
Fourteenth International Workshop on Algebraic and Combinatorial Coding Theory

September 7–13, 2014, Svetlogorsk (Kaliningrad region), Russia pp. 336–341

On the Decoding of Tail-Biting UM-LDPC
Codes 1

Igor Zhilin zhilin@iitp.ru

Pavel Rybin prybin@iitp.ru

Fedor Ivanov fii@iitp.ru

Victor Zyablov zyablov@iitp.ru

IITP RAS

Abstract. This paper deals with tail-biting Unit Memory codes based on Low-
Density Parity-Check block codes (UM-LDPC codes). Three different decoding
algorithms of this construction are considered. The first one considers the tail-
biting UM-LDPC code as block code, the other two use convolution structure of
this code construction. At the end of the paper simulation results for considered
decoding algorithms are represented and analyzed.

1 Introduction

Unit Memory (UM) codes were introduced by Lee in 1976 [5]. These are con-
volutional codes with rate R = k/n, memory m = 1 and overall constraint
length ν ≤ k. In the case when ν < k the latest codes are called Partial Unit
Memory (PUM) codes. (P)UM codes are constructed based on block codes,
e.g. Reed-Solomon (RS) [6], [3], BCH codes [1], or Low-Density Parity-Check
(LDPC) codes [4] .The use of block codes makes an algebraic description of
these convolutional codes possible and simplifies their study.

In this contribution we consider tail-biting UM codes based on LDPC block
codes [2] and their decoding.

The paper is organized as follows. In section II we describe construction of
considered (P)UM-LDPC codes. Then we propose several decoding algorithms
for this code construction in section III. In section IV we represent simulation
results for proposed decoding algorithms and analyze them.

2 Construction

Let us consider the construction of the parity-check matrix H′ of UM-LDPC
code based on set of Gallagers LDPC block codes [2]. We will denote parity-
check matrices of these component codes as Hi,0,Hi,1, i = 1..t, where t is

1This research has been supported by RFBR, research project No. 14-07-31197.



Zhilin, Rybin, Ivanov, Zyablov 337

a period. Then UM-LDPC code is defined by its semi-infinite parity-check
matrix H′:

H′ =













. . .
. . .

Ht,1 Ht,0

H1,1 H1,0

. . .
. . .













where Hi,0, Hi,1 are r × n matrices, r = n− k. For either UM or PUM codes,
block matrix Hi,0 must have full rank and Hi,1 may have lesser rank if the code
is PUM: rank (Hi,0) = r, rank (Hi,1) = r1 ≤ r. The code rate R′ of constructed
UM-LDPC code is equal to code rate of code with parity-check matrix Hi,0.

Then tail-biting UM-LDPC code with length N = nt have the following
parity-check matrix H (with tail-biting on the period t):

H =











H1,1 H1,0

H2,1 H2,0

. . .
. . .

Ht,0 Ht,1











with size tr × tn (according to the condition on UM-LDPC code).
So, the code rate R of tail-biting UM-LDPC is given by:

R ≥ 1−
tr

tn
= 1−

r

n
= Ri,{0,1}.

Remark 1. It is important to note that constructed tail-biting UM-LDPC code
is itself also LDPC code with special construction of parity-check matrix.

Let us also introduce the following notation:

Hi =
(

Hi,1 Hi,0

)

,

where Hi is parity-check matrix of LDPC code, constructed by concatenation
of parity-check matrices Hi,1 and Hi,0.

3 Decoding algorithms

This section is devoted to the descriptions of the considered decoding algorithms
of UM-LDPC codes described above. The input of these decoding algorithm
are the received sequence r obtained after transmission of code word c over
the binary memoryless channel with Additive White Gaussian Noise (AWGN).
According to the construction of UM-LDPC codes the received sequence r can
be represented as r =

(

r1 r2 . . . rt
)

, where ri is a vector with length n,
that corresponds to the parity-check matrices Hi,1 and H((i−1) mod t)+1,0 of soft-
decisions of received sequence (log-likelihood ratios (LLR)).



338 ACCT 2014

3.1 Decoding algorithm A

As it mentioned above the tail-biting UM-LDPC code is itself also LDPC code.
So, the first decoding algorithm A is well-known “belief propagation” decoding
algorithm of LDPC code. In this case the parity-check matrix H of tail-biting
UM-LDPC code is considered whole as parity-check matrix of some LDPC code
and is decoded using classical “belief propagation” decoding algorithm. Let

y = D
(imax)
H

(r)

denote the decoding of received sequence r with algorithm A with imax itera-
tions (A (imax)) for parity-check matrix H and updated LLR values y.

The following two algorithms consider not the whole parity-check matrix
H, but the constituent parity-check matrices Hi, 1 ≤ i ≤ t, on each step of
decoding iteration. The main difference of these decoding algorithms is the way
to exchange the decisions, made during decoding of constituent codes, between
these constituent codes.

3.2 Decoding algorithm B

The main idea of the second decoding algorithm B is the following. The tail-
biting UM-LDPC code is decoded consequentially in the manner of convolution
codes decoding. The decisions, obtained while decoding on the previous step,
are used as input values for overlapped part of previous and current constituent
code (for not overlapped part the values from tentative sequence are used). But
due to the tail-biting structure of the code number of such steps is fixed. So,
the procedure is repeated from first to the last step. Thus, in this case we
need to distinguish inner iterations (performed on each step) and outer iteration
(number of repetition of sequence of steps). That’s why we denote this decoding
algorithm as B (imax, jmax), where imax is the number of inner iterations (the
number of iterations for “belief propagation” decoder) and jmax is the number
of outer iterations (the number of times all t constituent codes are decoded).

Let
y = D

(imax)
k

(x)

denote the decoding of tentative sequence x with algorithm A (imax) for parity-
check matrix Hk and updated LLR values y. Then the description of the decod-
ing algorithm B (imax, jmax) can be written in the following way:

1: r
(0)
k
←− rk, ∀k : 1 ≤ k ≤ t

2: r
(1)
1 ←− r1

3: ∆
(0)
k ←− 0, ∀k : 1 ≤ k ≤ t

4: for j = 1 to jmax do
5: for k = 1 to t do
6: k1 ←− k, k2 ←− (k mod t) + 1



Zhilin, Rybin, Ivanov, Zyablov 339

7: xk1 ←− r
(j)
k1

8: xk2 ←− r
(j−1)
k2

−∆
(j−1)
k2

9:
(

yk1 yk2

)

←− D
(imax)
k

((

xk1 xk2

))

10: ∆
(j)
k2
←− yk2 − xk2

11: r
(j)
k2
←− r

(j−1)
k2

+∆
(j)
k2

12: end for
13: end for

14: return r(jmax) =
(

r
(jmax)
1 r

(jmax)
2 . . . r

(jmax)
t

)

One can see that on each step k of the current outer iteration j the right

part r
(j)
k2

(that corresponds to the parity-check matrix Hk,0) of current tentative

sequence
(

r
(j)
k1

r
(j)
k1

)

(that corresponds to the parity-check matrix Hk) is up-

dated. Then the updated right part, obtained on previous step, is used as input
for the left part on the current step k + 1. So, the right parts of constituent
codes are continuously updated in direction from left to right.

3.3 Decoding algorithm C

The third decoding algorithm C is the modification of the decoding algorithm B
described above. According to the description of algorithm B it consequentially
updates LLR values of tentative sequence in the direction from left to right.
The algorithm C can be represented as two parallel algorithm B with opposite
directions of LLR values updating.

According to the construction of UM-LDPC code each symbol of vector rk,
1 ≤ k ≤ t, are checked by two constituent codes Hk,1 and H(k mod t)+1,0. Let

y = D
(imax)
k (x)

denote as previously the decoding of tentative sequence x with algorithmA (imax)
for parity-check matrix Hk and updated LLR values y. And let ∆k,1 and ∆k,0

are LLR update increments corresponding to parity-check matrices Hk,1 and
Hk,0 respectively. Then the description of the decoding algorithm C (imax, jmax)
is the following:

1: r
(0)
k ←− rk, ∀k : 1 ≤ k ≤ t

2: ∆
(0)
k,{0,1} ←− 0, ∀k : 1 ≤ k ≤ t

3: for j = 1 to jmax do
4: for k = 1 to t do
5: k1 ←− k, k2 ←− (k mod t) + 1

6: xk1 ←− r
(j−1)
k1

−∆
(j−1)
k1,1

7: xk2 ←− r
(j−1)
k2

−∆
(j−1)
k2,0



340 ACCT 2014

8:
(

yk1 yk2

)

←− D
(imax)
k

((

xk1 xk2

))

9: ∆
(j)
k1,1
←− yk1 − xk1

10: ∆
(j)
k2,0
←− yk2 − xk2

11: end for
12: for k = 1 to t do
13: r

(j)
k
←− r

(j−1)
k

+∆
(j)
k,0 +∆k,1

14: end for
15: end for

16: return r(jmax) =
(

r
(jmax)
1 r

(jmax)
2 . . . r

(jmax)
t

)

So, in other words on each outer iteration j all t constituent codes with
parity-check matrices Hk, 1 ≤ k ≤ t, are decoded and corresponding update

increments ∆
(j)
k1,1

and ∆
(j)
k1,1

are calculated. Then on the next iteration the sum
of tentative sequence of previous iteration and update increments of current
constituent code neighbors (for the left part of constituent code the update
increment, obtained for the right part of constituent from previous step, is used
and vice versa) is used as input LLR for current constituent code.

4 Simulation results

Simulation results were obtained for UM-LDPC code with period t = 4 based
on such LDPC codes (2,4) with parity-check matrices Hi,{0,1}, that parity-check

matrices Hi =
(

Hi,1 Hi,0

)

don’t have cycles with length less than 4.The code

rate of constructed UM-LDPC code is equal to R = 1 − 2
4 = 0.5, code length

N = 2032.
The number of iteration for decoding algorithm A (imax) was selected to be

equal to 50 (imax = 50). According to the description of decoding algorithms
B (imax, jmax) and C (imax, jmax) each constituent code is decoded jmax times
with decoding algorithm A (imax). So, the number of inner imax and outer
jmax iterations should be selected such, that imaxjmax = 50. After extensive
simulation it was found that the best decoding performance was achieved for
considered UM-LDPC code under decoding algorithms B (3, 17) and C (3, 17).
This fact can be explained with the following observation. According to the
construction of constituent LDPC code they don’t have cycles with length 4.
So, we can assume that the number of independent decoding iterations of “belief
propagation” decoder is at least equal to 3. Thus the number of inner iteration
should be set to 3.

In fig. 1 the simulation results for UM-LDPC code with code rate R=0.5,
based on the LDPC codes (2,4), under decoding algorithms A (50), B (3, 17)
and C (3, 17) are represented.

As you can see in fig. 1 the decoding algorithm A (50) has the best decoding
performance. The decoding algorithm B (3, 17) is worse than performance of



Zhilin, Rybin, Ivanov, Zyablov 341

−2 −1.5 −1 −0.5 0 0.5

10
−4

10
−3

10
−2

10
−1

10
0

SNR

B
E

R

 

 

A (50)
B (3,17)
C (3,17)

Figure 1: Simulation results for UM-LDPC code with code rate R=0.5, based on
the LDPC codes (2,4), under decoding algorithms A (50), B (3, 17) and C (3, 17)

algorithm A (50) on almost 0.4 dB at the level of bit-error rate (BER) equal
to 10−5. And the performance of decoding algorithm C (3, 17) is worse than
performance of algorithm B (3, 17) on almost 0.2 dB at the level of BER equal
to 10−5.

Complexities of algorithms B and C is asymptotically the same as complexity
of A up to a constant factor which is close to 1. Since A performs better than
B or C, it is unreasonable to use algorithms B and C.

References

[1] U. Dettmar and U.K. Sorger. New optimal partial unit memory codes based
on extended bch codes. Electronics Letters, 29(23):2024–2025, Nov 1993.

[2] R. G. Gallager. Low-Density Parity-Check Codes. MIT Press, Cambridge,
MA, 1963.

[3] J. Justesen. Bounded distance decoding of unit memory codes. Information
Theory, IEEE Transactions on, 39(5):1616–1627, Sep 1993.

[4] K. Kondrashov and V. Zyablov. On the lower bound of the free distance
of partial unit memory codes based on LDPC Codes. In Proc. IEEE Int.
Symposium on Inform. Theory, pages 1831–1835, July 2011.

[5] Lin nan Lee. Short unit-memory byte-oriented binary convolutional codes
having maximal free distance (corresp.). IEEE Trans. Inform. Theory,
22(3):349–352, May 1976.

[6] V. Zyablov and V. Sidorenko. On periodic (partial) unit memory codes with
maximum free distance. In Andrew Chmora and StephenB. Wicker, editors,
Error Control, Cryptology, and Speech Compression, volume 829 of Lecture
Notes in Computer Science, pages 74–79. Springer Berlin Heidelberg, 1994.


