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Abstract. In the projective plane PG(2, q), upper bounds on the smallest size
t2(2, q) of a complete arc are considered. The results of computer search for a huge
region of q, done in the recent works of the authors and in this work, are investigated.
New upper bounds valid in this region are proposed. Our investigations and results
allow us to conjecture that these bounds hold for all q.

1 Introduction

Let PG(2, q) be the projective plane over the Galois field Fq. An n-arc is a set
of n points no three of which are collinear. An n-arc is called complete if it is
not contained in an (n+ 1)-arc of PG(2, q) [1–7].

One of the most important open problems in the study of projective planes
is the determination of the smallest size t2(2, q) of a complete arc in PG(2, q).

This work is devoted to upper bounds on t2(2, q).
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Let t(Pq) be the size of the smallest complete arc in any (not necessarily
Galois) projective plane Pq of order q. In [7], for sufficiently large q, the fol-
lowing result is proven by probabilistic methods:

t(Pq) ≤ D
√
q lnC q, C ≤ 300,

where C and D are constants independent of q. The authors of [7] conjecture
that the constant can be reduced to C = 10. We denote

T = {q : 173 ≤ q ≤ 49727, q power prime} ∪ {q : 173 ≤ q ≤ 125003, q prime}
∪ {59 sporadic prime q’s in the interval [125101 . . . 360007]}; T# = {q :

125017 ≤ q ≤ 150001, q prime} ∪ {290011, 370003, 380041, 390001, 400009};
L = {q ≤ 67993, q prime} ∪ {43 sporadic prime q’s in [69997 . . . 190027]};
L# = {152501, 157513, 162517, 167521, 172507, 195023, 200003, 205019, 210011,
215051, 220009, 225023, 230003, 235003, 240007}; R = {q ≤ 46337, q prime}.

Let t2(2, q) be the smallest known size of a complete arc in PG(2, q). For
q ∈ T , the values of t2(2, q) (up to November 2013) are collected in [2].

In [4,5] the algorithm FOP (Fixed Order of Points) used to construct small
complete arcs in PG(2, q) is described. Let tL2 (2, q) be the size of a complete arc
in PG(2, q) obtained by Algorithm FOP with Lexicographical order of points.
For q ∈ L, the sizes tL2 (2, q) are collected in [4]. Let tR2 (2, q) be the size of a
random complete arc in PG(2, q). For q ∈ R, the sizes tR2 (2, q) are given in [6].

In this work, by computer search1 using randomized greedy algorithms sim-
ilar to those in [2,3], the values of t2(2, q) are obtained for q ∈ T#. Also, using
Algorithm FOP we obtained the arc sizes tL2 (2, q) for q ∈ L#.

Investigating the results of [1–5] for q ∈ T and q ∈ L and the results of this
work for q ∈ T# and q ∈ L#, we obtained Theorems 2 and 3.

Conjecture 1. Bounds (1) and (2) of Theorems 2 and 3 hold for all q ≥ 109.

2 Bounds based on greedy algorithms’ results

Theorem 2. In PG(2, q), for the smallest size t2(2, q) of a complete arc, the
following upper bounds hold:

t2(2, q) < min{√q ln0.7295 q,
√
q lnf(q) q, 0.6

√
q lnϕ(q) q}, (1)

109 ≤ q ≤ 169 and q ∈ T ∪ T#,

where f(q) =
0.27

ln q
+ 0.7, ϕ(q) =

1.5

ln q
+ 0.802,

1The calculations are done using computational resources of Multipurpose Computing
Complex of National Research Centre “Kurchatov Institute” (http://computing.kiae.ru/).
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Figure 1: Upper bounds on t2(2, q) vs greedy algorithms’ results (I)
1.83

√
q ln q (the top dashed-dotted curve);

√
q ln0.7295 q (the 2-nd dashed curve);√

q lnf(q) q (the 3-rd dashed-dotted curve); 0.6
√
q lnϕ(q) q (the 4-th dashed-

dotted curve); sizes t2(2, q) of complete arcs obtained by the greedy algorithms,
q ∈ T ∪ T# (the bottom solid curve).

min{√q ln0.7295 q,
√
q lnf(q) q, 0.6

√
q lnϕ(q) q} =







√
q ln0.7295 q if 109 ≤ q ≤ 9437√
q lnf(q) q if 9437 ≤ q ≤ 88873, q ∈ T

0.6
√
q lnϕ(q) q if 88883 ≤ q ≤ 400009, q ∈ T ∪ T#

.

Arcs satisfying these bounds can be obtained by the randomized greedy algorithms
described in [2, 3].

The statement of Theorem 2 is illustrated by Figures 1–4 where the values
ϕ∗(q), f∗(q), ϕ(q), and f(q) are defined by relations ϕ∗(q) = ϕ(q)−0.5, f∗(q) =

f(q)− 0.5, t2(2, q) = 0.6
√
q lnϕ(q) q, t2(2, q) =

√
q lnf(q) q.
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3 A bound based on results of Algorithm FOP

Algorithm FOP. Consider the projective plane PG(2, q) and fix a particular

order on its points. The algorithm builds a complete arc iteratively. Let K(i−1)

be the arc obtained on the (i− 1)-th step. On the next step, the first point in

the fixed order not lying on the bisecants of K(i−1) is added to K(i−1). Suppose
that the points of PG(2, q) are ordered as A1, A2, . . . , Aq2+q+1. Consider the

empty set as root of the search and let K(j) be the partial solution obtained in
the j-th step, as extension of the root. We put K(0) = ∅,
K(1) = {A1}, K(2) = {A1, A2}, m(1) = 2, K(j+1) = K(j) ∪ {Am(j)}, m(j) =

min{i ∈ [m(j − 1) + 1, q2 + q + 1] | ∄ P,Q ∈ K(j) : Ai, P,Q are collinear},
that is m(j) is the minimum subscript i such that the corresponding point Ai

is not saturated by K(j). The process ends when a complete arc is obtained.



36 ACCT 2014

0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0.915

0.92

0.925

0.93

0.935

0.94

0.945

0.95

0.955

0.96

q

ϕ
(q

)

ϕ(q)

ϕ(q) = 1.5
ln q

+ 0.802 > ϕ(q)

t2(2, q) = 0.6
√

q lnϕ(q) q
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ϕ(q) (the top dashed-dotted curve); values ϕ(q) from complete arcs obtained
by greedy algorithms, q ∈ T ∪ T# (the bottom solid curve).

Lexicographical order of points. Let q be prime and let the elements
of the field Fq = {0, 1, . . . , q − 1} be treated as integers modulo q. Let the
points Ai of PG(2, q) be represented in homogenous coordinates so that Ai =

(x
(i)
0 , x

(i)
1 , x

(i)
2 ), x

(i)
j ∈ Fq, where the leftmost non-zero element is 1. For Ai, we

put i = x
(i)
0 q2 + x

(i)
1 q + x

(i)
2 . So, the homogenous coordinates of a point Ai are

treated as its number i written in the q-ary scale of notation.

Theorem 3. In PG(2, q), for the smallest size t2(2, q) of a complete arc, the
following upper bound holds:

t2(2, q) < 1.83
√

q ln q, q ∈ L ∪ L#. (2)

Arcs satisfying these bounds can be obtained by Algorithm FOP with fixed Lex-
icographical order of points.

The statement of Theorem 3 is illustrated by Figure 5.
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y = 0.7295 (the top dashed line); f(q) (the 2-nd dashed-dotted curve); values
f(q) from complete arcs obtained by greedy algorithms (the bottom solid curve).

Lemma 4. It holds that
min{√q ln0.7295 q,

√
q lnf(q) q, 0.6

√
q lnϕ(q) q} < 1.83

√
q ln q.

Remark 5. In Coding Theory, greedy codes (or lexicographical codes, or lexi-
codes) are considered, see [8,9] and the references therein. In [5, Remark 2.1], it
is noted that formally Algorithm FOP is an algorithm creating a parity check
matrix of a lexicode with codimension 3 and minimum distance 4.

4 Random complete arcs in PG(2, q)

In [6] small complete arcs are obtained using an algorithm which randomly
selects at each step the point to add. The corresponding values tR2 (2, q)/

√
q ln q,

q ∈ R, are shown in Figure 6. One can see that Figures 5 and 6 have a very
similar structure. This is expected, as Lexicographical order of points is a
random order in the geometrical sense.
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