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CONSTRUCTION OF LINEAR COVERING CODES
A. A. Davydov | : UDC 621.391.15

A linear covering code construction is proposed, which given any binary code with covering radius R constructs an
infinite family of binary codes with the same covering radius. Infinite families of R = 2 linear binary covering codes

are constructed with betier parameters than known codes.

1. INTRODUCTION

Covering codes and other issues connected with covering of spaces over a finilc.alphabct have recently stimulated
considerable interest among researchers (see, e.g., [1-19] and the references therein). In this paper, we consider binary linear
covering codes. Some ideas of this study may be viewed as a development and generalization of the results of [18].

We start with some notation: [n, kR is a linear code of length n, dimension k, and covering radius R; t[n, K] is the
minimum possible covering radius of a linear code of length n and dimension k; [n, n — rJR is a linear code of length n,
redundancy r, and covering radius R; |x] is the whole part of x; [x] is the integer nearest 10 X which is not smaller than x; /(r,
R) is the minimum length of a linear code of redundancy r and covering radius R [16]; u[n, R, C] is the density of covering of
the n-dimensional space by radius-R spheres centered at code words of length n and covering radius R in code C (density of
cqvering is computed as the ratio of the total volume of all spheres to the volume of the space, see [4, p. 692] and [14]).

For the infinite family U of codes with covering radius R, we define

l—l-[R,U]:s'= lim inf p.[n,R,U(n)], (1.1)
nesoo,li (n)el

where U(n) is a code of length n from the family U.
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A code with redundancy r is of covering radius R if any column of length r is representable as the sum of R or fewer
columns of the check matrix [2, 3]. Adjoining an arbitrary column to the check matrix of an [n, n — rJR-code, we obtain a [n +
Ln + 1 - rJR-code, R; =< R. Therefore, the infinite family of covering codes with a fixed R is often described by specifying, for
a given r, the least length n of the code from the given family, expressing n as a function of r.

In this paper, we consider the construction of infinite families of covering [n, n — rJR-codes. Thesc families are con-
structed so as 1o reduce n for given r and R [1, 16].

The best codes with R = 1 are the Hamming [n = 27 — 1, n — r]1-codes [1].

For R = 2, a family S of codes with the parameters

5X2¢-*—1 for r=2¢—1, -
R=2,n= { IX2-1_2 for ree, c=4,1[2,8]=49/32 (1.2)
was constructed in [18].

For R 2 3, infinitc families of covering codes are constructed (see, e.g., [1, 5, 11, 16, 18]) from the codes with R = 1,2
by various constructions proposed by Graham and Sloanc [1], such as DS (direct sum), ADS (amalgamated DS), EDS (extended
DS), BEDS (bordered EDS).

In this paper, we propose a construction which, for any given R, produces the check matrix of a linear binary code V
with covering radius R from the check matrix of an arbitrary binary code V,, with covering radius R, where Ry < R. (In the
proposed construction, we usually take Ry = R.) .

If the initial code Vj is of length Q and redundancy s, then the constructed code V is of length n and redundancy r:

n=2"Q+N(m), r=stmR, (1.3)

where m is an integer parameter, N(m) is the number of columns of the auxiliary matrix used in the construction. s

The parameter m is lower bounded, but it may be increased without bound, i.e., an infinite family of codes V may be
constructed.

To reduce N(m), the initial code Vj in the proposed construction is interpreted as the Ry’, /-subset of the Q-dimension-
al space (for definition see Sec. 2). For / = 1 any column of length s, including the zcro column, may be generated as the sum
of not fewer than / and not more than R’ columns of the check matrix of the code V,,. The relationship between the parameter
Ry’ and the covering radii of the codes V and V has the form R = Ry = R, (Often, R = R’ = Ry.)

The constructed codes V are normal [1] and may be used in the ADS scheme. The proposed construction is sufficiently
flexible and admits various implementations. :

As an example of using the proposed construction and its various implementations, we have constructed infinite families
of codes with covering radii R = 2 with better parameters than the known codes. In particular, we have constructed code families
VL.V3 with the parameters

R=2, n=55X2:-*~2, r=2c, ¢=5, £ [2, V'] ~1,477, (1.4)
311X2¢-'—3 for r=3c, c=>7,
R=3,n={ 823X2:-*—3 for r=3c—1,c=9, n[3, V*]~1,384, 1.5)
Pagdiot | for r=3c—1, c=5.8,
R=4, n=2+'—2 r=4¢c—3, ¢=5, (1.6)
- R>16, r=Rc, 2:>8R+52YR+16, 1.7)

n<O.5RX2""(1+1'5/}’1_{) -f.o:isxzr/n_}/'ﬁ.
From (1.4)-(1.6) we obtain

t[53,43]=2, t[63,49] =t[ 04, 50] =3, t[62, 45] =t[63, 46]=4. AN
Relationships (1.4)-(1.7) are upper bounds on /(r, R). Thus, from (1.4) we get
= 1(10,2)<53, 1(12,2) <108, 1(14,2) <218, 1(16,2)<438. 1.9)
The proposed construction is naturally extended to nonbinary lincar covering codes over the field GF(q), 9 > 2. As an illustra-

tion, Sec. 3 constructs the code family V3 with the parameters q = 3, R = 2, [2, V5] = 1.185.
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The paper is organized as follows. Section 2 introduces the notation and definitions. Section 3 describes the general
covering code construction and its alternative implementations. Sections 4 and 5 present examples that apply the construction to
obtain code families with R = 2and R = 3.

2. NOTATION AND DEFINITIONS

We consider binary columns and matrices. The superscript attached to the matrix (column) gives the number of rows
(entries) in the matrix (the column); the only exception is the superscript tr, which denotes the transpose.

Depending on context, the matrices may be treated as sets whose elements arc columns. The signs +, U, €, ... are then
interpreted accordingly. Thus the expression {T; + ... + T,}, where T; is 2 matrix, is understood in the following sense:

(T ... +T)={z:z=t,+ ... +t, t,6T, i=1, v}.

The representation of the element h of the field GF(2™) as a matrix or column clement corresponds to the binary
represcntation of the element h as an m-bit column vector. For definiteness, we take

h=hmam—!+ coe +hza+h‘= (hm coe hzhg)", (2-1)

-

where h € GF(2M), a is the primitive element of GF(2™), h; € {0, 1},i = 1,... m.

We introduce the matrices PS(p;), 0™, E™, Eg™, W™R, and B;J“R(b).

The matrix PS(p;) = Il«pisoi...goi || consists of identical columns, where each column is the binary representation of the
element ¢, of the field GF(2%); 0™ is the m-row matrix of zeros. The number of columns in the matrices PS(p;) and 07 is
determined from the context. :

In the matrix E™ all columns are of length m: E™ = I €0ty |.M=2m—-1,¢ € GF2M),i=0,.., M, ¢ = ¢for
i # j. The matrix Eg™ is the matrix E™ without the zero column. Eo™ coincides with the check matrix of the Hamming [2™ - 1,
2m — 1 — m]l-code.

The other matrices arc defined as

s I QmA=1) I 22)
o 2
€ e i em
eob &b emb
e.b? e epb?
BIRb)=| ed" ! T pa s SO g ool 23)
: : e (a4 ) e (a+0)". .. ey (a4 5)?
eo(ar+ b)?  ey(ay+0). .. ey (ay+ 0)7
eo(az+b)? e (ag+b)... ey (ag+ b)?

where M=2"—1; b, e, ed", a;, e;(a;+b)'eGF(2™), i=0, M, u=1, R—t—1, ,'-=i,__§; g={0, R—1}; & is the number of
rows with elements of the form ¢;(a; + b)~! (when §{ = 0, no such rows exist); ¢; = ¢; for i # j; b = a,j=1.., & a, # a for
V#j.

We introduce the class G(p) of vectors with positive integer components. The vector g € G(p) if

g=(R.Rs ... R); B={T,pl A=T1; (24)
%

Z Ri=p; 1= [log. (P+1).];

Awmi
any integer t, t € {1,..., p}, is representable as the sum of componcnts of the vector g, i.c., there exists a sct 6(1) (not necessarily

. unique) of the vector components that sum 1o , Z‘R;=t.
? RAEO (D)

In the class G(p) we identify the subclasses G,(p, ¥, a), G,(p), and G(p):
Gi(p, v, a)=(g: 8=G (p); Fa=1. A=T, v: R<vta, t=v+1, 1}, a=(0, 1}, v=(1, p}, (2:5)
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A=l
G:(p)={g : g=G(p); y=[log: (p+1)1; Ri=[p/2], R;.=[”;__(p_ \"R")." shisd o Y} 5
Gu(p)=1{g : g=G(p); 1=Tlogs(p+1) 1; Rymp—21=1+1, Re=21-% i=2,7}. &0

In the subclass G, (p, v, a) for fixed p, v, a the vector g is defined nonuniquely, except the cases v = p and v = 1, a = 0, when :
g = (1, 1,..., 1). The subclasses G,(p) and G5(p) contain one element each.
The construction of the set 6(t) follows from the construction of the vector g. Thus, for g € G,(p), we may lake

R, €6(t)ifandonlyift — o) =2 R;,4 = 1,..,y, where o) = 0,0; = Z Ri, 2 =2,..,y. For the vector g € Gy(p, v, a)

R€B (1) i<)

we denote by K(t) the set 6(t) of the vector components with consecutive indices, such that at least one of two componcnts R,
R, 4 is in K(1):

K(t)t: {RX(t); Irxu)-u, RX(|)+:. ceey Rv+y(n)o (28)

where
vit) y()+1

X (1) =v+i—(t=Y(1)). Y(I)——ZR“.>~1< 3 8.

i1 =1

ift <R, ,0rv=p,then Y(1) = y(t) =0.

Example 1.1. (1. 1. 1. 3 3He6,(9.3,0), K(5)={R,, R R.). (1,1, 1,2, 3, 1)e6G,(9, 3,0), K(5)=({R.. R.}, K(C)=
(R, R, R.), (1,1, 1, 1, 4, 5, 5)eG,(18, 4, 1), K(4) ={R}, K(10) ={R.. R, R:}. '

We definc the function f as follows: f(g) = i if for any t we can construct a sct 6(t) so that R, € 6(1), u < i, implies\
Rpea(l),p=l , u — 1, but this is not true foru =i + 1.

Example 1.2. g = (12, 6, 3, 2, 1) € G,(24), 6(17) = {R|,R3,R4}, f(g) = 1.

Example 1.3. g = (7,8, 4,2, 1) € G5(22), 6(17) = {R|,R,R,}, [(g) = 2.

The vector g may be generated iteratively. If p < 2u + 1 and (Ry, Ry, ..., R,) € G(u), then g = (R,
R,) € G(o).

Example 1.4. (12,6, 3,2, 1) € G(24), g = (10, 12,6, 3,2, 1) € G(34), [(g) =

We introduce the matrix D, ™R(g, p) whose structure depends on the parameters m, R, x, p and on the components of
the vector g, g € G(p):

=p -0, R:, Rg,... >

' AmR. Omlf. Omn,
nml-‘,AmI.‘: o OWIR,

M(Ry4 Ryt 4+ Ry)

: 0
mR., mR mR.
0 O 4 A £
D;"R (E‘ p) e OmA nm,‘\ o Om.\ l OmA O'mA s omA . (2.9)
mR 4 mR 4 miy, g

A 0 Sl

P Roar# oot Ity e S b
m .. i R mR
() i 6" >

where g = (R}, Ry,..,R)) € G(p), R} + .. + R, =p; A™R4 is the check matrix of the [N;, N; = mRyJR;-code with covering
radius R;, A = 1,...,y; A™X1 = EM™ N; = 2m-1 — 1 forR; = 1, A = R - p, R = p; for R = p, the submatriccs 0™A are
missing, x € {0,..., y}; for x = 0 (x = y) the upper (lower) part of the matrix with A" is missing, A < x (A > x).
The number of columns N(m) of the matrix D, ™R(g, p) is N(m) = N; + ... + N,. The matrix obtaincd from D mR(g,
p) be climinating the zero rows (formed by the submatrices 0™A) is the direct sum [1 p- ‘391] of the matrices A™%, 1 = 1,.

y and constitutes the check matrix of the [N(m), N(m) — mp|p-code.
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Define the column

A, wm=cre™, i=1,R. (2.10)

We use the following notation: [BM]A, / is the sct whose elements are all possible sums of the columns of the matrix B™
with no fewer than / and no more than A addends, with each column entering the sum at most once and / = 1; [BM)0, ! = &
[B™),A, ! is the subset of the set [BM]A, / that consists of sums with an even number of addends. :

: Definition 1. A linear binary code of length Q and redundancy s with check matrix &S is called the R®, /-subset of the Q-
dimensional space and is denoted by [Q, Q — s]R", / if the following holds. For / = 1, any column from ES, including the zero
column, is representable as the sum of not fewer than / and not more than R" columns of the matrix ®s. For / = 0, any nonzero
column from ES is representable as the sum of no more than R* columns of the matrix &S. In all cases, R" is the least integer
with this propcrtyT for the given /. In other words:

[@')R". 1=E*and[®*]A. IcE* for A<R', 1>1. 2.11)

[®) R, 1=E and{ ] A, {cE,* for A<R", =0, @12)

It is easy 10 verify that a point that belongs to the R*, I-subset cxists at a distance not smaller than / and not greater
than R* from any point in the Q-dimensional spacc (this property may be used as the definition of the R, /-subset in both the
lincar and the nonlinear casc). The R*, O-subset corresponds to the ordinary sphere covering.

The [Q, Q — s]-code with the check matrix @* has the covering radius R [2, 3] if and only if any column from Eg* is
representable as the sum of not more than R columns of the matrix ®g while this is not true for A < R:

[ )RA=E, ' [®']A, 1<E,* for A<R. _ 2.13)

The code notations [Q, Q — s]R, 0 and [Q, Q — s]R have the same meaning, i.c., R*(0) = R, where R is the covering radius. If
R = />0, thenR°()) = R.

Definition 2. For R < Q, the collection of matrices (Ty¥,..., To¥) is called R-closed if for any combination of distinct
indices of the form Jg = {j;, ..., jrb i € {1 Q}, k = 1,..., R, any column from EY¥, including the zero column, is represent-
able as the sum of R columns, with one column included from each matrix le TJR P
; (2.14)

(T ... +7% } Lty

Definition 3. For ! = 0, R < Q, the matrix L¥ is called R, /-complementary to the R-closed collection of matrices (T;%, ...,
Ty") if the following two conditions are satisfied. .

1. For any combination of distinct indices of the form J, = Ui sl B8 thi, R},z 2 1, j-€ {1,.., QL k=1,..,2
any column from E¥, including the zero column, is representable as the sum of no fewer than z and no more than R columns,
where the first z columns necessarily entering the sum are taken one from each matrix lew, i szw and the remaining columns
(the second group of terms) are taken from the matrices L¥, T,*, ..., To". The second group of terms (if present in the sum)
includes an even number of columns or no columns at all from each matrix T,%, i = 1,..., Q, and any (i-e., even or odd) number
of columns from the matrix L¥.

2. For I = 0 any nonzero column from E¥ is representable as the sum of at most R columns from the matrices L¥, s
TQ , with an even number of columns or no columns at all waken from each matrix T%, i = 1,. ., Q, and any number of columns

(i.e., even or odd) taken from the matrix L¥.
In order to satisfy condition 1 in Definition 3, it is sul‘ﬁcnenl to have the following relationship for any combination of

distinct indices {j;, ..., j,}:
{Tyo+...+T; )+ {vU[L*]R—z, 1})=E", z&{l, R), (2.15)

wherez = 1, j, € {1,..., QL k= 1,.., 2, W is the zero column in EY. If (2.15) holds, all the cc;lumns in the second group of
terms (if present in the sum) originate from the matrix LY.

tTherefore R is sometimes denoted by R*()).
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To satisfy condition 2 in Definition 3, it is sufficient to ensure that the matrix LY is the check matrix of a code with
covering radius R, i.e.,

[L*]RA=E," for. I=0. (2.16)

Another sufficient relationship for condition 2 of Definition 3 is

Q
[Z°)R,1U U [T],R, 2=E,* for =0, @.17)

Jumi

3. LINEAR COVERING CODE CONSTRUCTIONS

TIIEOREM L. Let ; € GF(2%),i = 1,..., Q, and let @5 = [ p,p,..00 || be the check matrix of the [Q, Q - s]R,", /-code
Vo which is the Ry, /-subset of the Q-dimensional space. Also let T*beaw x I'matrix, j = 1,..., Q; (Ty%..., To¥) an R-closed
collection of matrices; L™ a w x N matrix which is R, /-complementary to the collection of matrices (T;¥, ..., To"s R 2Ry 2
! 2 0. Then

0° | P*(91) P°(9s) - - - P* (o)
Fa B AN S SRR

- H"® = @3.1)
(for / = R the submatrices 0° and L¥ are missing) is the check matrix of the [n, n — rJR-code V of length n = T'Q + N,
redundancy r = s + w, and covering radius R. '

Proof. We will show that an arbitrary column Us*¥ in Eg**" is the sum of at most R columns of the matrix (3.1). We
represent US*W¥ in the form

; - o
Pete =| S ” (3.2)
where v* and u™ are columns of length s and w, respectively. For simplicity, assume that we have cases (2.15) and (2.16). The
general case of R, /-complementarity is proved similarly.

Let / = 1. Since the code V, is the RO', {-subsct, then by Definition 1 the column v is representable as the sum of z

columns of ¢s;

v'=@iateit ... tou 2&{l, R’} (3)

Now 1o obtain u™ we must take one column from each matrix Tj]“', oy sz“’. Moreover, we may use (in any order) at most R — z

columns from L¥. In other words, we have to prove the existence of the representation

w=tigt .t Hat .+, sH=F<R, (3.4)

where bk is the i -th column from Tjk‘", k€Jpk=1,.,21], = {j,.., j,} is the combination of distinct indices formed by the
indices of the columns entering the sum (3.3); f > 0; l, €LY i=1,..,1forf =0, the terms l,; are missing.
Let z = Ry" = R. Since (Ty%,...; Tq¥) is an R-closed collection of matrices, then by Definition 2 the existence of the
representation (3.4) with f = 0 follows from (2.14). ‘
Let z < R. The existence of representation (3.4) with f = 0 follows from (2.15).

Let / = 0. Then for v¢ 0 the representations (3.3), (3.4) are still true. For v¢ = 0, the column US*¥ is obtained by
condition (2.16) as the sum of at most R columns of the matrix ” g;” QED:

Theorem 2 for w = mR describes a natural implementation of the construction (3.1), which uses the matrix Dme(g, P)
as L¥ and the matrices Bng(bj) (with distinct b)) as the matrices T;*. We have examined alternatives with various relationships
between the parameters Q, m, £, p and with various vectors g. :

The column u¥ = ymR = (uy, ..., ug)™R is represented as the sum (3.4) in two stages. In the first stage, summing z
columns t; ; from the matrices B;™R(b; ) we form the column (u*)™R which matches u™R in z elements Ugpy - Ug,. The indices
iy are determined by solving over the field GF(2™) a system of equations with a nonsingular matrix which is a submatrix of the
Vandermonde matrix, Cauchy matrix, or a combination of these matrices. The appcarance of matrices of this kind is associated
with the structure of B;"R(b,) (2.3).
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In the second stage, { columns Iai from Dx"’R(g, p), 0 = <R -z arc added 10 (u")™R, The added columns do not
change the clements U, ..., Uy . To find the columns lai in Dx"“‘(g,p). we isolate the submatrix d™R with zero rows in positions
Uppreees Upe The remaining rows of dm™R form the check matrix of a code with covering radius R — z. The existence of such dmR
is associated with the structurc and properties of the vector g (2.4)-(2.8). :

If the code V, is given, the parameters of the. constructed code V depend on N(m) — the number of columns of the
maltrix Dme(g, p), which in turn depends on the form of the vector g.

THEOREM 2. Let ¢, € GF(2%),i = 1,..., Q,and let 9* = |10l be the check matrix of the [Q, Q — s]R,, /-code

V,, which is the Ry’ /-subset of the Q-dimensional space; R = Ry" = / = 0. Assume that the check matrix of the code V has the

form‘r

0 ! Pqy)--- P(90) PP(we) |
DI (g0 0)| BE(b) - - BE" (bga) BT (b) |

+mR
£ - 3.5)

where b, € GF(2™) for all i; b, # b fori = jjp =R - A 2 0; for p = 0 the matrices 0* and D,™R(g, p) arc missing; for Q =
2m + 1 the matrix B;"R(bg) is replaced with the matrix WmR, Denote by N(m) the number of columns of the matrix D, ™R(g,
p)- |

Then for the code V 1o be a normal [n, n — r]R-code with covering radius R, redundancy r = s + mR, and length n =
2mQ + N(M), it is sufficicnt that onc of the following cases holds:

1) 2"+1=Q, £=0, A=max {0, I-2}, g=Gi(p, v, 0), v=1,
R,=1, x=v;

2) 2"+1=Q, =0, A=max {0, -1}, g=(1, 1, ..., 1), %=0;

3) 2m>(Q, £=0, A=max {0, I-1}, g€G:(p, v, 0), v=1, x=v;

4) 2m=0Q, £=0, A=l, g=(1,1, ..., 1), »=0;

5) 2"—1>Q, £=0, b#0 for all |, A=, g=G,(p, v, 1),
v=1, x=v; ;

J
8) 2*-190, t=p— ZRM 1<j<f(g), A=l, »=0, Vg€G(p).

A==t

Proof. From (2.5)-(2.7) we see that R; =1 exists. Therefore AR = E,™, the minimum distance in the code Visd = 3,
and by Theorem 24 [4] the code V is normal. :

By Theorem 1, it suffices 10 show that the collection of matrices (BE"‘R(b,)..... B;-'“R(bo)) is R-closed and the matrix
D,™R(g, p) is R, I-complementary 10 this collection. Therefore (sce Definitions 2 and 3) it suffices o show that conditions (2.15)
and (2.16) hold. :

If1 = 0, then R = p, D, ™R(g, p) is the check matrix of a code with covering radius R, and condition (2.16) holds.

Let us prove that condition (2.15) also holds. Partition (from top to bottom) the rows of the matrices D, ™R(g, p) and
Bg"‘R(bj) into R groups, m rows in cach group, and index these groups 1 to R. If the matrix column is treated as a collcction of
R binary representations of elements of the field GF(2™), then cach group of rows corresponds to onc ficld element.

Let 6(0) = @ and let dmR(g(z — A)) be the matrix formed from the columns of the matrix Dme(g, p) that contain all
the submatrices A™R8 with Rg € 6(z — A). The R — z groups of rows of the matrix d™R(8(z — A)) containing these submatrices
A™R8 (orm the check matrix of a code with covering radius R — z. The remaining z groups of rows of the matrix d™R@(z - A))
are zero rows. We denote their indices by 1y, ..., 7, The groups of rows corresponding to the submatrices OMA are always zero
rows. The indices of these groups of rows are TH#L,T+2 .. . THAWICT =R+ Ry+ ..+ R,. Cléarly, 1T + Lkt
AY L (e %) :

Let umR = (g, uR)mR be an arbitrary column from EMR_We will show that for any combination of indices &= e,
Jz}, z € {I,..., R}, we can construct a sct 6(z — A) that satisfics the following condition: there is one column in cach matrix
BémR(bjk). k = 1,..., z, such that their sum forms the column (u')mR that matches the column u™R in positions 1y, ..., 7, s

(3.6)

e ——e e e

tIn most cascs when this construction is used, R = Ry".
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where in case 1 one of the matrices in parentheses may be the matrix ‘WoR,

The column u™R may be obtained by adding to (u*)™R at most R — z columns of the matrix d™R(6(z — A)). This implies
that condition (2.15) holds. ; /

Let ¢;f,(b) be the element of BE"‘R(b) or WMR Jocated at the intersection of row v and column (i + 1). The column

"locators" e; ensuring that (3.6) is satisfied are solutions of the system

K

T aR O soil 37

LT

Denote the determinant of this system by A,. We will show that A, # 0.
1) Letj, = Q, B 0,q=z- A -2, K(@0) = @. For q > 0 find K(q), X(q) from (2.8) and denote X = X(q). Let
6(z — A) = {R,, K/} U K(q).- Then forq > Owe have 1, = 1,7, =X +i-2,i=2,..,2- 1,7, = Rj A, has the form (see
|20, Sec. 11.5))
£ 0 1 1 0
Bt Kt a0

Bes e ool B

B . B o0

-~
(This is so because A =/ — 2 for / = 3.) Other cases are analyzed similarly. For instance, ifjj=Q,i=1..,2b = 0, thenq =
2-A-16(z-A)=R, UK(@Q).Ifj; = Qb #0,i=1..,zthenq=2-A0@z-A)= K(q). ;
2-5) Similar to case 1. :
6)) Construct 6(z — A) so thatif R, € 6(z — A), u < j, then R, €6(z - A),p=1,..,u—= 1A, has the form (see [20,
Sec. 11.4], [21, Sec. 2, 5, pp. 126-127))

1 1
5 b,
aap N o s

(ac, + bj,)-l 0 (ac, + bjz)-'l

(acz—o + b")‘l R (acx-é * blz)-l

where 6 and z — & is the number of rows with elements of the form ¥ and (a, + bjk)". QED.

These cases do not exhaust the possible constructions (3.1), (3.5). The proof of the theorems suggests a technique for
constructing new variants. In specific cases, we should try to relax the lower bounds on m (so that the construction starts
working for lower r and is more efficient for finite lengths) and to choose R; so as to reduce N(m). The sum of p values R, is
fixed, but different combinations of R; are efficient in different cases, which accounts for the variety of the different vectors g
considered. The vectors from subclasses G,(p) and Gj(p) often reduce N(m), but at the same time they strengthen the lower
constraints on m.

In the matrices Bs»mR(b) the clements of the form ei(a; + b)~! may be replaced with elements of the form ¢;(1 + ajb)‘1
(22} . :
The covering radius R, of the initial code V,; is not considered here as such. Recall that Ry'(0) = Rg, R =2 Ry'(! > 0) =
Ry, and often R = R,"(! > 0) = Ry,

Remark 1. We see from the proof of Theorem 1 that in construction (3.1) the condition of R-closure of the matrices (T, ...,
Tq") and R, /-complementarity of the matrix L* may be replaced with the weaker condition of (R, /, #$)-complementarity.

Throughout the rest of this remark (as in Theorem 1), p; € GF(25),i = 1,..., Q, ®* = ||p1<p2...go0 || is the check matrix
of the [Q, Q - s]Ry’, /-code V, which is the Ry, I-subset of the Q-dimensional space, R = Ry" =272 0.

Let dp be a column from E5, dy = 0, dp = dj for p # j. For z € {/,..., R} denote by Jz(dp) the combination of distinct
indices corresponding 10 one of the possible representations of the sum d, as the sum of not fewer than / and not more than R
columns of the matrix @s:
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L.(dp)={ir(p),..., i:(M}.
Gt T =d...
26{TR). z=1, ju(p) (T, Q). k=13, (-8)
pe{0, 2°=1). /

Introduce the set J(R, /, ®%) of index combinations:

I(R, 1, ®*)={J.(dp), 2€{l, R}, 221, p=0, 2'—1 for I=1, p=1,2'—1for [=0}. (3.9)

The sét J(R, 1, @) is defined nonuniquely by the parameters R, / and the matrix @5, It contains one possible representation of all
the columns from ES (for / = 1) or E¢® (for / = 0). Below we consider the construction of a good (in some scnsc) alternative of
this sct, which is "compatible” with the matrices LY, T;* and makes it possible 1o relax the conditions on these matrices by
ensuring that the conditions of Definition 2 and condition 1°of Dcfinition 3 arc satisficd not for "any combinations of distinct
indices” Ji; and J, but only for somc index combinations [rom this sct.

Definition 4. For 1 = 0, R < Q the matrix L¥ is called (R, /, ®*)-complcmentary to the collection of matrices (T,",...,
Tq¥) if there exists a set J(R, /, %) such that the following conditions arc satisficd:

1. VIa(dy)={js(p),....in(p) }€J(R.1, D), {Ti‘va(l’)-"‘ . -+Ti: o} =E".

2. For any index combination J,(dy) = {j;(p), ---» j(p)} from the set J(R, Z, %): any column from E¥, including the zero
column, is representable as the sum of not fewer than z and not more than R columns, where the first z columns necessarily

included in the sum are taken onc from each matrix le(p)w, ., T. W and the remaining columns (the second group of terms)

12(p)
arc taken from the matrices L¥,T¥, ..., To¥. The sccond group of terms (if present in the sum) includes an even number of
columns or no columns from cach matrix T\%, i = 1,..., Q, and any number of columns (cven or odd) from the matrix LY.

3. For / = 0 condition 2 of Definition 3 holds. ;

To satisfy condition 2 of Definition 4, it suffices to have the following relationship, which is analogous to (2.15):

le(dﬂ)={]|(p)v . 1/:(1’)}61(Rv lv (1)'),

- (3.10)
(Tt ... +T7 (5} +{v*U[L*)R—2, 1) =E",

where ¥ is the zero column in E%, z € {/,...,R},z =2 1. -

THEOREM 3. Theorem 1 is true if the conditions of R-closure and R, /-complementarity are replaced with the condi-
tion that the matrix LY is (R, /, ®%)-complementary to the collection of matrices (T,%, ..., Tq").

The proof of Theorem 3 is similar to the proof of Theorem 1.

An example of a construction with (R, /, ®%)-complementarity is provided by the codes of [18]. (In condition 2 of
Dcfinition 3, these codes realize (2.17).)

Condition 1 of Definition 4 may be called R, ®3-closure.

To the sct of index combinations J(R, /, ®%) we associate the Q-vertex graph I'(J). The vertex j corresponds to the
column ?; of the matrix ®*. The vertices j and j, arc joined by an cdge if and only if j, and j, are both contained at least in one
combination from J(R, /, ®%). Denote by h(J) the chromatic number [23, p. 294] of the graph I'(J).

The check matrix constructions from Theorems 1-3 will be denoted respectively by ®LT (see (3.1)), DB (see (3.5)), and
OLTJ. : :

Let us describe the @DBJ construction. We formally use the symbol * as the value of b in Bé"‘R(b) and take BEmR(‘) =
WmR We use the same matrix ®* as in Theorem 2. Construct the sct J(R, /, @) and the graph I'(J). The check matrix of the
code V is (3.5), where b, € {GF(2™) U *} for all i. If the vertices i and j in the graph arc joined by an edge, then necessarily
b; = b,. The equality b, = b, is allowed if the vertices u and v arc not joined by an edge.

THEOREM 4. The code V whose check matrix is obtained by the @DBJ construction is a normal [n, n — r]R-code with

= s+ mR, n = 2™Q + N(m), and covering radius R if onc of the conditions 1-6 of Theorem 2 holds, with the value Q in all
these conditions replaced by the chromatic numbert h(J) and with b, # * for all i in conditions 3-6, as before.

The proof of Theorem 4 is similar to the proof of Theorem 2.

i The minimum number of colors which is sufficient to paint in different colors the vertices of the graph I'(J) that are the end
p grap
points of the same edge.
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If h(J) < Q (c.g., when the code V) is constructed by ADS or by Theorems 1-4), the ®DBJ construction starts working
for smaller m than ®DB. In the ®DBJ construction for h(J) < 2™ + 1 < Q it is useful to take all the valucs b from the set
{GF(2™) U *}, which reduces p in the matrix D,™R(g, p) (and therefore reduces N(m)) by inclusion of an even number of
columns from the matrices Bng(bi), i € {1,..., Q}, in the second group of terms (sec Definition 4).

Remark 2. We introduce the following notation: Q™R js the check matrix of some MDS [Q, Q — R]-code [20] over the
field GF(2™); Q™R is the matrix Q™R with all the elements multiplicd by ¢; € GF(2™) and written in binary representation.
Interchanging the columns of matrix (3.5), we can write it in the form

¢ e ..
D%ty g™ o7 o 1™]

H'+m R

(3.11)

where M = 20 < Jre € GP(2™), i =.0,... M, € # ¢ fori = j.

The form of Q™R determines the structure of the matrix D, ™R(g, p) and the constraints on m.

Remark 3. The code V constructed by (3.1), (3.5), (3.11), is the R, /'-subsct of an n-dimensional space, where I’ = I. The
matrix D, "R(g, p) always includes the Hamming code check matrix with groups of w lincarly dependent columns, w = 3. Such
groups are also present in other matrices A™R2 Therefore for R = 3 the code V constructed by (3.5) and (3.11) often has /' =
R — 2. This increases the efficiency of the iterative application of these constructions, with the constructed code V used in turn
as the initial code V,, ; :

Remark 4. For an R-closed collection of equally dimensioned w x I matrices (T,¥, ..., To¥) we have IR > 2% In (3.5),
w = mR and T has its minimum possible value 2™M.

Remark 5. For | = 1 the points of the R, /-subset can be interpreted as the centers of the "spherical capsules” covering
the space. The capsules have internal radius /, external radius R,’, and "wall thickness" Ry" — 7 + 1.

It is also useful to consider "layered spherical capéulcs" that consist of collections of spherical surfaces with radii /; >
I > .. >1, 2 0. In this case, any column d from E® (for /, = 1) or from Ey® (for /, = 0) is representable as the sum of z(d)
columns of the matrix ®s, where

2() €{L=RS", by I, . .. b=D)2P (RS, ).

For R = R," we can introduce the notion of R, @(R,’, /)-complementarity, which is intermediate between R, /-com-
plementarity and (R, /, ®)-complementarity. In condition 1 of Definition 3, z € ¥(R,", /). This approach reduces N(m), relaxing
the conditions on LW :

The capsules are of no independent interest here: they are merely introduced as a device to reduce N(m). Capsule
coverings and their density of course may be considered independently.

Remark 6. Let us generalize the previous definitions of complementarity.

Definition 5. The matrix L¥ is R, ®S-complementary to the collection of matrices (T,¥, ..., T¥) if the matrix HS*¥ (3.1)
is the check matrix of a code with covering radius R.

Let us bring Definition 4 closer to Definition 5. Construct the set J‘(R, 1, ®%) as the union of the subsets J'(dp), p=0,..,
=1forlz1,p=1,..,2° — 1for! =0 Thesubset J'(dp) consists of f(p) index combinations Jz(dp) of the form (3.8), f(p) =
1. We introduce the notion of (R, /, ®%)"-complementarity by replacing conditions 1 and 2 in Definition 4 with the following
condition: for any column u¥ € E¥ every subset J'(dp) contains an index combination J,(d) which produces this column u® by
the technique described in condition 2 of Definition 4.

Remark 7. The constructions (3.1), (3.5), (3.11) are naturally extended to nonbinary covering codes over the field GF(q),
q-> 2

A [Q, Q - s]-code over GF(q) with the check matrix ®* has covering radius R [3, 16] if and only if any nonzero g-ary
column of length s is representable as a linear combination (with cocefficients from GF(q)) of at most R, columns of the matrix
Ps,

Therefore, when extending the construction to g-ary codes, instead of the sum of columns we consider linear combina-
tions of columns (in the expressions {T, + ... + T,} and [BM]A, [ in (2.11)-(2.17), in Dcfinitions 1-5, in the proof of Theorems
1-4, etc.). In the matrices Prlp), EM (2.2),(23). 2.9), (3-1); (3;), in the column (2.10), and in the determinant A,, the elements
of the ficld GF(2™) are now replaced with the elements of the field GF(q™), which are written in g-ary representation in the
form of m-digit column vectors. In (3.11) we consider an MDS code over the field GF(qQ™). In Theorem 2, 2™ is replaced with
q™ in the lower constraints on m in cases 1-6. The length of the constructed code V is n = ¢™Q + N(m).
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Example 2. q = 3, R = 2, V, is the Golay [11, 6]2, 0-code over GF(3); D, ™*2(g, p) is the direct sum of two check
matrices of the Hamming [(3™ — 1)/2, (3™ - 1)/2 — m]1-code over GF(3). The construction (3.5) with § = 0,3™ — 1 = 11 gives
a family of codes V3 with the parameters

g=3, R=2, n=12X3"—1, r=5+2m. m=3, i[2, V*]=1.185. (3.12)
4. CODES OF COVERING RADIUS 2

Contrary to (3.5), we construct L¥ without using the direct sum of matrices. In this section we assume in (3.1) that V,
is a [5, 1)2, O-code,

10001
e L :
O = F =| 0101 |= 1 ifelufds 1, 11 GF 29, @1

00011

For @ = F* the construction (3.5) (case 1) produces codes whose structure is different from that of the codes in [18] but they
have the parameters (1.2). In this section, we consfruct codes with parameters (1.4) that are better than (1.2).

Improvement of the parameters of codes with R = 2 is of interest not only as an independent problem but also because
codes with R = 2 are used 10 construct the matrices A for codes with R > 2.

Using the methods of [1, pp. 391, 393], we construct the check matrices of [13, 7]2- and [28, 20]2-codes:

0011110000000 |
1100110000000
7.6 0101011000000
2= 0000000001111 | °
0000000110011
0000001010101
000000111111 10 00000000000 111
000111000111 01 00000000000 111
011001014001 01 00000000000 111
.__[101010101010 01 00000000000 111
11#=1000000000000 11 00000111111 100} "
000000000000 11 00111000111 010
000000000000 11 11001011001 010

000000000000 11 01010101010 011

For m > 5, the check matrix of the [n = 7 x 2m~3 - 2, n — 2(m - 1)]2-code from [18] is represcntable in the form

SRS RS T B IR B L e | e
SIEEE TeRian .l U KT GE W e e B
Em—a Om-s 3 Em—s Em—a
Kt | —— |3 @) (0)) FP (o) : o
Om-a Em—z Om-a Om—a
x Lg...OO...OO...Oi...i1...10...00. ol
O e R TR R e
where a, b, ¢ € GF(2™3),a+b=ca=b,a,b =0
=0 e e ...ew ;
Fmt(d ==,"° v . || S ‘
@) Gl e d o5'd. . s 'd) o3 1, _

d,¢; € GF2™3),i = 0,..., W, ¢; = ¢; for i = j; Fg?~5(a) is the matrix F2m=6(a) without the zero column.
Both the upper and lower m — 1 rows of the matrix K2™~2 contain all the columns from Eo,m~1. Hence, using the
construction from the proof of Theorem 3.3 [16, p. 104], we obtain the following lemma.
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LEMMA 1. The check matrix

LRt s B 0 e

- m-1 m-1
" =| &'* & . ,m>5,
Om—J Em—l (43)
B0l 001 o
defines a [n = 15 x 2™~3 — 2, n — 2m]2-code of covering radius 2.

TIIEOREM 5. Let m 2= 3. The check matrix of the code V is

4 4 4
P L sl R e (e i

LIRS B Al

where By2™(b) is the matrix By™R(b) with R = 2; b, € GF(2™), i = 1,..., 5, b; # b; for i = j; @ is the primitive element of
GF(2™); relationship (2.1) holds; bs = 0; .

for m = 3, II,>"=II,*, by=a, by=a+1, by=a’+1, bi=0’+a;

form = 4, II;'""=I1"%, a‘=a+1, by=a, b,=a', by=a', b,=a'';

form = 5, II;"=I1,"", by=a’, by=a’+a, by=c’+a’, bi=a’+a’+a.

Then V is a normal [n =55 x 2625 9.0 = 2c]2-code for ¢ = 5.

Proof. Let m = 5. From (4.2)-(4.4) we see that in the code V the minimum distance is d < 3 and by Theorem 24 [4] V

is normal code. By Theorem 1 it suffices to show that the matrix ITg2™ is 2, O-complementary to the 2-closed collection of
matrices (By2™(b,), ..., By?™(bs)). By Lemma 1, condition (2.16) holds.

In (2.15), consider the cases z = 1, 2. Let u = (u, u;)2™ be an arbitrary column from E2™ of the form (2.10) with R =
2. Forz = 2: u=X+X,, X,;=(e.,, €2 b, )" EBo”"(b;‘.), i=1, 2. The "locators" ¢, are dctermined from the system exte,=
Ui, exbs + exbi,=u.. The solution of this system exists, bccause bjl * bj:'

Letz=1ué Bozm(bh). Ifj; =5, then u=Y+X, Y=(v, u,)*™€II,*», X=(v+u,, 0)’"€B,*"(b,). Such columns X,

Y can be found because bs = 0 and the lower m rows of the matrix I1s2™ contain all the columns from E™.

Ifj, # 5, then we first find u as the sum u=Y+X, Y=y, 0)€I1,"", X= (e, eb;)*"€B,*" (b;). Theny = u; + uzb; ~1.
From (4.2), (4.3) we see that (y, 0)2™ & I152™ if y = (001a,...a,,_3)', 3, € {0, 1}, i = 1,..., m — 3. In this case, we obtain u as the
sum u=Y+X", ¥Y'=(0, y')*"€Il", X"=(e",¢’b;)’"€B""(b;). Theny’ =u, + u;b;, = yb;,. Since by=a’, by=a’+a,

by=a’+al, bi=a’ta’+a, we have y* = (¢;..cp, 1), ¢ € {0, 1},i = 1,.., m — 1. All the columns (0, y*)2™ with y' of this

form are contained in I1g2™ (see (4.3)). The cases m = 3, 4 are proved similarly (they can be verified by computer). Q.E.D.

5. EXAMPLES OF INFINITE FAMILIES OF COVERING CODES WITII R = 3

We will now use the construction (3.5) in case 5. In the matrix D, ™R(g, p) the submatrix Am*2 is the check matrix of -

the code (1.4).

Example 3. R = 3. a) V, is Golay [23, 12]3, 0-code; g = (1, 2); V is the code with parameters (1.5) forr = 3c — 1,¢ =
9; b) Vy is [7, 1]3, O-code, g = (1, 2), V is the code with parameters (1.5) for r = 3c; ¢) V is [7, 2]3, 2-code with check matrix
of the form

gt (5.1)

_-noOoO oo
O = C OO0
T 0 it
S T =C
S COT -
_—_ 0 OO0 .

1
1
1 .
0
0
A =2,p = 1,8 = (1). The code V has the parameters (1.5) forr =3c - 1,c=5,..,8. &

Now Dme(g. p) contains the submatrix A™*3 - the check matrix of the code (1.5) with r = 3c.

Example 4. R + 4. V, is [6, 1]4, 2-code with the check matrix obtained by omitting the last column from the matrix
(5.1). Then A = 2, g = (1, 1). The code V has the parameters (1.6). B
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It is shown in [1] that 2<t[53. 43] <3. 3<t[063, 49] <4. 3<t[64, 50]) <4, 4<t[62, 45) <5, 4<t[03. 46])<5.
Therefore (1.4)-(1.6) lead to (1.8).

Example 5. R = 5. V is [5, 1]5, 3-code with the check matrix F* (4.1), Ry = 2, A = 3,p = 2, g = (1, 1). The parame-
ters of the code Varer = 4 + 5Sm, m 23,n=7 X 2™ — 2. For r = 24, we have n = 110; for r = 29, we have n = 222. An
alternative is the code V' constructed when V, is [10, 1]5, 0-code. But for'r = 24 the code V' cannot be constructed and for
r = 29 the code V' is of length 230. The case R = Ry°(/ > 0) > R is thus useful. B

Example 6. R = 3v + 2. V; is [2R + 1, 1]R, 0-code, g = (1,1,3,.., 3). The parameters of the code V are
r=RC, ¢>9, 2°>8R. n<0.7R2""+0.35X2""-R. ®m '

To reduce N(m), we should increase / and A in an attempt 10 get Ry*(/ > 0) = R, To estimate R,"(/) it is useful to
have the coset weight enumerators of the code V), the code word configurations in Vj, or (equivalently) the configurations of
groups of linearly dependent (1.d.) columns of the matrix ®5. These groups may be used to form the zero column in E* and to
alter the number of columns of the matrix ®* whose sum produces some column in Es. The latter is achieved by including some
group of L.d. columns as addends in the sum. The columns from the group that cntered the sum prior to this inclusion "cancel
out" If dy = Ry, where d;, is the minimum distance of the code V,, then Ry"(1) = R, If dy > Ry, then always Ry’(/ > 0) > R,

Suppose that @S is constructed as ADS or DS from the matrices fbj. j = 1,2,... [1]. ADS should be constructed so that
only onc column in @S is "mixed" and contains onc column from cach matrix @;. In this case, ®* preserves all the groups of L.d.
columns from ¢j which did not include the mixed column. (Good results are obtained when q)j is the Golay code check matrix,
producing codes with n = 0.577R2"R,)

DS preserves in the matrix & all the groups of L.d. columns contained in the matrices ;.

Example 7. R = 16 (this constraint is associated with simplification of parameter bounds), Ry = R, Vj is [2R + b, b]R-
code, b = [R/a], 1 =< a < R/3. The matrix &S is formed as the DS of b — 1 check matrices of [2a + 1, 1]a-code and the check
matrix of [2ay + 1,‘1]aM-codc, ay = R = (b — 1)a. Each matrix ®;,j=1,..,b — 1,is a group of 2a + 1 Ld. columns. We can
thus show that Ry"(R — 2a) = R and Vyis [2R + b, bJR, (R — 2a)-code. Let A =/ = R — 2a,p = 2a,g = (1,1,1,3,3,..., 3) for
2a =3u,g=(1,1233,..,3) for2a = 3¢ + 1,and g = (1,1,3,3,..., 3) for 2a = 3x + 2. Using (1.5) and minimizing n in (1.3),
we obtain after some calculations a=| (192R/311)"% | ~0.785YR, b~1.27YR, which gives the parameters (1.7). @

Coniparing examples 6 and 7 we see that the parameters of the initial code V,, viewed as a covering code, are better in
example 6. But the parameters of the constructed code V are better in example 7, because the parameters of the code V, viewed
as a RO',I-subsel, are more efficient here. ,

In (1.7) the constant 1.5 in the multiplier (1 + 1.5/R) can be reduced, say, in the following way: do not make all the
matrices @; identical, use g € Gi(p), i = 2, 3, use in D,™R(g, p) the codes of example 6 or (iteratively) the codes of example 7.
A constructive technique 1o reduce this constant (10 0.5) is by using as ®; the check matrix of the 1st order Reed—Muller 2t +
1]a,-code, where a, = 2'=1 — 22=1 1t is an even number (see [1, p. 389}, [20, Scc. 1.9, Chap. 14]). This matrix may be partitioned
in 2! — 1 ways into twe nonintersecting groups of L.d. columns with 2'~1 columns in each group.

The matrix ®* may be constructed in the following way. Take (as the base for the construction of the code V;) some
auxiliary code V,,* with check matrix ®.5. Including in ®.5 additional columns that form Ld. groups, we obtain the matrix .

Example 8. R = 16, Ry = R, V;" is [Q", Q" - s]R-code, Q° = w;"R2R + w,'2R w,*, w," are constants. Let p < R/3,
f = [Q"/p} Partition the columns of the check matrix ®.5 of the code V" into f nonintersecting groups, f — 1 of which contain
p columns each. To each group add a column equal to the sum of its columns. This gives the matrix @5, It is easy to verify that
Vois [Q" +£,Q" +  — s]R, (R — p)-code. Let A =R = p,p = p, g € G,(p, 2, 1), for instance, g = (1,1,3,3,..., 3) for p = 3u +
2. As in example 6, we use (1.5) and minimizing the length n of the code V we obtain after calculations p =] (384Q"/311)"% |~
1.17()', jzo.gfa'_ This produces the code V with the parameters

r=s+mR, 2">Q+0.9VF, q=1+2.2/V0", n<w gRY '™+ (w,'q+0.6/2"/%)2™. 52)

The constant 2.2 can be reduced by using in D, ™R(g, p) the codes of example 7. B
The codes constructed in this paper have high rates. We see from examples 3-8 that for large R the parameters of the

constructed codes are conveniently written in the form

n=wR2""+0(R2"/*)=UR*+0(R?), (5:3)
U=wg2’, r=rpw+vR, rn,,=[Rlog.gR], 2"/*=gR2",

329




where w < 1, g > 1 are constants (in general, not integers) that are fixed for a specific code family; v = 0is an integer constant
which may increase without bound (this defines a family of codes); r.;. is the minimum value of r for which the code V of the
given family can be constructed.

The constant w determines the quality of the constructed code family; the reduction of this constant is a basic problem
in the construction of asymptotically good codes with parameters of the form (5.3). The constant g sets a lower bound on r. For
the codes (1.7), 16 = g > 8.

R

Let us estimate w by the spherical packing bound: 2" < Z C.' By Stirling’s formula C.F<nfe®/(Y2nRR®). For
=0 5
sufficiently large R, we have (27R)12R ~ 1, n ~ URZ, and n > e~ 1R2"R = 0.367R2"R,
For the codes (1.7), w = 0.5. For comparison note that if a code with covering radius R is constructed as ADS of
Hamming codes, then w = 1; if we use ADS of the codes (1.2) from [18], then w = 0.875.
R .

For sufficiently large R, the covering density ensured by codes with the parameters (5.3) and w = 0.5is fi[R. V]= Z
C.'/2"~ (we)*/V2nR ~(e[2)R. o

In accordance with example 8, the construction (3.5) preserves the value of the constant w used in the base code V,'. In
this respect, it is interesting 1o use as Vg' the 1Ist order Recd—Muller codes, which are used in the analysis of the
Gale—Berlekamp switching game (light-bulb codes) [1, 5, 12, 17], and the ADS of these codes. These codes lead to w < 0.5.
Thus [1, formula (80)], from light-bulb codes with / = m = 81 we obtain a code V with w = 0.4977.

The code V" is essentially shorter than V. Therefore, if the code V* with a good value of w is chosen by enumeration,
the construction complexity of the code V may be acceptable (for m ~ Q°, n ~ 2Q°Q", the code V is constructed in polynomial
time even if the code V,* has exponential complexity).

Let us compare our results with those available for finite n, R.

The results (1.8) and (1.9) improve respectively Table I of [1] and Table II of [16]. Most of the results that follow from
(3.1), (3.5), and (4.4) lie outside these tables.

For R = 2, there is a number of infinite code families [1, 16, 18]. Among these familics, the codes of [18] have the best
~ parameters (see (1.2)). The codes (1.4) constructed in this paper have shorter length and lower covering density than the codes
(1.2) for even r = 10.

Pairs of values n, k for which we do not know if t[n, k] equals precisely 2 or 3 are given in [1] (Theorem 30 and the
following remark). Using the codes (1.4), we can reduce the number of such uncertain pairs. Thus, for 55 x 275 — 2 < n <
56 x 2¢=3 — 2 we obtain from (1.4) t[n, k = n — 2c] = 2, whereas from [1, 18] we have 2 =< t[n, k] < 3. ;

Codes with R = 3 can be compared with (1.5) if they are constructed as ADS of Hamming codes and codes (1.2). This
produces, for instance, the family V with the parameters R=3, n=9X2"*—3, r=3c—1, ¢ >4, i[3, V]=3,79, which are worse
than in (1.5). But note that (here and in other cases) new codes are not constructed for relatively small r. Thus, in (1.5), r = 26,
r = 21, r = 14, while in the last formula for known codes r = 11. .

On the whole, for finite n and R, the constructions (3.1) and (3.5) produce a variety of possible covering codes. For r
values when these constructions are applicable, they often produce better results than standard constructions. Note the relatively
low covering density in (1.4), (1.5).

I would like to acknowledge the useful comments of V. M. Blinovskii, G. A. Kabatyanskii, and A. N. Skorobogatov. This
paper has benefited from constructive discussion of results at the seminar on algebraic coding theory at the Institute of Problems
of Information Transmission of the Academy of Sciences of USSR. :
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