ],

so the mapping x[α,k,·] is linear. Hence the operatorX[α,k](·) = x[α,k,·] is linear
too.

Now note that P s
kX[α,k]v = P s

kx[α,k,v],k = v for v ∈ P s
k Rd, which means

that P s
kX[α,k]P

s
k = P s

k , as required.
Estimate (4.20) then follows immediately from the definition of the oper-

ator X[α,k] and from Corollary 4.7. ut

Similarly, denote the fixed point of the operator L[α,k,w] by y[α,k,w] =
{y[α,k,w],n} and define an operator Y[α,k] : Pu

k Rd 7→ Rd by

Y[α,k]w = y[α,k,w],k.

The proof of the next lemma is essentially the same as that of Lemma 4.14.



4.2 Semi-Hyperbolicity Implies Hyperbolicity 41

Lemma 4.15. The operator Y[α,k] is linear, Pu
k Y[α,k]P

u
k = Pu

k and

‖P s
kY[α,k]w‖ ≤

αµs

1− αλs
‖w‖, w ∈ Pu

k Rd.

Now define Ẽs
k as the set of those v ∈ Rd for which the equation

vn+1 = Anvn, n ≥ k, (4.21)

has a bounded solution satisfying vk = v, and define Ẽu
k as the set of those

w ∈ Rd for which the equation

wn+1 = Anwn, n < k, (4.22)

has a bounded solution satisfying wk = w. In addition, define subspaces Ês
k

and Ês
k of Rd by

Ês
k = X[1,k]P

s
k Rd, Êu

k = Y[1,k]P
u
k Rd, k ∈ Z. (4.23)

Finally, recall that the separation δ(E1, E2) between two subspaces E1, E2 ⊆
Rd is defined as

δ(E1, E2) = inf{‖x+ y‖ : x ∈ E1, y ∈ E2, ‖x‖ = ‖y‖ = 1}.

Lemma 4.16. Suppose that matrices An, n ∈ Z, are invertible. Then for any
integer k the following relations are valid:

Ês
k = Ẽs

k, Êu
k = Ẽu

k , (4.24)

Ês
k ∩ Êu

k = 0, Ês
k ⊕ Êu

k = Rd, (4.25)

AkÊ
s
k = Ês

k+1, AkÊ
u
k = Êu

k+1. (4.26)

δ(Ês
k, Ê

u
k ) ≥ (1− λs)(λu − 1)− µsµu

h(λu − 1 + µu)(1− λs + µs)
> 0. (4.27)

Proof. We first prove the identity Ês
k = Ẽs

k from (4.24). Indeed, if v ∈ Ês
k

then, by definition of Ês
k, there exists v∗ ∈ P s

k Rd such that v = X[1,k]v
∗ and,

by definition of the operator X[1,k], v∗ = P s
kvk where {vn}, n ≥ k, is the fixed

point of the operator R[1,k,v∗] satisfying vk = v. Hence by Lemma 4.8, {vn}
is a bounded solution of equation (4.21) and so v ∈ Ẽs

k, from which it follows
that Ês

k ⊆ Ẽs
k. Similarly, if v ∈ Ẽs

k then there exist a bounded solution {vn} of
equation (4.21) satisfying vk = v. So by Lemma 4.8 {vn} is the fixed point of
the operator R[1,k,P s

k v]. Therefore, by the definition of the operator X[1,k], the
vector v can be represented in the form v = X[1,k]P

s
kv and so v ∈ Ês

k, from
which it follows that Ẽs

k ⊆ Ês
k. Combining the two results gives the desired

identity Ẽs
k = Ês

k. The corresponding identity Ẽu
k = Êu

k is proved analogously.
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To prove the first equality of (4.25) suppose that Ês
k ∩ Êu

k 6= 0 for some
k. Then there exist nonzero v ∈ P s

k Rd, w ∈ Pu
k Rd and {vn} ∈ `∞([k,∞),Rd),

{wn} ∈ `∞((−∞, k],Rd) such that {vn} is the fixed point of the operator
R[1,k,v], {wn} is the fixed point of the operator L[1,k,w] and

vk = wk ∈ Ês
k ∩ Êu

k , vk = wk 6= 0. (4.28)

By Lemmata 4.8 and 4.14 the sequence {vn} is a bounded solution of equation
(4.21), and the sequence {wn} is a bounded solution of equation (4.22). In view
of (4.28), the sequence {xn} defined for all integer k by

xn =
{
vn, n ≥ k,
wn, n < k

is thus a nonzero bounded solution of

xn+1 = Anxn, n ∈ Z.

Set χ = supn∈Z ‖xn‖. Then by Corollary 4.9

‖xk‖ ≤
%

(1 + ω)|k−n| ‖xn‖ ≤
%χ

(1 + ω)|k−n|

for any n < k. Letting n converge to −∞, from the above relations we obtain
xk = vk = wk = 0, which contradicts (4.28). The first equality of (4.25) is
thus proved.

To prove the second equality of (4.25) it suffices to note that by Lem-
mata 4.14 and 4.15

dim Ês
k ≥ dimP s

k Rd, dim Êu
k ≥ dimPu

k Rd,

and so

dim Ês
k + dim Êu

k ≥ dimP s
k Rd + dimPu

k Rd = dim Rd = d.

From this and from the first equality of (4.25) we obtain the second equality
of (4.25).

Now from the definition of the subspaces Ẽs
k, Ẽu

k and from invertibility of
matrices An, n ∈ Z, it follows immediately that

AkẼ
s
k = Ẽs

k+1, AkẼ
u
k = Ẽu

k+1.

Then by (4.24)
AkÊ

s
k = AkẼ

s
k = Ẽs

k+1 = Ês
k+1,

AkÊ
u
k = AkẼ

u
k = Ẽu

k+1 = Êu
k+1.

from which equalities (4.26) follow.
Finally, we prove the inequality (4.27). Set
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θs =
µs

1− λs
, θu =

µu

λu − 1
.

Fix an arbitrary vector x ∈ Ês
k, ‖x‖ = 1, and denote v = P s

kx. Then, by the
definition of the subspace Ês

k, x = X[1,k]v and from Lemma 4.14

‖Pu
k x‖ ≤ θu‖v‖ = θu‖P s

kx‖. (4.29)

Analogously, for an arbitrary vector y ∈ Êu
k , ‖y‖ = 1, from the definition of

the subspace Êu
k and from Lemma 4.15 the inequality

‖P s
ky‖ ≤ θs‖Pu

k y‖ (4.30)

can be easily obtained.
In view of (4.12) and (4.30)

‖x+ y‖ ≥ 1
h
‖P s

k (x+ y)‖

≥ 1
h

(‖P s
kx‖ − ‖P s

ky‖) ≥
1
h

(‖P s
kx‖ − θs‖Pu

k y‖) ,

and also in view of (4.12) and (4.29)

‖x+ y‖ ≥ 1
h
‖Pu

k (x+ y)‖

≥ 1
h

(‖Pu
k y‖ − ‖Pu

k x‖) ≥
1
h

(‖Pu
k y‖ − θu‖P s

kx‖) .

From (4.29) and (4.30) it follows that in the above inequalities the terms
‖P s

kx‖ and ‖Pu
k y‖ can be estimated as

‖P s
kx‖ ≥

1
1 + θu

‖x‖ =
1

1 + θu
, ‖Pu

k y‖ ≥
1

1 + θs
‖y‖ =

1
1 + θs

.

Hence

‖x+ y‖ ≥ 1
h

inf
s≥(1+θu)−1, t≥(1+θs)−1

max{s− θst, t− θus}.

We note now that the function max{s−θst, t−θus} can attain its infimum
on the set s ≥ (1+θu)−1, t ≥ (1+θs)−1 only in the case when s−θst = t−θus,
or that is the same, when

(1 + θu)s = (1 + θs)t.

Introduce the auxiliary variable τ = (1 + θu)s = (1 + θs)t, so

s =
τ

1 + θu
, t =

τ

1 + θs
.
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From the above reasoning we see that

‖x+ y‖ ≥ 1
h

inf
τ≥1

{
τ

1 + θu
− θs

τ

1 + θs

}
≥ 1− θuθs

h(1 + θu)(1 + θs)
.

From the last inequality and from definitions of δ(Ês
k, Ê

u
k ), θs and θu we obtain

the required estimate (4.27). ut

Remark 4.17. If the invertibility of the matrices An, n ∈ Z, in Lemma 4.16 is
not assumed, then instead of the equalities (4.26) we can only conclude that

AkÊ
s
k ⊆ Ês

k+1, AkÊ
u
k = Êu

k+1.

That is, the spaces Ês
k and Êu

k do not have symmetric properties in this case.

We now summarize the results of this Section in the following theorem.

Theorem 4.18 (Equivariant Splitting Theorem). Let {An}, n ∈ Z,
be an (s, h)-semi-hyperbolic sequence of invertible d × d matrices. Then the
subspaces Ês

n, Êu
n defined by (4.23) form a splitting Rd = Ês

n ⊕ Êu
n with

corresponding projections P̂ s
n : Rd 7→ Ês

n and P̂u
n = I − P̂ s

n : Rd 7→ Êu
n

satisfying the uniform matrix bounds

‖P̂ s
n‖ ≤ ĥ, ‖P̂u

n ‖ ≤ ĥ. (4.31)

This splitting is equivariant with respect to the matrix sequence {An}, i.e.

AnÊ
s
n = Ês

n+1, AnÊ
u
n = Êu

n+1.

Moreover, there exist constants % > 0 and λ ∈ (0, 1) depending only on the
split s and the parameter h such that for any integer k and vk ∈ Ês

k the
sequence {vn} defined by

vn+1 = Anvn, n ≥ k,

satisfies
vn ∈ Ês

n, ‖vn‖ ≤ %λ−|n−k|‖vk‖, n ≥ k. (4.32)

Analogously, for any integer k and wk ∈ Êu
k the sequence {wn} defined by

wn+1 = Anwn, n < k,

satisfies
wn ∈ Êw

n , ‖wn‖ ≤ %λ−|n−k|‖wk‖, n ≤ k. (4.33)

Proof. Existence of equivariant splitting Rd = Ês
n ⊕ Êu

n and inclusions in
(4.32), (4.33) follow immediately from Lemma 4.16. The estimate for norms
‖vn‖ in (4.32) follows from Corollary 4.9, while the estimate for norms ‖wn‖
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in (4.33) follows from Corollary 4.13. So it is remained only to prove estimates
(4.31) for projections P̂ s

n : Rd 7→ Ês
n and P̂u

n = I − P̂ s
n : Rd 7→ Êu

n .
Denote

ĥ =
2(λu − 1 + µu)(1− λs + µs)

(1− λs)(λu − 1)− µsµu
h

and prove estimates (4.31) with this ĥ. Clearly

‖x‖ = ‖P̂ s
nx+ P̂u

nx‖ ≥
∣∣‖P̂ s

nx‖ − ‖P̂u
nx‖

∣∣. (4.34)

If ∣∣‖P̂ s
nx‖ − ‖P̂u

nx‖
∣∣ ≥ 1

ĥ
max{‖P̂ s

nx‖, ‖P̂u
nx‖}

then from this and from (4.34) we obtain the estimation (4.31). So, suppose
that ∣∣‖P̂ s

nx‖ − ‖P̂u
nx‖

∣∣ < 1

ĥ
max{‖P̂ s

nx‖, ‖P̂u
nx‖}. (4.35)

Without loss of generality we can also suppose that P̂ s
nx 6= 0, P̂u

nx 6= 0 and
‖P̂ s

nx‖ ≥ ‖P̂u
nx‖, which implies

‖P̂ s
nx‖ = max{‖P̂ s

nx‖, ‖P̂u
nx‖}. (4.36)

Now let us estimate the norm ‖x‖ from below in the following manner:

‖x‖ = ‖P̂ s
nx+ P̂u

nx‖

=

∣∣∣∣∣
(

P̂ s
nx

‖P̂ s
nx‖

+
P̂u

nx

‖P̂u
nx‖

)
‖P̂ s

nx‖ −
P̂u

nx

‖P̂u
nx‖

(
‖P̂ s

nx‖ − ‖P̂u
nx‖

)∣∣∣∣∣
≥

∣∣∣∣∣ P̂ s
nx

‖P̂ s
nx‖

+
P̂u

nx

‖P̂u
nx‖

∣∣∣∣∣ ‖P̂ s
nx‖ −

∣∣‖P̂ s
nx‖ − ‖P̂u

nx‖
∣∣.

Here, by (4.27) and (4.36), the first term in the right-hand part can be bounded
from below by the value 2ĥ−1 max{‖P̂ s

nx‖, ‖P̂u
nx‖} while for the second term

we have estimate (4.35). Thus

‖x‖ ≥ 1

ĥ
max{‖P̂ s

nx‖, ‖P̂u
nx‖},

which completes the proof of estimates (4.31). The theorem is proved. ut

Remark 4.19. By statements (4.32) and (4.33) of Theorem 4.18, the subspaces
Ês

n and Êu
n in the splitting Rd = Ês

n ⊕ Êu
n can be treated as ‘asymptotically

stable’ and ‘asymptotically unstable’ ones. In such a situation it seems quite
reasonable to draw the following conclusion from Theorem 4.18: if {An} is an
(s, h)-semi-hyperbolic sequence of invertible matrices, then it is (ŝ, ĥ)-semi-
hyperbolic with a split ŝ = (λ̂s, λ̂u, µ̂s, µ̂u) satisfying
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λ̂s < 1, λ̂u > 1, µ̂s = µ̂u = 0,

(i.e. the subspaces Ês
n and Êu

n in the equivariant splitting Rd = Ês
n ⊕ Êu

n are
stable and unstable, correspondingly, with respect to a unique fixed norm ‖ ·‖
in Rd). Unfortunately, we do not know whether a similar generalization of
Theorem 4.18 is valid or not. A possible way to generalize Theorem 4.18 in
this direction will be discussed in the next Section.

4.2.3 Hyperbolicity of Sequences of Matrices

Here we generalize results of Sections 4.2 and 4.3.2 by defining a version of the
semi-hyperbolic matrix sequence that uses a variable norm (cf. Definition 3.4).

Definition 4.20 (Semi-Hyperbolic Sequence of Matrices). A bounded
sequence of d × d matrices {An} will be called (s, h)-semi-hyperbolic if there
exists a set of norms {‖ · ‖n} on Rd satisfying the uniform boundedness con-
dition

q−1‖x‖ ≤ ‖x‖n ≤ q‖x‖, x ∈ Rd (4.37)

for some constant q ≥ 1 such that for each matrix An, n ∈ I, there exists a
splitting Rd = Es

n ⊕ Eu
n with

dimEs
n = dimEs

n+1, dimEu
n = dimEu

n+1 (4.38)

and projections P s
n : Rd 7→ Es

n, Pu
n = I − P s

n : Rd 7→ Eu
n, with the uniform

matrix norm bounds1

‖P s
n‖ ≤ h, ‖Pu

n ‖ ≤ h, (4.39)

such that

‖P s
n+1AnP

s
nx‖n+1 ≤ λs‖P s

nx‖n,

‖P s
n+1AnP

u
nx‖n+1 ≤ µs‖Pu

nx‖n,

‖Pu
n+1AnP

s
nx‖n+1 ≤ µu‖P s

nx‖n,

‖Pu
n+1AnP

u
nx‖n+1 ≥ λu‖Pu

nx‖n.

(4.40)

The following trivial, though illustrative, example shows that this transi-
tion from ‘fixed norm version’ to ‘variable norm version’ broadens the class of
semi-hyperbolic mappings.

Example 4.21. Consider the following sequence of linear operators

A2nx = 2x, A2n+1x =
1
4
x, x ∈ R1, n ∈ Z,

acting in the one-dimensional space R1. Clearly, the matrix sequence {An} is
not semi-hyperbolic in the sense of Definition 4.5 for any possible choice of
fixed norm in R1, but if we define the norms ‖ · ‖n on R1 by
1 Point out that in inequalities (4.39) the original norm ‖ · ‖ on Rd can be used

while in (4.40) the variable norms are involved.
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‖x‖2n = |x|, ‖x‖2n+1 =
1
3
|x|, n ∈ Z,

where |x| denotes the absolute value of the number x, then

‖A2nx‖2n+1 =
1
3
|2x| = 2

3
|x| = 2

3
‖x‖2n

and
‖A2n−1x‖2n = |1

4
x| = 1

4
|x| = 3

4
‖x‖2n−1.

Hence the matrix sequence {An} is semi-hyperbolic in the sense of Defini-
tion 4.20.

The special case of a semi-hyperbolic sequence of matrices corresponding
to the situation in which the parameters µs and µu vanish is called hyperbolic
sequence of matrices. In this case the spaces Es

n and Eu
n are equivariant for the

sequence {An}, so it is convenient to present the formal definition in slightly
different terms to Definition 4.20.

Definition 4.22 (Hyperbolic Sequence of Matrices). A bounded seque-
nce {An} of d × d matrices will be called hyperbolic if for each n ∈ I there
exists a norm ‖ ·‖n in Rd satisfying the uniform boundedness condition (4.37)
and a splitting Rd = Es

n ⊕ Eu
n with corresponding projections P s

n : Rd 7→ Es
n,

Pu
n = I − P s

n : Rd 7→ Eu
n satisfying (4.38) and (4.39) such that

AnE
s
n = Es

n+1, AnE
u
n = Eu

n+1 (4.41)

and the inequalities

‖AnP
s
nx‖n+1 ≤ λs‖P s

nx‖n, ‖AnP
u
nx‖n+1 ≥ λu‖Pu

nx‖n (4.42)

hold for some constants 0 ≤ λs < 1 < λm.

Using Definitions 4.20 and 4.22, the formulation of Theorem 4.18 now
becomes more compact and elegant.

Theorem 4.23. Every semi-hyperbolic sequence of invertible matrices {An},
n ∈ Z, is hyperbolic and vice versa.

Proof. Clearly, every hyperbolic sequence of invertible matrices {An}, n ∈ Z,
is semi-hyperbolic, so we need only prove that the semi-hyperbolicity of a
matrix sequence implies its hyperbolicity.

An adjustment of the proof of Theorem 4.18 to the ‘variable norm’case can
be done in the same manner as was explained in the proof of Theorem 4.33.
In this way we obtain that for a given (s, h)-semi-hyperbolic sequence of in-
vertible matrices {An}, n ∈ Z, in the sense of Definition 4.20 there exists a
splitting Rd = Ês

n ⊕ Êu
n with corresponding projections P̂ s

n : Rd 7→ Ês
n and

P̂u
n = I − P̂ s

n : Rd 7→ Êu
n with uniform matrix bounds (4.31). This splitting is
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equivariant with respect to the matrix sequence {An}, i.e. it satisfies (4.41).
Moreover, there exist constants % > 0 and λ ∈ (0, 1) such that for any integer
k ∈ Z and vk ∈ Ês

k the sequence {vn} defined by

vn+1 = Anvn, n ≥ k, (4.43)

also satisfies

vn ∈ Ês
n, ‖vn‖n ≤ %λ−|n−k|‖vk‖k, n ≥ k. (4.44)

Analogously, for any integer k ∈ Z and wk ∈ Êu
k the sequence {wn} defined

by
wn+1 = Anwn, n < k, (4.45)

also satisfies

wn ∈ Êw
n , ‖wn‖n ≤ %λ−|n−k|‖wk‖k, n ≤ k. (4.46)

Thus, to complete the proof of theorem it suffices to establish the existence
of norms ‖ · ‖∗n in Rd satisfying uniform boundedness condition

1
q∗
‖x‖ ≤ ‖x‖∗n ≤ q∗‖x‖, x ∈ Rd, (4.47)

with some constant q∗ ≥ 1 such that

‖AnP̂
s
nx‖∗n+1 ≤ λ‖P̂ s

nx‖∗n, ‖AnP̂
u
nx‖∗n+1 ≥ λ−1‖P̂u

nx‖∗n (4.48)

To construct the required norms, fix an integer k ∈ Z and x ∈ Rd and choose
vk = P̂ s

kx, wk = P̂u
k x. Then define sequences {vn}, n ≤ k, and {wn}, n ≥ k,

satisfying (4.43) and (4.45), respectively. Finally, define

‖x‖∗k = max
{

sup
n≥k

λk−n‖vn‖n, sup
n≤k

λn−k‖wn‖n

}
.

From (4.44) and (4.46) inequalities (4.48) and estimates (4.47) immediately
follow with an appropriately chosen q∗. The theorem is proved. ut

4.3 A More Abstract Approach

In this Section an abstract approach in terms of linear operators in Banach
spaces to investigation of properties of sequences of semi-hyperbolic mappings
will be developed.
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4.3.1 Semi-Hyperbolic Linear Operators

An abstract approach is also able to clarify to a greater extent the essence
of relationships between conditions of semi-hyperbolicity and hyperbolicity
concepts for sequences of matrices. To implement such an approach we start
by investigating how the property of semi-hyperbolicity of a linear operator
on a Banach space is related to the hyperbolicity property.

Let A : E 7→ E be a bounded linear operator on a Banach space E and
let s = (λs, λu, µs, µu) be a split.

Definition 4.24 (Semi-Hyperbolic Linear Operator). A linear bounded
operator A on a Banach space E with a norm ‖ · ‖ is called semi-hyperbolic
(with respect to a split s = (λs, λu, µs, µu), a constant h and the norm ‖ · ‖)
if there is a splitting E = Es ⊕ Eu with corresponding bounded projectors
P s : E 7→ Es and Pu = I − P s : E 7→ Eu satisfying

‖P s‖ ≤ h, ‖Pu‖ ≤ h, (4.49)

and
‖P sAP sx‖ ≤ λs‖P sx‖, ‖P sAPux‖ ≤ µs‖Pux‖,
‖PuAP sx‖ ≤ µu‖P sx‖, ‖PuAPux‖ ≥ λu‖Pux‖. (4.50)

Remark 4.25. In Definition 4.24 it is supposed that the linear operator A is
real, i.e. that it acts on a real Banach space E. Often, however in studying
spectral properties of linear operators it is convenient to treat them as if they
were acting on a complex Banach spaces. The natural way to pass from real to
complex operators is the complexification of a linear operators. For the sake
of completness of presentation we briefly review the necessary details.

For a real Banach space E with a norm ‖ · ‖ we define the complexification
of E, the complex Banach space Ec, as the set of complex vectors z = x+ iy
with x, y ∈ E endowed with the norm

‖z‖c = ‖x+ iy‖c := max
|α+iβ|=1

‖αx+ βy‖, α, β ∈ R1.

For a linear operator A : E 7→ E we then define its complexification Ac :
Ec 7→ Ec by

Ac(x+ iy) := Ax+ iAy, x, y ∈ E.

With such definition of complexification, spectral properties of a real op-
erator A are exactly the same as those of its complexification Ac, i.e. the both
these operators have the same spectrum, the same set of eigenvalues, etc.

For our purposes it is important that the passage from a real linear op-
erator A to its complexification Ac preserves all the essential features of
semi-hyperbolicity (see Definition 4.24). More precisely, if A is a semi-hyper-
bolic linear operator satisfying (4.49) and (4.50) then its complexification
Ac : Ec 7→ Ec must satisfy
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‖P s
cAcP

s
c z‖c ≤ λs‖P s

c z‖c, ‖P s
cAcP

u
c z‖c ≤ µs‖Pu

c z‖c,

‖Pu
c AcP

s
c z‖c ≤ µu‖P s

c z‖c, ‖Pu
c AcP

u
c z‖c ≥ λu‖Pu

c z‖c,

for all z ∈ Ec with corresponding bounded projectors P s
c : Ec 7→ Es

c and
Pu

c = I − P s
c : Ec 7→ Eu

c satisfying

‖P s
c ‖c ≤ h, ‖Pu

c ‖c ≤ h.

It seems quite reasonable now to define the concept of a hyperbolic linear
operator by introducing an additional demand of invariance of the splitting
subspaces Es and Eu with respect to the operator A. Such an invariance
condition can be expressed by one of the following three equivalent conditions:

AEs ⊆ Es, AEs ⊆ Es,

or
P sAPu = 0, PuAP s = 0,

or
P sAPux ≡ 0, PuAP sx ≡ 0.

Definition 4.26 (Hyperbolic Linear Operator: Metric Definition). A
linear bounded operator A on a Banach space E with a norm ‖ · ‖ is called
hyperbolic (in the norm ‖·‖) if there is an invariant splitting E = Es⊕Eu with
corresponding bounded projectors P s : E 7→ Es and Pu = I − P s : E 7→ Eu

satisfying

‖P sAP sx‖ ≤ λs‖P sx‖, ‖PuAPux‖ ≥ λu‖Pux‖,

with appropriate constants λs < 1 and λu > 1.

The concept of hyperbolicity for a linear operator A on a Banach space
can also be defined in a more clear and constructive way via a description of
the spectral properties of the operator A.

Definition 4.27 (Hyperbolic Linear Operator: Spectral Definition).
A linear bounded operator A on a Banach space is called hyperbolic if its
spectrum does not intersect the unit circle |λ| = 1 in the complex plane.

The link between the concepts of semi-hyperbolicity and hyperbolicity
(in the both, metric and spectral, versions) is established by the following
theorem. For linear operator the concepts of semi-hyperbolicity and (metric
or spectral) hyperbolicity are, in fact, equivalent.

Theorem 4.28. For a linear bounded operator A on a Banach space E with
a norm ‖ · ‖ the following three statements are equivalent:

(i) The operator A is semi-hyperbolic with respect to some split s, constant
h and a norm ‖ · ‖∗ equivalent to the norm ‖ · ‖.

(ii) The operator A is metrically hyperbolic in some norm ‖ · ‖∗ equivalent
to the norm ‖ · ‖.

(iii) The operator A is spectrally hyperbolic.
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Proof. As was remarked earlier, throughout the proof of theorem we can treat
E as the complex Banach space. To prove the theorem we establish the fol-
lowing implications

(i) ⇒ (iii) ⇒ (ii) ⇒ (i).

We first prove the implication (i) ⇒ (iii), i.e. that semi-hyperbolicity of the
operator A implies its hyperbolicity in the sense of Definition 4.27. Suppose
the contrary, then there is a complex number λ ∈ C with |λ| = 1 which belongs
to the spectrum σ(A) of the operator A. As is known from the general spectral
theory, for some sequence of elements xn ∈ E, ‖xn‖ = 1, the relation

Axn − λxn = yn → 0, n→∞,

is then valid. This relation can be decomposed as

P sAP sxn + P sAPuxn − P sxn = P syn → 0,
PuAP sxn + PuAPuxn − Puxn = Puyn → 0,

so,

‖P sxn‖ ≤ ‖P sAP sxn‖+ ‖P sAPuxn‖+ εs
n,

‖PuAPuxn‖ ≤ ‖PuAP sxn‖+ ‖Puxn‖+ εu
n,

(4.51)

where
εs

n = ‖P syn‖ → 0, εu
n = ‖Puyn‖ → 0. (4.52)

Now, without loss of generality, we can regard that the inequalities (4.50) in
Definition 4.24 are valid in the norm ‖ · ‖, but not in some equivalent norm
‖ · ‖∗. Then from (4.51) and (4.50) we obtain

‖P sxn‖ ≤ λs‖P sxn‖+ µs‖Puxn‖+ εs
n,

λu‖Puxn‖ ≤ µu‖P sxn‖+ ‖Puxn‖+ εu
n,

and so

‖P sxn‖ ≤
(λu − 1)εs

n + εu
n

(1− λs)(λu − 1)− µsµu
,

‖Puxn‖ ≤
εs

n + (1− λs)εu
n

(1− λs)(λu − 1)− µsµu
.

Hence by (4.52) we have

‖xn‖ ≤
λuε

s
n + (2− λs)εu

n

(1− λs)(λu − 1)− µsµu
→ 0, n→∞,

which contradicts to the supposition that ‖xn‖ = 1. The contradiction ob-
tained completes the proof of the implication (i) ⇒ (iii).
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We now prove the implication (iii) ⇒ (ii), i.e. that hyperbolicity of the
operator A in the sense of Definition 4.27 implies its hyperbolicity in the
sense of Definition 4.26. By supposition, the spectrum σ of the operator A
does not intersect the unit circle |λ| = 1. Then, since the spectrum of any
operator is a closed set, the set σ can be represented as the union σ = σs∪σu

of closed subsets σs and σu where σs lies entirely inside the unit circle and σu

lies entirely outside the unit circle.
Denote by Es ⊆ E the invariant spectral subspace of the operator A

corresponding to the part σs of its spectrum, and denote by Eu ⊆ E the
invariant spectral subspace of the operator A corresponding to the part σu of
its spectrum. Then, as is known from the general spectral theory,

Es ∩ Eu = ∅, Es ⊕ Eu = E

hold. Denote by P s : E 7→ Es and Pu = I − P s : E 7→ Eu the projections
corresponding to the splitting E = Es ⊕ Eu, which are bounded in our case.

Now, a linear operator A on a Banach space with the spectral radius σ(A)
satisfies

σ(A) = lim sup
n→∞

‖An‖1/n,

takes place, from which it follows that for any ε > 0 there exists a number cε
such that

‖An‖ ≤ cε(σ(A) + ε)n, n ≥ 0. (4.53)

By definition, the closed set σs lies inside the circle |λ| < 1. Thus numbers
λs ∈ (0, 1) and ε > 0 can be found such that σs, in fact, belongs to the circle
|λ| ≤ λs − ε. Then, applying the formula (4.53) to the restriction A|Es of the
linear operator A to its invariant subspace Es, we obtain

‖(A|Es)n‖ ≤ cs,ελ
n
s , n ≥ 0. (4.54)

Analogously, the closed set σu lies outside the circle |λ| ≤ 1. So numbers
λu ∈ (0, 1) and ε > 0 can be found such that σu belongs to the set |λ| ≥ λu+ε.
The restriction A|Es of linear operator A to its invariant subspace Es is an
invertible operator, and applying the formula (4.53) to (A|Es)−1, we obtain

‖(A|Es)−n‖ ≤ cu,ελ
−n
u , n ≥ 0. (4.55)

Define the norm ‖ · ‖∗ in E by

‖x‖∗ = max
n≥0

λ−n
s ‖(A|Es)nP sx‖+ max

n≥0
λn

u‖(A|Eu)−nPux‖.

Clearly
‖x‖∗ ≥ ‖P sx‖+ ‖Pux‖ ≥ ‖P sx+ Pux‖ = ‖x‖,

and, at the same time, by (4.54), (4.55)
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‖x‖∗ ≤ cs,ε‖P sx‖+ cu,ε‖Pux‖ ≤ max {cs,ε‖P s‖, cu,ε‖Pu‖} ‖x‖.

Hence the norms ‖ · ‖∗ and ‖ · ‖ are equivalent. To complete the proof of the
implication (iii) ⇒ (ii), it remains only to note from (4.54), (4.55) that the
inequalities

‖P sAP sx‖∗ ≤ λs‖P sx‖∗, ‖PuAPux‖∗ ≥ λu‖Pux‖∗,

then follow, which, together with invariance of the subspaces Es and Eu with
respect to A, mean that A is a linear hyperbolic operator in the sense of
Definition 4.26. The implication (iii) ⇒ (ii) is then proved.

Finally, the implication (ii) ⇒ (i) is evident from the definition of the
split s and constant h, namely s = (λs, λu, 0, 0), h = max {‖P s‖, ‖Pu‖}. The
proof of the theorem is thus completed. ut

4.3.2 Equivalent Operators in Sequence Spaces

Let {An} be a sequence of d × d matrices defined for n belonging to some
interval I ⊆ Z of the form [0, N) or [0,∞) or (−∞, 0] or Z. We shall associate
with the sequence {An} some linear operators acting on a sequence space.
Consider first the linear operator A : X 7→ Y defined by

(A x)n+1 = Anxn, n ∈ I. (4.56)

Here the definition of the spaces X and Y depend on I. If I = [0, N ], then it
is convenient to set

X = `∞([0, N + 1],Rd), Y = `∞([1, N + 1],Rd); (4.57)

if I = (−∞, 0], then
X = Y = `∞((−∞, 1],Rd); (4.58)

if I = [0,∞), then set

X = `∞([0,∞),Rd), Y = `∞([1,∞),Rd); (4.59)

and, finally, if I = Z set

X = Y = `∞(Z,Rd). (4.60)

In every case Y ⊆ X , but only in the cases I = (−∞, 0] and I = Z do we
have Y = X .

Consider also the linear operator D : X 7→ Y defined by

(Dx)n+1 = xn+1 −Anxn, n ∈ I, (4.61)

that is, D = I −A .
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4.3.3 An Inversion Theorem

Consider the invertibility problem for the operator D . It turns out that this
problem depends heavily on which set of indices, I = [0, N ] or I = [0,∞) or
I = (−∞, 0] or I = Z, the sequence of matrices An is defined.

For example, to find the inverse operator of D in the case I = [0, N ] we need
to find for each z = {zn} ∈ `∞([1, N+1],Rd) an x = {xn} ∈ `∞([0, N+1],Rd)
which satisfies

xn+1 = Anxn + zn+1, n ∈ I. (4.62)

Clearly, the set of equations (4.62) is not sufficient to define x uniquely when
I = [0, N ], as x0 can be chosen arbitrarily here. Less evident, but similar kind
of problem also occurs when we try to find a bounded sequence x satisfying
(4.62) in the case I = [0,∞) or I = (−∞, 0].

Let Rd = Es
n ⊕ Eu

n be the splitting associated with the matrix An, for
which the projectors are P s

n : Rd 7→ Es
n and Pu

n = I −P s
n : Rd 7→ Eu

n . Rewrite
(4.62) in the decomposed form

P s
n+1xn+1 = P s

n+1AnP
s
nxn + P s

n+1AnP
u
nxn + P s

n+1zn+1,

Pu
n+1xn+1 = Pu

n+1AnP
s
nxn + Pu

n+1AnP
u
nxn + Pu

n+1zn+1.

Note that the linear operator Un = Pu
n+1AnP

u
n : Eu

n 7→ Eu
n+1 is invertible by

(4.11) and by the last condition (4.13) so we can rewrite these equations as

P s
n+1xn+1 = P s

n+1 (AnP
s
nxn +AnP

u
nxn + zn+1) , (4.63)

Pu
nxn = U−1

n Pu
n+1 (xn+1 −AnP

s
nxn − zn+1) . (4.64)

Now introduce an auxiliary linear operator Hz : X 7→ X , which, for a
fixed sequence z = {zn} ∈ Y , transforms every sequence x = {xn} ∈ X into
a sequence w = {wn} ∈ X satisfying

P s
n+1wn+1 = P s

n+1 (AnP
s
nxn +AnP

u
nxn + zn+1) , (4.65)

Pu
nwn = U−1

n Pu
n+1 (xn+1 −AnP

s
nxn − zn+1) , (4.66)

where both equations are considered for n ∈ I.
Observe that equations (4.65) do not define P s

0w0 in the case when 0 is
the left end of the interval I, while equations (4.66) do not define Pu

N+1wN+1

when N is the right end of the interval I. Hence, to define the operator Hz

correctly equations (4.65) and (4.66)need to be supplemented by one of the
following conditions:

P s
0w0 = 0, Pu

N+1wN+1 = 0 if I = [0, N ], (4.67)

or
Pu

1 w1 = 0 if I = (−∞, 0], (4.68)

or
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P s
0w0 = 0, if I = [0,∞). (4.69)

The system of equations (4.65)–(4.66) is sufficient and does not need supple-
menting condition in the case when I = Z.

Now introduce an auxiliary norm ‖ · ‖◦∞ on the space X by

‖x‖◦∞ = sup
n

max {γ‖P s
nxn‖, ‖Pu

nxn‖} , (4.70)

where the indices n are taken from [0, N + 1] if I = [0, N ], from (−∞, 1]
if I = (−∞, 0], and from I if J = [0,∞) or I = Z, and γ = γ(s) is the
value defined by (4.5). As was mentioned in Section 4.1, the split s under
consideration may be treated without loss of generality as positive, in which
case the norm ‖ · ‖◦∞ in X is equivalent to the norm ‖ · ‖∞ as by (4.12) for
any admissible n. To see this, note that for any xn ∈ Rd we have

1
2
‖xn‖ ≤ max {‖P s

nxn‖, ‖Pu
nxn‖} ≤ h‖xn‖,

so by Lemma 4.1

1
2

min{γ, 1}‖xn‖ ≤ max {γ‖P s
nxn‖, ‖Pu

nxn‖} ≤ hmax{γ, 1}‖xn‖,

from which it follows that

1
2

min{γ, 1}‖x‖∞ ≤ ‖x‖◦∞ ≤ hmax{γ, 1}‖x‖∞. (4.71)

Lemma 4.29. For every z ∈ Y the operator Hz : X 7→ X has a unique
fixed point x ∈ X for which

‖x‖∞ ≤ h

ν(s)
‖z‖∞. (4.72)

Proof. We show first that the operator Hz : X 7→ X is contracting in the
norm ‖ · ‖◦∞ with contraction constant σ = σ(s) defined by (4.3).

Given x, x̃ ∈ X , write y = x − x̃ and v = Hz(x) − Hz(x̃). Then by
(4.65), (4.66)

P s
n+1vn+1 = P s

n+1 (AnP
s
nyn +AnP

u
n yn) ,

Pu
n vn = U−1

n Pu
n+1 (yn+1 −AnP

s
nyn) ,

which may by supplemented, if needed, by one or the both following equalities

P s
0 v0 = 0, Pu

N+1vN+1 = 0.

Hence, by definition of the operator Un and by (4.13) we obtain

‖P s
n+1vn+1‖ ≤ λs‖P s

nyn‖+ µs‖Pu
n yn‖, (4.73)

‖Pu
n vn‖ ≤

µu

λu
‖P s

nyn‖+
1
λu
‖Pu

n+1yn+1‖, (4.74)
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which may again be supplemented, if needed, by

‖P s
0 v0‖ = 0, ‖Pu

N+1vN+1‖ = 0. (4.75)

Denote
V1 = sup

n
{γ‖P s

nvn‖} , V2 = sup
n
{‖Pu

n vn‖}

and
Y1 = sup

n
{γ‖P s

nyn‖} , Y2 = sup
n
{‖Pu

n yn‖}

Then
‖v‖◦∞ = max {V1, V2} , ‖y‖◦∞ = max {Y1, Y2}

and so, from (4.73), (4.74) and from (4.75), if needed, we obtain

V1 ≤ λsY1 + γµsY2 ≤ (λs + γµs) ‖y‖◦∞, (4.76)

V2 ≤
µu

γλu
Y1 +

1
λu
V2 ≤

(
µu

γλu
+

1
λu

)
‖y‖◦∞. (4.77)

But from (4.6) we have

λs + γµs = σ,
µu

γλu
+

1
λu

= σ,

so, by (4.76) and (4.77) we get

‖v‖◦∞ = max {V1, V2} ≤ σ‖y‖◦∞,

or equivalently
‖Hz(x)−Hz(x̃)‖◦∞ ≤ σ‖x− x̃‖◦∞.

By the Banach Contraction Mapping Theorem the operator Hz for any
z ∈ Y has a unique fixed point x := Bz ∈ X for which the estimate

‖Bz‖◦∞ ≤ 1
1− σ

‖Hz(0)‖◦∞

holds. Unfortunately, the obvious bound on ‖x‖∞ provided by Lemma 4.1 is
only a rough estimate, so another approach is required.

Since by (4.71) the norms ‖ · ‖◦∞ and ‖ · ‖∞ are equivalent then, as fol-
lows from Banach Contraction Mapping Theorem, the sequence of successive
iterates

x(m) = Hz(x(m−1)), m = 1, 2, . . . ,

with x(0) = 0, converges in the norm ‖ · ‖∞ to the fixed point x of Hz. In
particular,

‖x‖∞ ≤ lim sup
m→∞

‖x(m)‖∞. (4.78)

Set
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am = sup
n
{‖P s

nx
(m)
n ‖}, bm = sup

n
{‖Pu

nx
(m)
n ‖} (4.79)

and

hs = sup
n
{‖P s

n+1zn+1‖}, hu = sup
n
{‖U−1

n Pu
n+1zn+1‖}. (4.80)

Then, by taking the supremum of the norms of the left and right hand sides of
equations (4.65), (4.66) and, if necessary, of one or the both equalities (4.67),
we obtain the system of inequalities

am ≤ λsam−1 + µsbm−1 + hs,

bm ≤ µu

λu
am−1 +

1
λu
bm−1 + hu,

from which, by Lemma 4.2, it follows that

lim sup
m→∞

‖x(m)‖∞ ≤ lim sup
m→∞

(am + bm) ≤ max{hs, λuh
u}

ν(s)
. (4.81)

But clearly, by (4.12) and the definition of the operator Un,

hs ≤ h‖z‖∞, hu ≤ h

λu
‖z‖∞. (4.82)

The required estimate (4.72) follows from this and from (4.78) and (4.81).
The lemma is proved. ut

We can now establish the invertibility of the bounded linear operator D
that was defined by (4.61) for a semi-hyperbolic sequence of matrices {An}.

Theorem 4.30. If {An} is a (s, h)-semi-hyperbolic sequence of d×d matrices,
then the linear operator D : X 7→ Y defined by (4.61) (with spaces X ,Y
defined by (4.57) or (4.58) or (4.59) or (4.60)) is bounded and has a bounded
right inverse D−1 : Y 7→ X satisfying∥∥D−1

∥∥
∞ ≤ h

ν(s)
. (4.83)

Proof. By Lemma 4.29 and the Banach Contraction Mapping Theorem, the
operator Hz for any z ∈ Y has a unique fixed point x := Bz for which the
estimate

‖Bz‖∞ ≤ h

ν(s)
‖z‖∞ (4.84)

is valid.
The operator B is obviously linear. By comparing equations (4.65) and

(4.66) with (4.63) and (4.64), we conclude that x is the solution of (4.62).
Thus, the operator B is the right inverse to D , i.e. we can write B = D−1,
and the estimate (4.83) follows from (4.84). ut
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Remark 4.31. When the sequence of matrices An is defined for the set of
indices I = Z the bounded right inverse to D operator D−1 satisfying (4.83)
is defined uniquely, while in the cases I = [0, N ], I = [0,∞) and I = (−∞, 0]
it is not.

Remark 4.32. In Definition 4.5, and hence in Theorem 4.30, the matrix sequ-
ence {An} is supposed to be bounded. This requirement has been imposed
only to simplify proofs and can be easily removed, if required, with the obvious
changes in the formulation of assertions and proofs.

With Definition 4.20 of semi-hyperbolic sequence of matrices an analog of
Theorem 4.30 is valid with some insignificant changes resulting from using the
variable norm inequalities (4.40).

Theorem 4.33. If {An} is a (s, h)-semi-hyperbolic sequence of d×d matrices
(according to Definition 4.20), then the linear operator D : X 7→ Y defined
by (4.61) (with spaces X ,Y defined by (4.57) or (4.58) or (4.59) or (4.60))
is bounded and has a bounded right inverse D−1 : Y 7→ X satisfying∥∥D−1

∥∥
∞ ≤ q2h

ν(s)
,

where q is as in estimates (4.37) of Definition 4.20.

Proof. In the proof of Theorem 4.30, we adjust definition (4.70) of the norm
‖ · ‖◦∞ and definitions (4.79), (4.80) of an, bn, h

s, hu by replacing the norms
‖P s

nxn‖, ‖Pu
nxn‖, etc. by the norms ‖P s

nxn‖n, ‖Pu
nxn‖n in the following man-

ner
‖x‖◦∞ = sup

n
max {γ‖P s

nxn‖n, ‖Pu
nxn‖n} .

With such an adjustment the proof of Theorem 4.33 is essentially the same
as that of Theorem 4.30. We need only to multiply by the factor q the cor-
responding sides of inequalities (4.81) and (4.82) involving estimation of the
‖ · ‖∞-norms of elements via an, bn, h, and vice versa. ut

4.3.4 Hyperbolicity of the Linear Operator A

To complete Section 4.3 we examine the relationship between the hyperbolic-
ity of a matrix sequence and hyperbolicity of the linear operator A defined by
(4.56) in Section 4.3.2. Then, via Theorem 4.23, this will reveal the relation-
ship between the semi-hyperbolicity of a matrix sequence and hyperbolicity
of the linear operator A and, via Theorem 4.28, the relationship between the
semi-hyperbolicity of a matrix sequence and semi-hyperbolicity of the linear
operator A .

Theorem 4.34. The sequence of invertible matrices {An}, n ∈ Z, is hyper-
bolic if and only if the linear operator A : `∞(Z,Rd) 7→ `∞(Z,Rd) defined by
(4.56) is hyperbolic.
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Proof. To simplify notation, denote L = `∞(Z,Rd). Suppose that the seque-
nce of invertible matrices {An}, n ∈ Z, is hyperbolic. For each integer n, let
the projections P s

n, Pu
n and norm ‖ · ‖n be as in Definition 4.22 and define

linear operators Ps and Pu on L by

(Psx)n = P s
nxn, (Pux)n = Pu

nxn, n ∈ Z.

Clearly, the operators Ps and Pu are bounded projections and, moreover,
Ps + Pu = I. Hence the subspaces

E s = PsL ⊆ L , E u = PuL ⊆ L (4.85)

have trivial intersection and their direct sum coincides with L , i.e.

E s ∩ E u = 0, E s ⊕ E u = L . (4.86)

In addition, it follows from the equivariance relations (4.41) and the definition
of projections Ps and Pu that the subspaces E s and E u are invariant under
the linear operator A , i.e.

A E s ⊆ E s, A E u ⊆ E u.

Introduce the norm

‖x‖∗∞ = sup
n∈Z

{‖P s
nxn‖n, ‖Pu

nxn‖n}

on the space L . Using of (4.37) and (4.39) we can obtain the chain of in-
equalities

1
2q
‖xn‖ ≤

1
2
‖xn‖n ≤

1
2

(‖P s
nxn‖n + ‖Pu

nxn‖n)

≤ max {‖P s
nxn‖n, ‖Pu

nxn‖n} ≤ h‖xn‖n ≤ hq‖xn‖

for any integer n, from which it follows that

1
2q
‖x‖∞ ≤ ‖x‖∗∞ ≤ hq‖x‖∞,

i.e. the norms ‖ · ‖∞ and ‖ · ‖∗∞ in the space L are equivalent.
From inequalities (4.42), which are valid for the matrix sequence {An} due

to its hyperbolicity, we obtain immediately that

‖A Psx‖∗∞ ≤ λs‖Psx‖∗∞, ‖A Pux‖∗∞ ≥ λu‖Pux‖∗∞.

Together with (4.85), these inequalities mean that the spectrum σs of the
restriction A |E s of the linear operator A to its invariant subspace E s lies
entirely in the circle |λ| ≤ λs < 1. Similarly, the spectrum σu of the restriction
A |E u of the linear operator A to its invariant subspace E u lies entirely outside
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of the circle |λ| ≤ λu. Now, from (4.85) and (4.86) it follows that the spectrum
of operator A coincides with the union of the sets σs and σu, and thus does
not intersect the circle |λ| = 1. Hence, the linear operator A is hyperbolic.

We now consider the opposite implication that hyperbolicity of the opera-
tor A implies hyperbolicity of the matrix sequence {An}. By supposition, the
spectrum σ of the operator A does not intersect the unit circle |λ| = 1. Since
the spectrum of any operator is a closed set, the set σ can then be represented
as union σ = σs ∪ σu of closed subsets σs which lies entirely inside the unit
circle and σu which lies entirely outside the unit circle.

Denote by E s ⊆ L the invariant spectral subspace of the operator A
corresponding to the subset σs of its spectrum, and denote by E u ⊆ L the
invariant spectral subspace of the operator A corresponding to σu. Then, as
is known from the general spectral theory, the relations (4.86) hold. Denote
the projections corresponding to the splitting (4.86) by Ps : L 7→ E s and
Pu = I −Ps : L 7→ E u; these are bounded in our case.

The spectral radius σ(A) of a linear operator A on a Banach space satisfies

σ(A) = lim sup
n→∞

‖An‖1/n,

from which follows the existence for each ε > 0 of a number cε such that

‖An‖ ≤ cε(σ(A) + ε)n, n ≥ 0. (4.87)

By definition, the closed set σs lies in the circle |λ| < 1, so numbers
λs ∈ (0, 1) and ε > 0 can be found such that σs will, in fact, belong to
the circle |λ| ≤ λs − ε. Applying (4.87) to the restriction A |E s of the linear
operator A to its invariant subspace E s (and taking ‖ · ‖∞ as the operator
norm ‖ · ‖ in (4.87)), we obtain

‖(A |E s)n‖∞ ≤ cελ
n
s , n ≥ 0,

for an appropriate constant cε, from which it follows that

‖A nPsx‖∞ ≤ cελ
n
s ‖x‖∞, x ∈ L , n ≥ 0. (4.88)

Analogously, numbers λu > 1 and ε > 0 can be found such that σu belongs
to the exterior of the circle |λ| ≤ λu + ε. Then the restriction A |E u of the
linear operator A to its invariant subspace E u is invertible and, applying the
formula (4.87) to (A |E u)−1, we obtain

‖(A |E u)−n‖∞ ≤ cελ
−n
u , n ≥ 0,

for an appropriate constant cε, from which it follows

‖A nPux‖∞ ≥ c−1
ε λn

u‖x‖∞, x ∈ L , n ≥ 0. (4.89)

Define a new norm on L by
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‖x‖∗ = sup
n≥0

λ−n
s ‖A nPsx‖∞ + inf

n≥0
λ−n

u ‖A nPux‖∞. (4.90)

From (4.88) and (4.89) we conclude that the norms ‖ · ‖∞ and ‖ · ‖∗ are
equivalent, i.e. there exists such a number Q that

Q−1‖x‖∞ ≤ ‖x‖∗ ≤ Q‖x‖∞ (4.91)

for all x ∈ L . From (4.90) it thus follows that

‖A Psx‖∗ ≤ λs‖Psx‖∗, ‖A Pux‖∗ ≥ λu‖Pux‖∗. (4.92)

Now fix an integer k ∈ Z and define Es
k ⊆ Rd to be the set of those v ∈ Rd

for which the equation

vn+1 = Anvn, n ≥ k, (4.93)

has a bounded solution satisfying vk = v. Similarly, define Eu
k ⊆ Rd to be the

set of those w ∈ Rd for which the equation

wn+1 = Anwn, n < k, (4.94)

has a bounded solution satisfying wk = w. It is not hard to see that Es
k and

Eu
k are subspaces of Rd. We need to prove that they form a splitting of Rd,

i.e. with
Es

k ∩ Eu
k = 0, Es

k ⊕ Eu
k = Rd. (4.95)

Let x ∈ Es
k ∩Eu

k . By definition of the subspace Es
k there exists a bounded

sequence {vn}, n ≥ k, satisfying (4.93) and vk = x. Analogously, by definition
of the subspace Eu

k there exists a bounded sequence {wn}, n ≤ k, satisfying
(4.94) and wk = x. Then the sequence x = {xn} defined by

xn =
{
vn, for n ≥ k,
wn, for n ≤ k

will satisfy the equation

xn+1 = Anxn, n ∈ Z,

and hence
x = A x.

In view of hyperbolicity of the operator A , this implies that x = 0. The first
assertion of (4.95) is thus proved.

To prove the second assertion in (4.95) fix an x ∈ Rd and define a sequence
x = {xn} ∈ L by

xk = x, xn = 0 for n 6= k, (4.96)

and
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xs = Psx, xu = Pux. (4.97)

Then x = xs + xu and thus x = xs
k + xu

k . We want to show that

xs
k ∈ Es

k, xu
k ∈ Eu

k . (4.98)

Write v(k) = xs and define elements v(n) ∈ L recursively by

v(n+1) = A v(n), n ≥ k.

From (4.92) we then get

‖v(k)‖∗ ≥ ‖v(k+1)‖∗ ≥ . . . ≥ ‖v(n)‖∗ ≥ . . . , n ≥ k,

which mean that the sequence with components v(n) ∈ L , n ≥ k, is bounded
in the norm ‖ · ‖∗ and thus, by (4.91), is bounded in the norm ‖ · ‖∞ too.
Hence the sequence with elements vn ∈ Rd defined by

vn = v(n)
n , n ≥ k,

is also bounded (in the norm ‖ · ‖). Clearly, the sequence {vn} satisfies (4.93)
and vk = xs

k. Hence, in view of the definition of the subspace Es
k, we have

proved the first inclusion of (4.98). The second inclusion of (4.98) is proved
analogously. The second equality in (4.95) is now proved.

Define now operators P s
k and Pu

k by

P s
kx = xs

k, Pu
k x = xu

k .

By definition of the points xs
k and xu

k , these operators are linear and satisfy

P s
k Rd ⊆ Es

k, Pu
k Rd ⊆ Eu

k , P s
k + Pu

k = I.

From these and (4.95) we conclude that the operators P s
k and Pu

k are projec-
tions. To estimate the norms ‖P s

k‖ and ‖Pu
k ‖ we use the chain of inequalities

‖P s
kx‖ = ‖xs

k‖ ≤ ‖xs‖∞ = ‖Psx‖∞ ≤ ‖Ps‖∞‖x‖∞ = ‖Ps‖∞‖x‖

from which it follows that

‖P s
k‖ ≤ ‖Ps‖∞ ≤ max{‖Ps‖∞, ‖Pu‖∞}.

Analogously,

‖Pu
k ‖ ≤ ‖Pu‖∞ ≤ max{‖Ps‖∞, ‖Pu‖∞},

so a uniform norm bound exists for the projections P s
k and Pu

k with k ∈ Z
(cf. (4.39)).

The equivariant identities (4.41) for the matrix sequence {An} then follows
immediately from the definition of subspaces Es

n and Eu
n and from invertibility
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of matrices An. It remains only to construct norms ‖ · ‖n which ensure the
validity of inequalities (4.42). To do it, we will need more detailed information
about properties of the projections Ps and Pu.

Given a point x ∈ Rd we construct points x,xs,xu ∈ L by formulae
(4.96) and (4.97). We want to show that

x = xs if x ∈ Es
k, (4.99)

x = xu if x ∈ Eu
k . (4.100)

For definiteness, let x ∈ Es
k. Then, in the same way as the inclusions (4.98)

were obtained, we obtain the inclusions

xs
n ∈ Es

n, xu
n ∈ Eu

n , n ∈ Z. (4.101)

But, from the equality x = xs +xu and from the definition (4.96) of the point
x, it follows immediately that

xs
n = −xu

n, n 6= k,

which, in view of (4.101) and (4.95), can only be satisfied if

xs
n = xu

n = 0, n 6= k.

The required relations (4.99) and (4.100) follow from this fact.
Now define the norm ‖ · ‖k on Rd by

‖x‖k = ‖x‖∗, x ∈ Rd,

where x ∈ L is the element defined by (4.96). From (4.91) and from the
obvious equality ‖x‖ = ‖x‖∞ we obtain

Q−1‖x‖ = Q−1‖x‖∞ ≤ ‖x‖k = ‖x‖∗ ≤ Q‖x‖∞ = Q‖x‖,

which means that the uniform boundedness condition (cf. (4.37)) are satisfied
by the norms ‖ · ‖k, k ∈ Z.

Now, given x ∈ Es
k, denote y = Akx. Then, as is already proved, y ∈ Es

k+1.
Define the element x ∈ L by (4.96) and the define element y ∈ L in the
same manner by

yk+1 = y, yn = 0 for n 6= k + 1.

Then clearly y = A x, and from the inclusions x ∈ Es
k, y ∈ Es

k+1 and (4.99)
we obtain that

x ∈ E s, y = A x ∈ E s,

from which, in view of (4.92), we have

‖Akx‖k+1 = ‖A x‖∗ ≤ λs‖x‖∗ = λs‖x‖k, x ∈ Es
k.

The inequality

‖Akx‖k+1 = ‖A x‖∗ ≥ λu‖x‖∗ = λu‖x‖k, x ∈ Eu
k

can be proved analogously. The proof of the theorem is now completed. ut





5

Semi-Hyperbolicity and Hyperbolicity

In Chapter 4 it was shown that a semi-hyperbolic sequence of matrices is hy-
perbolic, i.e. in the linear case semi-hyperbolicity implies hyperbolicity. This
is generally not true for the nonlinear mappings, which will be shown by an
example in Section 5.1 which demonstrates that a semi-hyperbolic mapping
may not possess an invariant splitting and so cannot be a hyperbolic. Never-
theless, it will be shown in Section 5.2 that a semi-hyperbolic mapping which
is smooth and invertible in a neighborhood of a compact invariant set is, in
fact, hyperbolic on that set. The proofs depend substantially on background
material and results of Chapter 4.

5.1 Perturbation of Anosov Endomorphisms

In this Section an example will be constructed which demonstrates that gen-
erally a semi-hyperbolic mapping may not possess an invariant splitting, and
cannot be a hyperbolic.

We briefly recall some facts about Anosov mappings already considered in
Section 3.2.2. Write the elements of Rd as vectors x with coordinates x1, x2,
. . ., xd and let Td be the standard d-dimensional torus, that is the factorization
of Rd by the integer lattice. This torus Td is a compact differentiable manifold
in Rd with respect to the locally Euclidean metric

%(x, y) =
√
|x1 − y1|2mod 1 + |x2 − y2|2mod 1 + · · ·+ |xd − yd|2mod 1

on Td where

|t− s|mod 1 = min {|t− s+ 2k| : k = 0,±1} , 0 ≤ t, s < 1.

The tangent space TxTd can then be identified with Rd by an appropriate
choice of natural coordinates generated by those of Rd, so TxTd = Rd for each
x ∈ Td. Denote the natural projection from Rd onto Td by
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Π(x) = (x1 mod 1, x2 mod 1, . . . , xd mod 1), x = (x1, x2, . . . , xd)

and associate with a given d × d matrix A with integer components aij the
mapping f : Td 7→ Td defined by

f(x) = Π(Ax).

Theorem 5.1. Let d > 3. There exists a hyperbolic d×d matrix A with integer
components such that for every ε > 0 there can be found a differentiable
semi-hyperbolic mapping fε : Td 7→ Td which is ε-close in the C1-norm to
the mapping f(x) = Π(Ax) but for which there is no continuous hyperbolic
splitting.

Proof. Let first d = 3. Consider the 3× 3 matrix

A =

2 3 0
1 2 0
0 0 2


which has eigenvalues λ1 = 2 −

√
3, λ2 = 2 +

√
3 and λ3 = 2 with corre-

sponding eigenvectors v1 = (1,−1/
√

3, 0), v2 = (1, 1/
√

3, 0) and v3 = (0, 0, 1),
respectively. Let B be a fixed 3× 3 matrix

B =

 b11 b12 0
b21 b22 0
0 0 0


such that v2 is not an eigenvector, but otherwise arbitrary.

Consider the sequence of points

x(0) = (0, 0, 0), x(n) = (0, 0, 2−n) for n = −1,−2, . . .

and for ε ≥ 0 denote by fε : T3 7→ T3 a continuously differentiable mapping
satisfying

(i) fε is ε-close to f in the C1-norm;
(ii) fε(x(−1)) = f(x(−1)) = 0 and (Tfε)x(−1) = A+ εB;
(iii) fε(x) ≡ f(x) for all x such that ‖x− x(−1)‖ ≥ 1

8 .

Such a mapping fε exists for sufficiently small ε > 0. It satisfies

x(n) = fε(x(n−1)), n = 0,−1,−2, . . . (5.1)

and is semi-hyperbolic by Lemma 3.18.
Since the mapping f = f0 is an Anosov endomorphism, cf. Example 3.17,

it has a hyperbolic splitting at every point x which does not depend on the
point x and can thus be written as

TxT3 = Es ⊕ Eu, x ∈ T3, (5.2)
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where Es is the eigenspace of the matrix A corresponding to the eigenvalue
λ1 and Eu is the eigenspace of the matrix A corresponding to the eigenvalues
λ2 and λ3.

A proof by contradiction will be used to show that the mapping fε for
sufficiently small ε > 0 does not have a hyperbolic splitting.

Fix ε > 0 sufficiently small and suppose that

TxT3 = Es
x,ε ⊕ Eu

x,ε, x ∈ T3, (5.3)

is a hyperbolic splitting for fε. By Property (iii) fε(x) ≡ f(x) in a neighbor-
hood of the point x = 0, so x = 0 is a fixed point of fε and by the Hartman–
Grobman Theorem [51] the splitting (5.3) at the point x = 0 coincides with
the splitting (5.2), that is

Es
0,ε ≡ Es, Eu

0,ε ≡ Eu.

In fact, these equivalences can be complemented by

Eu
x(n),ε ≡ Eu, n = 1, 2, . . . .

Indeed, by Properties (ii) and (iii)

(Tfε)x(n) = A for n = 2, 3, . . . , (5.4)

and since by supposition the subspaces Eu
x,ε are equivariant for Tfε, then from

(5.4) and (5.1) it follows that

Eu
x(n),ε = (Tfk−n

ε )x(k)Eu
x(k),ε

= (Tfε)x(n+1)(Tfε)x(n+2) . . . (Tfε)x(k)Eu
x(k),ε

= Ak−nEu
x(k),ε (5.5)

for all k ≥ n. But, by the continuity of the splitting (5.3), the subspace Eu
x(n),ε

is close to Eu for large enough n and thus does not contain vectors from Es.
Hence, taking the limit as k →∞ in the right hand side of (5.5), we obtain

Eu
x(n),ε = lim

k→∞
Ak−nEu

x(k),ε = Eu.

It remains to observe that

(Tfε)x(1)Eu
x(1),ε = (Tfε)x(1)Eu = (A+ εB)Eu

6= Eu = Eu
0,ε = Eu

x(0),ε = Eu
fε(x(1)),ε

since (Tfε)x(1) = A + εB, and this contradicts the assumed equivariance of
the splitting (5.3) with respect to Tfε. This contradiction completes the proof
in the case when d = 3.
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To prove the theorem in the case when d > 3 it suffices to consider the
d× d block diagonal matrices

Â =
[
A 0
0 0

]
, B̂ =

[
B 0
0 0

]
and repeat the previous considerations for the mapping f̃(x) = Π(Âx). ut

5.2 Converse Case

Any hyperbolic mapping is clearly semi-hyperbolic. Theorem 5.2 below shows
that the converse is also valid for invertible smooth mappings, so establish-
ing equivalence between semi-hyperbolicity and hyperbolicity for invertible
mappings. The proof is valid for the various definitions of semi-hyperbolicity
considered earlier.

Theorem 5.2. Let f : X 7→ Rd be a continuously differentiable mapping
which is semi-hyperbolic (according to variable norm Definition 3.4 or to single
norm Definition 3.5) on a bounded open set X ⊆ Rd. In addition, suppose that
f is invertible in a neighborhood of some compact set K ⊂ X and that K is
an invariant set for both f and f−1, that is f(K) = f−1(K) = K. Then f is
hyperbolic on K.

Proof. First we consider an equivariant splitting of Rd for the mapping f on
K. Associate with a point x ∈ K the sequence of linear operators

An,x = (Dfn+1)x = (Df)fn(x). (5.6)

Due to semi-hyperbolicity of the mapping f , for any x ∈ K the sequence of
linear operators {An,x} will be also semi-hyperbolic1. Then by Theorem 4.18
we can construct for the point x and for any integer n the splitting of the
space RN into the direct sum of subspaces Ês

n,x and Êu
n,x satisfying

An,xÊ
s
n,x = Ês

n+1,x, An,xÊ
u
n,x = Êu

n+1,x,

or, what is the same,

(Dfn+1)xÊ
s
n,x = Ês

n+1,x, (Dfn+1)xÊ
u
n,x = Êu

n+1,x. (5.7)

By Lemma 4.16 and by (5.6) the subspace Ês
n,x is equal to the set of v ∈ Rd

for which the equation
1 More precisely, if the mapping f is semi-hyperbolic in variable norm sense (see

Definition 3.4), then the sequence {An,x} will be also semi-hyperbolic in the
variable norm sense (see Definition 4.5). If the mapping f is semi-hyperbolic for a
single norm (see Definition 3.5), then the sequence {An,x} will be semi-hyperbolic
for a single norm (see Definition 4.20).
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vk+1 = (Dfk+1)xvk, k ≥ n,

has a bounded solution satisfying vn = v, and the subspace Êu
n,x can be

described as the set of those w ∈ Rd for which the equation

wk+1 = (Dfk+1)xwk, k < n,

has a bounded solution satisfying wn = w. From such an interpretation of
subspaces Ês

n,x, Êu
n,x and from invertibility of the linear operators Dfx at any

point x ∈ K it follows that

Ês
n,x = Ês

0,fn(x), Êu
n,x = Êu

0,fn(x), n ∈ Z.

So, by denoting E s
x = Ês

0,x, E u
x = Êu

0,x we obtain a splitting Rd = E s
x ⊕E u

x ,
x ∈ K, satisfying in view of (5.7) the equivariance property

DfxE s
x = E s

f(x), DfxE u
x = E u

f(x), x ∈ K.

Thus, the mapping f satisfies Condition A1 of Definition 2.1.
Now, from Theorem 4.18 (see inequalities (4.32) and (4.33)) it follows that

the mapping f satisfies Condition A2 of Definition 2.1, and from Lemma 4.16
(see inequality (4.27)) Condition A3 of Definition 2.1 also holds for mapping
f . The mapping f thus satisfies all the conditions of Anosov system (Defini-
tion 2.1) except that f is defined not on a closed Riemann manifold, but on
a neighborhood of a compact invariant set. This distinction makes formally
impossible to use Theorem 2.2 for proving continuous dependence of the split-
ting Rd = E s

x ⊕E u
x on x ∈ K. But a closer inspection shows that the fact that

f being defined on a closed Riemann manifold is not essential in the proof of
Theorem 2.2. The statement of this theorem remains valid under the suppo-
sition that f is defined on a compact invariant set. Hence, by this reasoning,
the splitting Rd = E s

x ⊕ E u
x continuously depends on x ∈ K, and thus, by

Definition 2.5, the mapping f is hyperbolic on K. ut

5.2.1 Alternative Proof

The investigation of the relationship between semi-hyperbolicity and hyper-
bolicity in Chapter 4 and in Section 5.2 was intentionally done in a more tra-
ditional analytical manner, via an explicit description of splitting subspaces,
in order that their properties could be determined more fully. Modern tech-
niques based on differential geometry and smooth dynamics (see, e.g., [38]) is
also applicable here and provide an alternative proof of Theorem 5.2, based
on the Mather Projection Lemma 5.32, by adapting the proof of Hirsch and
Pugh [38].

2 We refer the reader to [38] and other textbooks for an explanation of the terms
used here.
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Let E be a vector bundle over a compact set K ⊂ Rd and let f : K → K
be a C1 diffeomorphism on a neighborhood of K. Denote by C(E) the Banach
space of bounded continuous sections of E overK with the sup-norm topology.
Let f̃ : C(E) → C(E) be the continuous linear mapping

f̃(ϕ) = Df ◦ ϕ ◦ f−1. (5.8)

Lemma 5.3 (Mather Projection Lemma). If f̃ − I is a hyperbolic iso-
morphism, then f is hyperbolic on K.

Now let C(TKRd) = C be the Banach space of bounded continuous sec-
tions of TKRd and let f̃ : C 7→ C be the map (5.8) induced by f . Write
C = C (E1|K)×C (E2|K). Then, making use of Theorem 4.28, it can be shown
that the conditions of Theorem 5.2 are satisfied by f̃ , so f̃ is hyperbolic linear
operator. Hence, by the Mather Projection Lemma 5.3, f is hyperbolic on the
set K.
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Expansivity and Shadowing

We saw in Section 2.2 that hyperbolic systems possess some rather strong and
useful properties such as expansivity (see Definition 2.7 and Theorem 2.8) and
shadowing (see Theorem 2.9). In this Chapter we will show that these and
other properties remain valid for semi-hyperbolic systems. Moreover, explicit
values or sharp estimates of relevant parameters and intervals of validity will
be obtained.

6.1 Expansivity

In this Section, semi-hyperbolic dynamical systems are shown to be expo-
nentially expansive, locally at least, and explicit rates of expansion are de-
termined. Differentiability is not required, so the proof will be given for the
Lipschitz mappings only.

6.1.1 Definitions

Let (X, %) be a metric space.

Definition 6.1. A trajectory of a dynamical system generated by a mapping
f : X 7→ X on a state space X is a sequence x = {xn} ⊂ X satisfying

xn+1 = f (xn)

for all n belonging to some contiguous set I of integers. The qualifier finite
may be appended when this set I is of finite length and infinite otherwise.

Recall that the dynamical system generated by a homeomorphism f : X 7→
X is said to be ξ-expansive on X (see Definition 2.7) if the inequalities

%(fn(x0), fn(y0)) ≤ ξ for n = 0,±1,±2, . . .
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imply that x0 = y0, i.e. any two bi-infinite trajectories {xn} = {fn (x0)} and
{yn} = {fn (y0)} which always remain within a threshold ξ of each other are
identical. Usually the metric space (X, %) is also assumed to be compact as
it is this together with expansivity that gives rise to complicated dynamical
behavior.

An important characteristic of ξ-expansivity is the rate of divergence of
different trajectories. Let Tr±k(f,X) denote the set of all trajectories x =
{x−k, . . . , x0, . . . , xk} of the mapping f that are contained entirely in a set X,
and for any x, x̃ ∈ Tr±k(f,K) define

%k(x, x̃) = max
−k≤n≤k

‖xn − x̃n‖.

Lemma 6.2. Let K be a compact subset of Rd and let f : K 7→ K be a
continuous ξ-expansive mapping. Then for every 0 < ε, θ < ξ there exists a
positive integer κ(ε, θ) such that

%k(x, x̃) > θ

holds for all x, x̃ ∈ Tr±k(f,K) with ‖x0 − x̃0‖ ≥ ε and k ≥ κ(ε, θ).

Proof. Suppose the contrary. Then for any positive integer k there exist tra-
jectories x(k), x̃(k) ∈ Tr±k(f,K) satisfying

‖x(k)
0 − x̃

(k)
0 ‖ ≥ ε and %k(x(k), x̃(k)) ≤ θ < ξ.

By compactness of the set K, the sequences {x(k)} and {x̃(k)} can be assumed
to converge componentwise to trajectories x∗ and x̃∗ ∈ Tr±∞(f,K). Then

‖x∗0 − x̃∗0‖ ≥ ε,

but at the same time

‖x∗n − x̃∗n‖ ≤ θ < ξ, n = 0,±1,±2, . . . ,

which contradicts the ξ-expansivity of f . ut

In expansive systems distinct trajectories often separate exponentially fast,
at least locally, as will be seen from the next Example.

Example 6.3. Let (Σ, %) be the compact metric space of bi-infinite binary se-
quences x = {xi}+∞i=−∞, i.e. with xi ∈ {0, 1}, endowed with the metric

% (x,y) :=
+∞∑

i=−∞
2−|i| |xi − yi| ,

and consider the shift mapping σ : Σ 7→ Σ on Σ defined by
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(σx)i = xi+1, i ∈ Z.

The inequality
% (σnx, σny) ≤ ξ < 1 (6.1)

can be rewritten as |xn − yn| ≤ ξ < 1, which for binary sequences x and y
can only be valid if

xn = yn. (6.2)

By (6.2), the validity of inequality (6.1) for any n implies the coincidence
of the sequences x and y. Hence the shift mapping σ is ξ-expansive for any
ξ < 1.

It turns out that the shift mapping σ possesses a stronger property than
ξ-expansivity, namely, the inequalities

max
{
% (σnx, σny) , %

(
σ−nx, σ−ny

)}
≥ 2n−1%(x,y) (6.3)

are valid for n = −n−, . . . , 0, . . . , n+ whenever

% (x,y) ≤ ξ < 1,

where n− and n+ are the largest possible integers such that

% (σnx, σny) ≤ ξ < 1 for n = −n−, . . . , 0, . . . , n+. (6.4)

To prove this, suppose that inequalities (6.4) are valid with n− and n+

being maximal. Then by (6.1) and (6.2)

xn = yn, n = −n−, . . . , 0, . . . , n+,

so % (x,y) can be represented as

% (x,y) =
∑

i<−n−

2i |xi − yi|+
∑

i>n+

2−i |xi − yi| ,

where one of summands on the right hand part is greater than or equal to
1
2% (x,y). For definiteness, let∑

i>n+

2−i |xi − yi| ≥
1
2
% (x,y) . (6.5)

Similarly for any n = −n−, . . . , 0, . . . , n+, we obtain

% (σnx, σny) =
∑
i∈Z

2−|i| |xi+n − yi+n| =
∑
i∈Z

2−|i−n| |xi − yi|

=
∑

i<−n−

2−|i−n| |xi − yi|+
∑

i>n+

2−|i−n| |xi − yi|

=
∑

i<−n−

2i−n |xi − yi|+
∑

i>n+

2n−i |xi − yi|

≥ 2n
∑

i>n+

2−i |xi − yi| .
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Then by (6.5)

% (σnx, σny) ≥ 1
2
2n% (x,y) ,

and the inequalities (6.3) for n = −n−, . . . , 0, . . . , n+ are proved.

Example 6.3 is of fundamental interest because the shift mapping σ is con-
jugate to the hyperbolic diffeomorphism of the Smale horseshoe system which
is one of the most prominent examples of a hyperbolic system. It motivates
the following definition of exponential expansivity.

Let Oε(S) denote the open ε-neighborhood of a nonempty subset S ⊂ Rd.

Definition 6.4. Let X ⊆ Rd be an open bounded set and let K be a compact
subset of X. A continuous mapping f : X 7→ Rd is said to be exponentially
expansive on K with exponent r > 1 if there exist constants ξ and c > 0 such
that Oξ(K) ⊆ X and for any (finite) trajectories

x =
{
x−n− , . . . , x0, . . . , xn+

}
, y =

{
y−n− , . . . , y0, . . . , yn+

}
satisfying x ⊆ K and ‖yi − xi‖ ≤ ξ for n = −n−, . . . , 0, . . . , n+ at least one
of the following groups of inequalities holds:

‖xn − yn‖ ≥ crn‖x0 − y0‖, n = 1, 2, . . . , n+, (6.6)

or
‖xn − yn‖ ≥ cr−n‖x0 − y0‖, n = −1,−2, . . . ,−n−. (6.7)

The exponential expansivity of diffeomorphisms and homeomorphisms on
a compact hyperbolic set is well known. It also holds under the weaker as-
sumptions of semi-hyperbolicity, which will be proved in the next subsection
for Lipschitz mappings satisfying an even weaker version of the inequalities
in Condition SH2(Lip). Explicit values of the exponential expansivity pa-
rameters can be determined in terms of the split coefficients and the other
semi-hyperbolicity parameters.

6.1.2 Lipschitz Mappings

Conditions SH0(Lip), SH1(Lip) and SH2(Lip) of semi-hyperbolicity Definit-
ion 3.6 for a Lipschitz mapping are stronger than necessary for establish-
ing expansivity. In particular, the inequalities of Condition SH2(Lip) can be
weakened. As before, let s = (λs, λu, µs, µu) be a split which, without loss of
generality, may be supposed to be positive. Consider a mapping f : X 7→ Rd,
where X is an open subset of Rd, and let K a nonempty compact subset of
X such that K ∩ f(K) 6= ∅.

Theorem 6.5. Let f be a continuous mapping defined on X ⊆ Rd and for
each x ∈ K there exists a uniform splitting Rd = Es

x ⊕ Es
x satisfying Condi-

tion SH1(Lip) and the following modification of Condition SH2(Lip) of Defi-
nition 3.6:
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SH2(Mod): For all x satisfying x, f(x) ∈ K and for all z ∈ Rd satisfying
‖P s

xz‖, ‖Pu
x z‖ ≤ δ, the inclusion x+ z ∈ X and the inequalities

‖P s
f(x) (f(x+ z)− f(x)) ‖ ≤ λs‖P s

xz‖+ µs‖Pu
x z‖,

‖Pu
f(x) (f(x+ z)− f(x)) ‖ ≥ λu‖Pu

x z‖ − µu‖P s
xz‖

(6.8)

hold.

Then the mapping f is exponentially expansive in K with exponent

r = σ(s)−1 = 2

 1
λu

+ λs +

√(
1
λu

− λs

)2

+
4µsµu

λu

−1

(see (4.3)) and constants

c =
1
2
h−1 min{γ(s), γ(s)−1} and ξ = h−1δ, (6.9)

where h as in Condition SH1(Lip) of Definition 3.6.

Proof. Two lemmata will form the basis of the proof. Since the split s is fixed
write M = M(s), σ = σ(s) and γ = γ(s) (for definitions of these values see
equations (4.2), (4.3) and (4.5) in Section 4.1). In addition, we shall use the
norm ‖ · ‖∗ on R2 defined by

‖(y1, y2)‖∗ = max{γ|y1|, |y2|},

(the split s is assumed to be positive, so γ > 0 here).

Lemma 6.6. The inequalities

η‖z‖ ≤ ‖(‖P s
xz‖, ‖Pu

x z‖)‖∗ ≤ 2ηhmax{γ, γ−1}‖z‖

with η = 1
2 min{γ, 1} are valid for all z ∈ Rd and all x from the semi-

hyperbolicity set K of the mapping f .

Proof. By Lemma 4.1

min{γ, 1} max{‖P s
xz‖, ‖Pu

x z‖} ≤ ‖(‖P s
xz‖, ‖Pu

x z‖)‖∗
≤ max{γ, 1} max{‖P s

xz‖, ‖Pu
x z‖},

so it suffices to check that the inequalities

1
2
‖z‖ ≤ max{‖P s

xz‖, ‖Pu
x z‖} ≤ h‖z‖

hold for all z ∈ Rd and all x ∈ K. The inequality on the right follows from
the semi-hyperbolicity Condition SH1(Lip), while that on the left is just

‖z‖ = ‖P s
xz + Pu

x z‖ ≤ ‖P s
xz‖+ ‖Pu

x z‖ ≤ 2 max{‖P s
xz‖, ‖Pu

x z‖}.

The statement of the lemma now follows with η = 1
2 min{γ, 1}. ut
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For the remaining lemma note that semi-hyperbolicity does not require
the sets K and X to be invariant under the mapping f .

Lemma 6.7. Suppose that x, f(x), f2(x) ∈ K and y, f(y), f2(y) ∈ X with

‖x− y‖, ‖f(x)− f(y)‖, ‖f2(x)− f2(y)‖ < h−1δ. (6.10)

Then at least one of the following pair of inequalities

σ‖(‖P s
xr0‖, ‖Pu

x r0‖)‖∗ ≥ ‖(‖P s
f(x)r1‖, ‖P

u
f(x)r1‖)‖∗,

σ‖(‖P s
f2(x)r2‖, ‖P

u
f2(x)r2‖)‖∗ ≥ ‖(‖P s

f(x)r1‖, ‖P
u
f(x)r1‖)‖∗,

holds, where

r0 := x− y, r1 := f(x)− f(y), r2 := f2(x)− f2(y).

Proof. By (6.10) and by Condition SH1(Lip) of Definition 3.6

‖P s
xr0‖, ‖P s

f(x)r1‖, ‖P
s
f2(x)r2‖ < δ,

‖Pu
x r0‖, ‖Pu

f(x)r1‖, ‖P
u
f2(x)r2‖ < δ,

from which, by (6.8),

‖P s
f(x)r1‖ ≤ λs‖P s

xr0‖+ µs‖Pu
x r0‖,

‖Pu
f2(x)r2‖ ≥ λu‖Pu

f(x)r1‖ − µu‖P s
f(x)r1‖

or, what is the same,

‖P s
f(x)r1‖ ≤ λs‖P s

xr0‖+ µs‖Pu
x r0‖

‖Pu
f(x)r1‖ ≤

µu

λu
‖P s

f(x)r1‖+
1
λu
‖Pu

f2(x)r2‖.

Here, by definition of the norm ‖ · ‖∗,

‖P s
xr0‖ ≤ γ−1‖(‖P s

xr0‖, ‖Pu
x r0‖)‖∗,

‖Pu
x r0‖ ≤ ‖(‖P s

xr0‖, ‖Pu
x r0‖)‖∗,

‖P s
f(x)r1‖ ≤ γ−1‖(‖P s

f(x)r1‖, ‖P
u
f2(x)r2‖)‖∗,

‖Pu
f2(x)r2‖ ≤ ‖(‖P s

f(x)r1‖, ‖P
u
f2(x)r2‖)‖∗,

and therefore

‖P s
f(x)r1‖ ≤ γ−1(λs + µsγ)‖(‖P s

xr0‖, ‖Pu
x r0‖)‖∗,

‖Pu
f(x)r1‖ ≤ γ−1

(
µu

λu
+

1
λu
γ

)
‖(‖P s

f(x)r1‖, ‖P
u
f2(x)r2‖)‖∗.

In these inequalities from the definition of the values σ = σ(s) and γ = γ(s)
(see (4.6)),
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λs + µsγ = σ,
µu

λu
+

1
λu
γ = σγ,

so

‖P s
f(x)r1‖ ≤ σγ−1‖(‖P s

xr0‖, ‖Pu
x r0‖)‖∗, (6.11)

‖Pu
f(x)r1‖ ≤ σ‖(‖P s

f(x)r1‖, ‖P
u
f2(x)r2‖)‖∗. (6.12)

Suppose now that the lemma is not true, that is both the inequalities

σ‖(‖P s
xr0‖, ‖Pu

x r0‖)‖∗ < ‖(‖P s
f(x)r1‖, ‖P

u
f(x)r1‖)‖∗, (6.13)

and

σ‖(‖P s
f2(x)r2‖, ‖P

u
f2(x)r2‖)‖∗ < ‖(‖P s

f(x)r1‖, ‖P
u
f(x)r1‖)‖∗ (6.14)

are true. Then inequalities (6.11) and (6.13) imply that the strict inequality

γ‖P s
f(x)r1‖ < ‖(‖P s

f(x)r1‖, ‖P
u
f(x)r1‖)‖∗ (6.15)

is valid1 from which, in view of inequality σ = σ(s) < 1, we get

σγ‖P s
f(x)r1‖ < ‖(‖P s

f(x)r1‖, ‖P
u
f(x)r1‖)‖∗

The last inequality together with (6.14) shows that

σ‖(‖P s
f(x)r1‖, ‖P

u
f2(x)r2‖)‖∗ < ‖(‖P s

f(x)r1‖, ‖P
u
f(x)r1‖)‖∗,

and by (6.12) the strict inequality

‖Pu
f(x)r1‖ < ‖(‖P s

f(x)r1‖, ‖P
u
f(x)r1‖)‖∗ (6.16)

is valid2.
Now, by definition of the norm ‖ · ‖∗, the inequalities (6.15) and (6.16)

imply that

‖(‖P s
f(x)r1‖, ‖P

u
f(x)r1‖)‖∗ < ‖(‖P s

f(x)r1‖, ‖P
u
f(x)r1‖)‖∗,

which is a contradiction and so lemma is proved. ut

To complete the proof of Theorem 6.5 consider two trajectories

x =
{
x−n− , . . . , x0, . . . , xn+

}
, y =

{
y−n− , . . . , y0, . . . , yn+

}
satisfying x ⊆ K,y ⊆ X and ‖yn − xn‖ ≤ ξ for n = −n−, . . . , n+ and write

rn := xn − yn, νn := ‖(‖P s
f(xn)rn‖, ‖P

u
f(xn)rn‖)‖∗ (6.17)

1 The analogous nonstrict inequality is obvious by the definition of the norm ‖ · ‖∗.
2 Again, the analogous nonstrict inequality is obvious by the definition of the norm
‖ · ‖∗.
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for n = −n−, . . . , n+. From Lemma 6.7 it then follows that at least one of the
inequalities

ν−1 ≥ σ−1ν0, ν1 ≥ σ−1ν0

holds.
For definiteness, suppose that ν−1 ≥ σ−1ν0. Then, by Lemma 6.7 again,

at least one of the inequalities

ν−2 ≥ σ−1ν−1, ν0 ≥ σ−1ν−1

holds. But the second of these inequalities can not be valid at the same time
as the inequality ν−1 ≥ σ−1ν0 because of σ < 1. Hence, ν−2 ≥ σ−1ν−1. In the
same way it can be shown that

νn−1 ≥ σ−1νn, for n = −n− + 1, . . . ,−1, 0,

and hence that

νn ≥ σ−nν0, for n = −n− + 1, . . . ,−1.

Recalling definition (6.17) of the νn and using Lemma 6.6 to estimate the
norms ‖xn− yn‖ via νn, we obtain the inequalities (6.7) with constants c and
ξ as in (6.9).

When ν1 ≥ σ−1ν0, the validity of inequalities (6.6) follows analogously.
This completes the proof of Theorem 6.5. ut

Remark 6.8. As mentioned above, condition (6.8) is a weakened version of
Condition SH2(Lip) of Definition 3.6. We will show here that the inequalities
(3.13)–(3.16) of Condition SH2(Lip), namely

‖P s
y (f(x+ u+ v)− f(x+ ũ+ v)‖ ≤ λs‖u− ũ‖, (3.13)

‖P s
y (f(x+ u+ v)− f(x+ u+ ṽ)) ‖ ≤ µs‖v − ṽ‖, (3.14)

‖Pu
y (f(x+ u+ v)− f(x+ ũ+ v)) ‖ ≤ µu‖u− ũ‖, (3.15)

‖Pu
y (f(x+ u+ v)− f(x+ u+ ṽ)) ‖ ≥ λu‖v − ṽ‖, (3.16)

do indeed imply the inequalities (6.8).
Putting y = f(x), u = P sz, v = Puz, ũ = 0 in (3.13) we obtain

‖P s
f(x) (f(x+ z)− f(x+ Puz)) ‖ ≤ λs‖P sz‖,

while putting y = f(x), u = 0, v = Puz, ṽ = 0 in (3.14) we obtain

‖P s
f(x) (f(x+ Puz)− f(x)) ‖ ≤ µs‖Puz‖,

and the first of inequalities of (6.8) follows immediately.
Similarly, the second of inequalities of (6.8) can be obtained by appropriate

choice of elements u, v, ũ and ṽ in (3.15) and (3.16).
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6.2 Shadowing

The relationship between the behavior of a given (unperturbed) dynamical
system and its perturbed counterparts are also very important for nonsmooth
and nonhomeomorphic systems. For example, a computer simulation of a spe-
cific dynamical system is really only approximation of the given system due
to the finiteness of computer arithmetic and the subsequent round off error: in
particular, computed trajectories are only pseudo-trajectories of the original
system. This relationship is, however, difficult to express in terms of conjugacy,
as it possible for diffeomorphic systems. A convenient and fruitful substitute
for a conjugacy relationship in such situation is provided by bi-shadowing,
in which trajectories and pseudo-trajectories are compared rather than the
mappings themselves.

A typical statement of a problem here can be formulated in the following
general, a somewhat vague form: given a dynamical system

xn+1 = f(xn)

generated by a mapping f on a metric or topological space X, suppose that
the function f can be perturbed at any instant n so that another system

yn+1 = ϕ(n, yn)

is, in fact, observed, where ϕ is close to f and can possibly also vary with n.
Then following Direct Shadowing Problem can be posed: for every trajectory
of every small perturbation ϕ of a given mapping f does there exists a close
trajectory of f? In admitting of non-autonomous perturbations ϕ of the map-
ping f we have a considerably more ‘freedom’. The Direct Shadowing Problem
is usually formulated in terms of relationships between the true trajectories
and pseudo-trajectories of a system f , as in Section 6.2.2.

The Inverse Shadowing Problem is also of interest an every trajectory of a
mapping f be approximated (shadowed) by a trajectory of any perturbation ϕ
of f from a predefined class T ? Here the class of perturbations T is usually
taken to be rather ‘small’ to obtain meaningful and strong results. For ex-
ample, the class T may consist of all continuous autonomous mappings ϕ or
of all (possibly discontinuous) mappings resulting from some approximation
problem or numerical method.

The asymmetrical roles of the classes of perturbations T in each case
should be emphasized, with the class T being as ‘fat’ as possible in Direct
Shadowing and as ‘thin’ as possible in indirect or Inverse Shadowing. In the
direct shadowing of the classical Shadowing Lemma (refer to Chapter 2, The-
orem 2.9) this class T consists of all possible non-autonomous perturbations
of the given system, while in inverse shadowing a natural and convenient class
T consists of trajectories of all continuous mappings ϕ that are sufficiently
close to f .
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6.2.1 Definitions

Consider a mapping f : X 7→ X where X is an open bounded subset of Rd

and let ‖ · ‖ denote a fixed but otherwise arbitrary norm on Rd.

Definition 6.9. A γ-pseudo-trajectory of a dynamical system generated by a
mapping f on X is a sequence y = {yn} ⊂ X with

‖yn+1 − f (yn)‖ ≤ γ, γ > 0, (6.18)

for n = −n−, . . . , 0, . . . , n+ where n± ≤ ∞. The qualifier finite may be ap-
pended when n± <∞ and infinite otherwise.

Clearly, any trajectory (see Definition 6.1) of a system is its 0-pseudo-
trajectory but not every pseudo-trajectory is a trajectory. Pseudo-trajectories
arise naturally due to variety of causes such as to the presence of roundoff error
in computer calculations of trajectories, though accumulated roundoff error
can rapidly destroy any meaningful connection between a computed pseudo-
trajectory and an original trajectory. The concept of shadowing provides a
form of comparison of trajectories and pseudo-trajectories.

Definition 6.10. A trajectory x = {xn} is said to ε-shadow a γ-pseudo-
trajectory y = {yn} on some contiguous (finite or infinite) set I ⊆ Z of
indices3 if

‖xn − yn‖ ≤ ε, n ∈ I.

The gist of a Shadowing Theorem (cf. Theorem 2.9) is that, under certain
assumptions on f such as hyperbolicity, for every ε > 0 there exists a δ =
δ(ε) > 0 such that each δ-pseudo-trajectory is ε-shadowed by a true trajectory.
This is what is meant by specifying direct shadowing.

6.2.2 Direct Shadowing

The proof of the Shadowing Theorem for hyperbolic diffeomorphisms does
not require the full structure of hyperbolicity. The theorem stated and proved
below establishes the same result for differentiable semi-hyperbolic mappings.
The proof is not only much shorter in the differentiable semi-hyperbolic case
than for hyperbolic case, but is more general.

Theorem 6.11. Let f : X 7→ X be differentiable and semi-hyperbolic (in the
sense of Definition 3.5) on an open bounded set X ⊂ Rd with Dfx continuous
on X.4 Then for every sufficiently small ε > 0 there exists a δ = δ(ε) > 0
such that every δ-pseudo-trajectory y = {yn} of f is ε-shadowed by a true
trajectory x = {xn}.
3 Without loss of generality that the set I is one of the follows intervals: I = [0, N ]

or I = (−∞, 0] or I = [0,∞) or I = (−∞,∞).
4 The continuity of Dfx for x ∈ X is needed only to ensure uniform continuity of

Dfx.
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Proof. The proof adapts and slightly simplifies those in [15] and [17]. Let
y = {yn} be a δ-pseudo-trajectory of f defined over some integer interval I of
indices. Define the nonlinear mapping F : X 7→ Y by

(F (x))n = xn+1 − f(xn), n ∈ I, (6.19)

where x = {xn} ∈ X and spaces X and Y are as follows

X = `∞([0, N + 1],Rd), Y = `∞([1, N + 1],Rd), if I = [0, N ],

X = `∞((−∞, 1],Rd), Y = `∞((−∞, 1],Rd), if I = (−∞, 0],

X = `∞([0,∞),Rd), Y = `∞([1,∞),Rd), if I = [0,∞),

X = `∞((−∞,∞),Rd), Y = `∞((−∞,∞),Rd), if I = (−∞,∞).

Then F is C1 with Fréchet derivative

(DF (x)u)n = un+1 −Dfxnun.

Let ω(t) where t ≥ 0 be the modulus of continuity of Df over X, that is

ω(t) = sup
{
‖Dfy −Dfx‖ : x, y ∈ X, ‖y − x‖ ≤ t

}
,

and note that ω(t) → 0+ as t → 0+ by the continuity of Dfx on the set X.
Define ε0 to be the largest positive number less than or equal to ε such that
ω(ε0) ≤ 1/(2α(s, h)), where

α(s, h) :=
h

ν(s)
=

λu − λs + µs + µu

(1− λs)(λu − 1)− µsµu
h.

Here ν(s) is the constant (3.3). Note that the sequence of matrices {Dfxn
} is

semi-hyperbolic on account of the semi-hyperbolicity of the mapping f . The
derivative DF (x) thus has a right inverse DF (x)−1 which satisfies

∥∥DF (x)−1
∥∥
∞ ≤ h

ν(s)
= α(s, h).

Choose δ = δ(ε) = ε0/(2α(s, h)). Now, if y is the δ-pseudo-trajectory sequence
and x is any `∞(I,Rd) sequence satisfying ‖x− y‖∞ ≤ ε0, then

‖DF (x)−DF (y)‖∞ ≤ sup
n
‖Dfxn

−Dfyn
‖

≤ ω(ε0) ≤
1

2α(s, h)
≤ 1

2 ‖DF (y)−1‖∞
.

To complete the proof we need the following fixed point lemma due to
Chow, Lin and Palmer [15].
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Lemma 6.12. Let X ,Y be Banach spaces5 and F : X 7→ Y be a C1 map.
Let y ∈ X be a point such that DF (y)−1 is a bounded linear right inverse of
DF (y) and let ε0 > 0 be chosen so that

‖DF (x)−DF (y)‖ ≤ 1
2‖DF (y)−1‖

(6.20)

for ‖x− y‖ ≤ ε0. If 0 < ε ≤ ε0 and

‖F (y)‖ ≤ ε

2‖DF (y)−1‖

then the equation F (x) = 0 has a unique solution x such that ‖x− y‖ ≤ ε.

Proof. We write

F (x) = F (y) +DF (y)(x− y) + η(x).

For ‖x1 − y‖, ‖x1 − y‖ ≤ ε0 by (6.20) we have

‖η(x1)− η(x2)‖ = ‖F (x1)−F (x2)−DF (y)(x1 − x2)‖

≤

∥∥∥∥∥∥
1∫

0

(DF (x2 + θ(x1 − x2))−DF (y)) dθ

∥∥∥∥∥∥ · ‖x1 − x2‖

≤ ‖x1 − x2‖
2‖DF (y)−1‖

. (6.21)

We can rewrite the equation F (x) = 0 as

x = y −DF (y)−1 {F (y) + η(x)} := T (x).

For 0 < ε ≤ ε0, we define B(ε, y) = {x ∈ X : ‖x− y‖ ≤ ε} and show that T
is a contraction on B(ε, y). The lemma will then follow immediately from the
Banach Contraction Mapping Theorem.

Note first that if x ∈ B(ε, y) then

‖T (x)− y‖ = ‖DF (y)−1 {F (y) + η(x)} ‖

≤
∥∥DF (y)−1

∥∥{ ε

2‖DF (y)−1‖
+

‖x1 − x2‖
2‖DF (y)−1‖

}
=
ε

2
+
‖x1 − x2‖

2
≤ ε

2
+
ε

2
= ε,

where we have used (6.20) and (6.21) with x1 = x, x2 = y. Hence T maps
B(ε, y) into itself. Moreover if x1, x2 ∈ B(ε, y) then, using (6.21),

5 The norms in X and Y for the simplicity will be denoted by the same symbol
‖ · ‖.
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‖T (x1)− T (x2)‖ = ‖DF (y)−1 {η(x1)− η(x2)} ‖

≤
∥∥DF (y)−1

∥∥ ‖x1 − x2‖
2‖DF (y)−1‖

=
‖x1 − x2‖

2
.

Thus T is indeed a contraction on B(ε, y) and the proof of Lemma 6.12 is
completed. ut

We now apply Lemma 6.12 to the mapping F : X 7→ Y defined in
(6.19), with the Banach spaces X and Y introduced above and endowed
with the norm ‖ · ‖∞. Then the equation F (x) = 0 has a unique solution
x ∈ X satisfying ‖x − y‖∞ ≤ ε. That is, the δ-pseudo-trajectory y = {yn}
is ε-shadowed by the true trajectory x = {xn}. This completes the proof of
Theorem 6.11. ut

6.2.3 Inverse Shadowing

As a distance between the mappings f, ϕ : Rd 7→ Rd consider the semi-norm6

‖f − ϕ‖∞ = sup
x∈Rd

‖f(x)− ϕ(x)‖.

Definition 6.13. A finite trajectory x = {x0, x1, . . . , xN} of a mapping f is
called α-robust for some positive number α if there exists an ε0 > 0 such that
any continuous mapping ϕ : Rd 7→ Rd satisfying

‖f − ϕ‖∞ ≤ ε0

has at least one trajectory y = {y0, y1, . . . , yN} such that

‖yn − xn‖ ≤ α‖f − ϕ‖∞, n = 0, 1, . . . , N. (6.22)

This is a form of inverse shadowing where the reference class T is the space
of all continuous mappings on X.

Remark 6.14. The key condition in Definition 6.13 is the existence of α in-
dependent of the length of the given trajectory. The estimates (6.22) can be
obtained easily if α is allowed to depend on the length of the trajectory. For
example, any trajectory x is (1 + L + · · · + LN )−robust if the mapping f
is Lipschitz with Lipschitz constant L in a neighborhood of the trajectory
x. Indeed, in this case, for a given trajectory x of the mapping f and for a
trajectory y of a mapping ϕ satisfying y0 = x0 we have

‖yn+1 − yn+1‖ = ‖ϕ(yn)− f(xn)‖
≤ ‖ϕ(yn)− f(yn)‖+ ‖f(yn)− f(xn)‖

≤ ‖f − ϕ‖∞ + L‖yn − xn‖
6 It not a norm because it may take infinite values.
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from which immediately follows the estimate

‖yn − xn‖ ≤ (1 + L+ · · ·+ Ln)‖f − ϕ‖∞, n = 1, 2, . . . , N.

Thus, any trajectory x = {x0, x1, . . . , xN} of the mapping f is αN -robust
with αN = (1 + L+ · · ·+ LN ).

As the next theorem shows, semi-hyperbolicity allows the robustness con-
stant α to be chosen independently of the particular trajectory and its length
N , uniformly throughout the domain of semi-hyperbolicity X.

Theorem 6.15. Let f : X 7→ X be differentiable and (s, h)-semi-hyperbolic
on an open set X ⊆ Rd. Then every finite trajectory x ⊂ X is α-robust for
any

α > α(s, h) :=
λu − λs + µs + µu

(1− λs)(λu − 1)− µsµu
h, (6.23)

where λu, λs, µu, µs are the parameters of the split s = (λu, λs, µu, µs).

Proof. Denote by B the space of (N + 1)-sequences

z = {z0, z1, . . . , zN}, zn ∈ Rd, n = 0, 1, . . . , N,

satisfying boundary conditions

P s
x0
z0 = Pu

xN
zN = 0. (6.24)

The set B can be regarded as a subspace of the (N + 1)d-dimensional vector
space Rd × . . .× Rd (N + 1 times) with the norm

‖z‖∞ = max
0≤n≤N

‖zn‖.

Let ϕ : Rd 7→ Rd be a given mapping and x = {x0, x1, . . . , xN} be a given
trajectory of the mapping f . Introduce the linear operator Un : Eu

xn−1
7→

Eu
xn

defined by Unv = Pu
xn
Dfxn−1v. This operator is surjective on account

of inequality (3.12) from Definition 3.5 and so is invertible, i.e. U−1
n is well

defined.
Consider now an operator H : B 7→ B, which transforms every sequence

z = {z0, z1, . . . , zN} into a sequence w = {w0, w1, . . . , wN} defined by the
boundary conditions

P s
x0
w0 = Pu

xN
wN = 0

(see (6.24)) and by the relations

P s
xn
wn = P s

xn
(ϕ(xn−1 + zn−1)− xn),

Pu
xn−1

wn−1 = U−1
n (Pu

xn
zn − Pu

xn
Dfxn−1P

s
xn−1

zn−1+

+ Pu
xn

(−ϕ(xn−1 + zn−1) + xn +Dfxn−1zn−1)),

for n = 1, 2, . . . , N . The necessity of introducing the operator H is explained
by the next lemma, proof of which is obvious.
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Lemma 6.16. The operator H is continuous, and for any of its fixed point
z = {z0, z1, . . . , zN} the sequence

y = {x0 + z0, x1 + z1, . . . , xN + zN}

is a trajectory of the mapping ϕ.

We require some more notation and definitions. Given β > 0, denote by
δβ(ε) the largest positive value δ such that

‖xn +Dfxn−1z − f(xn−1 + z)‖ ≤ βε, n = 1, 2, . . . , N,

for any ‖z‖ ≤ δ. For each z ∈ B define the pair of real numbers

ms(z) = max
0≤n≤N

‖P s
xn
zn‖, mu(z) = max

0≤n≤N
‖Pu

xn
zn‖,

and denote by m(z) the 2-dimensional column vector with components ms(z)
and mu(z). Let M = M(s) be the split matrix (4.2) and define the column
vector

h = h(1, λ−1
u )T .

Lemma 6.17. Let β > 0. Then the coordinate-wise inequality

m(H (z)) ≤Mm(z) + (1 + β)‖f − ϕ‖∞h

is valid for every continuous mapping ϕ and every z from the set

W = {z ∈ B : ‖z‖∞ ≤ δβ(‖f − ϕ‖∞)} .

Proof. We estimate first the value of ms(H (z)). By definition

ms(H (z)) = max
0≤n≤N

‖vs
n‖, (6.25)

where
vs

n = P s
xn

(ϕ(xn−1 + zn−1)− xn) .

Rewrite this as
vs

n = I1 + I2 + I3 + I4, (6.26)

where

I1 = P s
xn
Dfxn−1P

s
xn−1

zn−1,

I2 = P s
xn
Dfxn−1P

u
xn−1

zn−1,

I3 = P s
xn

(ϕ(xn−1 + zn−1)− f(xn−1 + zn−1)),
I4 = P s

xn
(f(xn−1 + zn−1)− (f(xn−1) +Dfxn−1zn−1)).

From (3.9),
‖I1‖ ≤ λs‖P s

xn−1
zn−1‖, (6.27)
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while from (3.10),
‖I2‖ ≤ µs‖Pu

xn−1
zn−1‖.

Condition SH1(Lip) of Definition 3.6 implies that

‖I3‖ ≤ h‖f − ϕ‖∞.

Finally, Condition SH1(Lip) of Definition 3.6 and the definition of the function
δβ(ε) imply that

‖I4‖ ≤ hβ‖f − ϕ‖∞. (6.28)

From (6.26) and (6.27)–(6.28) it then follows that

‖vs
n‖ ≤ λs‖P s

xn−1
zn−1‖+ µs‖Pu

xn−1
zn−1‖+ (1 + β)‖f − ϕ‖∞h,

and by (6.25)

ms(H (z)) ≤ λsm
s(z) + µsm

s(z) + (1 + β)‖f − ϕ‖∞h. (6.29)

We now estimate the value of mu(H (z)). By definition,

mu(H (z)) = max
0≤n≤N

‖vu
n‖, (6.30)

where

vu
n−1 = U−1

n (Pu
xn
zn − Pu

xn
Dfxn−1P

s
xn−1

zn−1

+ Pu
xn

(−ϕ(xn−1 + zn−1) + f(xn−1) +Dfxn−1zn−1)).

Rewrite this as
vu

n−1 = U−1
n (J1 + J2 + J3 + J4), (6.31)

where

J1 = Pu
xn
zn, (6.32)

J2 = −Pu
xn
Dfxn−1P

s
xn−1

zn−1, (6.33)

J3 = Pu
xn

(−ϕ(xn−1 + zn−1) + f(xn−1 + zn−1), (6.34)
J4 = −f(xn−1 + zn−1) + (f(xn−1) +Dfxn−1zn−1). (6.35)

The relations (3.12) and (6.32) imply that

‖U−1
n J1‖ ≤ λ−1

u ‖Pu
xn
zn‖, (6.36)

while (3.11), (3.12) and (6.33) imply that

‖U−1
n J2‖ ≤ λ−1

u µu‖P s
xn−1

zn−1‖.

In addition, (3.12), (6.34) and Condition SH1(Lip) from Definition 3.6 give

‖U−1
n J3‖ ≤ λ−1

u h‖f − ϕ‖∞.
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Finally, (3.12), (6.35), Condition SH1(Lip) from Definition 3.6 and the defi-
nition of the function δβ(ε) imply that

‖U−1
n J4‖ ≤ λ−1

u hβ‖f − ϕ‖∞. (6.37)

From (6.31) and (6.36)–(6.37) it thus follows that

‖vu
n−1‖ ≤ λ−1

u

(
‖Pu

xn
zn‖+ µu‖P s

xn−1
zn−1‖+ (1 + β)‖f − ϕ‖∞h

)
,

so by (6.30)

mu(H (z)) ≤ λ−1
u (mu(z) + µum

s(z) + (1 + β)‖f − ϕ‖∞h) . (6.38)

Inequalities (6.29) and (6.38) are equivalent to the assertion of the lemma.
ut

Let us now return to the proof of Theorem 6.15. Without loss of generality
we can assume that the split s = (λs, λu, µs, µu) is positive, i.e. all of the
numbers λs, λu, µs, µu are positive. We recall from Section 4.1 that σ(M) < 1
is the spectral radius (4.3) of the split matrix M and that ‖·‖∗ is the auxiliary
norm on R2 defined for a given positive split s by

‖(y1, y2)‖∗ := max{γ|y1|, |y2|}.

with γ = γ(s) > 0 given by (4.5).
Choose any fixed number α > α(s, h), with α(s, h) defined by (6.23), write

β =
α

α(s, h)
− 1,

and consider the convex set

V =
{

z : ‖m(z)‖∗ ≤
1 + β

1− σ(M)
‖h‖∗‖f − ϕ‖∞

}
,

which is well defined since σ(M) < 1.

Lemma 6.18. There exists an ε0 > 0 such that for

‖f − ϕ‖∞ ≤ ε0 (6.39)

the inclusion V ⊆ W is valid.

Proof. We show first that
V ⊆ V +, (6.40)

where

V + =
{

z : ‖z‖∞ ≤ 2
1 + β

1− σ(M)
max{γ−1, 1}‖h‖∗‖f − ϕ‖∞

}
.
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Indeed, by definition

‖m(z)‖∗ = max
{
γ max

0≤n≤N
‖P s

xn
zn‖, max

0≤n≤N
‖Pu

xn
zn‖
}

= max
0≤n≤N

max
{
γ‖P s

xn
zn‖, ‖Pu

xn
zn‖
}

= max
0≤n≤N

‖(‖P s
xn
zn‖, ‖Pu

xn
zn‖)‖∗,

and then by Lemma 6.6

‖m(z)‖∗ ≥
1
2

min{γ, 1} max
0≤n≤N

‖zn‖ =
1
2

min{γ, 1}‖z‖∞.

The inclusion (6.40) then follows from the last inequality.
Now, by definition of the differential of a mapping,

lim inf
ε→0+

δβ(ε)
ε

= ∞

and thus a number ε0 > 0 can be chosen such that

2
1 + β

1− σ(M)
max{γ−1, 1}‖h‖∗ε ≤ δβ(ε) for ε ≤ ε0.

Hence, for f and ϕ satisfying (6.39) the inclusion V + ⊆ W holds, and thus
by (6.40), V ⊆ W . The lemma is proved. ut

Let us now complete the proof of Theorem 6.15. Choose ε0 > 0 as in
Lemma 6.18. Then V ⊆ W and for any vector z ∈ V by Lemma 6.17 the
coordinate-wise inequality

m(H (z)) ≤Mm(z) + (1 + β)‖f − ϕ‖∞h

is valid. Hence, in view of positivity of the components of the matrix M ,

‖m(H (z))‖∗ ≤ ‖Mm(z)‖∗ + (1 + β)‖f − ϕ‖∞‖h‖∗.

Recall from Section 4.1 that the corresponding matrix norm ‖M‖∗ of the
matrix M coincides with the spectral radius σ(M) < 1 of M and that
‖My‖∗ ≤ σ(M)‖y‖∗ for all y ∈ R2. Hence

‖m(H (z))‖∗ ≤ σ(M)‖m(z)‖∗ + (1 + β)‖f − ϕ‖∞‖h‖∗

and by definition of the set V we obtain that

H (z) ∈ V for z ∈ V ,

that is, the set V is invariant under the operator H . Then, from continuity
of H (see Lemma 6.16) and Schauder Fixed Point Theorem, there exists a
point z∗ satisfying H (z∗) = z∗ such that
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z∗ ∈ V ⊆ W .

This inclusion and Lemma 6.17 imply that

m(z∗) = m(H (z∗)) ≤Mm(z∗) + (1 + β)‖f − ϕ‖∞h.

Hence, by positivity of the components of the matrix M , we have

m(z∗) ≤ (1 + β)‖f − ϕ‖∞(I −M)−1h =
α‖f − ϕ‖∞
α(s, h)

(I −M)−1h,

from which

max
0≤n≤N

‖z∗n‖ ≤ ms(z∗) +mu(z∗) ≤ α‖f − ϕ‖∞

(see the proof of Lemma 4.2 for additional details). By Lemma 6.16 and by
the last estimate, for any continuous mapping ϕ satisfying ‖f − ϕ‖∞ ≤ ε0
the sequence {x0 + z∗0 , x1 + z∗0 , . . ., xN + z∗N} is a finite trajectory of ϕ and
satisfies (6.22). That is, the trajectory x = {x0, x1, . . . , xN} is α-robust and
Theorem 6.15 is proved. ut

6.3 Bi-Shadowing

The concept of ε-shadowing as in Definition 6.10 and α-robustness as in Def-
inition 6.13 allow us to obtain useful information about perturbations of a
given system via Theorems 6.11 and 6.15. Their practical utility is somewhat
limited by their existential rather than constructive character. A unifying ap-
proach for investigating both direct and inverse shadowing is provided by the
concept of bi-shadowing which has the added advantage of providing explicit
values of the parameters involved.

Let Tr(f,K, γ) denote the totality of finite or infinite γ-pseudo-trajectories
(6.18) of f belonging entirely to the subset K ⊆ X. Since a true trajectory
can be regarded as a γ-pseudo-trajectory for any γ ≥ 0, in particular with
γ = 0 itself, it makes sense to denote the corresponding set of true trajectories
by Tr(f,K, 0) or simply by Tr(f,K). Obviously Tr(f,K) ⊂ Tr(f,K, γ), with
strict inclusion as there are γ-pseudo-trajectories which are not trajectories.

As a distance between mappings ϕ and f on X we consider the semi-norm

‖ϕ− f‖∞ = sup
x∈X

‖ϕ(x)− f(x)‖.

Definition 6.19. A dynamical system generated by a mapping f : X 7→ X
is said to be bi-shadowing on a subset K of X with positive parameters α
and β if for any given finite pseudo-trajectory x = {xn} ∈ Tr(f,K, γ) with
0 ≤ γ ≤ β and any mapping ϕ : X 7→ X satisfying

‖ϕ− f‖∞ ≤ β − γ (6.41)
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there exists a trajectory y = {yn} ∈ Tr(ϕ,X) such that

‖xn − yn‖ ≤ α(γ + ‖ϕ− f‖∞) (6.42)

for all n for which y is defined.

Remark 6.20. Bi-shadowing conceptualizes the robustness of observed dynam-
ical behavior of a dynamical system and its perturbations such as from com-
puter simulations. It can also be interpreted as a form of dynamical structural
stability when restricted to specific classes of mappings, such as continuous
mappings. Moreover, it implies both the direct shadowing and the inverse
shadowing properties (in the form of α-robustness) discussed above: taking
ϕ ≡ f in (6.41) and (6.42) gives αγ-shadowing of any γ-pseudo-trajectory
x ∈ Tr(f,K, γ) by a true trajectory y ∈ Tr(f,K), while α-robustness of
any trajectory x of f follows because a trajectory y ∈ Tr(ϕ,X) can always
be found which α‖ϕ − f‖∞-shadows a given true trajectory x ∈ Tr(f,K),
considered here as the γ-pseudo-trajectory with γ = 0.

6.3.1 Bi-Shadowing of Finite Trajectories

The main result of this section is that semi-hyperbolicity is sufficient to ensure
bi-shadowing of a dynamical system generated by a Lipschitz mapping with
respect to a class of perturbed systems generated by continuous mappings.
It not only generalizes existing variants of the Shadowing Lemma to a far
broader class of systems, but includes inverse as well as direct shadowing and
provides explicit values of the shadowing parameters.

Theorem 6.21. Let f : X 7→ X be a Lipschitz mapping which is semi-hyper-
bolic on a compact subset K ⊂ X with a split s and constants h, δ (see Defini-
tion 3.6). Then it is bi-shadowing on K with respect to continuous mappings
ϕ : X 7→ X with parameters α = α(s, h) and β = β(s, h, δ) defined by

α(s, h) := h
λu − λs + µs + µu

(1− λs)(λu − 1)− µsµu
(6.43)

and

β(s, h, δ) := δh−1 (1− λs)(λu − 1)− µsµu

max{λu − 1 + µs, 1− λs + µu}
. (6.44)

Proof. We begin with an auxiliary fact. Denote by Bu
x (r) the closed ball of

the radius r centered at 0 in the linear space Eu
x . For each x, y ∈ K with

‖f(x)− y‖ ≤ δ and each z ∈ Rd satisfying ‖P s
xz‖ ≤ δ introduce the mapping

Fx,y,z : Bu
x (δ) 7→ Eu

y by the equality

Fx,y,z(v) = Pu
y (f(x+ P s

xz + v)− f(x+ P s
xz)) .

Lemma 6.22. Let 0 ≤ r ≤ δ. Then Bu
y (λur) ⊆ Fx,y,z (Bu

x (r)).
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Proof. The assertion of lemma is evident for r = 0, so consider the case r > 0.
Denote by ∂Bu

x (r) and IntBu
x (r) the boundary and the interior of the ball

Bu
x (r). Clearly,

Fx,y,z(0) = Pu
y (f(x+ P s

xz)− f(x+ P s
xz)) = 0 ∈ IntBu

y (λur). (6.45)

On the other hand, by inequality (3.16)

‖Fx,y,z(v)− Fx,y,z(ṽ)‖ ≥ λu‖v − ṽ‖ for v, ṽ ∈ Eu
x , ‖v‖, ‖ṽ‖ ≤ δ. (6.46)

In particular, from (6.46) we get

‖Fx,y,z(v)‖ ≥ λur for v ∈ Eu
x , ‖v‖ = r ≤ δ,

which shows that

Fx,y,z(∂Bu
x (r)) ∩ IntBu

y (λur) = ∅. (6.47)

By Condition SH0(Lip) of Definition 3.6 dimensions of linear spaces Eu
x and

Eu
y coincide for any x, y ∈ K with ‖f(x) − y‖ ≤ δ. Therefore, by (6.46), the

mapping Fx,y,z(v) is homeomorphic on the ball Bu
x (r) with 0 < r ≤ δ. Hence

by the Principle of Domain Invariance [1, p. 396] the image of the boundary
∂Bu

x (r) of the ball Bu
x (r) under the map Fx,y,z(v) coincides with the boundary

∂Fx,y,z(Bu
x (r)) of the set Fx,y,z(Bu

x (r)), i.e.

Fx,y,z(∂Bu
x (r)) = ∂Fx,y,z(Bu

x (r)).

By (6.47) the latter equality implies

∂Fx,y,z(Bu
x (r)) ∩ IntBu

y (λur) = ∅.

This, together with (6.45), implies the required inclusion

Bu
y (λur) ⊆ Fx,y,z(Bu

x (r))

and the lemma is proved. ut

As an immediate consequence of Lemma 6.22 and inequality (3.16) we
have

Lemma 6.23. Let x, y ∈ K and ‖f(x)− y‖ ≤ δ. Then the operator Qx,y,z =
F−1

x,y,z is well defined and continuous on Bu
y (λuδ) and satisfies the estimate

‖Qx,y,z(v)‖ ≤ λ−1
u ‖v‖.

Denote, as in the proof of Theorem 6.11, by B the space of (N + 1)-
sequences

z = {z0, z1, . . . , zN}, zn ∈ Rd, n = 0, 1, . . . , N.
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The set B can be regarded as an (N + 1)d-dimensional vector space Rd ×
· · · × Rd (N + 1 times), with the norm

‖z‖∞ = max
0≤n≤N

‖zn‖.

Let x = {x0, x1, . . . , xN} be a given γ-pseudo-trajectory of the system f and
let ϕ be a given continuous mapping such that

β = γ + ‖f − ϕ‖∞ (6.48)

satisfies the inequality
β ≤ β(s, h, δ) (6.49)

with β(s, h, δ) as in (6.44).
Introduce an operator H : B 7→ B which transforms the sequence z =

{z0, z1, . . . , zN} ∈ B into the sequence w = {w0, w1, . . . , wN} ∈ B defined by
the relations

P s
x0
w0 = 0 (6.50)

and
P s

xn
wn = P s

xn
(ϕ(xn−1 + zn−1)− xn) (6.51)

for n = 1, 2, . . . , N , and by the relations

Pu
xN
wN = 0 (6.52)

and

Pu
xn−1

wn−1 = Qxn−1,xn,zn−1(P
u
xn

(−ϕ(xn−1 + zn−1)

+ f(xn−1 + zn−1) + xn

− f(xn−1 + P s
xn−1

zn−1) + zn)) (6.53)

for n = 1, 2, . . . , N .
Define an auxiliary parameters a and b as the coordinates of the two-

dimensional vector

(a, b)T = (I −M(s))−1h, with h = h(1, λ−1
u )T , (6.54)

where M(s) is the 2× 2 split matrix given by (4.2). Explicitly, we have

a =
λu − 1 + µs

(1− λs)(λu − 1)− µsµu
h, (6.55)

b =
1− λs + µu

(1− λs)(λu − 1)− µsµu
h, (6.56)

and thus
α(s, h) = a+ b, β(s, h, δ) = δmin

{
a−1, b−1

}
. (6.57)
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Consider the set

S (β) = {z ∈ B : ‖P s
xn
zn‖ ≤ aβ, ‖Pu

xn
zn‖ ≤ bβ, 0 ≤ n ≤ N}. (6.58)

By (6.49) and (6.57)

aβ ≤ aβ(s, h, δ) ≤ δ, bβ ≤ bβ(s, h, δ) ≤ δ (6.59)

and so, by inclusion x+u+v ∈ X from Condition SH2(Lip) of Definition 3.6,
trajectories from S (β) belong to X.

Lemma 6.24. The operator H is well defined and continuous on S (β) and
for any of its fixed points z = {z0, z1, . . . , zN} ∈ S (β) the sequence

y = {x0 + z0, x1 + z1, . . . , xN + zN} (6.60)

is a trajectory of the system ϕ.

Proof. We prove first that the operator H is well defined and continuous at
any point z ∈ S (β). It is evident by (6.59) that the right hand side of (6.51)
is meaningful and depends continuously on z ∈ S (β). Hence, we need only
to prove for any n = 1, 2, . . . , N that the right hand side of the equality (6.53)
is meaningful and continuous for z ∈ S (β). By Lemma 6.23 it is sufficient to
establish the inequality

‖Pu
xn

(−ϕ(xn−1 + zn−1) + f(xn−1 + zn−1)
+ xn − f(xn−1 + P s

xn−1
zn−1) + zn)‖ ≤ λuδ.

Rewrite the last inequality in the form

‖J1 + J2 + J3‖ ≤ λuδ,

where

J1 = Pu
xn

(−ϕ(xn−1 + zn−1) + f(xn−1 + zn−1))
+ Pu

xn
(xn − f(xn−1)),

J2 = Pu
xn

(f(xn−1)− f(xn−1 + P s
xn−1

zn−1)),

J3 = Pu
xn
zn.

(6.61)

To estimate ‖J1‖ note that by (6.48)

‖ϕ(xn−1 + zn−1)− f(xn−1 + zn−1)‖ ≤ ‖ϕ− f‖∞ = β − γ

and also that ‖xn − f(xn−1)‖ ≤ γ since x is a γ-pseudo-trajectory of the
mapping f , so by Condition SH1(Lip)

‖J1‖ ≤ βh. (6.62)
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By inequality (3.15),
‖J2‖ ≤ µu‖P s

xn−1
zn−1‖. (6.63)

Clearly
‖J3‖ = ‖Pu

xn
zn‖. (6.64)

On the other hand, by definition (6.58) of the set S (β), inclusion z ∈ S (β)
implies that

‖P s
xn−1

zn−1‖ ≤ βa, ‖Pu
xn
zn‖ ≤ βb. (6.65)

Hence by (6.62)–(6.65)

‖J1 + J2 + J3‖ ≤ ‖J1‖+ ‖J2‖+ ‖J3‖ ≤ β(h+ aµu + b)

so we need to establish the inequality

β(h+ aµu + b) ≤ λuδ. (6.66)

From (6.55) and (6.56) we have h + aµu + b = λub, so (6.66) can be
rewritten as

βλub ≤ λuδ,

but this follows from (6.57). Hence the operator H is well defined and con-
tinuous at any point z ∈ S (β).

It remains to prove that the sequence (6.60) is a trajectory of the system
ϕ provided that z = {z0, z1, . . . , zN} ∈ S (β) is a fixed point of the operator
H . By assumption z is a fixed point of the operator H , so equation (6.51)
can be rewritten as

P s
xn
zn = P s

xn
(ϕ(xn−1 + zn−1)− xn)

which can be rearranged to give

P s
xn

(xn + zn) = P s
xn
ϕ(xn−1 + zn−1). (6.67)

Analogously, equation (6.53) can be rewritten as

Pu
xn−1

zn−1 = Qxn−1,xn,zn−1(P
u
xn

(−ϕ(xn−1 + zn−1)

+ f(xn−1 + zn−1) + xn − f(xn−1 + P s
xn−1

zn−1) + zn)).

Applying the (nonlinear) operator Fxn−1,xn,zn−1 = Q−1
xn−1,xn,zn−1

to both sides
of the last equation we get

Fxn−1,xn,zn−1(P
u
xn−1

zn−1) = Pu
xn

(f(xn−1 + zn−1)

− ϕ(xn−1 + zn−1) + xn − f(xn−1 + P s
xn−1

zn−1) + zn).

By definition of the operator Fx,y,z(v),
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Fxn−1,xn,zn−1(P
u
xn−1

zn−1)

= Pu
xn

(f(xn−1 + P s
xn−1

zn−1 + Pu
xn−1

zn−1)− f(xn−1 + P s
xn−1

zn−1)),

so, by comparing the last two equalities, we obtain

0 = Pu
xn

(zn − ϕ(xn−1 + zn−1) + xn)

or on rearranging

Pu
xn

(xn + zn) = Pu
xn
ϕ(xn−1 + zn−1). (6.68)

From (6.67) and (6.68) it now follows that

xn + zn = ϕ(xn−1 + zn−1), n = 1, 2, . . . , N.

which means that the sequence (6.60) is a trajectory of the system ϕ. The
lemma is proved. ut

Lemma 6.25. The set S (β) is invariant under the operator H .

Proof. Let z ∈ S (β) and write w = H (z), cf. see (6.51) and (6.53). We can
represent (6.51) in the form

P s
xn
wn = I1 + I2

where

I1 = P s
xn

((ϕ(xn−1 + zn−1)− f(xn−1 + zn−1)) + (f(xn−1)− xn)) ,
I2 = P s

xn
(f(xn−1 + zn−1)− f(xn−1)) ,

and rewrite the equality (6.53) in the form

Pu
xn−1

wn−1 = Qxn−1,xn,zn−1(J1 + J2 + J3)

where J1, J2, J3 are defined in (6.61).
To estimate ‖I1‖ note that by (6.48) ‖ϕ − f‖∞ = β − γ and also that

‖xn− f(xn−1)‖ ≤ γ since x is a γ-pseudo-trajectory of the mapping f . Hence

‖ϕ(xn−1 + zn−1)− f(xn−1 + zn−1)‖+ ‖f(xn−1)− xn‖
≤ (β − γ) + γ = β

and by Condition SH1(Lip)
‖I1‖ ≤ hβ. (6.69)

By (3.13), (3.14) and from Condition SH2(Lip)

‖I2‖ ≤ λs‖P s
xn−1

zn−1‖+ µs‖Pu
xn−1

zn−1‖. (6.70)

Now for each z ∈ B, define the pair of real nonnegative numbers
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ms(z) = max
0≤n≤N

‖P s
xn
zn‖, mu(z) = max

0≤n≤N
‖Pu

xn
zn‖,

and denote by m(z) the two-dimensional column vector with coordinates
ms(z) and mu(z). From the estimates (6.69), (6.70) and definition (6.58) of
the set S (β) it follows that

ms(H z) = ms(w) ≤ βh+ βλsa+ βµsb. (6.71)

Analogously, from (6.62)–(6.64), the definition (6.58) of the set S (β) and
Lemma 6.23 it follows that

mu(H z) = mu(w) ≤ λ−1
u (βµua+ βb+ βh). (6.72)

Inequalities (6.71) and (6.72) are equivalent to the coordinate-wise inequality

m(H z) = m(w) ≤ βM(s)(a, b)T + βh, z ∈ S (β), (6.73)

where, in view of (6.54), we have

βM(s)(a, b)T + βh = β(M(s)(I −M(s))−1 + I)h

= β(I −M(s))−1h = β(a, b)T .

Hence, (6.73) is equivalent to the coordinate-wise estimate

m(H z) = m(w) ≤ β(a, b)T , z ∈ S (β),

which, by the definition (6.58) of S (β), means that the set S (β) is invariant
under the operator H . ut

Let us now finish the proof of Theorem 6.21. By Lemma 6.24 the operator
H is continuous on the convex set S (β) and by Lemma 6.25 H (S (β)) ⊆
S (β), so by the Brower Fixed Point Theorem H has a fixed point z =
{z0, z1, . . . , zN} ∈ S (β). Hence, by Lemma 6.24 again, the sequence

y = {x0 + z0, x1 + z1, . . . , xN + zN}

is a trajectory of the mapping ϕ.
By definition (6.58) of the set S (β), the estimates

‖zn‖ ≤ ‖P s
xn
zn‖+ ‖Pu

xn
zn‖ ≤ (a+ b)β, n = 0, 1, . . . , N,

are valid for the fixed point z ∈ S (β) of the operator H . Thus by the
definitions of β and a, b (see (6.48) and (6.57), respectively) we have

‖zn‖ ≤ α(s, h)(γ + ‖ϕ− f‖∞), n = 0, 1, . . . , N,

or

‖xn − yn‖ = ‖zn‖ ≤ α(s, h)(γ + ‖ϕ− f‖∞), n = 0, 1, . . . , N.

Theorem 6.21 is proved. ut



6.3 Bi-Shadowing 97

Remark 6.26. According to Definition 6.19 of bi-shadowing, Theorem 6.21 en-
sures the existence of a trajectory y = {yn} ∈ Tr(ϕ,X), for a given pseudo-
trajectory x = {xn} ∈ Tr(f,K, γ) with 0 ≤ γ ≤ β(s, h, δ) satisfying

‖xn − yn‖ ≤ α(s, h)(γ + ‖ϕ− f‖∞).

Sometimes it is of importance that, in fact, the following inequalities

‖P s
xn

(xn − yn)‖, ‖Pu
xn

(xn − yn)‖ ≤ δ,

also hold. This which follows here from the inclusion yn − xn = zn ∈ S (β),
definition (6.58) of the set S (β) and estimates (6.59) established in the proof
of Theorem 6.21.

6.3.2 Bi-Shadowing of Infinite Trajectories

Assertions on bi-shadowing of infinite trajectories follow from the expansivity
of a semi-hyperbolic Lipschitz mappings and from Theorem 6.21.

Theorem 6.27. Let f : X 7→ X be a Lipschitz mapping which is semi-hyper-
bolic on a compact subset K ⊂ X with a split s and constants h, δ (see Def-
inition 3.6) and let α(s, h) and β(s, h) be given by (6.43) and (6.44). Then
the following statements are valid.

(i) For any infinite pseudo-trajectory x = {xn} ∈ Tr(f,K, γ) and any
continuous mapping ϕ : X 7→ X satisfying ‖ϕ − f‖∞ ≤ β(s, h, δ) − γ there
exists an infinite trajectory y = {yn} ∈ Tr(ϕ,X) such that

‖xn − yn‖ ≤ α(s, h)(γ + ‖ϕ− f‖∞), n ∈ Z.

(ii) For any given infinite pseudo-trajectory x = {xn} ∈ Tr(f,K, γ) with

γ ≤ min {δ/(2hα(s, h)), β(s, h, δ)}

there exists a unique infinite trajectory y = {yn} ∈ Tr(f,X) such that

‖xn − yn‖ ≤ α(s, h)γ, n ∈ Z.

Proof. To prove Assertion (i) we associate with the given γ-pseudo-trajectory
x = {xn} ∈ Tr(f,K, γ) a sequence of finite γ-pseudo-trajectories

x(k) = {x(k)
−k, . . . , x

(k)
0 , . . . , x

(k)
k } ∈ Tr(f,K, γ), k = 1, 2, . . .

with
x(k)

n = xn, n = 0,±1,±2, . . . ,±k.

Then, for a given mapping ϕ satisfying ‖ϕ − f‖∞ ≤ β(s, h, δ) − γ by Theo-
rem 6.21 there exists for any k = 1, 2, . . . a finite trajectory
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y(k) = {y(k)
−k , . . . , y

(k)
0 , . . . , y

(k)
k } ⊆ Tr(ϕ,X)

such that

‖y(k)
n − xn‖ = ‖y(k)

n − x(k)
n ‖ ≤ α(s, h)(γ + ‖ϕ− f‖∞) (6.74)

for n = 0,±1,±2, . . . ,±k. Moreover, by Remark 6.26 the inequalities

‖P s
xn

(y(k)
n − xn)‖ ≤ δ, ‖Pu

xn
(y(k)

n − xn)‖ ≤ δ (6.75)

hold for n = 0,±1,±2, . . . ,±k.
In view of (6.74), for any integer n the sequence {y(k)

n } is bounded and
thus, without loss of generality, we can suppose that it converges to a limit
point element yn, that is y(k)

n → yn as k →∞.
Taking the limit in (6.75) we obtain

‖P s
xn

(yn − xn)‖ ≤ δ, ‖Pu
xn

(yn − xn)‖ ≤ δ,

and so, by the inclusion xn ∈ K and Condition SH2(Lip) of Definition 3.6, we
have

yn ∈ X, n ∈ Z. (6.76)
Taking the limit k →∞ on both sides of

y
(k)
n+1 = ϕ(y(k)

n )

we obtain
yn+1 = ϕ(yn).

Together with (6.76) this means that

y = {yn}∞n=−∞ ∈ Tr(ϕ,X).

Finally, taking the limit k →∞ in (6.74) we conclude that the infinite trajec-
tory y ∈ Tr(ϕ,X) of the system ϕ satisfies

‖xn − yn‖ ≤ α(s, h)(γ + ‖ϕ− f‖∞), n ∈ Z.

This completes the proof of Assertion (i).
To prove Assertion (ii) note first that the existence of an infinite trajectory

y ∈ Tr(f,X) satisfying

‖xn − yn‖ ≤ α(s, h)γ, n ∈ Z.

follows from Assertion (i). To prove the uniqueness of such an infinite tra-
jectory y ∈ Tr(f,X) we use the exponential expansivity of a semi-hyperbolic
mapping established in Theorem 6.5.

Suppose that the statement of Assertion (ii) is not true. Then there exist
trajectories y, ỹ ∈ Tr(f,X) such that

‖yn − xn‖, ‖ỹn − xn‖ ≤ α(s, h)γ, n ∈ Z,

and hence such that

‖yn − ỹn‖ ≤ 2α(s, h)γ ≤ h−1δ, n ∈ Z.

This contradicts Theorem 6.5 and so Assertion (ii) must be true. ut



6.3 Bi-Shadowing 99

6.3.3 Cyclic Bi-Shadowing

Cyclic, or periodic, behavior is often of particular interest in dynamical sys-
tems. Here we show that bi-shadowing is preserved when we restrict attention
to periodic (or cyclic) trajectories.

Definition 6.28. A trajectory x = {xn}N
n=0 ∈ Tr(f,K) is called a cycle

(or periodic trajectory) of period N if xN = x0 and a pseudo-trajectory
y = {yn}N

n=0 ∈ Tr(f,K, γ) is called a γ-pseudo-cycle (or periodic γ-pseudo-
trajectory) of period N if ‖yN − y0‖ ≤ γ.

Let Cyc(f,K, γ) ⊂ Tr(f,K, γ) denote the totality of γ-pseudo-cycles of any
period belonging entirely to the subset K of X, with Cyc(f,K, 0) ⊂ Tr(f,K)
or Cyc(f,K) ⊂ Tr(f,K) denoting the totality of proper cycles of any period
which are contained entirely in K. Obviously Cyc(f,K) ⊂ Cyc(f,K, γ) for
every γ > 0.

A counterpart of bi-shadowing for cycles and pseudo-cycles is also useful.

Definition 6.29. A dynamical system generated by a mapping f : X 7→ X
is said to be cyclically bi-shadowing with positive parameters α and β on a
subset K of X if for any given pseudo-cycle x ∈ Cyc(f,K, γ) with 0 ≤ γ ≤ β
and any mapping ϕ : X 7→ X satisfying (6.41) there exists a proper cycle
y ∈ Cyc(ϕ,X) of period N equal to that of x such that (6.42) holds for
n = 0, 1, . . . , N .

Note that the cycle y in Definition 6.29 is required only to be in X rather
than in the subset K. Cyclic bi-shadowing is also a consequence of semi-hyper-
bolicity.

Theorem 6.30. Let f : X 7→ X be a Lipschitz mapping which is semi-
hyperbolic on a compact subset K ⊆ X with a split s and constants h, δ.
Then it is cyclically bi-shadowing on K with respect to continuous mappings
ϕ : X 7→ X with parameters α(s, h) and β(s, h, δ) given by (6.43) and (6.44).

The proof repeats verbatim that of Theorem 6.21 with the following two
minor modifications.

First, the boundary conditions

P s
x0

(w0) = P s
xN

(wN ), Pu
xN

(wN ) = Pu
x0

(w0)

should be used instead of (6.50) and (6.52) in the definition of the operator
H .

Second, in the proof the following ‘cyclic’ analog of Lemma 6.24 should be
used.

Lemma 6.31. The operator H is well defined and continuous on S (β), and
for any of its fixed points z = {z0, z1, . . . , zN} ∈ S (β) the sequence

y = {x0 + z0, x1 + z1, . . . , xN + zN}

is a cycle of the system ϕ.





7

Structural Stability

In this Chapter we consider properties of semi-hyperbolic mappings which can
be conditionally qualified as structure-stability-properties. More precisely, it
will be shown that topological entropy can only increase following to contin-
uous perturbation of a Lipschitz semi-hyperbolic mapping. Then problems of
conjugation and factorization of semi-hyperbolic mappings will be studied.
And, at last, investigation of chaotic phenomena for semi-hyperbolic map-
pings will be discussed. Throughout the Chapter ‖ · ‖ will denote a fixed but
otherwise arbitrary norm on Rd.

7.1 Topological Entropy

Let throughout this Section X ⊆ Rd be an open and K ⊂ X be a compact
subset of X. By hε(f,K) and h(f,K) it will be denoted the ε-entropy and
entropy of the mapping f as they are defined in Definition 2.12.

It was seen in Chapter 6 that semi-hyperbolic mappings are expansive.
The following lemma on connection between ε-entropy and entropy of expan-
sive mappings, essentially well known [53], and is quite useful sometimes as
provides a method for calculation of the entropy.

Lemma 7.1. Let K ⊂ Rd be a compact set and f : K 7→ K be a continuous
ξ-expansive mapping with f(K) = K. Then

h(f,K) = hθ(f,K)

holds for every θ < ξ.

Proof. Fix θ with 0 < θ < ξ. As was remarked in footnote on the page 16,
hε(f,K) is non-increasing in ε, then

h(f,K) = sup
ε>0

hε(f,K)
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and by Definition 2.12 of topological entropy it suffices to prove that

hε(f,K) ≤ hθ(f,K) (7.1)

for ε > 0 sufficiently small. From Lemma 6.2 it follows the existence of such
a κ(ε, θ) for which the inequality

%N (x, x̃) ≥ ε for x, x̃ ∈ Tr
±(N+κ(ε,θ))

(f,K)

implies that %N+κ(ε,θ)(x, x̃) ≥ θ for any positive integer N . At the same
time, in view of the equality f(K) = K each trajectory x ∈ Tr±N (f,K) can
be extended to some trajectory in Tr±(N+κ(ε,θ))(f,K). Hence1

Cε(Tr
±N

(f,K)) ≤ Cθ( Tr
±(N+κ(ε,θ))

(f,K))

from which by Definition 2.12 immediately follows the inequality (7.1). ut

A rich theory of topological entropy has been developed for hyperbolic
mappings (cf. [53] and the references therein) and many of the results remain
valid for semi-hyperbolic mappings too. The following theorem is illustrative
of such possible generalizations.

Theorem 7.2. Let X ⊆ Rd be an open set and f : X 7→ Rd be a Lips-
chitz mapping which is continuously s-semi-hyperbolic with constants h, δ on
a compact invariant set f(K) = K ⊂ X. Then

h(g,Oδ/2h(K)) ≥ h(f,K)

for each continuous mapping g : X 7→ X satisfying

‖g − f‖C <
δ

2hα(s, h)
,

where α(s, h) is defined by (6.43).

Proof. Given mappings f and g, choose real θ satisfying

2α(s, h)‖g − f‖C < θ < h−1δ,

where α(s, h) is defined by (6.43).
By Theorem 6.5 the mapping f is ξ-expansive in K with the expansivity

constant ξ = h−1δ, and then, by Lemma 7.1, h(f,K) = hθ(f,K). By Defi-
nition 2.12 of topological entropy hσ(g,Oδ/2h(K)) ≤ h(g,Oδ/2h(K)) for any

1 Remind, that the value Cε(Tr±N (f, K)) is defined in Section 2.2.4 as the binary
logarithm of maximal number of elements x(1), . . . , x(p) in Tr±N (f, K) such that
%N (x(i), x(j)) ≥ ε for all i 6= j.
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σ > 0. Hence, to complete the proof of the theorem it remains only to prove
the middle inequality in the following relations

h(f,K) = hθ(f,K) ≤ hσ(g,Oδ/2h(K)) ≤ h(g,Oδ/2h(K))

with σ = θ−2α(s, h)‖g−f‖C > 0. This, in turn, by Definition 2.12 will follow
from validity for any positive N of the inequality

Cθ(Tr
±N

(f,K)) ≤ Cσ(Tr
±N

(g,Oδ/2h(K)) (7.2)

To prove (7.2) denote by {x(1), . . ., x(p)} the maximal subset of elements from
Tr±N (f,K) satisfying

%N (x(i),x(j)) ≥ θ, i 6= j.

By Theorem 6.30, for each such x(i) ∈ Tr±N (f,K) there exists a trajectory
y(i) ∈ Tr±N (g,X) for which by condition of the theorem

%N (y(i),x(i)) ≤ α(s, h)‖g − f‖C ≤ δ/2h.

Hence y(i) ∈ Tr±N (g,Oδ/2h(K)) for i = 1, . . . , p, and

%N (y(i),y(j)) ≥ %N (x(i),x(j))− %N (x(i),y(i))− %N (x(j),y(j))
≥ θ − 2α(s, h)‖g − f‖C = σ

for any j 6= i, from which (7.2) follows. ut

7.2 Structural Stability Properties

Let X ⊂ Rd be a bounded set. Denote by Σ(X) the metric space of all bi-
infinite sequences x = {xn}∞n=−∞ with xn ∈ X for n = 0,±1,±2, . . . with the
norm

%(x, x̃) =
∞∑

n=−∞
2−|n|‖xn − x̃n‖. (7.3)

Let σ denote the shift operator on Σ(X) defined as

(σx)n = xn+1, x ∈ Σ(X), n ∈ Z.

Finally, for a set Y ⊆ X and a mapping f ∈ C(X,Rd) let Tr±∞(f, Y ) ⊂ Σ(X)
be the totality of bi-infinite trajectories y = {yn} ⊆ Y .

For the convenience of references, let us formulate the following evident
statement.

Lemma 7.3. If the set Y ⊆ X ⊆ Rd is compact and f ∈ C(X,Rd), then the
set Tr±∞(f, Y ) ⊂ Σ(X) is also compact in the metric space (Σ(X), %).
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Definition 7.4. Let f1, f2 ∈ C(X,Rd) and let Y1 and Y2 be closed subsets of
X such that f1(Y1) = Y1 and f2(Y2) = Y2. The restriction f1|Y1 is said to be
a weak factorization of the restriction f2|Y2 if there exists a continuous (in
the metric %) surjection

Φ : Tr
±∞

(f2, Y2) 7→ Tr
±∞

(f2, Y2)

which is shift invariant, i.e. with Φ ◦ σ = σ ◦ Φ.

Another closely connected concept is that of weak conjugacy.

Definition 7.5. Let f1, f2 ∈ C(X,Rd) and let Y1 and Y2 be closed subsets of
X such that f1(Y1) = Y1 and f2(Y2) = Y2. The restricted mappings f1|Y1 and
f2|Y2 are said to be weakly conjugate if there exists a continuous one-to-one
correspondence

Ψ : Tr
±∞

(f1, Y1) 7→ Tr
±∞

(f2, Y2)

which is shift invariant.

In the above definitions Y1 and Y2 are closed subsets of the bounded set
X. Hence they are compact, and so are the metric spaces (Tr±∞(f1, Y1), %)
and (Tr±∞(f2, Y2), %). Therefore the one-to-one mapping Ψ in Definition 7.5
is a homeomorphism. In other words, the restricted mappings f1|Y1 and f2|Y2

are weakly conjugate if the restrictions of the shift operator σ to the sets
Tr±∞(f1, Y1) and Tr±∞(f2, Y2) are topologically conjugate, i.e. topologically
conjugate the mappings σ1 = σ|Tr±∞(f1,Y1) and σ2 = σ|Tr±∞(f2,Y2).

The notion of weak factorization extends an analogue of semi-conjugacy
(see Section 2.2.2 for definitions) to semi-hyperbolic mappings. Weak conju-
gacy is a generalization of topological conjugacy of mappings and reduces to
it in the case of invertible mappings. The suitability of such generalizations in
the analysis of noninvertible mappings is well known; see, for instance book of
Ruelle [68, Section 15.6]. In particular, topological entropy is an invariant with
respect to weak conjugacy and does not increase under weak factorization.

The sets Y1 and Y2 above are often sets of chain recurrent points. Remind,
in the convenient for the following usage form, the necessary definitions from
Section 2.2.3.

Definition 7.6. A point x ∈ Y ⊆ X is called ε-chain recurrent (in Y ) for the
mapping f defined on a set X if there exists an ε-pseudo-cycle {xn} ⊆ Y of
f with x0 = x. A point x ∈ Y ⊆ X is called chain recurrent (in Y ) for the
mapping f defined on a set X if it is ε-chain recurrent in Y for any sufficiently
small ε > 0.

Denote the totality of ε-chain recurrent in Y points of f by CR(f, ε, Y ).
The totality CR(f, Y ) of chain recurrent in Y points of f is then can be
expressed as
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CR(f, Y ) =
⋂
ε>0

CR(f, ε, Y ).

If Y ⊆ X where X is bounded, then CR(f, Y ) is compact and f -invariant,
i.e.,

f(CR(f, Y )) = CR(f, Y ).

Lemma 7.7. Let X and Y be open bounded subsets of Rd, f ∈ C(X,Rd) and
CR(f, Y ) ⊂ Y ⊂ Y ⊂ X. Then there exists a nondecreasing function q(ε, f)
of ε ≥ 0 with

lim
ε→0

q(ε, f) = q(0, f) = 0, q(ε, f) > 0 for ε > 0,

such that
CR(f, ε, Y ) ⊆ Oq(ε,f)(CR(f, Y )).

In particular, there exists an ε = ε(f, Y ) > 0 for which CR(f, ε, Y ) ⊂ Y .

Proof. Suppose the contrary. Then, for a certain ε0 > 0, there exists a seque-
nce x(k) = {x(k)

n } of 1/m-pseudo-cycles of f with

x(k) ⊆ Y , x
(k)
0 6∈ Oε0(CR(f, Y )). (7.4)

In view of boundedness of the set Y , the set Y is compact and then the
sequence {x(k)

0 } has a limit point y ∈ Y . By the first inclusion (7.4) and by
the definition of chain recurrence, y ∈ CR(f, Y ). But by the second relation
(7.4), y 6∈ Oε0(CR(f, Y )). The contradiction proves the lemma. ut

7.2.1 Weak Factorization

Let X and Y be open bounded subsets of Rd with Y ⊆ X and let Lipschitz
mapping f ∈ Lip(X,Rd) be continuously semi-hyperbolic on CR(f, Y ) with
CR(f, Y ) ⊂ Y . By Lemma 3.12 there exists an η = η(f, Y ) > 0 such that f
is semi-hyperbolic in Oη(CR(f, Y )) with a certain split s and constants h, δ.
Denote by α, β the corresponding constants (6.43), (6.44), i.e.

α = α(s, h) := h
λu − λs + µs + µu

(1− λs)(λu − 1)− µsµu
,

β = β(s, h, δ) := δh−1 (1− λs)(λu − 1)− µsµu

max{λu − 1 + µs, 1− λs + µu}
.

Theorem 7.8. Let Y be an open set with Y ⊆ X and let the mapping f ∈
Lip(X,Rd) be continuously s-semi-hyperbolic in CR(f, Y ) ⊂ Y with constants
h, δ. If g ∈ C(X,Rd) with ‖g − f‖C < ε where ε is such that

ε < δ/(2hα), q(ε, f) < η, Oq(ε,f)+αε(CR(f, Y )) ⊂ Y (7.5)

then the restricted mapping f |CR(f,Y )) is a weak factorization of g|CR(g,Y )).
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Proof. Consider a mapping g ∈ C(X,Rd) such that ‖f − g‖C < ε where ε
satisfies (7.5). Denote the ball in Σ(X) of radius ε centered at x by

B(x, ε) = {y ∈ Σ(X) : ‖xi − yi‖ ≤ ε, i ∈ Z}

and define the mapping Φ for x ∈ Tr±∞(g,CR(g, Y )) by

Φ(x) = B(αε,x) ∩ Tr
±∞

(f,CR(f, Y )). (7.6)

To prove the theorem we need to show that Φ is well-defined, i.e. that

(i) the set
B(αε,x) ∩ Tr

±∞
(f,CR(f, Y )) (7.7)

is non-empty;
(ii) the set (7.7) contains exactly one point;
(iii) the mapping Φ is a surjection of the set Tr±∞(g,CR(g, Y )) onto the set

Tr±∞(f,CR(f, Y ));
(iv) the mapping Φ is continuous;
(v) the mapping Φ is shift-invariant.

(i) Prove that the set (7.7) is non-empty. First, fix

x = {xn} ∈ Tr
±∞

(g,CR(g, Y )) (7.8)

and show that for each positive integer m there exists a 1/m-pseudo-cycle

x(m) = {x(m)
n } ⊂ CR(g, 1/m, Y )

of the mapping g, satisfying

‖x(m)
n − xn‖ < 1/m, n = −m, . . . , 0, 1, . . . ,m. (7.9)

Indeed, remark first that by the continuity of g for a given m there can be
found δ̄ = δ̄m > 0 such that each δ̄-pseudo-trajectory

y = y−m, . . . , y0, y1, . . . , ym

of g satisfying y0 = x−m, satisfies also the estimates

sup
−m≤n≤m

‖yn − xn‖ < 1/m.

Then, in view of inclusion x−m ∈ CR(g, Y ) followed from (7.8), by chain
recurrency Definition 7.6 such a δ̄-pseudo cycle x(m) ⊆ Y of the mapping g
can be found that ‖x(m)

−m − x−m‖ < δ̄. Hence, for this δ̄-pseudo cycle x(m) the
estimates (7.9) will be also valid. So, the existence of x(m) is proved.

Now remark, that each x(m) ∈ Tr±∞(g,CR(g, 1/m, Y )), m = 1, 2, . . ., is
simultaneously a (1/m+ ‖f − g‖C)-pseudo-cycle of f , i.e.
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x(m) ⊆ CR(f, 1/m+ ‖f − g‖C , Y ).

Consequently, by Lemma 7.7,

x(m) ⊆ Oq(1/m+‖f−g‖C ,f)(CR(f, Y ))

and so, by suppositions q(ε, f) < η(f, Y ) (see (7.5)) and by ‖f − g‖C < ε,

x(m) ⊆ Oq(ε,f)(CR(f, Y )) ⊆ Oη(f,Y )(CR(f, Y )) (7.10)

for all sufficiently large m. Hence, in view of the definition of η(f, Y ), the
pseudo-cycles x(m) belong to the region of semi-hyperbolicity of f for all
sufficiently large m. From (6.43), (6.44) it is seen that δ/α ≤ β, and then due
to the first inequality of (7.5) ε ≤ β/2h ≤ β holds. Therefore, by the cyclic bi-
shadowing Theorem 6.30, for each x(m) satisfying (7.10) for sufficiently large
m there exists a cycle y(m) of f such that

‖x(m)
n − y(m)

n ‖ < αε for all m. (7.11)

Hence
y(m) ⊆ Oη(f,Y )+αε(CR(f, Y )),

and by the inclusion of (7.5) y(m) ⊆ Y . Moreover, since the trajectory y(m) is
periodic, then, in fact, y(m) ∈ Tr±∞(f,CR(f, Y )). Therefore, by Lemma 7.3
the sequence y(m) has a limit point y ∈ Tr±∞(f,CR(f, Y )). By (7.9) and
(7.11)

‖xn − yn‖ ≤ αε for all n

which means that y ∈ B(αε,x).
So, it is proved that the set (7.7) is non-empty for each

x ∈ Tr
±∞

(g,CR(g, Y )).

(ii) Prove now that the set (7.7) contains exactly one point. Remark that
because of the first inequality of (7.5) for any two trajectories

y, ỹ ∈ B(αε,x) ∩ Tr
±∞

(f,CR(f, Y )),

the estimate ‖yi − ỹi‖ < 2αε ≤ δ/h hold. By Theorem 6.5, the set (7.7) then
contains no more than one element, and so the mapping Φ is well-defined.

(iii) Prove that Φ is a surjection of the set Tr±∞(g,CR(g, Y )) onto the set
Tr±∞(f,CR(f, Y )). By definition of the mapping Φ we need only to construct
for each y ∈ Tr±∞(f,CR(f, Y )) an element x ∈ Tr±∞(g,CR(g, Y )) with
‖xi − yi‖ < αε. As above, for each positive integer m there exist a 1/m-
pseudo-cycle y(m) ⊆ CR(g, 1/m, Y ) of the mapping f satisfying

‖y(m)
n − yn‖ < 1/m, n = −m, . . . , 0, 1, . . . ,m.
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By the definition of chain recurrence, y is a limit in metric (7.3) of a sequence
y(m), m = 1, 2, . . ., of 1/m-pseudo-cycles of the mapping f . As was mentioned
above, due to the first inequality of (7.5) we have ε ≤ β. So, by cyclic bi-
shadowing Theorem 6.30 for sufficiently large m there exist cycles x(m) of g
satisfying

‖x(m)
n − y(m)

n ‖ < αε for all n.

It remains to define x as a limit point of the sequence x(m) in the metric space
(Σ(X), %) (such a limiting point exists by Lemma 7.3).

(iv) To prove the continuity of the mapping Φ, we shall suppose the con-
trary. Then there exist

x,x(m) ∈ Tr
±∞

(g,CR(g, Y )), m = 1, 2, . . . ,

such that
%(x,x(m)) → 0 (7.12)

but %(Φ(x), Φ(x(m))) ≥ ε̄ for some ε̄ > 0. In this case, without loss of gener-
ality, we may assume that

‖(Φ(x))0 − (Φ(x(m)))0‖ ≥ ε̄, m = 1, 2, . . . . (7.13)

Now, for any positive integer N denote by %N (z, z̃) the semi-norm in Σ(X)
defined by

%N (z, z̃) = sup
−N≤n≤N

‖zn − z̃n‖.

Choose a θ satisfying 2αε < θ < δ/h; such θ exists by (7.5). Since by Theo-
rem 6.5 the mapping g is ξ-expansive with ξ = δ/h on the set CR(f, Y ), then
by Lemma 6.2 there exists a positive integer κ(ε̄, θ) not depending on m such
that

%κ(ε̄,θ)(Φ(x), Φ(x(m))) ≥ θ (7.14)

holds whenever (7.13) is valid. At the same time, from the definition of the
mapping Φ it follows that Φ(x) ∈ B(αε,x), and so %κ(ε̄,θ)(Φ(x),x) ≤ αε.
Hence

%κ(ε̄,θ)(Φ(x), Φ(x(m)))

≤ %κ(ε̄,θ)(Φ(x),x) + %κ(ε̄,θ)(x,x(m)) + %κ(ε̄,θ)(x(m), Φ(x(m)))

≤ αε+ %κ(ε̄,θ)(x,x(m)).

Here 2αε < θ by the definition of θ and %κ(ε̄,θ)(x,x(m)) → 0 in view of
(7.12). Therefore, %κ(ε̄,θ)(Φ(x), Φ(x(m))) < θ for sufficiently large m, which
contradicts to (7.14) and so the mapping Φ is continuous.

(v) The shift invariance identity Φ ◦ σ ≡ σ ◦ Φ follows directly from the
definition of the mapping Φ.

Theorem 7.8 is thus completely proved. ut
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7.2.2 Weak Conjugacy

Theorem 7.8 above is a weak form of semi-conjugacy of semi-hyperbolic map-
pings, while Theorem 7.9 below is a version of structural stability for such
mappings. The explicit estimates of the ‘radii’ of semi-conjugacy and struc-
tural stability in these theorems are particularly useful in applications. Note
that semi-conjugacy in Theorem 7.8 is a C0−robust property, while conjugacy
in Theorem 7.9 below is Lipschitz-robust.

Let againX and Y be open bounded subsets of Rd with Y ⊆ X and let Lip-
schitz mapping f ∈ Lip(X,Rd) be continuously semi-hyperbolic on CR(f, Y )
with CR(f, Y ) ⊂ Y . Let ε(f, Y ) > 0 be a constant defined in Lemma 7.7
such that CR(f, ε, Y ) ⊂ Y for ε ≤ ε(f, Y ), then by Lemma 3.12 there ex-
ists an η = η(f, Y ) < ε(f, Y ) such that every mapping g ∈ Lip(X,Rd) with
‖f − g‖Lip ≤ η is semi-hyperbolic in Oη(CR(f, Y )).

Theorem 7.9. Let Y be an open set with Y ⊆ X and let f ∈ Lip(X,Rd)
be a Lipschitz mapping continuously s-semi-hyperbolic in CR(f, Y ) ⊂ Y with
constants h, δ. If g ∈ Lip(X,Rd) with ‖g− f‖Lip < η(f, Y ) then the restricted
mappings f |CR(f,Y ) and g|CR(g,Y ) are weakly conjugate.

Proof. Consider g ∈ Lip(X,Rd) satisfying ‖g−f‖Lip < η(f, Y ). Introduce the
family of mappings gλ(x) = λg(x) + (1− λ)f(x), 0 ≤ λ ≤ 1, x ∈ X. Clearly,

‖gλ − f‖Lip ≤ ‖g − f‖Lip < η(f, Y ). (7.15)

To prove the theorem it suffices, by transitivity of the weak conjugacy relation,
to find a finite set of parameters λ0 = 0, λ1, . . . , λk = 1 such that the mappings
gλi

and gλi+1 are weak conjugate for each i = 0, 1, . . . , k − 1. Since the family
{gλ, 0 ≤ λ ≤ 1} is a compact subset of Lip(X,Rd), the existence of the
required set of parameters {λi} is followed from the following result

Lemma 7.10. There exists ζ > 0 such that gλ|CR(gλ,Y ) is weakly conjugate
to gλ̄|CR(gλ̄,Y ) for all λ, λ̄ ∈ [0, 1] with |λ− λ̄| < ζ.

Proof. By (7.15) and by the definition of η(f, Y ), for any λ ∈ [0, 1] the map-
ping gλ is continuously semi-hyperbolic in CR(f, η(f, Y ), Y ). Since η(f, Y ) <
ε(f, Y ), then by Lemma 7.7 CR(f, η(f, Y ), Y ) ⊂ Y . Again from (7.15) it fol-
lows that ‖gλ − f‖C ≤ ‖g − f‖C < η(f, Y ), and so any chain recurrent point
of gλ belonging Y is η(f, Y )-chain recurrent point of f . Hence, by definition
of the value η(f, Y ),

CR(gλ, Y ) ⊆ CR(f, η(f, Y ), Y ) ⊂ Y, 0 ≤ λ ≤ 1. (7.16)

Then by Lemmata 3.12 and 7.7 for a given λ̄ there exist η > 0 and ζ1 > 0
such that all mappings gλ(x) with |λ− λ̄| < ζ1 are uniformly semi-hyperbolic
in Oη(CR(gλ̄, Y )) with the same split s and constants h, δ.



110 7 Structural Stability

By (7.16) CR(gλ̄, Y ) ⊂ Y and then by Theorem 7.8 there exists a positive
ε satisfying

ε < δ/(2hα) (7.17)

such that for each gλ with ‖gλ − gλ̄‖C < ε the following property is true:

(i) gλ̄|CR(gλ̄,Y ) is a weak factorization of gλ|CR(gλ,Y ) with the corresponding
mapping

Φλ(x) = B(αε,x) ∩ Tr
±∞

(gλ̄,CR(gλ̄, Y )),

for x ∈ Tr±∞(g,CR(g, Y )).

On the other hand, if we choose a positive ε satisfying

q(ε, gλ̄) < η (7.18)

where the function q(ε, f) is defined in Lemma 7.7, then for gλ, gλ̄ with ‖gλ−
gλ̄‖C < ε by Lemma 7.7 the following chain of inclusions is true

CR(gλ, Y ) ⊆ CR(gλ, δ, Y ) ⊆ CR(gλ̄, ε, Y ) ⊆ Oη(CR(gλ̄, Y ))

with any δ < ε− ‖gλ − gλ̄‖C . Thus, the following property can by written:

(ii) CR(gλ, Y ) ⊂ Oη(CR(gλ̄, Y )).

Let us choose ζ > 0 and λ ∈ [0, 1] such that ζ < ζ1 and |λ − λ̄| < ζ
imply that ‖gλ − gλ̄‖ < ε. On account of property (i), gλ̄|CR(gλ̄,Y ) is a weak
factorization of gλ|CR(gλ,Y ). It remains to prove that Φλ is an injection and
that the inverse mapping Φ−1

λ is continuous.
To prove that Φλ is injective choose arbitrary

x, x̃ ∈ Tr
±∞

(gλ,CR(gλ, Y ))

such that x 6= x̃. By property (ii) and Theorem 6.5 the mapping gλ is δ/h-
expansive and so

sup
i∈Z

‖xi − x̃i‖ ≥ δ/h. (7.19)

On the other hand, by property (i) and the inequality |λ−λ̄| < ζ, the mapping
Φλ satisfies

sup
i
‖Φλ(x)i − xi‖, sup

i
‖Φλ(x̃)i − x̃i‖ < αε

from which by (7.17) it follows

sup
i
‖Φλ(x)i − xi‖, sup

i
‖Φλ(x̃)i − x̃i‖ < δ/2h. (7.20)

The latter inequality together with (7.19) implies
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sup
i
‖Φλ(x)i − Φλ(x̃)i‖

≥ sup
i
‖xi − x̃i‖ − sup

i
‖Φλ(x)i − xi‖ − sup

i
‖Φλ(x̃)i − x̃i‖ > 0,

i.e. the mapping Φλ is an injection.
Finally, prove continuity of the mapping Φ−1

λ (x) in metric (7.3), for which
we shall follow the proof of continuity of the mapping Φ(x) in Theorem 7.8.
Suppose the contrary. Then there exists a sequence

y(m) ∈ Tr
±∞

(gλ̄,CR(gλ̄, Y )),

converging in the metric (7.3) to some

y ∈ Tr
±∞

(gλ̄,CR(gλ̄, Y ))

such that x(m) = Φ−1
λ (y(m)) does not converge to x = Φ−1

λ (y). Then without
loss of generality we can suppose that ‖x(m)

0 − x0‖ ≥ η for some positive
η. Choose θ > 0 with 2αε < θ < δ/h; such a θ exists by (7.17). Then by
Theorem 6.5 and Lemma 6.2 there exists a positive integer κ(η, θ) satisfying

%κ(η,θ)(x(m),x) = max
−κ(η,θ)≤i≤κ(η,θ)

‖x(m)
i − xi‖ ≥ θ > 2αε.

From (7.19), (7.20) and the last inequality it then follows that

%κ(η,θ)(y(m),y)

≥ %κ(η,θ)(x(m),x)− %κ(η,θ)(y(m),x(m))− %κ(η,θ)(y,x)
≥ θ − 2αε > 0.

The inequality obtained contradicts to the relation

lim
m→∞

%(y(m),y) = 0,

and thus Φ−1
λ (x) is continuous. The proofs of Lemma 7.10 and Theorem 7.9

are completed. ut

7.3 Chaos

7.3.1 Definition of Chaotic Behavior

Let X be an open bounded subset of Rd. Consider a mapping f : X 7→
X and the corresponding discrete-time dynamical system generated by f .
A trajectory of this system is a sequence x = {xn}∞n=−n− satisfying xn+1 =
f(xn), for n = −n−, . . . , 0, 1, 2, . . ., where 0 ≤ n− ≤ ∞ (note that n− = n−(x)
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depends on the particular trajectory x). Let Tr(f) denote the totality of
trajectories of the dynamical system generated by f and let Tr∞(f) be the
subset of x ∈ Tr(f) with n−(x) = ∞.

Important attributes of chaotic behavior include sensitive dependence on
initial conditions, an abundance of unstable periodic trajectories and an irreg-
ular mixing effect describable informally by the existence of a finite number
of separated subsets U1, . . . , Um of Rd which can be visited by trajectories
of some fixed iterate fk of f in any prescribed order. Symbolic dynamics al-
lows a more exact formulation of this last characteristic. Let Σ(m) denote
the totality of all bi-infinite sequences b = {bn}∞−∞ with bn ∈ {1, . . . ,m} for
n = 0,±1,±2, . . ., and let W = {w1, . . . , wm} be an unordered subset of dis-
tinct points in X. Sequences in Σ(m) will be used to prescribe the order in
which some disjoint balls of the form

Ui = {z ∈ X : ‖z − wi‖ < ε}, i = 1, . . . ,m,

are to be visited.
Let ε > 0 and k be a positive integer and let Y be a compact subset of X

for which maxx,y∈Y ‖x− y‖ ≥ 2ε.

Definition 7.11. A continuous mapping f is (ε, k)-chaotic in a neighborhood
of Y if for each finite subset W = {w1, . . . , wm} of Y with mini 6=j ‖wi−wj‖ ≥
2ε there exists a mapping Zf : Σ(m) 7→ Tr∞(f) such that

S1: For each b ∈ Σ(m) the trajectory z = Zf (b) of f satisfies zkj ∈ Ubj
for

all integers j;
S2: The mapping b 7→ Zf (b) is shift invariant in the sense that a 1-shift σ of

a sequence b ∈ Σ(m) induces a k-shift σk of the corresponding trajectory
Zf (b);

S3: If a sequence b ∈ Σ(m) is periodic with minimal period p, then the corre-
sponding trajectory z = Zf (b) is periodic with minimal period kp;

S4: For each η > 0 there exists an uncountable subset Σ0(η) of Σ(m) such
that

lim supn→∞ ‖Zf (a)n − Zf (b)n‖ ≥
1
2
ε for all a, b ∈ Σ0(η),a 6= b,

and

lim infn→∞ ‖Zf (a)n − Zf (b)n‖ < η for all a, b ∈ Σ0(η).

Note that if f is (ε, k)-chaotic on Y then the topological entropy E top of f
in the ε-neighborhood of Y is positive and satisfies the inequality E top ≥
k(ε)−1 ln(Cε/4(Y )), where Cε(Y ) denotes ε-capacity of the compact set Y
[27, 39].

The above defining properties of chaotic behavior are similar to those in
the Smale transverse homoclinic trajectory theorem (see [67, Theorem 16.2])
with an important difference being that we do not require the existence of
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an invariant Cantor set. In addition we assume neither the uniqueness of the
trajectory Zf (b) for b ∈ Σ(m) nor the continuity of Zf , so Zf need not be a
semi-conjugacy. Instead, the definition includes Condition S3, which is usually
a corollary of uniqueness, and Condition S4 which is a form of sensitivity and
irregular mixing as in the Li–Yorke definition of chaos [50], with the subset
of trajectories Zf (Σ0(η)) corresponding to the Li–Yorke scrambled subset S0

and the whole set Zf (Σ(m)) to their whole set S.
From the physical point of view our definition means that the trajectories

of the system f appear to behave chaotically if the measurements are carried
out with precision no better than ε at equal time intervals between subsequent
measurements no shorter than k(ε).

Definition 7.12. The minimal ε0 ≥ 0 with the property that for each ε > ε0
the system f is (ε, k)-chaotic for an appropriate k is called the chaos threshold
of the system f .

The chaos threshold characterizes accuracy of measurements for which
the behavior of the system in the vicinity of the subset Y appears com-
pletely chaotic if the time lapse between subsequent measurements is suffi-
ciently large. For instance, a chaotic diffeomorphism f which is topologically
conjugate on Y to the shift operator σ on Σ(2) has zero chaos threshold.

7.3.2 Perturbations of Bi-Shadowing Systems

A trajectory x = {xn}∞−∞ of a continuous bounded mapping f : X 7→ X ⊂ Rd

is called homoclinic trajectory if its elements are not all identical and there
exists a point x∗ ∈ X such that limn→∞ x−n = limn→∞ xn = x∗.

Theorem 7.13. Let x be a homoclinic trajectory of a continuous bounded
mapping f : X 7→ X, suppose that f is both bi-shadowing and cyclically bi-
shadowing on the unordered set {x} with parameters α and β, and define
γ(ε) = 1

2 min{β, ε/α} > 0. Then every mapping g ∈ C satisfying ‖g − f‖C <
γ(ε) is (ε, k)-chaotic on a neighborhood of {x} for any positive integer k ≥
k(ε), where

k(ε) = max {m : ∃ an integer j0 :
‖xj − x∗‖ ≥ γ(ε), j = j0, . . . , j0 +m} . (7.21)

Proof. In the proof below there will be fixed ε ≤ maxx,y∈x ‖x − y‖, a pos-
itive integer k > k(ε) and a finite set W = {w1, . . . , wm},m > 1, satisfy-
ing mini 6=j ‖wi − wj‖ ≥ 2ε. To prove the theorem we have to construct a
mapping Zf which satisfies Conditions S1–S4. Let O%(S) denote the open
%-neighborhood of a subset S of Rd.

For each w ∈ W with w 6= x∗ there can be found a positive integer m−(w),
a non-negative integer m+(w) and a finite sequence
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u = u(w) =
{
u(w)−m−(w), u(w)−m−(w)+1, . . . , u(w)m+(w)−1

}
,

which are uniquely defined by

u(w)0 = w, u(w)j = f(u(w)j−1), j = −m−(w) + 1, . . . ,m+(w)− 1

such that

u(w)−m−(w), f(u(w)m+(w)−1) ∈ Oγ(ε)({x∗}), u(w)j 6∈ Oγ(ε)({x∗})

for −m−(w) < j < m+(w).
Consider a given integer k > k(ε) and a given sequence b ∈ Σ(m). Define

a sequence v = {vj} in X by vj+kn = u(wn)j for −m−(wn) ≤ j < m+(wn)
when wn 6= x∗ and by vj = x∗ for all other j. This sequence is a γ(ε)-
pseudo-trajectory of f . Hence, by the assumed bi-shadowing property of f ,
for any mapping g ∈ C with ‖g−f‖C < γ(ε) the set Zg(b) of all trajectories z
satisfying ‖zkn−wbn

‖ < ε for all n is not empty. Furthermore, by the assumed
cyclically bi-shadowing property of f , this set Zg(b) contains a trajectory of
minimal period pk if b is periodic with minimal period p.

Standard constructions using Zorn’s lemma [40, pp. 31–36] allow a (single-
valued) selector Zg of the multi-valued mapping b → Zg(b) to be chosen
which satisfies Conditions S1–S3 in Definition 7.11. Indeed, let us denote by
Z the totality of single-valued selectors Zg which are defined on subsets of
D(Z) ⊂ Σ(m) and satisfy Conditions S1–S3 and consider this set as being
partially ordered by inclusion of the corresponding graphs

Gr(Zg) = {(b, Zg(b)) : b ∈ D(Z)}.

By the construction every chain Ẑ (that is, linearly ordered subset) of Z has
an upper bound, the graph of which is defined as the union

⋃
Zg∈Ẑ Gr(Zg).

Hence by Zorn’s lemma there exists a maximal element Z∗ in the set Z.
Suppose that the strict inclusion D(Z∗) ⊂ Σ(m) holds. Then there exist an
element b∗ ∈ Σ(m) \ D(Z∗). If for some positive integer i the sequence b∗ is
the ith-shift of a sequence b0 ∈ D(Z∗) then the mapping

Z0(b) =
{

Z∗(b) if b ∈ D(Z∗),
σ−ikZ∗(b0) if b = b∗

satisfies Conditions S1–S3 and strictly dominates Z∗, which contradicts the
definition of Z∗. On the other hand, if the sequence b∗ cannot be represented
as a shift of a sequence b ∈ D(Z∗) then define Z0(b) as an arbitrary element
from the nonempty set Zg(b) of all trajectories z satisfying ‖zkn−wbn

‖ < ε for
all n; again the mapping Z0 satisfies Conditions S1–S3 and strictly dominates
Z∗, and we arrive again at a contradiction.

It remains to prove that the selected mapping Zg also satisfies Condi-
tion S4. This follows immediately from the next general result.
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Lemma 7.14. Let (Ω, d) be a compact metric space with the power of the
continuum and let S be the set of sequences s = {sj}j≥1 with sj ∈ Ω for all
j ≥ 1. Then for each η > 0 there exists a subset S (η) of S with the power
of the continuum such that lim infj→∞ d (sj , tj) < η for any s, t ∈ S (η).

Proof. By compactness of (Ω, d) there exists a finite partition P of Ω such
that diam(A) < η for each A ∈ P. Consider the equivalence relation Eη on S
defined by: Eη(s, t) is true if and only if sj and tj belong to the same subset
from the partition for all sufficiently large j. Denote the set of equivalence
classes by T and note that each equivalence class E ∈ T contains no more
than a denumerable set of elements, because each element from E differs from
a chosen element {tj}j≥1 only for a finite number of indices j. On the other
hand, the set S itself has by construction the power of continuum, so T has
the power of the continuum.

Choose a single element from each equivalence class in T , denote the set
of these sequences by S∗ and say that two sequences s, t ∈ S∗ are connected
if there exist arbitrarily large j for which sj and tj belong to the same subset
from the partition. Since there are connected elements in every set which
contains more than #(P) elements, there are connected elements in every
denumerable set. The assertion of the Lemma will hold if a subset S (η) ⊆
S of pairwise connected sequences which has the power of the continuum
can be constructed. That this can be done follows by an application of a
transfinite analogue of the Ramsey Complete Graph Theorem (cf. [32, p. 608,
Theorem 5.23]; see also [33, pp. 427–428]): If G is a graph of power m, where
m is a transfinite cardinal, and if every denumerable subset of G contains two
connected elements, then G contains a complete graph of power m.

This completes the proof of Lemma 7.14 and hence the proof of Theo-
rem 7.13 too. ut

The positive integer k(ε) defined by (7.21) represents the maximum num-
ber of iterations of an element of the unordered set {x} that can remain
outside of the γ(ε) neighborhood of the homoclinic point x∗.

Corollary 7.15. The chaos threshold of each continuous mapping g satisfying
‖g − f‖C < γ(ε) does not exceed ε.

The next theorem provides a simple means of locating homoclinic trajec-
tories. Recall that a mapping f : X 7→ X is said to be ξ-expansive in X if for
any infinite trajectories x,y ∈ Tr(f) either x = y or supn∈Z ‖xn − yn‖ ≥ ξ.

Theorem 7.16. Let w = {w0, . . . , wp−1} be a γ-pseudo-cycle of a continuous
mapping f : X 7→ X which is bi-shadowing and cyclically bi-shadowing
with parameters α, β on {w} and ξ-expansive in X . Suppose that γ ≤ β,
‖f(w0)− w0‖ ≤ β and

2αγ < max
i,j

‖wi − wj‖, α(γ + ‖f(w0)− w0‖) < ξ (7.22)
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are valid. Then f has a homoclinic trajectory x in an open αγ neighborhood
of {w}.

Proof. The point w0 is clearly an ‖f(w0)−w0‖-pseudo-equilibrium of f . By the
assumption that ‖f(w0)− w0‖ ≤ β and the cyclically bi-shadowing property
there exists a proper equilibrium x∗ of f satisfying

‖x∗ − w0‖ ≤ α ‖f(w0)− w0‖. (7.23)

Now consider the bi-infinite sequence {yj} defined by

yj =
{
w0 if j < 0 or j ≥ p,
wj otherwise,

which is obviously a γ-pseudo-trajectory of f . In view of the inequality γ ≤ β,
there thus exists a proper trajectory x = {xj} in the αγ-neighborhood of the
pseudo-trajectory {yj}. The elements of this trajectory are not all identical
because of the first inequality in (7.22). To complete the proof it remains to
show that the trajectory x is homoclinic. To this end it suffices to establish
the limit relationships

lim
n→∞

x−n = lim
n→∞

xn = x∗. (7.24)

Suppose that
lim

n→∞
xn = x∗. (7.25)

does not hold. Then there exists a sequence of indices jm →∞ and an ε1 > 0
such that

‖xjm
− x∗‖ > ε1, m = 1, 2, . . . . (7.26)

Consider a coordinate-wise limit point x∗ = {x∗n}n>−∞ of the sequence of
shifted trajectories

x(m) =
{
x

(m)
−jm

, x
(m)
−jm+1, . . .

}
defined by x(m)

n−jm
= xn for n = 0, 1, 2, . . .. Then (7.26) implies

‖x∗0 − x∗‖ > ε1. (7.27)

Now every sequence x(m) is a trajectory of f , so x∗ is also a trajectory of f
because f is continuous. Furthermore, x∗ satisfies the inequalities

‖x∗n − x∗‖ < ξ (7.28)

for all n because of (7.23) and the second inequality in (7.22). The inequalities
(7.28) and (7.27) contradict the ξ-expansivity property, so the limit (7.25)
must be exist. The other limit is handled similarly, which completes the proof.

ut

Note that only the direct shadowing part of bi-shadowing has been used
in the above proof.
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7.3.3 Semi-Hyperbolic Lipschitz Mappings

From Theorems 7.13 and 6.30 we have the following corollary.

Corollary 7.17. Let f be (s, h, δ)-semi-hyperbolic on a compact subset Y of
X and x be a homoclinic trajectory of f contained in Y and define k(ε) by
(7.21) and γ(ε) by

γ(ε) =
1
3

min{β(s, h, δ), ε/(α(s, h)). (7.29)

Then every mapping g ∈ C satisfying ‖g − f‖C < γ(ε) is (ε, k)-chaotic on a
neighborhood of {x} for any positive integer k ≥ k(ε).

From this corollary we can establish the chaotic behavior of nonsmooth
perturbations of a diffeomorphism with a hyperbolic homoclinic trajectory,
see [7, 39]. In fact Theorems 7.13 and 6.30 allow us to consider homoclinic
trajectories for much wider classes of systems, such as those with a Marotto
snap-back repellor or generalizations thereof [52, 71, 81].

Example 7.18. Let 0 be a hyperbolic fixed point of a smooth mapping f on
Rd and let W s and Wu denote the local stable and unstable manifolds of
f at 0. Suppose that there is a point x0 ∈ Wu \ {0} and a positive integer
m with fm(x0) = 0 and that the linear space Dx0T

u
x0

is transversal to T s
0 ,

where Dx is the derivative of f (m) at the point x and Tu
x and T s

x are the
tangent spaces to the stable and unstable manifolds. Since x0 ∈ Wu \ {0},
there exist points x−n, n > 0, with limn→∞ x−n = 0 and f(x−n) = x−n+1.
Let N be an arbitrary positive integer, write r(N) = (‖x−N‖ + ‖x−N+1‖)/2
and U(N, ε) = Or(N)(0)

⋃
Oε(x−N ) for arbitrary ε > 0. It can be verified [27]

for suitable ε > 0 and integers N,M > 0 the mapping

FN,M,ε =
{

f(x) if x ∈ Or(N)(0),
fN+M (x) if x ∈ Oε(x−N )

is semi-hyperbolic on any compact subset of U(N, ε) and, hence, that the
mapping f itself is bi-shadowing and cyclically bi-shadowing on its homoclinic
trajectory

x =
{
. . . , x−n, . . . , x−1, x0, f(x0), . . . , fm−1(x0), 0, . . . , 0, . . .

}
.

Consequently, for every ε > 0 there exists a γ > 0 such that the chaos thresh-
old of every small continuous perturbation g with ‖g − f‖C < γ does not
exceed ε.

7.3.4 Perturbations on Sets of Chain Recurrent Points

Another mechanism for generating robust chaotic behavior in nonsmooth dy-
namical systems involves its set of chain recurrent points.
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Let X is an open bounded subset of Rd, let Y be on open subset of X,
and let f : X 7→ X. A point x ∈ Y is called (ε, Y )-chain recurrent for f
if there exists a finite ε-pseudo-trajectory {x0, x1, . . . , xL} of f in Y with
x0 = xL = x, that is connecting x with itself. Let CR(f, ε, Y ) denote the set
of all (ε, Y )-chain recurrent points of f . The set of Y -chain recurrent points of
f is then defined as CR(f, Y ) = ∩ε>0 CR(f, ε, Y ). Note that if f is continuous
and Y ⊆ X, then CR(f, Y ) is compact and f(CR(f, Y )) = CR(f, Y ).

The following lemma, which is analogous to Smale’s Spectral Decompo-
sition Theorem for Axiom–A diffeomorphisms [39], is an important technical
step in formulating and proving our main result in this section.

Lemma 7.19. Let Y be an open set with Y ⊆ X and let f ∈ Lip(X,Rd) be
bi-shadowing and expansive on CR(f, Y ) with CR(f, Y ) ⊂ Y . Then

(1) the set CR(f, Y ) can be decomposed into a disjoint union of a finite number
of closed sets Ω1, . . . , ΩK such that f(Ωi) = Ωi for i = 1, . . . ,K. Moreover,
for each i = 1, . . . ,K there exists a bi-infinite trajectory z = {zn}n=∞

n=−∞ of
f belonging to Ωi such that the two ‘half-trajectories’ z+ = {zn}∞n=0 and
z− = {zn}0n=−∞ are dense in Ωi;

(2) each set Ωi can itself be decomposed into a disjoint union of a finite number
of closed sets Ωj

i , j = 1, . . . , ni, which are cyclically permutated under f ,
such that fni |Ω1

i
is topologically mixing, i.e. for any U ,V relatively open in

Ω1
i there exists an Ni,U,V such that (fni)n(U)∩V 6= ∅ for every n ≥ Ni,U,V ;

(3) the periodic points of f |CR(f,Y ) are dense in CR(f, Y ).

Proof of the first property: Points x, y ∈ CR(f, Y ) are called chain con-
nected in CR(f, Y ) if for any ε > 0 there exist an ε-pseudo-trajectory x of f
with x, y ∈ {x} ⊆ CR(f, Y ). The set CR(f,X) is partitioned into equivalence
classes of points connected pairwise with each other and every such class E
is a closed subset of CR(f,X) satisfying f(E ) = E . These equivalence classes
are called the chain connected components of the restriction f |Y . Write E (x)
for the chain connected component containing an element x ∈ CR(f,X).

The proofs of the next lemma and its corollary are straightforward, so will
be omitted.

Lemma 7.20 (cf. [27, Lemma 4]). For every x ∈ CR(f, Y ) and every ε > 0
there exists a q = q(x, ε) > 0 such that each q-pseudo-cycle x of f with
x ∈ {x} ⊆ Y satisfies {x} ⊆ Oε(E (x))

Corollary 7.21. For every x ∈ CR(f, Y ) and q > 0 there exists a q-pseudo-
cycle x of f with x ∈ {x} and {x} ⊆ E (x).

A proof of the next lemma will be given.

Lemma 7.22. Let CR(f, Y ) ⊂ Y and f |Y be (s, h, δ)-semi-hyperbolic on
CR(f, Y ) with respect to continuous mappings g : X 7→ X. Let α, β and ξ be
the corresponding bi-shadowing and expansivity parameters in Theorem 6.30
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and suppose that x and x̂ are members of distinct chain connected components
E and Ê . Then ‖x− x̂‖ ≥ min{β, ξ/α}.

Proof. Suppose the contrary; in particular suppose that

‖x− x̂‖ = q < r = min{β, ξ/α}.

A contradiction to x and x̂ belonging to distinct chain connected components
will be obtained by showing that for each ε > 0 there exists an ε-pseudo-cycle
x∗ ⊆ Y which simultaneously contains both x and x̂. For this it suffices to
construct two trajectories y and z satisfying, respectively,

y ⊆ Y , x ∈ {yn : n < 0}, x̂ ∈ {yn : n > 0}, (7.30)

z ⊆ Y , x̂ ∈ {zn : n < 0}, x ∈ {zn : n > 0}. (7.31)

To construct the sequence y fix a positive number ε < r − q. By
Corollary 7.21 there exist ε-pseudo-cycles x = {x0, . . . , xm} ⊆ E (x) and
x̂ = {x̂0, . . . , x̂m̂} ⊆ E (x̂) satisfying x0 = x and x̂0 = x̂. Denote by u and û the
infinite periodic sequences defined, respectively, by uk = xk for k = 0, . . . ,m
and ûk = x̂k for k = 0, . . . , m̂. Then consider the infinite sequence w defined
by

wk =
{
uk if k ≤ 0,
ûk if k > 0. (7.32)

Since u and û are both ε-pseudo trajectories and ‖u0− û0‖ = ‖x− x̂‖ = q, the
sequence w in (7.32) is a (q + ε)-pseudo-trajectory of f with w ⊆ CR(f, Y ).
As f is bi-shadowing on CR(f, Y ) with the constants α, β and q + ε < r ≤
β, there exists a true trajectory y ∈ Y of f which is α(s, h)q close to w.
It remains to prove that this trajectory satisfies the second and the third
inclusions of (7.30). Because u(−km) = x, ûkm̂ = x̂ for the positive integer k,
it suffices to establish the limit relations

lim
n→−∞

‖yn − un‖ = lim
n→∞

‖yn − ûn‖ = 0,

which can be done in the same way as for the limits in (7.24) above using the
ξ-expansivity.

The trajectory z is obtained similarly by bi-shadowing with respect to the
pseudo-trajectory ŵ defined by ŵk = w−k for all integers k. ut

The chain connected components of CR(f, Y ) are the required sets Ωi.
Lemma 7.22 shows that there are only a finite number of them, while their
closedness and invariance follow from the definition.

It remains to show that each set Ωi contains a dense trajectory. Fix i and
consider a countable subset of points {x0, . . . , xν , . . .} which is dense in Ωi.
Fix ε > 0 sufficiently small. By definition, for each ν there exists ε/ν-pseudo-
cycles xν = {xν

0 , . . ., x
ν
n(ν)−1} with xν

0 = xν . For each ν concatenate ν + 1
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times xν to form a pseudo-cycle y of length (ν + 1)n(ν). Then consider the
bi-infinite sequence w of the form

w = {. . . ,yν , . . . ,y1,y0,y1, . . . ,yν , . . .}

By definition this is a bi-infinite ε-pseudo-trajectory of f , so by the bi-
shadowing property there exists a unique trajectory z in Ωi which is αε close
to w. It is straightforward then to check that z has the necessary properties.

Proof of the second property: The proof follows the usual pattern, see [39]
and the references therein, so will only be sketched here. Consider the set Ω1.
The essential step is to construct the subset Ω1

1 .
For each ε > 0 let P (ε) be the set of positive integers p with the property

that there exists a ε-pseudo-cycle x belonging to Ω1 of the period p. Define
P = ∩ε>0P (ε), which is non-empty because of cyclic shadowing property, and
denote by n1 the minimal common denominator of the integers in P .

Let x be an arbitrary point in Ω1. For each ε > 0 let A(ε) denote the set of
all ε-pseudo-cycles containing the point x as their first element. Then denote
by A∗(ε) be totality of the elements of pseudo-cycles in A(ε) with indices of
the form n1k for k = 1, 2, . . .. Finally, define Ω1

1 = ∩A∗ε. This set has all of
the required properties.

Proof of the third property: This follows straightforwardly from Theo-
rem 6.30.

This completes the proof of Lemma 7.19. ut

Using Lemma 7.19, Theorem 7.13 can be modified to establish the exis-
tence and robustness of chaotic behavior under continuous perturbation of a
semi-hyperbolic mapping on components of its chain recurrent set.

Let Y be an open set with Y ⊆ X and let f ∈ Lip(X,Rd) be bi-shadowing
and expansive on CR(f, Y ) with CR(f, Y ) ⊂ Y and with spectral decom-
position Ωj

i , j = 1, . . . , ni and i = 1, . . . ,K. Denote γ(ε) = 1
3 min{β, ε/α}

where α, β are the bi-shadowing parameters. Property (2) above implies the
existence of a finite integer k(ε) defined by

k(ε) = max
{
m : ∃v, w ∈ Ω1

1

with (fn1)(m)
(
U1

γ(ε)(v)
)
∩ U1

γ(ε)(w) = ∅
}

(7.33)

where U1
γ (x) = Uγ(x) ∩ Ω1

1 . Indeed, given ε > 0, consider a finite γ(ε)/3-net
a = {a1, . . . , aI} in the compact set Ω1

1 . By the topological mixing property,
there then exists a positive integer N such that

(fn1)n
(
U1

γ(ε)/3(ai)
)
∩ U1

γ(ε)/3(aj) 6= ∅, i, j = 1, . . . , I, n > N.

On the other hand, each set of the form U1
γ(ε)(x) for x ∈ Ω1

1 contains at least
one set of the form U1

γ(ε)/3(ai), i = 1, . . . , I, so this N is a finite upper bound
for k(ε) defined by (7.33).
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Theorem 7.23. Let f,Ω1
1 be as above. Then every mapping g ∈ C satisfying

‖g − f‖C < γ(ε) is (ε, k)-chaotic on a neighborhood of Ω1
1 for any positive

integer k ≥ k(ε).

Theorems 7.13 and 7.23 have the following corollary.

Corollary 7.24. Let CR(f, Y ) ⊂ Y and let f be (s, h, δ)-semi-hyperbolic on
CR(f, Y ) with the spectral decomposition Ωj

i , j = 1, . . . , ni, and i = 1, . . . ,K,
where Ω1

1 contains more than one element. Define γ(ε) by (7.29) and k(ε) by
(7.33). Then every mapping g ∈ C satisfying ‖g−f‖C < γ(ε) is (ε, k)-chaotic
on a neighborhood of Ω1

1 for any positive integer k > k(ε). In particular, the
chaos threshold of every continuous mapping g satisfying ‖g − f‖C < γ(ε)
does not exceed ε.

Example 7.25. Let f be the canonical Smale horseshoe mapping on the square
Q = [−1, 1]× [−1, 1] with compression factor 1/5 and expansion factor 5 (cf.
[39]) and let h be a Lipschitz mapping on Q with Lipschitz constant less than
2/3 and with ‖h‖C < 1/5. Then the mapping H = f+h is semi-hyperbolic on
CR(H,Q) ⊂ IntQ [27]; note that H here need not be invertible on CR(H,Q).
Corollary 7.24 is applicable here, so for each ε > 0 the chaos threshold of
every sufficiently small continuous perturbation of f does not exceed ε.
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Applications

In this Chapter we consider several applications of semi-hyperbolicity and
its consequences, in particular to delay differential equations, systems with
hysteresis and the numerical approximation of chaotic attractors.

8.1 Semi-Hyperbolic Mappings in Banach Spaces

Here it will be shown that semi-hyperbolicity of a Lipschitz mapping on a
given set implies bi-shadowing for a wide class of dynamical systems in infi-
nite dimensional Banach spaces. Definitions of shadowing and bi-shadowing
are given in the next section and that of semi-hyperbolicity for Lipschitz
mappings in Section 8.1.1. The main results are stated in Section 8.1.2, an
example of its application to delay equation is introduced in Section 8.2. Note
that infinite dimensional perturbations of finite-dimensional semi-hyperbolic
mappings were also considered in [22].

8.1.1 Bi-Shadowing with Respect to Completely Continuous
Perturbations

Let E be a Banach space with the norm ‖ · ‖. Consider a mapping f : X 7→ X
where X is a subset of E.

Definition 8.1. A dynamical system generated by a mapping f : X 7→ X is
said to be bi-shadowing with respect to completely continuous perturbations
on a subset K of X with positive parameters α and β if for any given finite
pseudo-trajectory x = {xn} ∈ Tr(f,K, γ) with 0 ≤ γ ≤ β and any completely
continuous mapping ϕ : X 7→ X satisfying

‖ϕ− f‖∞ ≤ β − γ (8.1)

there exists a trajectory y = {yn} ∈ Tr(ϕ,X) such that
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‖xn − yn‖ ≤ α(γ + ‖ϕ− f‖∞) (8.2)

for all n for which y is defined.

Definition 8.1 generalizes in a natural way the notion of bi-shadowing given
in Definition 6.19 for mappings in finite-dimensional spaces. As is in finite-
dimensional case bi-shadowing with respect to completely continuous pertur-
bations conceptualizes the robust relationship between observed dynamical
behavior of a dynamical system and its computer simulations, and can also
be interpreted as a form of dynamical structural stability when restricted to
specific classes of mappings, such as continuous mappings.

A counterpart of bi-shadowing with respect to completely continuous per-
turbations for cycles and pseudo-cycles is also useful.

Definition 8.2. A dynamical system generated by a mapping f : X 7→ X
is said to be cyclically bi-shadowing with respect to completely continuous
perturbations on a subset K of X with positive parameters α and β if for
any given pseudo-cycle x ∈ Cyc(f,K, γ) with 0 ≤ γ ≤ β and any completely
continuous mapping ϕ : X 7→ X satisfying (8.1) there exists a proper cycle
y ∈ Cyc(ϕ,X) of period N equal to that of x such that (8.2) holds for n =
0, 1, . . . , N .

Note that the cycle y in Definition 8.2 is required only to be in X rather than
in the subset K.

At last, we will need a generalization of the notion of semi-hyperbolicity
for Lipschitz mappings acting in a Banach space.

Definition 8.3. Let s = (λs, λu, µs, µu) be a split and K a closed bounded
subset of an open set X ⊆ E. A Lipschitz mapping f : X 7→ X is said to be
s-semi-hyperbolic on K if there exist positive real numbers h, δ such that for
each x ∈ K there exists a splitting E = Es

x⊕Eu
x with corresponding projectors

P s
x and Pu

x satisfying Properties SH0(Lip)–SH2(Lip) from Definition 3.6:

SH0(Lip): The space Eu
x is finite dimensional for all x and dimEu

x = dimEu
y

if x, y ∈ K with ‖f(x)− y‖ ≤ δ;
SH1(Lip): supx∈K{‖P s

x‖, ‖Pu
x ‖} ≤ h;

SH2(Lip): The inclusion
x+ u+ v ∈ X (8.3)

and the inequalities

‖P s
y (f(x+ u+ v)− f(x+ ũ+ v)) ‖ ≤ λs‖u− ũ‖, (8.4)

‖P s
y (f(x+ u+ v)− f(x+ u+ ṽ)) ‖ ≤ µs‖v − ṽ‖, (8.5)

‖Pu
y (f(x+ u+ v)− f(x+ ũ+ v)) ‖ ≤ µu‖u− ũ‖, (8.6)

‖Pu
y (f(x+ u+ v)− f(x+ u+ ṽ)) ‖ ≥ λu‖v − ṽ‖ (8.7)

hold for all x, y ∈ K with ‖f(x) − y‖ ≤ δ and all u, ũ ∈ Es
x and

v, ṽ ∈ Eu
x such that ‖u‖, ‖ũ‖, ‖v‖, ‖ṽ‖ ≤ δ.
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Note that continuity in x of the splitting subspaces Es
x, E

u
x or of the pro-

jectors P s
x , P

u
x is not assumed here, nor is invariance of the splitting subspaces,

as is the case in the definition of hyperbolicity of a diffeomorphism. Note also
that contrary to the finite-dimensional case, here we require the set K to be
closed and bounded but not compact as is in Definition 3.6 since requirement
of compactness of the set K in infinite-dimensional case is too restrictive.

8.1.2 Main Results

The main result of this Section is that semi-hyperbolicity is sufficient to ensure
bi-shadowing of a dynamical system generated by a Lipschitz mapping with
respect to perturbed systems generated by completely continuous mappings.

Theorem 8.4. Let K be a closed bounded subset of an open set X ⊆ E and f :
X 7→ X a Lipschitz mapping which is s-semi-hyperbolic on K with constants
h, δ. Then it is bi-shadowing on K, with respect to completely continuous
mappings ϕ : X 7→ X with parameters

α(s, h) = h
λu − λs + µs + µu

(1− λs) (λu − 1)− µsµu
(8.8)

and

β(s, h, δ) = δh−1 (1− λs)(λu − 1)− µsµu

max{λu − 1 + µs, 1− λs + µu}
. (8.9)

The proof of the theorem repeats verbatim that of its finite-dimensional
analogue, Theorem 6.21, with the following three minor modifications.

First, throughout the proof the space Rd should be replaced by the Banach
space E. Second, instead of continuity of the operator H on I (β) we should
claim its complete continuity which follows from the complete continuity of
the mapping ϕ. Third, instead of use the Brower Fixed Point Theorem for
establishing the existence of a fixed point of the operator H we should use
the Showder Fixed Point Theorem.

Cyclic bi-shadowing is also a consequence of semi-hyperbolicity.

Theorem 8.5. Let f : X 7→ X be a Lipschitz mapping which is s-semi-hyper-
bolic on a subset K of X with constants h, δ. Then it is cyclically bi-shadowing
on K with parameters α(s, h) and β(s, h) given by (8.8) and (8.9), with respect
to completely continuous mappings ϕ : X 7→ X.

Remark 8.6. If we want to get bi-shadowing of infinite trajectories for map-
pings in a Banach space then, in addition to the requirements of Theorem 8.4,
we should demand the compactness of the set K (cf. Theorem 6.27).
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8.2 Delay Differential Equations

Consider the linear delay equation

x′(t) = Ax(t) +Bx(t− h). (8.10)

Here x(t) ∈ Rd, A and B are real d-matrices and h is a positive constant. We
shall call this equation hyperbolic if its characteristic equation

det(wI −A−Be−wh) = 0 (8.11)

does not have a purely imaginary solution w = ip.
To each solution w of this equation there corresponds a solution of the

delay equation (8.10) of the form

ewta, −∞ < t <∞ (8.12)

where a is an eigenvector of the matrix A+Be−wh with the eigenvalue w.

We will also consider nonlinear delay equations of the form

y′(t) = Ay(t) +By(t− h) + F (y(t), y(t− h)). (8.13)

Here F (y, v) is a continuous Rd-valued function, which is locally Lipschitz in
y and A,B are as before. Denote by L(F ) the set of all continuous function
y(t), t ≥ −h satisfying the equation (8.13) for t > 0. In particular, L(0)
denotes the set of all continuous function x(t), t ≥ −h satisfying the equation
(8.10) for t > 0.

Theorem 8.7. Let the equation (8.10) be hyperbolic. Then there exists a con-
stant γ > 0 with the following properties.

a) For each x(t) ∈ L(0) and for each uniformly bounded F (x, u) there exists
a continuous function y(t) ∈ L(F ), satisfying the inequality

|y(t)− x(t)| < γ sup
y,v

|F (y, v)|, t ≥ −h. (8.14)

b) Let F (y, v) be a uniformly bounded and y(t) ∈ L(F ). Then there exists a
function x(t) ∈ L(0) satisfying (8.14).

This demonstrates robustness of solutions of a hyperbolic delay equation
with respect to arbitrary continuous perturbations of small amplitude. In
particular, any nonlinear perturbation (8.13) of a linear equation (8.10) has
bounded at t→∞ solutions which shadow a given bounded at t→∞ solution
of the linear equation. Let us concisely describe the main steps in the proof
of this theorem.

Step 1. For each continuous function ξ(s), s ∈ [−h, 0] the equation (8.13)
has a unique solution y(t; ξ, F ), t ≥ −h which is continuous and satisfies
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y(s; ξ, F ) = ξ(s), s ∈ [−h, 0],

because F (y, v) is supposed continuous, uniformly bounded and satisfy local
Lipschitz condition in y. Introduce the shift operator SF for equation (8.13)
by

(SF ξ)(τ) = y(h− τ ; ξ, F ), −h ≤ τ ≤ 0.

The operator SF is completely continuous in the space C = C([−h, 0],Rd).
In particular, denote by S the shift operator for the linear equation (8.10).

The operator S is a linear completely continuous operator in C.

Step 2. Let ξ(τ), τ ∈ [−h, 0] be an eigenfunction of the complexification
of the operator S with a complex eigenvalue w. Then by the definition ξ(s)
satisfies the equation

wξ′(τ) = wAξ(τ) +Bξ(τ), −h ≤ τ ≤ 0.

Thus the set of nonzero eigenvalues of the linear operator S coincides with the
set of complex number z = ehw where w is a solution of the equation (8.11)
(The corresponding complex eigenfunction are restrictions of functions (8.12)
on [−h, 0].)

Since S is completely continuous, the spectrum of S consists of zero and
all complex numbers ewh where w is a solution of the equation (8.11).

Step 3. By the previous step and the hyperbolicity of the linear equation
(8.10) the spectrum σ(S) of the linear operator S consists of two disjoint
parts σ(S) = σs(S)

⋃
σu(S), such that σs is located strictly inside the unit

disc of a the complex plane and σu is located strictly outside the unit disc.
By the Decomposition Theorem [66, p. 421], it means that the space C can
be decomposed into a direct sum

C = Es ⊕ Eu

so that both Es and Eu are invariant for S, the spectrum of the re-
striction σ(S|Es) = σs of S onto Es and the spectrum of the restriction
σ(S|Eu) = σu Further, since S is completely continuous, the subspace Eu is
finite-dimensional. Note that the parallel projection P s of C onto Es in the
direction of Eu can be written in an explicit form as

P s = − 1
2πi

∫
|z|=1

(S − zI)−1 dz. (8.15)

Step 4. Introduce an auxiliary norm ‖ · ‖s onto the subspace Es by

‖x‖s =
∞∑

n=0

‖Snx‖C .
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Clearly this norm is equivalent to the norm ‖ · ‖ and the restriction of the
operator S onto Es contracts in this norm with some constant λs < 1. Anal-
ogously, introduce an auxiliary norm ‖ · ‖u onto the subspace Eu by

‖x‖u =
∞∑

n=0

‖S−nx‖C .

This norm is also equivalent to the C-norm and the restriction of the operator
S onto Eu expands in this norm with some constant λu > 1. Introduce in
C an auxiliary norm ‖ · ‖∗ by ‖ξ‖∗ = max{‖P sξ‖s, ‖Puξ‖u} where P s is
defined by (8.15) and Pu = I − P s. Denote by s the split (λs, λu, 0, 0). By
construction, the linear operator S is s-semi-hyperbolic with constants h, δ
where k = max{‖P s‖∗, ‖Pu‖∗} and δ is an arbitrary positive number.

Step 5. In Step 1 the shift operator SF of the nonlinear equation (8.13)
is completely continuous. This operator also satisfies the estimate

‖SF ξ − Sξ‖∗ < γ1 sup
y,v

|F (y, v)|, t ≥ −h.

for some positive γ1. Thus Theorem 8.4 is applicable and, taking into account
the equivalence of norms ‖ · ‖C and ‖ · ‖∗, as a corollary to that theorem it
follows that:

Corollary 8.8. There exist a constant γ > 0 with the following properties.

a) For each trajectory
η = η0, η1, . . . (8.16)

of the shift operator S there exists a trajectory

ηF = ηF
(0), η

F
1 , . . . (8.17)

of the operator SF with

‖ηn − ηF
n ‖C ≤ γ sup

y,v
|F (y, v)|, (8.18)

b) For each trajectory (8.17) of the shift operator SF there exists a trajectory
(8.16) of the operator S satisfying (8.18).

Theorem 8.7 then follows. ut

Note that the construction of the last Section can be carried out also for
some systems described by parabolic equations. Also note that some hysteresis
perturbations, like Prandtl, Besseling and Ishlinskii models in plasticity or
Preisach, Giltay and Madelung models in magnetism ([45]) can be taken into
account both in analysis of delay and parabolic equations.
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8.3 Systems with Hysteresis

Consider a smooth mapping f : Rd → Rd. The dynamical system generated
by a difference equation of the form

xn = f(xn−1), n = 1, 2, . . . , (8.19)

is often used in technical, physical or mechanical applications, where f usu-
ally occurs via a Poincaré section. Throughout, this will be referred to as the
system f . Realistically, a system (8.19) can describe the actual underlying
system only approximately. Thus an important mathematical problem is the
robustness of the system to perturbations. Classical results in this direction
state that a Cr dynamical system preserves some of its structural proper-
ties under a small smooth perturbation [34, 60, 72]. However, there are some
kinds of nonsmooth perturbations which are very important. In this Section
we analyze a specific class of perturbations which arise in systems with weak
hysteresis nonlinearities. An important feature of such models is that hystere-
sis nonlinearities are treated as continuous but nonsmooth dynamical systems
W , often with an infinite dimensional set Ω = Ω(W ) of internal states ω.
This includes such nonlinearities as play, stop, the Besseling–Ishlinskii and
Preisach–Giltay models and so on. Further details may be found in [45, 54].

In such situations the natural description of state space of a perturbed
system (8.19) is Q = Rd ×Ω. So it is more realistic to describe the dynamics
of the perturbed system W by relations of the form

(xn, ωn) = W (xn−1, ωn−1) = (ϕ(xn−1, ωn−1), ψ(xn−1, ωn−1)).

Here ϕ : Rd × Ω → Rd and ψ : Rd × Ω → Ω are continuous mappings.
Some concrete examples of systems which arise in the theory of hysteresis
nonlinearities are given in Sections 8.3.1 and 8.3.2.

We are concerned with the relationship between the trajectories of a
smooth system f and those of systems W which are close to f in some sense.
An appropriate measure of the distance between the two types of system was
introduced and investigated in Section 6.2.3. It is important to note that,
without extra assumptions, the system (8.19) is not structurally stable in
general.

A natural, additional assumption is hyperbolicity. In these circumstances,
estimates of the distance between trajectories of f and its perturbation W
should not depend explicitly upon the time interval over which the trajectories
are considered. Instead, it is preferable that any estimate should be uniform so
long as the trajectories remain in the region in question. This is the principal
question that we address in this Section.

8.3.1 Transducer Stop

Recall that the nonlinearity stop with threshold value h or transducer stop
([45, p. 23–24]) is a system Uh with the state space [−h, h], scalar inputs u(t)
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and outputs ω(t). For a smooth input u(t), t ≥ 0, and initial state ω0 ∈ [−h, h]
the corresponding output ω(t) = (Uh[ω0]u)(t), t ≥ 0, is defined as a unique
absolutely continuous solution of the problem

ω′ = q(ω, u′(t)), ω(0) = ω0

where

q(ω, u) =

min{u, 0} if ω ≥ h,
u if |ω| < h,

max{u, 0} if ω ≤ −h.

Consider the system described by the equations

x′ = G(x, ω), ω(t) = (Uh[ω0](c, x))(t). (8.20)

Here x ∈ Rd; h > 0 and ω ∈ [−h, h] are parameters, c is a fixed vector from
Rd and Uh is the stop nonlinearity with threshold value h. Equations of such
type arise as description of mechanical systems with elastic-plastic Prager
elements, technical systems with plays or stops and many control systems.

Suppose that the functionG satisfies a global Lipschitz condition. Then the
equation (8.20) has a unique solution for any initial condition x(0) = x0 and
each initial state ω0 of the hysteresis nonlinearity Uh. Let the shift operator
Sh(x0, ω0) denote the image of the initial value (x0, ω0) after unit time along
the trajectories of the system (8.20). Suppose that F (x) = G(x, 0) is a smooth
function, satisfying F (0) = 0 and the matrix DF0 does not have eigenvalues
with zero real part. Similarly, let S0(x0) be the image of the initial value x0

after unit time along the trajectories of equation

x′ = F (x). (8.21)

The mappings W (x, ω) = Sh(x,ω) and f(x) = S0(x) generate dynamical
systems W and f respectively, where the state space of the system W is the
product Rd × [−h, h]

Clearly, the system f is semi-hyperbolic in some open ball centered at the
origin. From Theorem 6.15 it follows immediately

Theorem 8.9. There exist α > 0 and h0 > 0 with the following property: for
any trajectory x(t) ∈ B, 0 ≤ t < t∗ ≤ ∞, of the equation (8.21) and any
h ≤ h0 there exists a trajectory (xh(t), ωh(t)), 0 ≤ t < t∗, of (8.20) satisfying

|x(t)− xh(t)| ≤ αh, 0 ≤ t < t∗.

Corollary 8.10. There exist α > 0 and h0 > 0 with the following property:
for any x0 ∈ B belonging to the stable manifold of the equation (8.21) there
exists a trajectory (xh(t), ωh(t)), t ≥ 0, of (8.20) satisfying

|x0(t)− xh(t)| ≤ αh, t > 0.
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This result can be treated as a kind of ‘the stable manifold robustness theorem’
with respect to hysteresis perturbations of a system.

Analogues of Theorem 8.9 are valid for equations with such nonlinearities
as play or generalized play, with multi-dimensional plays and stops, with Mizes
and Treska models [45], and so on.

8.3.2 Ishlinskii and Besseling Systems

Let Uh be the stop nonlinearity with threshold h, as in Section 8.3.1. Consider
h as a parameter, 0 ≤ h ≤ ∞, and let µ be a Borel measure on [0,∞] satisfying∫ ∞

0

hdµ(h) <∞.

Denote by H the totality of continuous functions z(h), h ≥ 0, satisfying
|z(h)| ≤ h. Now introduce a system Wµ, with scalar inputs and outputs and
with state space H , as follows. For a given smooth input u(t), t ≥ 0, and an
initial state z0 ∈ H , the corresponding output z(t) = (Wµ[z0]u)(t), t ≥ 0, is
defined as

z(t) =
∫ ∞

0

(U [z0(h)]u)(t) dµ(h).

A model of this type includes fundamental mechanical models such as the
Ishlinskii and Besseling systems ([45, p. 342–346]). It might be thought of as
describing a continuum of linked transducers.

Suppose that the function G is globally Lipschitz, as in previous Section.
Consider the system described by equations

x′ = G(x, z), z(t) = (Wµ[z0](c, x))(t). (8.22)

This extends the system (8.20). Again, (8.22) has a unique solution x(t), t ≥ 0,
for each initial condition x(0) = x0. Define the corresponding shift operator
Sµ(x0). From Theorem 6.15 it follows that

Theorem 8.11. There exist α > 0 and ε0 > 0 with the following property: for
any trajectory x(t), 0 ≤ t < t∗ ≤ ∞, of the equation (8.21), for any measure
µ satisfying

r(µ) =
∫ ∞

0

hdµ(h) ≤ ε0

and any z(h) ∈ H , there exists a trajectory (xµ(t), zµ(t)), 0 ≤ t < t∗, of
(8.22) satisfying

|x(t)− xµ(t)| ≤ αr(µ), 0 ≤ t < t∗.

Analogues of Theorem 8.11 are valid for models such as the multi-dimensio-
nal Ishlinskii system, the Preisach–Giltay model [45] and its multi-dimensional
analogue [46].
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8.4 Chaotic Attractors under Discretization

The solutions φ(t;x0) with initial values φ(0;x0) = x0 of an ordinary differ-
ential equation

dx
dt

= f(x) (8.23)

on Rd generate a continuous-time dynamical system on Rd, which is a flow
{φ(t : ·)} of diffeomorphisms on Rd if f is smooth enough. It is well-known (cf.
[42, 76]) that if this system has a compact attractor A0, then the discrete-time
dynamical system generated by a one-step numerical scheme

xn+1 = Fh(xn) := xn + hf(h;xn) (8.24)

with constant time-step h > 0, such as an Euler or Runge–Kutta scheme, also
has a compact attractor Ah such that

H∗ (Ah, A0) → 0 as h→ 0+, (8.25)

where H∗ is the Hausdorff separation of nonempty compact subsets of Rd

defined by
H∗(A,B) = max

a∈A
dist(a,B) = max

a∈A
min
b∈B

‖a− b‖.

Convergence (8.25) is often described as the upper semi-continuity of the
numerical attractor Ah at h = 0.

In general, a numerical attractor Ah need not be lower semi-continuity
under time-discretization at h = 0, that is with

H∗ (A0, Ah) → 0 as h→ 0+, (8.26)

unless additional assumptions are made about the dynamics inside the attrac-
tor A0. Here it will be assumed that A0 is a hyperbolic invariant set for the
flow generated by the differential equation (8.23) containing a point x̄0 ∈ A0

for which the ω-limit set ω+(x̄0) = A0, which is typical of many chaotic
attractors, where

ω+ (x̄0) =
⋂

T≥0

⋃
s≥T

{φ(s; x̄0}. (8.27)

The main technical tool to be used in the proof is the bi-shadowing property
satisfied by the time–1 map φ(1 : ·) of the continuous-time system on the
hyperbolic set A0.

Recall that a one-step numerical scheme (8.24) with time-step h > 0 is of
pth order if for every bounded subset D of Rd there exists a constant CD such
that its one-step discretization error satisfies the inequality

‖φ(h;x0)− Fh(x0)‖ ≤ CDh
p+1

for all x0 ∈ D and h > 0. There then exists a constant γ > 0 such that the
global discretization error satisfies the inequality



8.4 Chaotic Attractors under Discretization 133

‖φ(nh;x0)− Fn
h (x0)‖ ≤ CDeγnh hp (8.28)

for all x0 ∈ D, h > 0 and n = 0, 1, . . . , ND,h such that φ(t;x0) ∈ D for
0 ≤ t ≤ hND,h.

Theorem 8.12. Suppose that the mapping f : Rd 7→ Rd in the differential
equation (8.23) is p + 1 times continuously differentiable and that the one-
step numerical scheme Fh : Rd 7→ Rd (8.24) is of pth order. If the differential
equation (8.23) has a hyperbolic attractor A0 which contains a dense recurrent
trajectory, then the numerical scheme (8.24) has an attractor Ah which is
continuous in h at h = 0, that is

H (Ah, A0) = max {H∗ (Ah, A0) ,H∗ (A0, Ah)} → 0 as h→ 0+,

Proof. By the assumed existence of the attractor A0 there is an open bounded
subset X of Rd which is positively invariant for the flow φ generated by the
differential equation (8.23) and attention can be restricted to this set without
loss of generality. The results of [37, 42, 76] then establish the existence of a
numerical attractor Ah of the numerical scheme (8.24) for sufficiently small
h > 0 which are upper semi-continuous in h at h = 0 in the sense of conver-
gence (8.25). Hence it remains only to show the lower semi-continuity of the
Ah at h = 0.

Write Φ(x) := φ(1 : x) for the time–1 mapping of the differential equation
(8.23), so Φ : X 7→ X . Note that Φ is a diffeomorphism on Φ(X ) and
that the original attractor A0 ⊂ Φ(X ) is also an attractor for the discrete-
time dynamical system generated by Φ, and hence A0 is invariant under Φ.
Moreover, the diffeomorphism Φ inherits the hyperbolicity of the flow φ on
A0. Hence by Theorem 6.19 there exist positive constants α and β such that
the diffeomorphism Φ is bi-shadowing with parameters α and β on A0 with
respect to the space of continuous functions C (X ).

It can be assumed without loss of generality that mapping Fh in the numer-
ical scheme (8.24) satisfies Fh(X ) ⊆ X for sufficiently small h, in particular
for h ≤ 1. The Fn

h ∈ C (X ) for n = 1, 2, . . . and by (8.28)

sup
x∈X

‖φ(nh;x)− Fn
h (x)‖ ≤ CX eγnh hp

n = 1, 2, . . .. Suppose that CX eγ hp ≤ β and that there is an integer Nh such
that h = 1/Nh, that is Nhh = 1. Then∥∥∥Φ− FNh

h

∥∥∥
∞

:= sup
x∈X

∥∥∥Φ(x)− FNh

h (x)
∥∥∥ ≤ CX eγ hp ≤ β. (8.29)

Now let x̄0 ∈ A0 be any point such that ω+(x̄0) = A0 and define
x̄0(t) = φ(t, x̄0) for each t ∈ [0, 1]. For each such t consider the trajectory
{Φn(x̄0(t))}n∈N of the mapping Φ. By the Bi-shadowing Property of Φin A0

with δ = 0 there then exists a ȳ0(t) ∈ X such that
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h (ȳ0(t))
∥∥∥ ≤ α

∥∥∥Φ− FNh

h

∥∥∥
∞
≤ αCX eγ hp (8.30)

for all n = 0, 1, . . .. In particular, for n = 0 we have

‖x̄0(t)− ȳ0(t)‖ ≤ αCX eγ hp,

that is ȳ0(t) ∈ BαCX eγ hp ({x̄0(t)}) ⊂ BαCX eγ hp (A0) where B%(S) is the
closed ball of radius % about a subset S of Rd.

Since the points ȳ0(t) for 0 ≤ t ≤ 1 belong to a common bounded subset
of Rd, by the absorbing property of the (maximal) numerical attractor Ah for
each ε > 0 there exists an integer N(ε, h) such that

yj(t) := F j
h (ȳ0(t)) ∈ Bε/2 (Ah) for all j ≥ N(ε, h), 0 ≤ t ≤ 1.

But from (8.30) we also have ‖Φn(x̄0(t))− ynNh
(t)‖ ≤ αCX eγ hp, that is

Φn(x̄0(t)) ∈ BαCX eγ hp ({ynNh
(t)}) for all n ≥ 0, 0 ≤ t ≤ 1.

Hence Φn(x̄0(t)) ∈ BαCX eγ hp+ε/2 (Ah) for all n ≥ N(ε, h)/Nh and 0 ≤ t ≤ 1,
or equivalently ⋃

n≥N(ε,h)/Nh,

0≤t≤1

{Φn(x̄0(t))} ⊆ BαCX eγ hp+ε/2 (Ah) . (8.31)

Now the group property of the flow φ gives

Φn(x̄0(t)) = φ(n, x̄0(t)) = φ(n, φ(t, x̄0(t))) = φ(n+ t, x̄0),

so ⋃
n≥N(ε,h)/Nh,

0≤t≤1

{Φn(x̄0(t))} =
⋃

s≥N(ε,h)/Nh

{φ(s, x̄0)}

and hence from (8.31)⋃
s≥N(ε,h)/Nh

{φ(s, x̄0)} ⊆ BαCX eγ hp+ε/2 (Ah) .

But ω+(x̄0) = A0, so by 8.27

A0 ⊆
⋃

s≥N(ε,h)/Nh

{φ(s, x̄0)} ⊆ BαCX eγ hp+ε/2 (Ah)

or equivalently
H∗ (A0, Ah) ≤ αCX eγ hp + ε/2.

Restricting h further to 0 < h < h0(ε) so that αCX eγhp ≤ ε/2 also holds and
so

H∗ (A0, Ah) ≤ ε (8.32)
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for all 0 < h < h0(ε) with h−1 an integer.
Finally, the case that h−1 is not an integer needs to be considered. Let Nh

be the integer such that hNh < 1 < h(Nh + 1). Then

‖FNh

h (x)− Φ(x)‖ = ‖FNh

h (x)− φ(1;x)‖
≤ ‖FNh

h (x)− φ(hNh;x)‖+ ‖φ(hNh;x)− φ(1;x)‖

≤ CX eγhNh hp +
∥∥∥∥∫ 1

hNh

f (φ(s;x)) ds
∥∥∥∥

≤ CX eγ hp +M(1− hNh) ≤ CX eγ hp +Mh ≤ Kh

where M = maxx∈X ‖f(x)‖ and K = 2max{CX eγ ,M}. Repeating the above
argument with

‖FNh

h − Φ‖∞ ≤ Kh

instead of the global discretization estimate (8.29), that is with CX eγhp re-
placed byKh. With an appropriate modification to h0(ε), the inequality (8.32)
then holds for all h sufficiently small. Convergence (8.26), that is the lower
semi-continuity of the numerical attractor at h = 0, then holds.

This completes the proof of Theorem 8.12. ut
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