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Abstract

We study a stability property of probability laws with respect to
small violations of algorithmic randomness. Some sufficient condition
of stability is presented in terms of Schnorr tests of algorithmic ran-
domness. Most probability laws, like the strong law of large numbers,
the law of iterated logarithm, and even Birkhoff’s pointwise ergodic
theorem for ergodic transformations, are stable in this sense.

Nevertheless, the phenomenon of instability occurs in ergodic
theory. Firstly, the stability property of Birkhoff’s ergodic theo-
rem is non-uniform. Moreover, a computable non-ergodic measure-
preserving transformation can be constructed such that the ergodic
theorem is non-stable.

∗This paper is an extended version of the talk at the Eighth International Conference
on Computability, Complexity and Randomness (CCR 2013), September 23-27, 2013,
Moscow, Russia; see also the conference paper V’yugin [26]. This work was partially
supported by RFBR grants 13-01-12458 and 13-01-12447.
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1 Introduction

In this paper we study a stability property of probability laws with respect to
small violations of randomness. By a probability law we mean any property
Φ(ω) of infinite binary sequences ω which holds almost surely. We define
the notion of stability of a probability law in terms of algorithmic theory of
randomness. Within the framework of this theory, the probability laws are
formulated in a “pointwise” form. It is well known that the main laws of
probability theory are valid not only almost surely but for each individual
Martin-Löf random sequence.

Some standard notions of algorithmic randomness are given in Section 2.
We use the definition of a random sequence in complexity terms. An infinite
binary sequence ω1ω2 . . . is Martin-Löf random with respect to the uniform
(or 1/2-Bernoulli) measure if and only if Km(ωn) ≥ n − O(1) as n → ∞,
where Km(ωn) is the monotonic Kolmogorov complexity of a binary string
ωn = ω1 . . . ωn and the constant O(1) depends on ω but not on n.

The same property also holds if we replace the monotonic complexity
Km(ωn) with the prefix complexity KP (ωn). The difference is that the
inequality Km(ωn) ≤ n + O(1) holds for monotonic complexity but this is
not true for the prefix complexity. The main results of this paper, Theorems 2
and 3, also hold for the prefix complexity.

A probability law Φ(ω) is said to be stable if an unbounded computable
function σ(n) exists such that Φ(ω) is true for each infinite sequence ω such
that Km(ωn) ≥ n − σ(n) − O(1) as n → ∞. We assume that this function
is non-decreasing and refer to the function σ(n) as to a degree of stability.

A stability property under small violations of algorithmic randomness of
the main limit probability laws was discovered by Schnorr [16] and Vovk [20].
They have shown that the law of large numbers for the uniform Bernoulli
measure holds for a binary sequence ω1ω2 . . . if Km(ωn) ≥ n− σ(n)−O(1),
where σ(n) is an arbitrary computable function such that σ(n) = o(n) as
n → ∞, and the law of iterated logarithm holds if Km(ωn) ≥ n − σ(n) −
O(1), where σ(n) is an arbitrary computable function such that1 σ(n) =
o(log log n). V’yugin [22] has shown that the law of the length of the longest
head-run in an individual random sequence is stable with degree of stability
σ(n) = o(log log n). It was shown in these papers that the corresponding
degrees of stability are tight.

1In what follows all logarithms are on the base 2.

2



We present in Proposition 4 a sufficient condition of stability in terms of
Schnorr tests of randomness. We mention that if a computable rate of con-
vergence almost surely exists, then the corresponding probability law holds
for any Schnorr random sequence. In turn, the latter property implies a
stability property of this law. Using this sufficient condition, we prove that
most probability laws, like the strong law of large numbers and the law of
iterated logarithm, are stable under small violations of algorithmic random-
ness. Theorem 1 shows that Birkhof’s ergodic theorem is also stable if the
measure preserving transformation is ergodic.

In Section 4 we show that the phenomenon of instability occurs in ergodic
theory. First, there are no universal stability bounds in ergodic theorems for
ergodic transformations. The Birkhoff ergodic theorem is non-stable for some
non-ergodic stationary measure-preserving transformation.

We note that there is some analogy with the lack of universal convergence
rate or redundancy estimates in ergodic theory. A lack of universal con-
vergence bounds is typical for asymptotic results of ergodic theory like the
Birkhoff ergodic theorem – Krengel [12], or the Shannon–McMillan–Breiman
theorem and universal compressing schemes – Ryabko [15].

2 Preliminaries

Let {0, 1}∗ be the set of all finite binary sequences (strings) and Ω = {0, 1}∞
the set of all infinite binary sequences. Denote by Λ the empty sequence.
Let l(α) denote the length of a sequence α (l(α) =∞ for α ∈ Ω).

For any finite or infinite sequence ω = ω1ω2 . . ., we write ωn = ω1ω2 . . . ωn,
where n ≤ l(ω). Also, we write α ⊆ β if α = βn for some n. Two finite
sequences α and β are incomparable if α 6⊆ β and β 6⊆ α. A set A ⊆ {0, 1}∗
is prefix-free if any two distinct sequences from A are incomparable.

The complexity of a string x ∈ {0, 1}∗ is equal to the length of the shortest
binary codeword p ∈ {0, 1}∗ from which the string x can be reconstructed:
Kψ(x) = min{l(p) : ψ(p) = x}. We suppose that min ∅ = +∞.

By this definition the complexity of x depends on a computable (par-
tial recursive) function ψ, a method of decoding. Kolmogorov proved that
the optimal decoding algorithm ψ exists such that Kψ(x) ≤ Kψ′(x) + O(1)
holds for each computable decoding function ψ′ and for all strings x. We fix
some optimal decoding function ψ. The value K(x) = Kψ(x) is called the
Kolmogorov complexity of x.
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If domains of decoding algorithms are prefix-free sets, the same construc-
tion gives us the definition of prefix complexity KP (x).

Let R be the set of all real numbers and Q the set of all rational numbers.
A function f : {0, 1}∗ → R is said to be computable if there exists

an algorithm which, given a finite string x and a rational number ε > 0,
computes a rational approximation of a number f(x) with accuracy ε.

For a general reference on algorithmic randomness, see Li and Vitányi [13].
We confine our attention to the Cantor space Ω with the uniform Bernoulli
measure B1/2. Hoyrup and Rojas [9] proved that any computable probability
space is isomorphic to the Cantor space in both the computable and measure-
theoretic senses. Therefore, there is no loss of generality in restricting to this
case.

The topology on Ω is generated by binary intervals Γx = {ω ∈ Ω : x ⊂ ω},
where x is a finite binary sequence.

A probability measure P on Ω can be defined by the values P (x) = P (Γx),
x ∈ {0, 1}∗. Also, P (Λ) = 1 and P (x) = P (x0) +P (x1) for all x. A measure
P is computable if the function x→ P (x) is computable.

An important example of a computable probability measure is the uni-
form Bernoulli measure B1/2, where B1/2(Γx) = 2−l(x) for any finite binary
sequence x.

An open subset U of Ω is said to be effectively open if it can be represented
as a union of a computable sequence of binary intervals: U =

⋃∞
i=1 Γαi ,

where αi = f(i) is a computable function. A sequence Un, n = 1, 2, . . .,
of effectively open sets is called effectively enumerable if each open set Un
can be represented as Un =

⋃∞
i=1 Γαn,i , where αn,i = f(n, i) is a computable

function from n and i.
A Martin-Löf test of randomness with respect to a computable measure

P is an effectively enumerable sequence Un, n = 1, 2, . . ., of effectively open
sets such that P (Un) ≤ 2−n for all n. If the real numbers P (Un) are uniformly
computable, then the test Un is called a Schnorr test of randomness.2

An infinite binary sequence ω passes the test Un, n = 1, 2, . . ., if ω 6∈ ⋂Un.
A sequence ω is Martin-Löf random with respect to a computable measure
P if it passes each Martin-Löf test of randomness. The notion of a Schnorr
random sequence is defined analogously.

In what follows we mainly consider the notion of randomness with respect

2Uniform computability of P (Un) means that there is an algorithm which, given n and
ε > 0, outputs a rational approximation of P (Un) up to ε.

4



to the uniform Bernoulli measure B1/2.
An equivalent definition of randomness can be obtained using Solovay

tests of randomness. A computable sequence {xn : n = 1, 2, . . .} of binary
strings is called a Solovay test of randomness with respect to the uniform

measure if the series
∞∑
n=1

2−l(xn) converges.

An infinite sequence ω passes a Solovay test of randomness {xn : n =
1, 2, . . .} if xn 6⊆ ω for almost all n.

The Martin-Löf and Solovay tests define the same class of random se-
quences.

Proposition 1 An infinite sequence ω = ω1ω2 . . . is Martin-Löf random if
and only if it passes each Solovay test of randomness.

Proof. Assume that ω is not Martin-Löf random. Then a Martin-Löf test Un,
n = 1, 2, . . ., exists such that ω ∈ ⋂Un. Define the Solovay test of randomness
as follows. Since Un is effectively open and B1/2(Un) ≤ 2−n for all n, we can
effectively compute a prefix-free sequence of strings xn, n = 1, 2, . . ., such

that
⋃
n Γxn = ∪nUn and the series

∞∑
n=1

2−l(xn) converges. Obviously, xn ⊂ ω

for infinitely many n.
On the other hand, assume that for some Solovay test xn, n = 1, 2, . . .,

xn ⊂ ω for infinitely many n. Let
∞∑
n=1

2−l(xn) < 2K , where m is a positive

integer number. Let Un be the set of all infinite ω such that |{m : xm ⊂
ω}| ≥ 2n+K . It is easy to verify that Un is a Martin-Löf test of randomness
and that ω ∈ ⋂Un. QED

We also consider total Solovay tests of randomness, which leads to
the same definition of randomness as with Schnorr tests of randomness
(see Downey and Griffiths [4]). A series

∞∑
i=1

ri converges with a com-

putable rate of convergence if a computable function m(δ) exists such that

|
∞∑

i=m(δ)
ri| ≤ δ for each positive rational number δ. A Solovay test of ran-

domness T = {xn : n = 1, 2, . . .} is said to be total if the series
∞∑
n=1

2−l(xn)

converges with a computable rate of convergence.

Proposition 2 An infinite sequence ω = ω1ω2 . . . is Schnorr random if and
only if it passes each total Solovay test of randomness.

The proof is similar to the proof of Proposition 1.
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An equivalent definition of a Martin-Löf random sequence is obtained in
terms of algorithmic complexity (see Li and Vitanyi [13]).

In terms of prefix complexity the following definition is known. An infinite
sequence ω is Martin-Löf random with respect to a computable measure P
if and only if KP (ωn) ≥ − logP (ωn) +O(1).

An analogous definition can be obtained in terms of monotonic complex-
ity. Let us define the notion of a monotonic computable transformation of
binary sequences. A computable representation of such an operation is a set
ψ̂ ⊆ {0, 1}∗ × {0, 1}∗ such that (i) the set ψ̂ is recursively enumerable; (ii)
for any (x, y), (x′, y′) ∈ ψ̂, if x ⊆ x′, then y ⊆ y′ or y′ ⊆ y; (iii) if (x, y) ∈ ψ̂,
then (x, y′) ∈ ψ̂ for all y′ ⊆ y.

The set ψ̂ defines a monotonic (with respect to ⊆) decoding function3

ψ(p) = sup{x : ∃p′(p′ ⊆ p&(p′, x) ∈ ψ̂)}.
Any computable monotonic function ψ determines the corresponding

measure of complexity Kmψ(x) = min{l(p) : x ⊆ ψ(p)} = min{l(p) :

(x, p) ∈ ψ̂}. An invariance property also holds for monotonic measures of
complexity: an optimal computable operation ψ exists such that Kmψ(x) ≤
Kmψ′(x) + O(1) for all computable operations ψ′ and for all finite binary
sequences x.

An infinite sequence ω is Martin-Löf random with respect to a computable
measure P if and only if Km(ωn) = − logP (ωn) + O(1). In particular, an
infinite binary sequence ω is Martin-Löf random (with respect to the uniform
measure) if and only if Km(ωn) = n+O(1).

A randomness criterium can also be formulated in terms of prefix com-
plexity: an infinite sequence ω is Martin-Löf random with respect to a com-
putable measure P if and only if KP (ωn) ≥ − logP (ωn) + O(1). Also,
Km(x) ≤ KP (x) + O(1) (see for details Li and Vitanyi [13]). The main
results of this paper, Theorems 2 and 3, also hold if we replace Km(x) with
KP (x).

The function dmP (ωn) = − logP (ωn) − Km(ωn) is called the universal
deficiency of randomness (with respect to a computable measure P ). For the
uniform measure, dm(ωn) = n−Km(ωn).

3Here by the supremum we mean a finite or an infinite sequence extending all compa-
rable finite x.

6



3 Algorithmically stable laws

Let Φ(ω) be an asymptotic probability law, i.e., a property of infinite binary
sequences which holds almost surely.

Kolmogorov’s algorithmic approach to probability theory offers a new
paradigm for logic of probability. We can formulate any probabilistic law in
a pointwise form: Km(ωn) ≥ n−O(1) =⇒ Φ(ω).4

In this paper we present a more deep analysis. We call a law Φ(ω) stable
if there exists an unbounded nondecreasing computable function α(n) such
that Km(ωn) ≥ n− α(n)−O(1) =⇒ Φ(ω). The function α(n) is called the
degree of stability of the law Φ(ω).

3.1 Sufficient condition of stability

We present in this section some sufficient condition of stability of a probabil-
ity law and consider examples of such laws with different degrees of stability.
We formulate this sufficient condition in terms of Schnorr’s [16] definition of
an algorithmic random sequence. The choice of Schnorr’s definition is justi-
fied by an observation that the vast majority of such laws hold for Schnorr
random sequences.

An algorithmic effective version of almost sure convergence of functions
fn of type Ω→ R+ was considered by V’yugin [21]. A sequence of functions
fn effectively converges to a function f almost surely if a computable function
m(δ, ε) exists such that

B1/2{ω : sup
n≥m(δ,ε)

|fn(ω)− f(ω)| > δ} < ε (1)

for all positive rational numbers δ and ε.
A function f : Ω → R is said to be computable if the sets {(r, ω) : r ∈

Q, ω ∈ Ω, r < f(ω)} and {(r, ω) : r ∈ Q, ω ∈ Ω, r > f(ω)} are effectively
open in the product topology5 on Q×Ω. A notion of a computable sequence
of functions fn : Ω→ R, n = 1, 2, . . ., is defined analogously.

The following simple proposition was formulated in [21] for the Martin-
Löf notion of randomness. It holds also for Schnorr random sequences (see
Galatolo et al. [10]).

4An equivalent form is Km(ωn) = n+O(1) =⇒ Φ(ω).
5We consider a discrete topology on Q and a topology on Ω generated by the intervals

Γx, x ∈ {0, 1}∗. The notion of an effectively open set is defined as Section 2.
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Proposition 3 Let a computable sequence of functions fn effectively con-
verge almost surely to some function f . Then a Schnorr test of randomness
T can be constructed such that lim

n→∞
fn(ω) = f(ω) for each infinite sequence

ω passing the test T .

Proof. By (1) we have B1/2{ω : sup
n,n′≥m(δ/2,ε)

|fn(ω) − fn′(ω)| > δ} < ε for all

positive rational numbers δ and ε. Denote Wn,n′,δ = {ω : |fn(ω)− fn′(ω)| >
δ}. This set can be represented as the union

⋃
i Γxi , where xi, i = 1, 2, . . ., is a

computable sequence of finite sequences. Define Vi =
⋃
n,n′≥m(1/i,2−i) Wn,n′,1/i

for all i and Ui =
⋃
j>i Vj. Then B1/2(Ui) ≤ 2−i for all i.

Note that the measure B1/2(Ui) can be computed with an arbitrary degree
of precision. Indeed, by (1), to compute P (Ui) with a given degree of precision
ε > 0 it is sufficient to compute B1/2(

⋃
i′≥j≥i

⋃
m′≥n,n′≥m(1/i,2−j) Wn,n′,1/j) for

some sufficiently large i′ and m′. Therefore, T = {Ui} is a Schnorr test of
randomness.

Assume that lim
n→∞

fn(ω) does not exist for some ω. Then a number i exists

such that |fn(ω)− fn′(ω)| > 1/i for infinitely many n and n′. For any j > i
the numbers n, n′ ≥ m(1/j, 2−j) exist such that ω ∈ Wn,n′,1/j ⊆ Vj. Hence,
the sequence ω if rejected by the Schnorr test T . QED

In the following proposition some sufficient condition of stability of a
probability law is given in terms of total Solovay tests randomness. This
proposition also follows from the proof of Proposition 13 of Bienvenu and
Merkle [2].

Proposition 4 For any total Solovay test of randomness T , a computable
unbounded function σ(n) exists such that for any infinite sequence ω, if
Km(ωn) ≥ n− σ(n)−O(1), then the sequence ω passes the test T .

Proof. Let T = {xn : n = 1, 2, . . .}. Denote ls = l(xs). Since
∞∑
s=1

2−ls < ∞
with a uniform computable rate of convergence m(ε), an unbounded nonde-

creasing computable function ν(n) exists such that
∞∑
s=1

2−ls+ν(ls) < ∞. We

can define ν(n) = i, where i is such that m(2−2i) ≤ n < m(2−2(i+1)). Then

∞∑
s=1

2−ls+ν(ls) =
∞∑
i=1

2i
∑

m(2−2i)≤ls<m(2−2(i+1))

2−ls ≤
∞∑
i=1

2−i ≤ 1.

By the generalized Kraft inequality (see Li and Vitanyi [13]), we can define
the corresponding prefix-free code such that Km(xm) ≤ l(xm)− ν(l(xm)) +
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O(1). Assume xm ⊆ ω for infinitely many m. For any such m, ωn = xm,
where n = l(xm).

Let σ(n) be a unbounded nondecreasing computable function such that
σ(n) = o(ν(n)) as n → ∞. Let also ω be an infinite binary sequence such
that Km(ωn) ≥ n− σ(n)−O(1) for all n. For n = l(xm),

σ(n) ≥ n−Km(ωn) ≥ n− l(xm) + ν(l(xm))−O(1) ≥ ν(n)−O(1)

for infinitely many n. On the other hand, σ(n) = o(ν(n)) as n → ∞. This
contradiction proves the theorem. QED

By Proposition 4 the stability property holds for main probability laws
like the strong law of large numbers and the law of iterated logarithm.

By a computable sequence of total Solovay tests of randomness we mean
a computable double-indexed sequence of finite binary strings Tk = {xk,n :

n = 1, 2, . . .}, k = 1, 2, . . ., such that the series
∞∑
n=1

2−l(xk,n) converges with a

uniformly (with respect to k) computable rate of convergence. This means

that there exists a computable function m(δ, k) such that
∞∑

i=m(δ,k)
2−l(xk,i) ≤ δ

for each k and each rational6 δ.
In applications, it is often convenient to use computable sequences of tests.

One can easily modify Proposition 4 for computable sequences of tests.

Proposition 5 For any computable sequence of Solovay total tests of ran-
domness Tk, k = 1, 2, . . ., a computable unbounded function σ(n) exists such
that for any infinite sequence ω, if Km(ωn) ≥ n − σ(n) − O(1), then the
sequence ω passes all tests Tk.

The proof is analogous to the proof of Proposition 4.
It is well known that the Schnorr randomness satisfies the strong law of

large numbers and the law of iterated logarithm. Now we show details of
how Proposition 5 can be applied to these laws.

6We can combine all tests of a computable sequence Tk, k = 1, 2, . . ., into a single total
test T = {xk,n : k = 1, 2, . . . , n = m(2−k, k),m(2−k, k) + 1, . . .} such that if any ω passes

the test T , then it passes the test Tk for each k. T is a test, since
∞∑
k=1

∞∑
n=m(2−k,k)

2−l(xk,n) ≤

∞∑
k=1

2−k ≤ 1.

9



Hoeffding’s [8] inequality for the uniform probability distribution

B1/2

{
ω ∈ Ω :

∣∣∣∣∣ 1n
n∑
i=1

ωi −
1

2

∣∣∣∣∣ ≥ ε

}
≤ 2e−2nε2 (2)

serves as a tool for constructing total Solovay tests of randomness.
Let εk be a computable sequence of positive rational numbers such that

εk → 0 as k → ∞. For any k, let
⋃
n{x : l(x) = n&| 1

n

n∑
i=1

xi − 1
2
| ≥ εk} =

{xk,m : m = 1, 2, . . .}}. This is a total Solovay test of randomness, since

by (2) we have
∞∑
m=1

2−l(xk,m) ≤
∞∑
n=1

2e−2nε2k < ∞ with a computable rate of

convergence.

The strong law of large numbers lim
n→∞

1
n

n∑
i=1

ωi = 1
2

holds for an infinite

sequence ω = ω1ω2 . . . if and only if it passes the test {xk,m : m = 1, 2, . . .} for
each k. By Proposition 4 an unbounded nondecreasing computable function
σ(n) exists such that if Km(ωn) ≥ n − σ(n) − O(1) as n → ∞, then the
strong law of large numbers holds for this ω.

We can find a specific form of this function σ(n) using the proof of Propo-

sition 4. By inequality (2) we have the bound
∞∑
n=1

2−l(xk,n) <
∞∑
n=1

2e−2nε2k <∞
for the corresponding total Solovay test of randomness Tk = {xk,n}. Also,
∞∑
n=1

2e−2nε2k+ν(n) <∞ for any function ν(n) such that ν(n) = o(n) as n→∞.

The remaining part of the proof coincides with the proof of Proposition 4.
Hence, any function σ(n) = o(n) can serve as a degree of stability for the
strong law of large numbers.

An analogous construction can be developed for the law of iterated loga-
rithm:

lim sup
n→∞

∣∣∣∣ n∑
i=1

ωi − n
2

∣∣∣∣√
1
2
n ln lnn

= 1. (3)

Here we consider here only the inequality≤ in (3).7 This inequality is violated

if and only if a rational number δ > 1 exists such that Sn− n
2
> δ

√
1
2
n ln lnn

for infinitely many n, where Sn =
n∑
i=1

ωi.

7The converse inequality is studied in Vovk [20].
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For any rational number δ such that δ > 1 and for mn = dδne, let8

Uδ,n = {ω ∈ Ω : ∃k(mn ≤ k ≤ mn+1&Sk − k/2 > δ
√

(1/2)mn ln lnmn}.

Using the inequality B1/2{ max
1≤k≤m

Sk > a} ≤ 2B1/2{Sm > a}, we obtain

B1/2(Uδ,n) ≤ 2B1/2({ω ∈ Ω : Smn+1 −mn+1/2 > δ
√

(1/2)mn ln lnmn}) ≤

≤ ce−δ ln lnmn ≈ 1

nδ
, (4)

where c > 0. We have used in (4) the Hoeffding inequality.
We can effectively construct a prefix-free set Ũδ,n of finite sequences such

that for each ω ∈ Uδ,n a number m exists such that ωm ∈ Ũδ,n.
The sequence

⋃
n Ũδ,n = {xδ,k : k = 1, 2, . . .} is a total Solovay test of

randomness, since the series
∑
n

2−l(xδ,n) =
∑
n
B1/2(Uδ,n) ≤ ∑

n

1
nδ

converges

(with a computable rate of convergence) for any δ > 1.
By definition, the law of iterated logarithm (3) holds for ω = ω1ω2 . . . if

and only if it passes the test {xδ,k : k = 1, 2, . . .} for each δ > 1.
By Proposition 4 an unbounded nondecreasing computable function σ(m)

exists such that the inequality ≤ in (3) holds for any ω satisfying Km(ωm) ≥
m− σ(m)−O(1) as m→∞.

We can also find a specific form of the degree of stability for the law
of iterated logarithm. Let α(m) be an unbounded nondecreasing com-
putable function such that α(m) = o(ln lnm) as m → ∞. Then the series∑
n
e−δ ln lnmn+α(mn) ≈ ∑

n

o(lnn)
nδ

converges for any δ > 1. The proof of Propo-

sition 4 shows that any computable unbounded function σ(n) = o(log log n)
can serve as a measure of stability of the law of iterated logarithm.

3.2 Stability of Birkhoff’s theorem in the ergodic case

Recall some basic notions of ergodic theory. An arbitrary measurable map-
ping of a probability space into itself is called a transformation. A transfor-
mation T : Ω→ Ω preserves a measure P on Ω if P (T−1(A)) = T (A) for all
measurable subsets A of the space. A subset A is said to be invariant with

8For any real number r, dre denotes the least positive integer number m such that
m ≥ r.

11



respect to T if T−1A = A up to a set of measure 0. A transformation T is
called ergodic if each subset A invariant with respect to T has measure 0 or 1.

A transformation T of the set Ω is computable if a computable representa-
tion ψ̂ exists such that (i)-(iii) hold and T (ω) = sup{y : x ⊆ ω&(x, y) ∈ ψ̂)}
for all infinite ω ∈ Ω.

Denote T 0ω = ω, T i+1ω = T (T iω). Any point ω ∈ Ω generates an infinite
trajectory ω, Tω, T 2ω, . . ..

Using Bishop’s [3] analysis, V’yugin [21], [23] presented an algorithmic
version of Birkhoff’s pointwise ergodic theorem:

Let T be a computable measure-preserving transformation and f a com-
putable real-valued bounded function defined on the set of binary sequences.
Then for any infinite binary sequence ω the following implication is valid:

Km(ωn) ≥ n−O(1) =⇒ lim
n→∞

1

n

n−1∑
i=0

f(T iω) = f̂(ω) (5)

for some f̂(ω) (= E(f) for ergodic T ).
Later this result was extended for non-computable f and generalized for

more general metric spaces. For a further development see Nandakumar [14],
Galatolo et al. [11], and Gacs et al. [5].

Let f ∈ L1 be computable and assume that supω |f(ω)| < ∞; By ‖f‖
denote the norm in L1 (or in L2). Let P be a computable measure and T a
computable ergodic transformation preserving the measure P .

Define the sequence of ergodic averages Afn, n = 1, 2, . . ., where Afn(ω) =

1
n

n−1∑
k=0

f(T kω).

Galatolo at al. [10] and Avigad et al. [1] showed that the ergodic averages
{Afn} effectively converge to a computable real number c =

∫
f(ω)dP almost

surely as n→∞. Then the stability property of the ergodic theorem in the
case where the transformation T is ergodic is a consequence of this result and
Propositions 3 and 4. We present this result for completeness of exposition.

Proposition 6 Let T be a computable measure preserving ergodic transfor-
mation. Then the sequence of ergodic averages {Afn} effectively converges
almost surely as n→∞.

Proof. We suppose without loss of generality that
∫
fdP = 0.9 The sequence

‖Afn‖ is computable and converges to 0 by the ergodic theorems.

9Replace f with f −
∫
f(ω)dP .
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The maximal ergodic theorem says that P{ω : sup
n
|Afn(ω)| > δ} ≤ 1

δ
‖f‖

for any ergodic transformation T preserving the measure P .
Given ε, δ > 0, compute a p = p(δε) such that ‖Afp‖ ≤ δε/2. By the

maximal ergodic theorem for g = Afp we have P{ω : sup
n
|Agn(ω)| > δ/2} ≤

2
δ
‖Afp‖ ≤ ε.

Now we check that Agn is not too far from Afn. Expanding Agn, one can
check that

Agn(ω) =
1

n

n−1∑
k=0

g(T kω) =
1

np

p−1∑
k=0

n−1∑
s=0

f(T k+sω) =
1

np

(
p
n−1∑
k=0

f(T kω)

)
+

+
1

np

p−1∑
k=1

(p− k)f(T k+nω)−
p−1∑
k=1

(p− k)f(T kω)

 .
This implies that sup

ω
|Agn(ω) − Afn(ω)| ≤ 2

np

p−1∑
k=1

(p − k) sup
ω
|f(ω)| =

p−1
n

sup
ω
|f(ω)| ≤ δ/2 for all n ≥ m(δ, ε) = 2(p(δε) − 1) sup

ω
|f(ω)|/δ.

If |Afn(ω)| > δ for some n ≥ m(δ, ε) then |Agn(ω)| > δ/2. Hence,
P{ω : sup

n≥m(δ,ε)
|Afn(ω)| > δ} ≤ ε. The proposition is proved. QED

Propositions 3, 4, and 6 imply a stable version of the ergodic theorem for
the case where the transformation T is ergodic and P = B1/2.

Theorem 1 Let f be a computable observable and T a computable ergodic
transformation preserving the uniform measure B1/2. Then a computable
unbounded nondecreasing function σ(n) exists such that for any infinite se-
quence ω the condition Km(ωn) ≥ n − σ(n) − O(1) implies that the limit

lim
n→∞

1
n

n−1∑
k=0

f(T kω) exists.

Propositions 3, 4, and 6 imply also that in the case where the transforma-
tion T is ergodic, the Birkhof ergodic theorem holds for any Schnorr random
sequence. Moreover, a total Solovay test T exists such that if an infinite
sequence ω passes T , then Afn(ω) converges as n → ∞. This result should
probably be attributed to Galatolo et al. [11] (see also Franklin and Tows-
ner [6]).
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4 Instability in ergodic theory

The phenomenon of instability occurs in ergodic theory. In this section we
present a property of uniform instability of the ergodic theorem and absolute
instability for a non-ergodic measure-preserving transformation.

4.1 Instability results

The degree of stability σ(n) from Theorem 1 may depend on the observable
f and transformation T . Theorem 2 below shows that there is no uniform
degree of stability σ(n) for the ergodic theorem.

The phenomenon of instability of the ergodic theorem was first discovered
by V’yugin [24]. Compared with a “symbolic dynamics type” result from [24],
this result is “measure free”; it is formulated in terms of transformations and
the Kolmogorov complexity.

Theorem 2 Let σ(n) be a nondecreasing unbounded computable function.
Then there exist a computable ergodic measure-preserving transformation T
and an infinite sequence ω ∈ Ω such that the inequality Km(ωn) ≥ n− σ(n)
holds for all n and the limit

lim
n→∞

1

n

n−1∑
i=0

f(T iω) (6)

does not exist for some computable indicator function f .

Gacs et al. [5] showed that for every infinite sequence ω which is not Schnorr
random, a measure preserving ergodic transformation T exists such that the
limit (6) does not exist (i.e., the ergodic theorem does not hold). This result
and Theorem 1 show that Theorem 2 is equivalent to the following statement:
for every nondecreasing unbounded computable function σ(n) there is some
infinite sequence ω such that Km(ωn) ≥ n − σ(n) but ω is not Schnorr
random.

In the next theorem a uniform (with respect to σ(n)) result is presented.
In this case, we will lose the ergodic property of a transformation T .

Theorem 3 A computable measure-preserving transformation T can be con-
structed such that for any nondecreasing unbounded computable function σ(n)
an infinite sequence ω exists such that Km(ωn) ≥ n − σ(n) holds for all n
and the limit (6) does not exist for some computable indicator function f .
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A constructive version of the ergodic theorem by V’yugin [21] shows that this
sequence ω is not Martin-Löf random. A closely related result was obtained
by Franklin and Towsner [6]. Using the cutting and stacking method, they
showed that for every infinite sequence ω which is not Martin-Löf random, a
measure preserving transformation T exists such that the limit (6) does not
exist.

A construction of the transformation T is given in Section 4.3; the proof
of Theorem 2 is given in Section 4.4. In Section 4.2 we consider the main
technical concept, the method of cutting and stacking.

4.2 Method of cutting and stacking

In this section we consider the main notions and properties of cutting and
stacking method (see Shields [17, 18]).

A column is a sequence E = (L1, . . . , Lh) of pairwise disjoint intervals of
the unit interval [0, 1] of equal width. We refer to L1 as to the base and to
Lh as to the top of the column; Ê =

⋃h
i=1 Li is the support of the column;

w(E) = λ(L1) is the width of the column; h is the height of the column;
λ(Ê) = λ(

⋃h
i=1 Li) is the measure of the column, where λ is the uniform

measure on [0, 1].
Any column defines a transformation T which linearly transforms Lj to

Lj+1, namely, T (x) = x + c for all x ∈ Lj, where c is the corresponding
constant and 1 ≤ j ≤ h. This transformation T is not defined outside all
intervals of the column and at all points of the top interval Lh of this column.

Denote T 0ω = ω, T i+1ω = T (T iω). For any 1 ≤ j < h, an arbitrary
point ω ∈ Lj generates a finite trajectory ω, Tω, . . . , T h−jω.

By a partition of the unit interval [0, 1] we mean any pair π = (π0, π1) of
disjoint subsets of this interval such that π0 ∪ π1 = [0, 1]. In what follows we
suppose that some partition π = (π0, π1) is given.

A partition π = (π0, π1) is compatible with a column E if for each j there
exists a number i such that Lj ⊆ πi. This number i is called the name of the
interval Lj, and the corresponding sequence of names of all intervals of the
column is called the name of the column E.

For any point ω ∈ Lj, where 1 ≤ j < h, by the E–name of the trajectory
ω, Tω, . . . , T h−jω we mean a sequence of names of intervals Lj, . . . , Lh from
the column E. The length of this sequence is h− j + 1.

A gadget Υ is a finite collection of columns with disjoint supports. The
width of the gadget w(Υ) is the sum of the widths of its columns. The
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support of the gadget Υ is the union Υ̂ of the supports of all its columns.
We suppose that the partition π = (π0, π1) is compatible with each column
of the gadget Υ.

The union of gadgets Υi with disjoint supports is the gadget Υ =
⋃

Υi

whose columns are the columns of all the Υi. A transformation T = T (Υ)
is associated with a gadget Υ if it is the union of transformations defined on
all columns of Υ.

Any point of the support Υ̂ of a gadget Υ generates a finite trajectory. By
the Υ-name of this trajectory we mean its E-name, where E is the column
of Υ to which this trajectory corresponds. A gadget Υ extends a column Λ
if the support of Υ extends the support of Λ and the transformation T (Υ)
extends the transformation T (Λ).

Since all points of the interval Lj of the column generate trajectories with
the same names, we refer to the name of any such trajectory as to the name
generated by the interval Lj.

The cutting and stacking operations that are commonly used will now be
defined. The distribution of a gadget Υ with columns E1, . . . , En is a vector
of probabilities (

w(E1)

w(Υ)
, . . . ,

w(En)

w(Υ)

)
. (7)

A gadget Υ is a copy of a gadget Λ if they have the same distributions and
the corresponding columns have the same partition names.

A gadget Υ can be cut intoM copies of itself Υm,m = 1, . . . ,M , according
to a given probability vector (γ1, . . . , γM) of type (7) by cutting each column
Ei = (Li,j : 1 ≤ j ≤ h(Ei)) (and its intervals) into disjoint subcolumns
Ei,m = (Li,j,m : 1 ≤ j ≤ h(Ei)) such that w(Ei,m) = w(Li,j,m) = γmw(Li,j).

The gadget Υm = {Ei,m : 1 ≤ i ≤ L} is called the copy of the gadget Υ
of width γm. The action of the gadget transformation T is not affected by
the copying operation.

Another operation is stacking of gadgets onto gadgets. First we consider
stacking of columns onto columns and stacking of gadgets onto columns.

Let E1 = (L1,j : 1 ≤ j ≤ h(E1)) and E2 = (L2,j : 1 ≤ j ≤ h(E2))
be two columns of equal width whose supports are disjoint. A new column
E1 ∗ E2 = (Lj : 1 ≤ j ≤ h(E1) + h(E2)) is defined as Lj = L1,j for all
1 ≤ j ≤ h(E1) and Lj = L2,j−h(E1) for all h(E1) < j ≤ h(E1) + h(E2).

Let a gadget Υ and a column E have the same width, and assume that
their supports are disjoint. A new gadget E ∗Υ is defined as follows. Cut E
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into subcolumns Ei according to the distribution of the gadget Υ such that
w(Ei) = w(Ui), where Ui is the ith column of the gadget Υ. Stack Ui on the
top of Ei to get a new column Ei ∗Ui. A new gadget consists of the columns
(Ei ∗ Ui).

Let Υ and Λ be two gadgets of the same width and with disjoint supports.
A gadget Υ ∗ Λ is defined as follows. Let the columns of Υ are {Ei}. Cut
Λ into copies Λi such that w(Λi) = w(Ei) for all i. After that, for each i
stack the gadget Λi onto column Ei, i.e., consider the gadget Ei ∗ Λi. The
new gadget is the union of gadgets Ei ∗ Λi for all i. The number of columns
of the gadget Υ ∗ Λ is the product of the number of columns of Υ and the
number of columns of Λ.

The M -fold independent cutting and stacking of a single gadget Υ is
defined by cutting Υ into M copies Υi, i = 1, . . . ,M , of equal width and
successive independent cutting and stacking to obtain Υ∗(M) = Υ1 ∗ . . .∗ΥM .
A sequence of gadgets {Υm} is complete if

• lim
m→∞

w(Υm) = 0;

• lim
m→∞

λ(Υ̂m) = 1;

• Υm+1 extends Υm for all m.

Any complete sequence of gadgets {Υs} determines a transformation T =
T{Υs} which is defined almost surely.

By the definition, T preserves the measure λ. Shields [17] gives the fol-
lowing sufficient conditions for a process T to be ergodic. Let a gadget Υ
be constructed by cutting and stacking from a gadget Λ. Let E be a col-
umn from Υ and D a column from Λ. Then the set Ê

⋂
D̂ is the union of

subcolumns from D of width w(E) which were used to construct E.
Let 0 < ε < 1. A gadget Λ is (1− ε)-well-distributed in Υ if∑

D∈Λ

∑
E∈Υ

|λ(Ê
⋂
D̂)− λ(Ê)λ(D̂)| < ε. (8)

We will use the following two lemmas.

Lemma 1 ([17], Corollary 1), ([18], Theorem A.1). Let {Υn} be a complete
sequence of gadgets and assume that for each n the gadget {Υn} is (1− εn)-
well-distributed in {Υn+1}, where εn → 0. Then {Υn} defines an ergodic
process.
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Lemma 2 ([18], Lemma 2.2). For any ε > 0 and any gadget Υ there is a
number M such that for each m ≥M the gadget Υ is (1− ε)-well-distributed
in the gadget Υ∗(m) constructed from Υ by m-fold independent cutting and
stacking.

We refer the reader to Shields [17] for the proof.
Several examples of stationary and ergodic transformation constructed

using the cutting and stacking method are given in Shields [17, 18].

4.3 Construction

Let r > 0 be a sufficiently small rational number. Define a partition
π = (π0, π1) of the unit interval [0, 1], where π0 = [0, 0.5)

⋃
(0.5 + r, 1) and

π1 = [0.5, 0.5 + r].
Let σ(n) be a computable unbounded nondecreasing function. A com-

putable sequence of positive integer numbers exists such that 0 < h−2 <
h−1 < h0 < h1 < . . . and σ(hi−1)− σ(hi−2) > i− log r+ 8 for all i = 0, 1, . . ..

The gadgets ∆s, Πs, where s = 0, 1, . . ., will be defined by mathematical
induction on the number of steps. The gadget ∆0 is defined by cutting the
interval [0.5 − r, 0.5 + r] into equal parts and stacking them. Let Π0 be
a gadget defined by cutting the intervals [0, 0.5 − r) and (0.5 + r, 1] into
equal subintervals and stacking them. The purpose of this definition is to
construct initial gadgets of width ≤ 2−h0 with supports satisfying λ(∆̂0) = 2r
and λ(Π̂0) = 1− 2r.

The sequence of gadgets {∆s}, s = 0, 1, . . ., will define an approximation
of the uniform Bernoulli measure concentrated on the names of their tra-
jectories. The sequence of gadgets {Πs}, s = 0, 1, . . ., will define a measure
with sufficiently small entropy. The gadget Πs−1 will be extended at each
step of the construction by a half of the gadget ∆s−1. After that, the inde-
pendent cutting and stacking process will be applied to this extended gadget
to obtain the gadget Πs. This process eventually defines infinite trajectories
starting from points of [0, 1]. The sequence of gadgets {Πs}, s = 0, 1, . . .,
will be complete and will define a transformation T . Lemmas 1 and 2 from
Section 4.2 ensure the transformation T to be ergodic.

Construction. Let at step s−1 (s > 0) gadgets ∆s−1 and Πs−1 be defined.
Cut the gadget ∆s−1 into two copies ∆′ and ∆′′ of equal width (i.e., cut each
column into two subcolumns of equal width) and join Πs−1

⋃
∆′′ in to one
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gadget. Find a sufficiently large number Rs and do Rs-fold independent cut-
ting and stacking of the gadget Πs−1

⋃
∆′′ and also of the gadget ∆′ to obtain

new gadgets Πs and ∆s of width ≤ 2−hs such that the gadget Πs−1
⋃

∆
′′

is
(1 − 1/s)–well–distributed in the gadget Πs. The needed number Rs exists
by Lemma 2 (Section 4.2).

By the construction, the endpoints of all subintervals of [0, 1] used in this
construction are rational numbers, and so the construction is algorithmically
effective.

Properties of the construction. Define a transformation T = T{Πs}. Since
the sequence of the gadgets {Πs} is complete (i.e. λ(Π̂s)→ 1 and w(Πs)→ 0
as s→∞), T is defined almost surely.

The transformation T is ergodic by Lemma 1, since the sequence of gad-
gets Πs is complete. Furthermore, the gadget Πs−1

⋃
∆′′ and the gadget

Πs−1 are (1 − 1/s)-well distributed in Πs for any s. By the construction,
λ(∆̂i) = 2−i+1r and λ(Π̂i) = 1− 2−i+1r for all i = 0, 1, . . ..

We need to interpret the transformation T as a transformation of infinite
binary sequences. To do this, we identify real numbers from [0, 1] with their
infinite binary representations. This correspondence is one-to-one except
for the countable set of infinite sequences corresponding to dyadic rational
numbers: for example, 0.0111... = 0.10000.... Such sequences can be ignored,
since their set is countable.

From the point of view of this interpretation, the Bernoulli measure B1/2

and the uniform measure λ are identical, and the transformation T con-
structed above preserves the uniform Bernoulli measure and is defined almost
surely.

4.4 Proof of Theorem 2

For technical convenience, in the proof of Theorem 2 we replace the
deficiency of randomness dm(x) with a nonnegative supermartingale (see
Schiryaev [19]). A function M : {0, 1}∗ → R is called a supermartingale
if M(Λ) ≤ 1 and M(x) ≥ 1

2
(M(x0) + M(x1)) for all x. Also, we require

M(x) ≥ 0 for all x. A more general property holds: M(x) ≥ ∑
y∈B

M(xy)2−l(y)

for any prefix-free set B.
Recall the proof of that the deficiency of randomness is bounded by the

logarithm of some supermartingale: dm(x) ≤ logM(x) for all x.
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Let ψ be the optimal function which defines the monotone complexity
Km(x). Define Q(x) = B1/2(

⋃{Γp : x ⊆ ψ(p)}). It is easy to verify that
Q(Λ) ≤ 1 and Q(x) ≥ Q(x0) + Q(x1) for all x. Then the function M(x) =
2l(x)Q(x) is a supermartingale and M(x) ≥ 2l(x)−Km(x) for all x.

Denote d(x) = logM(x). Using the following lemma, we will construct
an infinite binary sequence such that the randomness deficiency of its initial
segments grows arbitrarily slowly.

Lemma 3 For any set of binary strings A and for any string x, a string
y ∈ A exists such that d(xyn) ≤ d(x) − logB1/2(Ã) + 1 for all n such that

1 ≤ n ≤ l(y), where Ã =
⋃{Γy : y ∈ A}.

Proof. Define A1 =
{
y ∈ A : ∃j(1 ≤ j ≤ l(y)&M(xyj) > 2M(x)/B1/2(Ã))

}
.

For any y ∈ A1, let yp be the initial segment of y of the minimal length such
that M(xyp) > 2M(x)/B1/2(Ã). The set {yp : y ∈ A1} is prefix-free. Then
we have

1 ≥
∑
y∈A1

M(xyp)

M(x)
2−l(y

p) ≥ 2

B1/2(Ã)

∑
y∈A1

2−l(y
p) ≥

2B1/2(Ã1)

B1/2(Ã)
.

From this we obtain B1/2(Ã1) ≤ 1
2
B1/2(Ã) and B1/2(Ã \ Ã1) > 1

2
B1/2(Ã).

For any y ∈ A \ A1, we have M(xyj) ≤ 2M(x)/B1/2(Ã) for all x such
that l(x) ≤ j ≤ (y). QED

We will use the construction of Section 4.3 to show that an infinite binary
sequence ω exists such that d(ωn) ≤ σ(n) for all n and the limit (6) does not
exist for the name χ(ω)χ(Tω)χ(T 2ω) . . . of its trajectory, where χ(ω) = i if
ω ∈ πi, i = 0, 1. More precisely, we prove that

lim sup
n→∞

1

n

n−1∑
i=0

χ(T iω) ≥ 1/16, (9)

lim inf
n→∞

1

n

n−1∑
i=0

χ(T iω) ≤ 2r, (10)

where r is sufficiently small.
By induction on the number of steps we will define the sequence ω as a

union of an increasing sequence of initial segments

ω(0) ⊂ . . . ⊂ ω(k) ⊂ . . . . (11)
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We will also define an auxiliary sequence of integer numbers s(−1) = s(0) =
0 < s(1) < . . ..

Using Lemma 3, define ω(0) such that d(ω(0)j) ≤ 2 for all j ≤ l(ω(0)).
Let us consider dyadic intervals of the form [m2−n, (m + 1)2−n), where

0 ≤ m < 2n. Any such interval corresponds to some finite sequence x =
x1 . . . xn and the corresponding binary interval Γx = {ω ∈ Ω : x ⊂ ω} in Ω.

Induction hypothesis. Suppose that a binary sequence ω(0) ⊂ . . . ⊂
ω(k − 1) of strings and a sequence of integer numbers s(−1) = s(0) = 0 <
s(1) < . . . < s(k − 1) are already defined.

Suppose also that the dyadic interval corresponding to the string ω(k−1)
is a subset of one of the intervals of the gadget Πs(k−1). By the construction,
w(Πs(k−1)) ≤ 2−hs(k−1) . Then l(ω(k − 1)) ≥ hs(k−1).

We also suppose that d(ω(k−1)) ≤ σ(hs(k−2))−4 if k is odd and d(ω(k−
1)) ≤ σ(hs(k−2)) if k is even.

Consider an odd k. Denote a = ω(k−1) and let Ia be the dyadic interval
corresponding to a. Any point of Ia generates the Πs-trajectory. By the
ergodic theorem, for a.e. points of Ia, the frequency of visiting the element
π1 of the partition converges to r as s→∞.

Let s be sufficiently large such that s > s(k − 1) and the total measure
of all points of Ia generating Πs-trajectories with frequency ≤ 2r of visiting
the element π1 is at least (1/2)2−l(a).

The intersection of intervals from Πs with Ia can be represented as a
union of pairwise disjoint intervals [r1, r2]. It is easy to see that any such
interval [r1, r2] contains a dyadic subinterval of length at least 1

4
(r2 − r1)

corresponding to a binary string b. Let Ca be a set of such strings b. The
Bernoulli measure of Ca is at least (1/8)2−l(a).

Fix some such s and define s(k) = s.
By Lemma 3 a sequence b ∈ Ca exists such that d(bj) ≤ d(a) + 4 for

each l(a) ≤ j ≤ l(b). Define ω(k) = b. By the induction hypothesis, d(a) ≤
σ(hs(k−2)) − 4 and l(a) ≥ hs(k−1). Then d(bj) ≤ σ(hs(k−2)) < σ(hs(k−1)) ≤
σ(l(a)) ≤ σ(j) for all l(a) ≤ j ≤ l(b). Also, since w(Πs) ≤ 2−hs , we have
l(b) ≥ hs(k). Therefore, the induction hypothesis and condition (10) are valid
for the next step of induction.

Let k be even. Put b = ω(k−1) and s(k) = s(k−1)+1. Let s = s(k) and
Πs be the gadget generated by the Rs-fold independent cutting and stacking
of the gadget Πs−1

⋃
∆′′.

Let E = (L1, . . . , Lk) be a column of the gadget ∆′′ defined at step s and
let E∗ = (L1, . . . , Ldk/2e) be its lower half.
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Divide all intervals of the gadget ∆′′ into two equal parts: an upper half
and lower half. Any interval of the lower half of ∆′′ generates a trajectory
of length ≥ M/2, where M is the height of the gadget ∆′′. The uniform
measure of the support of the lower half is ≥ 1

2
λ(∆̂′′). By the construction,

for all sufficiently large s, the measure of all points from this set, whose
∆′′-trajectories have length ≥ M/2 and frequency of ones ≥ 1/4, is at least
1
4
λ(∆̂′′).

By the construction,

γ =
λ(∆̂′′)

λ(Π̂s−1)
=

λ(∆̂s−1)

2λ(Π̂s−1)
=

2−s+1r

1− 2−s+2r
>

> 2−s+1r ≥ 2−(σ(hs−1)−σ(hs−2)−9). (12)

Let Ib be the dyadic interval corresponding to the string b. By the construc-
tion, Ib is a subset of some interval of Πs−1. Consider a subset of Ib such that
Πs-trajectories starting from points of these intervals pass through the cor-
responding upper subcolumns of the gadget ∆′′ and have frequencies of ones
at least 1/4 in substrings defined by ∆′′. Since the gadgets Πs−1 and ∆′′ have
the same heights M , some initial segment of the trajectory starting from such
a point has length at most 2M and its name has at least M/4 ones. Hence,
the frequency of ones in the name of any such initial segment is at least 1

8
.

The total measure of this subset of Ib is at least γ
4
2−l(b). The intersection of

this subset with intervals of the gadget Πs can be represented as a union of
pairwise disjoint intervals [r1, r2]. Any such interval contains a dyadic subin-
terval of length at least 1

4
(r2−r1) corresponding to a binary string extending

b. The measure of these dyadic subintervals is at least γ
16

2−l(b). The set Db

of the corresponding binary strings has the same Bernoulli measure.
By Lemma 3 some c ∈ Db exists such that d(cj) ≤ d(b) + 1 − log γ

16
≤

d(b) + (σ(hs−1) − σ(hs−2) − 9) + 5 ≤ σ(hs−1) − 4 for all j such that l(b) ≤
j ≤ l(c). Here we have used the induction hypothesis, the inequality d(b) ≤
σ(hs(k−2)) ≤ σ(hs−2), and inequality (12). Besides, l(b) ≥ hs−1. Therefore,
d(cj) < σ(hs−1) ≤ σ(l(b)) ≤ σ(j) for all j such that l(b) ≤ j ≤ l(c). Define
ω(k) = c.

It is easy to see that the induction hypothesis is valid for this k.
The infinite sequence ω is defined by a sequence of its initial segments

(11). We have proved that d(ωj) ≤ σ(j) for all j.
By the construction, there are infinitely many initial segments of the tra-

jectory of the sequence ω with frequency of ones ≥ 1/8 in their names. Also,
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there are infinitely many initial segments of this trajectory with frequency of
ones ≤ 2r. Hence, condition (9) holds. QED

The proof of Theorem 3 is more complicated. Consider a sequence of
pairwise disjoint subintervals Ji of the unit interval [0, 1] of lengths 2−i, i =
1, 2, . . ., and a uniform computable sequence σi(n) of all partial recursive
functions (candidates for a degree of instability). For any i, we apply the
construction of Section 4.3 to the subinterval Ji and to a function σi(n) in
order to define a computable ergodic measure-preserving transformation Ti
on Ji for each i. The needed transformation is defined as a union of all these
transformations Ti. We omit details of this construction.

4.5 Instability of universal compression schemes

Note that an infinite sequence ω is Martin-Löf random with respect to a
computable measure P if and only if Km(ωn) = − logP (ωn) + O(1) as
n→∞.

A recent result of Hochman [7] implies an algorithmic version of the
Shannon–McMillan–Breiman theorem for Martin-Löf random sequences: for
any computable stationary ergodic measure P with entropy H, Km(ωn) ≥
− logP (ωn)−O(1) as n→∞ implies

lim
n→∞

Km(ωn)

n
= lim

n→∞

− logP (ωn)

n
= H. (13)

Clearly, the same property holds for plain and prefix Kolmogorov complex-
ities and for a sequence ω Martin-Löf random with respect to the uniform
measure.

The construction given in Section 4.3 can be applied to show the instabil-
ity of relation (13): for any computable function σ(n) as in Theorem 2 and
for any sufficiently small ε > 0 a computable stationary ergodic measure P
with entropy 0 < H ≤ ε and an infinite binary sequence ω exist such that
Km(ωn) ≥ − logP (ωn)− σ(n) for all n and

lim sup
n→∞

Km(ωn)

n
≥ 1

4
,

lim inf
n→∞

Km(ωn)

n
≤ ε.

By a prefix-free code we mean a computable sequence of one-to-one functions
{φn} from {0, 1}n to a prefix-free set of finite sequences. In this case a
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decoding method φ̂n also exists such that φ̂n(φn(α)) = α for each α of length
n.

A code {φn} is called a universal coding scheme with respect to the class
of all stationary ergodic sources if for any computable stationary ergodic
measure P (with entropy H)

lim
n→∞

l(φn(ωn))

n
= H almost surely.

The Lempel–Ziv coding scheme is an example of such a universal coding
scheme.

We have also an instability property for any universal coding scheme: for
any computable function σ(n) as in Theorem 2 and for any sufficiently small
ε > 0 a computable stationary ergodic measure P with entropy 0 < H ≤ ε
exists such that for each universal code {φn} an infinite binary sequence ω
exists such that Km(ωn) ≥ − logP (ωn)− σ(n) for all n and

lim sup
n→∞

l(φn(ωn))

n
≥ 1

4
,

lim inf
n→∞

l(φn(ωn))

n
≤ ε.

The proof of these statements is based on the construction of Section 4.3.
For further details we refer the reader to V’yugin [25].
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