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Abstract. In this paper we deal with the special class of covering codes con-

sisting of multiple coverings of the farthest-off points (MCF). In order to mea-

sure the quality of an MCF code, we use a natural extension of the notion of
density for ordinary covering codes, that is the µ-density for MCF codes; a gen-

eralization of the length function for linear covering codes is also introduced.

Our main results consist in a number of upper bounds on such a length func-
tion, obtained through explicit constructions, especially for the case of covering

radius R = 2. A key tool is the possibility of computing the µ-length function
in terms of Projective Geometry over finite fields. In fact, linear (R,µ)-MCF

codes with parameters [n, n − r, d]qR have a geometrical counterpart consist-

ing of special subsets of n points in the projective space PG(n− r− 1, q). We
introduce such objects under the name of (ρ, µ)-saturating sets and we pro-

vide a number of example and existence results. Finally, Almost Perfect MCF

(APMCF) codes, that is codes for which each word at distance R from the code
belongs to exactly µ spheres centered in codewords, are considered and their

connections with uniformly packed codes, two-weight codes, and subgroups of

Singer groups are pointed out.

1. Introduction

For a code C with covering radius R, it is sometimes useful that for every word
x at distance R from C there is more than one codeword in the Hamming sphere
S(x,R). The code C is said to be an (R,µ)-multiple covering of the farthest-off
points (MCF for short) if for each x ∈ Fnq with d(x,C) = R the size of S(x,R) ∩ C
is at least µ. Multiple coverings can be viewed as a particular variant of a natural
generalization of 1-fold-coverings. One motivation for studying MCF codes arises
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from the generalized football pool problem; see e.g. [27, 28, 36] and the references
therein. Another interesting connection is with the list decoding; see e.g. [43].
Results on MCF codes, mostly concerning the binary and the ternary cases, can be
found in [11,25,26,31,32,39,40].

For a q-ary linear MCF code C, a natural parameter to consider is the average
value γµ(C,R) of 1

µ#(S(x,R)∩C), where x is a word at distance R from C. Clearly,

γµ(C,R) ≥ 1 holds and equality is attained precisely when each x ∈ Fnq with
d(x,C) = R belongs to exactly µ spheres centered in codewords; if this is the
case, then C is called an APMCF code; here, AP stands for almost-perfect. The
parameter γµ(C,R) will be referred to as the µ-density of C. If the minimum
distance d of C is at least 2R− 1, then the best µ-density among linear q-ary codes
with same codimension r and covering radius R is achieved by the shortest ones.
This motivates the introduction of the µ-length function `µ(R, r, q) as the smallest
length n of a linear (R,µ)-MCF code with parameters [n, n − r, d]qR, d ≥ 3. For
µ = 1, `1(R, r, q) is the usual length function `(R, r, q) [11,15] for 1-fold coverings.

The aim of this paper is to investigate the µ-length function, mainly for the case of
covering radius R = 2. A key tool is the possibility of rephrasing the definition of the
µ-length function in terms of Projective Geometry over finite fields. In fact, linear
(R,µ)-MCF codes with parameters [n, n − r, d]qR have a geometrical counterpart
consisting of special subsets of n points in the projective space PG(n − r − 1, q).
Such subsets will be called (R − 1, µ)-saturating sets. By using a few geometrical
methods, we will provide a number of constructions of small (ρ, µ)-saturating sets
which will produce significant upper bounds on the µ-length function. Our main
results in this direction are contained in Section 5 for the case of codimension r = 3,
and in Section 6 for higher codimensions. The main achievements of the paper are
Proposition 5.2, together with Corollaries 5.5, 5.13, 5.15, 5.19, 6.4, and 6.5, and
Theorem 7.8.

The paper is organized as follows. In Section 2 we recall the notion of µ-density
for MCF codes. We also present some explicit formulae for the computation of the
µ-density in the case of codes with minimum distance d ≥ 2R− 1.

Section 3 presents the connection between MCF codes and (ρ, µ)-saturating
sets in Projective Geometries over finite fields; the concept of an optimal (ρ, µ)-
saturating set is introduced.

Results of Sections 2 and 3 are specialized to the case R = 2 in Section 4; the
µ-length function is recalled, and some preliminary facts on (1, µ)-saturating sets
are established.

Section 5 contains a number of constructions of small (1, µ)-saturating sets in
the projective plane PG(2, q). The cases where q is a square, a non-prime non-
square, and a prime are distinguished. A number of significant upper bounds on
the µ-length function `µ(2, 3, q) are obtained.

In Section 6, we present an inductive method which allows to construct short
MCF codes of arbitrarily high codimension from short MCF codes with codimen-
sion 3. Such a method is a generalization of the qm-concatenating construction
for ordinary covering codes, and for the sake of simplicity will be called multiple
concatenating construction (MCC) in this paper. Combining the results of Section
5 with MCC provides significant upper bounds for the µ-length function for every
codimension.

Finally, Section 7 presents some interesting connections between APMCF codes
and uniformly packed codes, two-weight codes, and subgroups of Singer groups.
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Some of the results of this paper were briefly presented in [4, 21,38].

2. Multiple coverings

An (n,M, d)qR code C is a code of length n, cardinality M , minimum distance
d, and covering radius R, over the finite field Fq with q elements. If C is linear of
dimension k over Fq, then C is also said to be an [n, k, d]qR code. When either d or
R are not relevant or unknown they can be omitted in the above notation. Let Fnq
be the linear space of dimension n over Fq, equipped with the Hamming distance.
The Hamming sphere of radius j centered at x ∈ Fnq is denoted by S(x, j). The size
Vq(n, j) of such a sphere is

(2.1) Vq(n, j) =

j∑
i=0

(
n

i

)
(q − 1)i.

Let S(x,R) be the surface of the sphere S(x,R). For an (n,M)qR code C, Aw(C)
denotes the number of codewords in C of weight w, and fθ(e, C) denotes the number
of codewords at distance θ from a vector e in Fnq ; equivalently, fθ(e, C) = #(S(e, θ)∩
C). Let t =

⌊
d−1

2

⌋
be the number of errors that can be corrected by a code with

minimum distance d.

Definition 2.1 ( [11,26,27]). An (n,M)qR code C is said to be an (R,µ) multiple
covering of the farthest-off points ((R,µ)-MCF code for short) if for all x ∈ Fnq such
that d(x,C) = R the number of codewords c such that d(x, c) = R is at least µ.

In the literature, MCF codes are also called multiple coverings of deep holes, see
e.g. [11, Chapter 14].

One of the parameters that measure the quality of an (n,M)qR covering code C
is its density, namely the average number of spheres of radius R centered in words
of C containing a fixed element in Fnq , denoted as δ(C,R). Recall that

(2.2) δ(C,R) =

∑
x∈Fnq

#{c ∈ C | d(c, x) ≤ R}
qn

=
M · Vq(n,R)

qn

holds; also, δ(C,R) ≥ 1, and equality holds if and only if C is a perfect code. Now
assume that C is an (R,µ)-MCF code in Fnq . In the terminology of [11, Sect. 13.1],
C is a weighted covering or an m-covering, where m = (m0, . . . ,mn) with

m0 = m1 = . . . = mR−1 = 1, mR = 1/µ, mi = 0 for R < i ≤ n.
According to [11, Sect. 13.1], the m-density of C at a fixed vector x ∈ Fnq is

δm(x) = f0(x,C) + f1(x,C) + . . .+ fR−1(x,C) +
fR(x,C)

µ
.

By definition δm(x) ≥ 1 holds, and a natural parameter to estimate the quality of
C as an (R,µ)-MCF code is the average m-density δm(x), denoted by δµ(C,R). By
definition, δµ(C,R) ≥ 1; if equality holds then C will be called an (R,µ) perfect
multiple covering of the farthest-off points ((R,µ)-PMCF code for short). Note that
this terminology is consistent with [11, Def. 13.1.2].

Proposition 2.2. An (n,M)qR code C is an (R,µ)-PMCF code if and only if the
following conditions hold:

(i) each x ∈ Fnq with d(x,C) = R belongs to exactly µ spheres centered in code-
words of C;
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(ii) d(C) ≥ 2R.

Proof. Assume that both Condition (i) and Condition (ii) hold and fix a word
x ∈ Fnq . If d(x,C) = R, then f0(x,C) + f1(x,C) + . . . + fR−1(x,C) = 0; also,

by Condition (i), fR(x,C)
µ = 1 holds. Therefore, δm(x) = 1. If d(x,C) < R, then

Condition (ii) implies that there exists a unique codeword c with d(x, c) ≤ R; as
actually d(x, c) ≤ R − 1 we have that δm(x) = 1. Whence, δµ(C,R) = 1 and C is
an (R,µ)-PMCF code.

Conversely, assume that C is an (R,µ)-MCF code. If Condition (ii) does not
hold, then there exist two codewords c1, c2 with d(c1, c2) ≤ 2R − 1. Whence, for
some word x we have

d(x, c1) ≤ R− 1, d(x, c2) ≤ R.

Then clearly δm(x) > 1. The same holds if Condition (i) fails for x, as in this case

δm(x) ≥ fR(x,C)
µ > 1.

Note that beside the usual perfect codes with µ = 1, Condition (ii) of Proposi-
tion 2.2 holds only for quasi-perfect codes with d even (that is, codes with R = d/2).
This explains why perfect multiple coverings of the farthest-off points seem to be
rare objects, even though a complete classification is not known. Some examples
are provided in Section 7.

By Proposition 2.2, a necessary condition for C to be an (R,µ)-PMCF code
is that each x ∈ Fnq with d(x,C) = R belongs to exactly µ spheres centered in
codewords of C. As a matter of terminology, if this happens we say that C is an
(R,µ) almost-perfect multiple covering of the farthest-off points ((R,µ)-APMCF
code).

Let

{x1, . . . , xNR(C)}

be the set of vectors in Fnq with distance R from C, and let

(2.3) γµ(C,R) =

∑NR(C)
i=1 fR(xi, C)

µNR(C)
.

It is easily seen that γµ(C,R) ≥ 1, and that C is an (R,µ)-APMCF code precisely
when equality holds. We will refer to the parameter γµ(C,R) as to the µ-density of
the ((R,µ)-MCF code C. Next we are going to discuss some formulas for γµ(C,R).

For a codeword of c ∈ C, we denote by F (c,R) the farthest-off part of the sphere
S(c,R), namely the set of points in S(c,R) at distance R from C. Clearly,

(2.4)

NR(C)∑
i=1

fR(xi, C) =
∑
c∈C

#F (c,R)

holds. Also,

(2.5) #F (c,R) ≤
(
n

R

)
· (q − 1)R;

(2.6)
∑
c∈C

#F (c,R) ≤M ·
(
n

R

)
· (q − 1)R.
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It should be remarked that in both Inequalities (2.5),(2.6), equality holds precisely
when the minimum distance d(C) satisfies d(C) > 2R − 1. Also, it is easy to see
that

(2.7) NR(C) = qn −M · Vq(n,R− 1) if d(C) ≥ 2R− 1;

(2.8) NR(C) > qn −M · Vq(n,R− 1) if d(C) < 2R− 1.

Now, by Formulas (2.3)–(2.7), for an (n,M, d)qR code C which is an (R,µ)-MCF
code we have

(2.9) γµ(C,R) =
1

µ
·

∑
c∈C

#F (c,R)

NR(C)
≤ 1

µ
·
M ·

(
n
R

)
· (q − 1)R

NR(C)
;

(2.10) γµ(C,R) =
1

µ
·

M ·
(
n
R

)
· (q − 1)R

qn −M · Vq(n,R− 1)
if d(C) > 2R− 1.

If an (R,µ)-MCF code C is a linear [n, k, d]qR code then

(2.11) γµ(C,R) =

(
n
R

)
· (q − 1)R

µ · (qn−k − Vq(n,R− 1))
if d(C) > 2R− 1.

The case d(C) = 2R− 1 is dealt with in the following lemma.

Proposition 2.3. Let C be a linear [n, k, d(C)]qR code with d(C) ≥ 2R − 1. If C
is (R,µ)-MCF, then

(2.12) γµ(C,R) =

(
n
R

)
· (q − 1)R −

(
2R−1
R−1

)
·A2R−1(C)

µ · (qn−k − Vq(n,R− 1))
.

Proof. If d(C) > 2R−1 then A2R−1(C) = 0 and the assertion follows from Equation
(2.11). Assume then that d(C) = 2R − 1. Let O denote the zero vector in Fnq . As
C is linear, #F (c,R) coincides with #F (O, R) for every c ∈ C. By Equation (2.4),∑NR(C)
i=1 fR(xi, C) = qk ·#F (O, R), and hence

(2.13) γµ(C,R) =
#F (O, R)

µ · (qn−k − Vq(n,R− 1))
.

Note that d(C) = 2R − 1 implies that for any two codewords c1, c2 ∈ C with
distance 2R − 1, the spheres S(c1, R − 1) and S(c2, R − 1) are disjoint. Therefore,
the complement of F (O, R) in S̄(O, R) is the disjoint union of S̄(c,R−1)∩ S̄(O, R),
with c ranging over the codewords in C with weight 2R − 1. For any word with
weight 2R− 1

#(S̄(c,R− 1) ∩ S̄(O, R)) =

(
2R− 1

R− 1

)
holds. Then the claim follows by Equation (2.13).

In the rest of the paper we will assume that

(2.14) d(C) ≥ 2R− 1.

In this case, NR(C) only depends on the basic parameters of the code; see Equation
(2.7). Note that under Condition (2.14), R = t+1; equivalently, C is a quasi-perfect
code in the classical sense.
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3. (R,µ)-MCF linear codes and (R− 1, µ)-saturating sets in projective
geometry

In this section we assume that C is an [n, k, d]q code with d ≥ 3 (or, equivalently,
that C⊥ is a projective code). Let H be a parity check matrix of C. For an element
x ∈ Fnq , let s(x) = H · xtr, denote the syndrome of x. Note that as d ≥ 3, the

columns of H represent n pairwise linearly independent vectors of Fn−kq . Therefore,
H defines a set S = {P1, . . . , Pn} of n points in PG(n− k − 1, q).

Lemma 3.1. Let x ∈ Fnq . Then, the number of codewords c ∈ C such that d(x, c) =
R is the number of distinct vectors v in Fnq of weight R such that

(3.1) s(x) = H · vtr.

Proof. The assertion follows from the fact that H · xtr = H · vtr holds if and only
if c = x− v is a codeword of C with d(c, x) equal to the weight of v.

Note that H · vtr in Equation (3.1) is a linear combination of the columns of H
with exactly R non-zero coefficients.

We are going to translate the property of C being an (R,µ)-MCF code into some
geometrical features of S, see Proposition 3.6 below. We recall that R being the
covering radius of C corresponds to the following property of S: every point in
PG(n − k − 1, q) is linearly dependent with R points from S, and there exists a
point in PG(n− k− 1, q) which is linearly independent with any set of R− 1 points
from S.

Remark 3.2. The condition d(C) ≥ 2R − 1 reads as follows: every 2R − 2 points
of S are linearly independent. As 2R − 2 ≥ R, we have in particular that every R
points of S are linearly independent.

Fix x in Fnq . A number of cases will be distinguished, according to the syndrome
of x.

• s(x) is a linear combination of R − 1 columns of H. Here d(x,C) < R,
and there is nothing to check. Geometrically, s(x) is either the zero vector, or
it represents a point belonging to some space of dimension less than or equal
to R− 2 generated by some points of S.

• s(x) is not a linear combination of R − 1 columns of H. Let P be the
point of PG(n− k − 1, q) corresponding to s(x). Then P does not belong to
any space of dimension less than or equal to R − 2 generated by the points
of S. As the covering radius of S is equal to R, the point P belongs to at
least one subspace of dimension R − 1 generated by the points of S. Let
{T1, . . . , Th} be the set of distinct subspaces of dimension R− 1 generated by
some points in S and containing P . Let Vi := Ti ∩ S. Then Vi contains at
least R independent points of S. Let ui be the number of distinct sets of R
independent points of S belonging to Ti. Then we have ui distinct ways of
expressing s(x) as a linear combination of R columns of H. In order for x to
satisfy the condition of Definition 2.1 we need that u1 + u2 + . . . + uh is at
least µ.

The definition of a (ρ, µ)-saturating set in PG(N, q) can now be given.

Definition 3.3. Let S = {P1, . . . , Pn} be a subset of points of PG(N, q). Then S
is said to be (ρ, µ)-saturating if:

(M1) S generates PG(N, q);
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(M2) there exists a point Q in PG(N, q) which does not belong to any subspace of
dimension ρ− 1 generated by the points of S;

(M3) every point Q in PG(N, q) not belonging to any subspace of dimension ρ− 1
generated by the points of S, is such that the number of subspaces of dimension
ρ generated by the points of S and containing Q, counted with multiplicity, is
at least µ. The multiplicity mT of a subspace T is computed as the number
of distinct sets of ρ+ 1 independent points contained in T ∩ S.

Note that if any ρ+1 points of S are linearly independent (that is, the minimum
distance of the corresponding code is at least ρ+ 2), then

mT =

(
#(T ∩ S)

ρ+ 1

)
.

Definition 3.4. A (ρ, µ)-saturating n-set in PG(N, q) is called minimal if it does
not contain a (ρ, µ)-saturating (n− 1)-set in PG(N, q).

Definition 3.5. An [n, k]qR code C with R = ρ + 1 corresponds to a (ρ, µ)-
saturating n-set S in PG(n − k − 1, q) if C admits a parity-check matrix whose
columns are homogeneous coordinates of the points in S.

As a consequence of the above discussion, the following result holds.

Proposition 3.6. A linear [n, k]qR code C corresponding to a (ρ, µ)-saturating
n-set S in PG(n− k − 1, q) is a (ρ+ 1, µ)-MCF code.

Proposition 3.6 allows us to consider (ρ, µ)-saturating sets as linear (ρ + 1, µ)-
MCF codes and vice versa.

Definition 3.7. Let S be a (ρ, µ)-saturating n-set in PG(n− k − 1, q). The set S
is called optimal (ρ, µ)-saturating set ((ρ, µ)-OS set for short) if every point Q in
PG(n − k − 1, q) not belonging to any subspace of dimension ρ − 1 generated by
the points of S, is such that the number of subspaces of dimension ρ generated by
the points of S and containing Q, counted with multiplicity, is exactly µ.

If S is a (ρ, µ)-OS set, then the corresponding linear [n, k]qR code C is a (ρ+1, µ)
APMCF code with γµ(C, ρ+ 1) = 1. By Proposition 2.2, C is actually a (ρ+ 1, µ)
PMCF code with µ > 1 if its minimum distance is precisely 2R.

4. (1, µ)-saturating sets

For ρ = 1 Conditions (M1)-(M3) read as follows:

(M1) S generates PG(N, q);
(M2) S is not the whole PG(N, q);
(M3) every point Q in PG(N, q) not belonging to S is such that the number of se-

cants of S through Q is at least µ, counted with multiplicity. The multiplicity
m` of a secant ` is computed as

m` =

(
#(` ∩ S)

2

)
.

According to Definition 3.5, let C be the linear [n, n−N−1, d(C)]q2 code correspond-
ing to a (1, µ)-saturating n-set S. Then µγµ(C, 2) is equal to the average number
of secants of S, counted with multiplicity, through a fixed point Q ∈ PG(N, q) \ S.

The following result then holds.
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Proposition 4.1. Let S be a (1, µ)-saturating set in PG(N, q). Then S is a (1, µ)-
OS set precisely when each point Q ∈ PG(N, q) \ S belongs to exactly µ secants of
S, counted with multiplicity.

Note that as R = 2, the condition d(C) > 2R − 1 reads as d(C) > 3; also,
A3(C) = 0 holds. On the other hand, when d(C) = 2R−1 = 3, we have A3(C) > 0.

Let B3(S) denote the number of triples of collinear points in S.

Proposition 4.2. Let S be a (1, µ)-saturating set in PG(N, q). Then S is a (1, µ)-
OS set if and only if

(4.1)
n− 1

2
(q − 1)− 3

n
B3(S) = µ ·

(
#PG(N, q)

n
− 1

)
.

Proof. Recall that #PG(N, q) = (qN+1 − 1)/(q − 1). Clearly,

B3(S) =
1

q − 1
A3(C),

and hence, by Equations (2.1) and (2.12),

γµ(C, 2) =

(
n
2

)
(q − 1)2 − 3A3(C)

µ · (qn−k − Vq(n, 1))
=

1
2 (n− 1)(q − 1)− 3

nB3(S)

µ ·
(

#PG(N,q)
n − 1

)(4.2)

holds.

Taking into account Equation (2.7), it is clear that if q,N, µ are fixed then the
best µ-density is achieved for small n. Therefore, the following parameter seems to
be relevant in this context.

Definition 4.3. The µ-length function `µ(2, r, q) is the smallest length n of a linear
(2, µ)-MCF code with parameters [n, n− r, d]q2, d ≥ 3, or equivalently the smallest
cardinality of a (1, µ)-saturating set in PG(r − 1, q). For µ = 1, `1(2, r, q) is the
usual length function `(2, r, q) [11,15] for 1-fold coverings.

Remark 4.4. A number µ of disjoint copies of a 1 -saturating set in PG(N, q) give
rise to a (1, µ)-saturating set in PG(N, q). Therefore,

(4.3) `µ(2, r, q) ≤ µ`(2, r, q).

Denote by γµ(2, r, q) the minimum µ-density of a linear (2, µ)-MCF code of codi-
mension r over Fq. Let δ(2, r, q) be the minimum density of a linear code with
covering radius 2 and codimension r over Fq. By Equation (4.2) and Inequality
(4.3),

(4.4) γµ(2, r, q) ≤
1
2 (µ`(2, r, q)− 1)(q − 1)

µ · (#PG(r−1,q)
µ`(2,r,q) − 1)

− 1 ∼ µδ(2, r, q).

The same inequalities clearly hold for the best known lengths and densities, denoted,
respectively, by `µ(2, r, q), `(2, r, q), γµ(2, r, q), and δ(2, r, q):

(4.5) `µ(2, r, q) ≤ µ`(2, r, q).

(4.6) γµ(2, r, q) <∼ µδ(2, r, q).
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From Equations (4.3)–(4.6), results for parameters `µ(2, r, q), `µ(2, r, q), γµ(2, r, q),
and γµ(2, r, q), can be immediately obtained from the vast body of literature on 1-
saturating sets in finite projective spaces; see e.g. [37], where `(2, r, q) is established
for some small q’s.

The aim of the present paper is to construct (1, µ)-saturating sets in PG(N, q)
giving rise to (2, µ)-MCF codes with size and density smaller than those in Inequal-
ities (4.3)–(4.6).

5. Constructions of small (1, µ)-saturating sets in PG(2, q)

We first point out a trivial upper bound on the largest size of a minimal (1, µ)-
saturating set in PG(2, q), q > 2.

Proposition 5.1. Let A be a (q + µ + 1)-set in PG(2, q), q > 2, µ < q2. Then A
is a (1, µ)-saturating set.

Proof. The inequality µ < q2 provides Condition (M2). Let P be a point of
PG(2, q) \ A. On the q + 1 lines through P there are at least µ pairs of points
of A and therefore A is a (1, µ)-saturating set, possibly not minimal.

Therefore, an upper bound for the largest size of a minimal (1, µ)-saturating set
in PG(2, q), q > 2, is q + µ+ 1.

Now we give some bounds on `µ(2, 3, q) or, equivalently, bounds on the smallest
size of a (1, µ)-saturating set in PG(2, q).

Proposition 5.2. For the length function `µ(2, 3, q), the following relations hold.

(i) Trivial bound:

(5.1) `µ(2, 3, q) ≥
√

2µq.

(ii) Probabilistic bound:

(5.2) `µ(2, 3, q) < 66
√
µq ln q, if µ < 121q log q.

(iii) Baer bound for q a square:

(5.3) `µ(2, 3, q) ≤ µ(3
√
q − 1).

Proof. (i) Let S be a (1, µ)-saturating n-set in PG(2, q). Then every point in
PG(2, q) \ S can be written in µ distinct ways as a linear combination of two
distinct points in S. The total number of such combinations is (q − 1)

(
n
2

)
. Then

(q − 1)
(
n
2

)
≥ µ(q2 + q + 1− n) which roughly gives #S ≥

√
2µq.

(ii) The existence of 1-saturating sets of size b5
√
qlnqc was shown by means of

probabilistic methods, see [7,33]. By adapting the proofs given in [7,33] it is easily
seen that Condition (5.2) holds.

(iii) By an explicit construction, in PG(2, q), q a square, a 1-saturating set of
size 3

√
q − 1 is obtained in [12, Th. 5.2].

The aim of this section is to provide some general constructions of (1, µ)-saturating
sets in PG(2, q) with size less than µ`(2, 3, q). We remark that sometimes the sizes
of the of (1, µ)-saturating sets provided here exceed the probabilistic bound. The
point of considering them here is to give explicit constructions, not only existence
results.
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5.1. q a square. When q is a square, the Baer bound in Proposition 5.2 can be
improved for a large number of µ’s.

Theorem 5.3. Let q be a square and let 3 ≤ s ≤ √q + 1 be an even integer. Let
L1, . . . ,Ls be a set of s lines in PG(2,

√
q) no three of which concurrent. Then the

union S of such lines is a (1, µ)-saturating set in PG(2, q) of size s(
√
q + 2− s) +

s(s− 1)/2, with µ = 1
8 (s2 − 2s).

Proof. The size of S is clearly s(
√
q + 2− s) + s(s− 1)/2. Through any point P in

PG(2, q) there passes a line of the subplane PG(2,
√
q). Such a line meets S in at

least s/2 points, since no three lines in S are concurrent. Whence there are at least
µ distinct pairs of points in S collinear with P .

Theorem 5.4. Let q be a square and let 3 ≤ s ≤ √q + 1 be an integer. Let
L1, . . . ,Ls be a set of s lines in PG(2,

√
q) through a common point P. For any

other line L through P choose s − 1 points R
(1)
L , . . . , R

(s−1)
L in L distinct from P.

Then the union of the lines L1, . . . ,Ls and the point set⋃
L through P, L6=Li

{R(1)
L , . . . , R

(s−1)
L }

is a (1, µ)-saturating set in PG(2, q) of size s
√
q + (s − 1)(

√
q + 1 − s) + 1 with

µ = 1
2 (s2 − s).

Proof. The proof is analogous to that of Theorem 5.3.

Corollary 5.5. Let q be a square.

• If µ = 1
8 (s2 − 2s) for some positive even integer 3 < s ≤ √q + 1, then

`µ(2, 3, q) ≤ (1 +
√

8µ+ 1)(
√
q + 1−

√
8µ+ 1) + (1 +

√
8µ+ 1)(

√
8µ+ 1)/2.

• If µ = 1
2 (s2 − s) for some positive integer 3 ≤ s ≤ √q + 1, then

`µ(2, 3, q) ≤ 1 +
√

1 + 8µ
√
q −

(1 +
√

1 + 8µ

2
− 1
)2

.

5.2. q = p`, p prime, ` ≥ 3. Let q = p` with p prime, and let H be an additive
subgroup of Fq of size ps with 2s < `. Also, let

(5.4) LH(X) =
∏
h∈H

(X − h) ∈ Fq[X].

Then LH is a linearized polynomial, that is, there exist β0, . . . , βs ∈ Fq such that

LH(X) =
∑s
i=0 βiX

pi , see e.g. [34, Theorem 3.52].
For m ∈ Fq, let

(5.5) Fm(X,Y ) = LH(X)−mLH(Y ).

As the evaluation map (x, y) 7→ Fm(x, y) is an additive map from F2
q to Fq, the

equation Fm(X,Y ) = 0 has at least q solutions in F2
q.

Let

(5.6) MH :=

{(
LH1

(β1)

LH2(β2)

)p
| H1, H2 subgroups of H of index p, βi ∈ H \Hi

}
.

Lemma 5.6 ( [19]).
−MH =MH .

Lemma 5.7 ( [19]). The size of MH is at most (ps − 1)2/(p− 1).
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Proposition 5.8 ( [19]). Let Fm(X,Y ) be as in Formula (5.5). Then the equation
Fm(X,Y ) = 0 has more than q solutions if and only if either m ∈MH or m = 0.

For an element α ∈ Fq, define

(5.7) DH,α = {(LH(a) : α : 1) | a ∈ Fq} ⊂ PG(2, q).

As a corollary to Proposition 5.8, the following result is obtained.

Proposition 5.9. Let α1, α2 be distinct elements in Fq. Then a point
P = (u : v : 1) belongs to at least p`−2s lines joining two points of DH,α1 ∪DH,α2

provided that v /∈ (α2 − α1)MH + α2 and v 6= α2.

Proof. Assume that v /∈ (α2 − α1)MH + α2 and that v 6= α2. Then by Proposition
5.8, the equation

LH(X) +
v − α2

α1 − α2
LH(Y ) = 0

has precisely q solutions, or, equivalently, the additive map

(x, y) 7→ LH(x) +
v − α2

α1 − α2
LH(y)

is surjective and the counterimage of each element in Fq consists of q distinct pairs
(b, b′). Therefore, there exist q pairs (b, b′) ∈ Fq such that

LH(b) +
v − α2

α1 − α2
LH(b′) = u,

which is precisely the condition for the point P = (u : v : 1) to belong to the line
joining (LH(b′ + b) : α1 : 1) ∈ DH,α1

and (LH(b) : α2 : 1) ∈ DH,α2
.

We need to count the number of distinct pairs of points corresponding to the
q pairs of elements (b, b′). The map (x, y) 7→ (LH(x), LH(y)) is an Fp-linear map
whose kernel has dimension 2s. This proves that the number of distinct pairs
(LH(b), LH(b′)) is at least q/p2s = p`−2s.

Proposition 5.10. Let α1, α2 be distinct elements in Fq. Then a point P = (u :
α2 : 1) can be written in (

p`−s

2

)
distinct ways as a linear combination of two points of DH,α1 ∪DH,α2 .

Proof. The assertion follows from the fact that DH,α2 ∪ {P} consists of p`−s + 1
collinear points.

Theorem 5.11. Let q = p`, and let H be any additive subgroup of Fq of size ps,
with 2s < `. Let µ be any integer with 1 ≤ µ ≤ p2`−s, and let τ1, τ2, . . . , τµ be a set
of distinct non-zero elements in Fq. Let LH(X) be as in Equation (5.4), and MH

be as in Formula (5.6). Then the set

D = {(LH(a) : 1 : 1), (LH(a) : 0 : 1) | a ∈ Fq} ∪
{(τi : m : 1) | m ∈MH , i = 1, . . . , µ} ∪
{(1 : τi : 0) | i = 1, . . . , µ} ∪ {(1 : 0 : 0)}

is a (1, µ)-saturating set of size at most

2q

ps
+ µ

(ps − 1)2

p− 1
+ µ.
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Proof. Let P = (u : v : 1) be a point in PG(2, q). If v /∈MH , then P belongs to at
least µ secants of D (counted with multiplicity) by Proposition 5.9, together with
Lemma 5.6. If v ∈MH , then P is collinear with (τi : v : 1) ∈ D and (1 : 0 : 0) ∈ D.
Clearly the points P = (u : v : 0) are covered by D at least µ times as they are
collinear with (1 : 0 : 0) and (1 : τi : 0). Then D is a (1, µ)-saturating set.

The set {LH(a) | a ∈ Fq} is the image of an Fp-linear map on Fq ∼= F`p whose

kernel has dimension s, therefore its size is p`−s. Note that the point (0 : 1 : 1)
belongs to both {(LH(a) : 1 : 1) | a ∈ Fq} and {(0 : m : 1) | m ∈ MH} . Then the
upper bound on the size of D follows from Lemma 5.7.

The order of magnitude of the size of D of Theorem 5.11 is pmax{`−s,lnp µ·(2s−1)}.
If s is chosen as d`/3e, then the size of D satisfies

#D ≤


2q

2
3 + µ+ µ q

2
3−2q

1
3 +1

p−1 if ` ≡ 0 (mod 3);

2
(
q
p

) 2
3

+ µ+ µ
p2( qp )

2
3−2p( qp )

1
3 +1

p−1 if ` ≡ 1 (mod 3);

2 1
p (qp)

2
3 + µ+ µ (qp)

2
3−2(qp)

1
3 +1

p−1 if ` ≡ 2 (mod 3).

.

An existence result can be obtained by adapting another construction from [19].

Theorem 5.12. Let q = p`, with ` odd. Let 1 ≤ µ ≤ p, and let H be any additive
subgroup of Fq of size ps, with 2s + 1 = `. Let LH(X) be as in Formula (5.4),
and MH be as in Equation (5.6). Then for any integer v ≥ 1 there exists a (1, µ)-
saturating set D in PG(2, q) such that

(5.8) #D ≤ (v + 1)ps+1 + µ
#Mv

H

(q − 1)v−1
+ 1 + µ.

Proof. Let A = {α1, . . . , αv+1} be any set of distinct v+1 elements in Fq. The idea
is to consider the union of the (v + 1)-sets DH,αi . Let

D(A) =
⋃

i=1,...,v+1

DH,αi ,(5.9)

M(A) =
⋂

i,j=1,...,v+1, i 6=j

(αj − αi)MH + αj .

Also, let τ1, τ2, . . . , τµ be a set of distinct non-zero elements in Fq. Arguing as in
the proof of Theorem 5.11 we obtain that the set

D(H,A) = D(A) ∪ {(τi : m : 1) | m ∈M(A), i = 1, . . . , µ} ∪
{(1 : τi : 0) | i = 1, . . . , µ} ∪ {(1 : 0 : 0)}

is a (1, µ)-saturating set in PG(2, q). By Proposition 3.4 in [19], it is possible to
choose A in such a way that

(5.10) #M(A) ≤ #Mv
H

(q − 1)v−1
,

whence the claim follows.

Corollary 5.13. Let q = p2s+1, and let 1 ≤ µ ≤ p. Then

`µ(2, 3, q) ≤ minv=1,...,2s+1

{
(v + 1)ps+1 + µ

(ps − 1)2v

(p− 1)v(p2s+1 − 1)(v−1)
+ 1 + µ

}
.

Proof. The claim follows from Theorem 5.12, together with Lemma 5.7.
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For several values of s, p, and µ, Corollary 5.13 improves the probabilistic bound;
namely, there exists some integer v such that

(5.11) (v + 1)ps+1 + µ
(ps − 1)2v

(p− 1)v(p2s+1 − 1)(v−1)
+ 1 + µ <

√
µq ln q.

This happens for instance for the following 4-tuples (p, s, v, µ) with µ ≤ 10: (3, 5, 5,
10), (5, 3, 3, 8), (5, 3, 3, 9), (5, 3, 3, 10), (5, 5, 4, 8), (5, 5, 4, 9), (5, 5, 4, 10), (5, 7, 5, 8),
(5, 7, 5, 9), (5, 7, 5, 10), (5, 9, 6, 9), (5, 9, 6, 10), (5, 11, 7, 10), (7, 3, 3, 9), (7, 3, 3, 10),
(7, 5, 4, 9), (7, 5, 4, 10), (7, 7, 5, 9), (7, 7, 5, 10), (7, 9, 6, 10). Also, as Inequality (5.10)
is an upper bound, by computer search one can get even smaller saturating sets.
The condition on the size of M(A) is easy to test, which allows us to consider also
large q’s.

5.3. q a prime. For q a prime, the smallest known explicitly described saturating
sets have about Cq3/4 points; see e.g. [3, 18, 23, 41]. Here we show that a slight
modification of a construction by Bartocci ( [3]; see also [42, Example 4.3]) provides
(1, µ)-saturating sets of about the same size with µ <

√
q.

Theorem 5.14. Let s be a divisor of q−1 and let Hs be the subgroup of F∗q of index

s. For an integer µ < q−1
s , let V1, . . . , Vµ be µ disjoint systems of representatives of

the cosets of Hs different from Hs. Let

S = {(t, t2) | x ∈ Hs} ∪ {(0,−v) | v ∈ V1 ∪ . . . ∪ Vµ} ∪B,
where B is any subset of the ideal line of size d(1 +

√
1 + 8µ)/2e. Then S is a

(1, µ)-saturating set in PG(2, q) of size

q − 1

s
+ µ(s− 1) + d(1 +

√
1 + 8µ)/2e,

provided that

(5.12) q >
(

(s− 1)2 +
√

(s− 1)4 + 2µs2 + 4s
)2

.

Proof. Let P = (a, b) be a point in AG(2, q) off the parabola P(q) with equation
Y = X2. It is easily seen that P is covered by a secant of

S′ = {((t, t2) | x ∈ Hs)}
passing through two distinct points (xs, x2s), (ys, y2s) if and only if (x, y) is an
Fq-rational point of the curve

CP : XsY s − a(Xs + Y s) + b = 0.

The curve CP is a generalized Fermat curve. Then CP is absolutely irreducible, and
its genus is (s− 1)2; see e.g. [17]. Then by the Hasse-Weil Theorem, together with
Inequality (5.12), the curve CP has more than 2µs2 + 4s Fq-rational points. Then
there are at least µ distinct secants of S passing through P . Now let P = (a, a2)

be a point of P(q) not in S. For each i = 1, . . . ,m, write a = vi,jd
s
i with vji ∈ Vi.

Then (a, a2) is collinear with (d−si , d−2s
i ) and (0,−vi,j). Finally, if P is a point in

PG(2, q) \AG(2, q), then it is covered at least µ times by the ideal line.

Corollary 5.15. Assume s is a divisor of q − 1 such that s < 4
√

(q/4). Then for
each µ ≤ s− 3

`µ(2, 3, q) ≤ q − 1

s
+ µ(s− 1) + d(1 +

√
1 + 8µ)/2e.
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Proof. From Formula (5.12) we get that µ is at most

q − 2(s− 1)2√q − 4s

2s2
.

It easy to check that any value µ ≤ s− 3 satisfies this bound.
Theorem 5.14 gives (1, µ)-saturating sets of size approximately Cq3/4, provided

that q − 1 has a divisor s of the same order of magnitude as q1/4.
In the case where q + 1 admits such a divisor, a similar achievement can be

obtained by using plane cubic curves. For an element β in Fq2 \ Fq such that
β2 ∈ Fq, let Xβ be the plane cubic with equation

Y (X2 − β2) = 1.

For v ∈ K\{0, 1}, letQv be the point on Xβ with affine coordinates
(
v+1
v−1β,

(v−1)2

4vβ2

)
.

Also, let Q0 = Y∞ and Q1 = X∞. For a divisor s of q + 1 with (6, s) = 1, let

Kβ =
{
Q( u+βu−β )s | u ∈ Fq

}
∪ {X∞}.

Let T = Qt̄ be a non-singular Fq rational point in Xβ \K, and let

(5.13) KT,β =
{
Qt̄( u+βu−β )s | u ∈ Fq

}
∪ {Qt̄}.

The following result was proved in [2].

Proposition 5.16. Let P = (a, b) be a point in AG(2, q) off Xβ. Assume that

(5.14) (a, b) /∈
{

(0,− 9

8β2
), (β
√
−3, 0), (−β

√
−3, 0)

}
.

If

q + 1− (6s2 − 6s+ 2)
√
q ≥ 4s2 + 8s+ 1

then P is collinear with two distinct points of KT,β.

Arguing as in the proof of Proposition 19 in [2], Proposition 5.16 can be extended
as follows.

Proposition 5.17. Let P = (a, b) be a point in AG(2, q) off Xβ. Assume that
Condition (5.14) holds. If

q + 1− (6s2 − 6s+ 2)
√
q ≥ 4s2 + 8s+ (µ− 1)s2 + 1,

then there are at least µ distinct pairs of points in KT,β collinear with P .

For distinct β, β′, the union KT,β∪KT,β′ , together with few extra points, provides
a (1, µ)-saturating set.

Theorem 5.18. Let s be a divisor of q + 1 such that (6, s) = 1 and

q + 1− (6s2 − 6s+ 2)
√
q ≥ 4s2 + 8s+ (µ− 1)s2 + 1

holds. Let β, β′ be distinct elements in Fq2 \ Fq such that both β2 and β′
2

belong to

Fq and β2 6= β′
2
holds. Let KT,β and KT,β′ be as in Formula (5.13), and let B be

any subset of the ideal line of size d(1 +
√

1 + 8µ)/2e. Then

S = KT,β ∪KT,β′ ∪B
is a (1, µ)-saturating set in PG(2, q) of size less than or equal to

2
q + 1

s
+ d(1 +

√
1 + 8µ)/2e.
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Proof. By Proposition 5.17, the points in AG(2, q) that are not covered µ times by
KT,β are the points in Xβ\KT,β , together with those not satisfying Condition (5.14).

As β2 6= β′
2
, by Proposition 5.17 such points are covered µ times by KT,β′ .

Corollary 5.19. Assume s is a divisor of q + 1 such that (6, s) = 1 and s <
4
√

(q/36). Then for each µ ≤ 18(s− 1)

`µ(2, 3, q) ≤ 2
q + 1

s
+ d(1 +

√
1 + 8µ)/2e.

It should be noted that the arguments used for cubics with an isolated double
point would apply to nodal cubics as well; however, by using the results presented
in [1], one would obtain a bound similar to that of Corollary 5.15.

6. Results for codimension r > 3

In this section we show how the constructions of small (1, µ)-saturating sets
in PG(2, q) proposed in this paper actually provide short (2, µ)-MCF codes with
higher codimension. The key tool will be a generalization of the qm-concatenating
construction for covering codes, see e.g. [15].

An [n, k, d]q(R,µ)-code is a linear (R,µ)-MCF code of length n, dimension k, and
minimum distance d over Fq. Similarly, an [n, k]q(R,µ)-code is a linear (R,µ)-MCF
code of length n and dimension k. Using a starting [n0, n0 − r0]q(R,µ) code V0 of
length n0, we will provide an infinite family of [n, n− (r0 + 2m)]q(2, µ) codes with
length

n ≤ qmn0 + max{3, µ} · q
m − 1

q − 1
,

where m ranges over an infinite set of integers. As a corollary, new significant upper
bounds for the length function `µ(2, r, q) will be obtained, see Corollaries 6.4 and
6.5 below.

Throughout this section we fix a basis of Fqm over Fq. All matrices and columns
are q-ary, and an element of Fqm written in a matrix denotes the m-dimensional
column of its coordinates with respect to the fixed basis. Let

θm,q =
qm − 1

q − 1
.

Basic Multiple Concatenating Construction MCC. Let H0 = [h1h2. . .hn0
],

with hj ∈ Fr0q , be a parity check matrix of an [n0, n0 − r0, 3]q(2, µ) starting code
V0. Equivalently, the columns of H0 are projective coordinates of the points of a
(1, µ)-saturating set in PG(r0 − 1, q).

Let m ≥ n0 be an integer. To each column hj we associate an element βj
∈ Fqm ∪{∗} so that βi 6= βj if i 6= j. The set B = {β1, β2, . . . , βn0

} will be called an
indicator set. For a given (r0 + 2m)×Nm matrix C, with Nm ≤ max{3, µ} · θm,q,
let V be the [n, n− (r0 + 2m)]q code with n = qmn0 +Nm and parity-check matrix

HV = [C B1 B2 . . . Bn0
] ,
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where

Bj =

 hj hj · · · hj
ξ1 ξ2 · · · ξqm

βjξ1 βjξ2 · · · βjξqm

 if βj ∈ Fqm ,(6.1)

Bj =

hj hj · · · hj
0 0 · · · 0
ξ1 ξ2 · · · ξqm

 if βj = ∗,

with {ξ1, ξ2, . . . , ξqm} = Fqm , ξ1 = 0, ξ2 = 1.
If m,C, and B are carefully chosen, then the new code V has the same covering

radius and the same covering multiplicity as the starting code V0.
Examples are shown in Constructions MCC1 and MCC2 below, where we use the

following notation:

• 0k is a zero matrix with k rows (the number of columns will be clear by
context);

• Wm = [w1,w2, . . . ,wθm,q ] is a parity-check matrix of the [θm,q, θm,q −m]q1
Hamming code;

• for an element ξ in F∗qm , let k(ξ) be the element of F∗q and i(ξ) the index such
that the column wi(ξ) of Wm satisfies

(6.2) ξ = k(ξ)wi(ξ)

(here the column wi(ξu) is viewed as an element of F∗qm).

Construction MCC1. Here we assume that

(6.3) µ = 2, qm + 1 ≥ n0, Nm = 3θm,q,

and

C= [C1C2C3]

with

C1 =

 0r0
Wm

0m

 , C2 =

 0r0
Wm

Wm

 , C3 =

 0r0
0m
Wm

 .
Theorem 6.1. In Construction MCC1, the new code V is an [n, n − (r0 + 2m),
3]q(2, 2) code with n = qmn0 + 3θm,q.

Proof. The covering radius of the new code V is RV = 2 by [15, Sec. 2, Construction
QM1]. We need to prove that the covering multiplicity µV is equal to 2. To
this end, we show that an arbitrary nonzero column (a, b, c), such that (a, b, c) ∈
Fqr0 × Fqm × Fqm , (a, b, c) not a column of HV , can be represented at least in two
ways by a linear combination of two columns of HV . We consider a number of cases.

1) a 6= 0, a not a column of H0.
As the starting code has R = 2 and µ = 2, we have that

a = d1hi1 + e1hj1 = d2hi2 + e2hj2 , du, eu ∈ F∗q
for some pairs of indices {i1, j1} 6= {i2, j2}. Let {βiu , βju} ⊂ Fqm , u ∈ {1, 2}.
Consider the linear system over Fqm

(6.4)

{
duX + euY = b

duβiuX + euβjuY = c
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the determinant of which dueu(βju − βiu) 6= 0 since du, eu 6= 0 and βi 6= βj if i 6= j.

Let X = ξ
(u)
x , Y = ξ

(u)
y be its unique solution. Then

(6.5) (a, b, c) = du(hiu , ξ
(u)
x , βiuξ

(u)
x ) + eu(hju , ξ

(u)
y , βjuξ

(u)
y ).

Let βiu ∈ Fqm , βju = ∗, u ∈ {1, 2}. Let ξ
(u)
x , ξ

(u)
y be such that

(6.6)

{
duξ

(u)
x = b

duβiuξ
(u)
x + euξ

(u)
y = c

.

We have

(6.7) (a, b, c) = du(hiu , ξ
(u)
x , βiuξ

(u)
x ) + eu(hju , 0, ξ

(u)
y ).

2) a 6= 0, a = hj column of H0.
We are going to show that there are at least two linear combinations of type

(a, b, c) = (hj , b, c) = b(u)
x + eutu, u = 1, 2,

where b
(u)
x = (hj , ξ

(u)
x , βjξ

(u)
x ), u ∈ {1, 2}, is a column of the submatrix Bj of HV ,

and tu, u ∈ {1, 2}, is taken from the submatrix C. Assume first that βj = 0. On
the one hand,

(a, b, c) = (hj , b, c) = (hj , b− c, 0) + k(c)(0,wi(c),wi(c))

with (0,wi(c),wi(c)) a column of C2. On the other hand,

(a, b, c) = (hj , b, c) = (hj , b, 0) + k(c)(0, 0,wi(c))

with (0, 0,wi(c)) a column of C3. If βj 6= 0, then we can proceed analogously.
Columns t1 and t2 need to be taken as follows:

• if βj = ∗ then t1 is a column of C1, t2 is a column of C2;
• if βj = 1 then t1 is a column of C1, t2 is a column of C3;
• if βj /∈ {0, 1, ∗} then t1, t2 can be found in any two distinct submatrices of C.

3) a = 0.
The proof is similar to that of case 2). Here both columns t1 and t2 are taken

from the same submatrix C. The choice of the submatrix depends on the values of
b and c.

Construction MCC2. Here we assume that

(6.8) µ ≥ 3, qm + 1− µ ≥ n0,

B ⊆ {ξµ, ξµ+1, . . . , ξqm}, Nm = µθm,q,

and C= [C1C2 . . .Cµ],

Ci =

 0r0
Wm

ξiWm

 , i = 1, 2, . . . , µ− 1, Cµ =

 0r0
0m
Wm

 ,
where {ξ1, ξ2, . . . , ξqm} = Fqm , ξiWm is an m× θm,q matrix obtained from Wm via
multiplication of each column (treated as an element of Fqm) by ξi.

Theorem 6.2. In Construction MCC2, the new code V is an [n, n − (r0 + 2m),
3]q(2, µ) code with n = qmn0 + µθm,q.

Proof. The proof is similar to that of Theorem 6.1.

Remark 6.3. If d(1+
√

1 + 8µ)/2e ≤ q then it is easy to see that d(1+
√

1 + 8µ)/2e
is the smallest size of an (1, µ)-saturating set in PG(1, q).
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Corollary 6.4. Let r > 2 be an even integer with d(1 +
√

1 + 8µ)/2e ≤ min{q,
q(r−2)/2 + 1− µ}. Then

`µ(2, r, q) ≤ q(r−2)/2d(1 +
√

1 + 8µ)/2e+ max(3, µ)
q(r−2)/2 − 1

q − 1
.

Proof. Let V0 be the code corresponding to the smallest (1, µ)-saturating set in
PG(1, q). It means that r0 = 2 and n0 = d(1 +

√
1 + 8µ)/2e. Put r = 2 + 2m. Then

applying construction MCC1 for µ = 2 and construction MCC2 for µ > 2 gives the
assertion.

Corollary 6.5. Let r > 3 be an odd integer with q(r−3)/2 +1−µ ≥ ¯̀
µ(2, 3, q). Then

(6.9) `µ(2, r, q) ≤ q(r−3)/2`µ(2, 3, q) + max(3, µ)
q(r−3)/2 − 1

q − 1

and

(6.10) ¯̀
µ(2, r, q) ≤ q(r−3)/2 ¯̀

µ(2, 3, q) + max(3, µ)
q(r−3)/2 − 1

q − 1
.

Proof. Let V0 be the code with r0 = 3 corresponding to the smallest (1, µ)-saturating
set in PG(2, q). Then by applying construction MCC1 for µ = 2 and construction
MCC2 for µ > 2, Inequality (6.9) is obtained. If V0 is chosen as the smallest known
(1, µ)-saturating set in PG(2, q), then Inequality (6.10) is obtained.

7. Optimal (R,µ)-saturating sets and (R,µ)-APMCF codes

In this section we deal with (R,µ)-APMCF codes, that is, codes C with
γµ(C,R) = 1.

7.1. (R,µ)-APMCF codes and uniformly packed codes. In this section we
discuss how uniformly packed codes (UP codes for short) can give rise to APMCF
codes. For an introduction to UP codes, see e.g. [5,24,35] and the references therein.
The UP codes C that are of interest in the context of MCF codes are those with
d(C) ∈ {2R − 1, 2R}. There are different definitions of UP codes available in
the literature; however, for codes with d(C) ∈ {2R − 1, 2R} these definitions are
consistent. Notation here is taken from [35]. Throughout the section, for a code C

with minimum distance d(C), let t =
⌊
d(C)−1

2

⌋
.

Definition 7.1. [35] A t-error-correcting (n,M)qR code C is called uniformly
packed with parameters α and β if for any vector e of Fnq with distance t to C, there
are exactly α codewords with distance t + 1 to e, and for any vector e of Fnq with
distance ≥ t+ 1 to C, there are exactly β codewords with distance t+ 1 to e.

Theorem 7.2. An (n,M, d)qR UP code with parameters α and β, such that d(C) ∈
{2R− 1, 2R}, is an (R,µ)-APMCF code with µ = β.

Proof. As d(C) ∈ {2R − 1, 2R}, vectors with distance greater than t + 1 from the
code do not exist. By Definition 7.1, for any vector e of Fnq with distance t+ 1 = R
to C, there are exactly β codewords with distance R to e.

Lemma 7.3. (i) Let C be an (n,M, 2R)qR UP code. Then C is an (R,µ)-PMCF
code with

(7.1) µ =
M
(
n
R

)
(q − 1)R

NR(C)
=

M
(
n
R

)
(q − 1)R

qn −M · Vq(n,R− 1)
.
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(ii) Let C be a linear [n, k, d]qR UP code with d(C) ∈ {2R − 1, 2R}. Then C is
an (R,µ)-APMCF code with

(7.2) µ =

(
n
R

)
(q − 1)R −

(
d

R−1

)
·A2R−1(C)

qn−k − Vq(n,R− 1)
.

Proof. For d = 2R, assertions follow from Definition 7.1, the proof of Theorem 7.2,
and Proposition 2.2. For d = 2R− 1 we use the proof of Proposition 2.3.

Example 7.4. By [5, 9, 24, 35], see also the references therein, the following lin-
ear nonbinary codes are UP with d(C) = 2R: the [12, 6, 6]33 Golay code extended
by parity check; the [56, 50, 4]32 code corresponding to the largest cap in PG(5, 3)
(Hill’s cap); the [q2 + 1, q2 − 3, 4]q2 code corresponding to an elliptic quadric in
PG(3, q); the [q+2, q−1, 4]q2 code corresponding to a hyperoval in PG(2, q), q even;
the [78, 72, 4]42 code [9] corresponding to a complete 78-cap in PG(5, 4). By The-
orem 7.2 and Equality (7.2), the codes above are [12, 6, 6]3(3, 4), [56, 50, 4]3(2, 10),
[q2 + 1, q2 − 3, 4]q(2,

1
2 (q2 − q)), [q + 2, q − 1, 4]q(2,

1
2 (q + 2)), and [78, 72, 4]4(2, 7)

PMCF codes, respectively.

7.2. Optimal (1, µ)-saturating sets in PG(2, q) and two-weight codes. An
n-set S in PG(2, q) is a projective (n, 3, h1, h2) set if every line meets S in either h1

or h2 points [10]. In [29], such sets are called sets of type (a, b) with a = h1, b = h2.
An [n, 3]q linear code C is called a two-weight projective code if the weight of

any non-zero word of C is either w1 or w2, and also no two columns of one of its
generating matrix are linearly dependent.

By [10, Th. 3.1], two-weight projective [n, 3]q codes and projective (n, 3, h1, h2)
sets in PG(2, q) are equivalent objects. In particular, the columns of a generating
matrix of an [n, 3]q two-weight projective code with weights w1 and w2, treated as
points of PG(2, q), form a projective (n, 3, n− w1, n− w2) set and vice versa.

Interestingly, projective (n, 3, h1, h2) sets give rise to (1, µ)-OS in PG(2, q), and
hence to APMCF codes.

Proposition 7.5. Let S be a projective (n, 3, h1, h2) set in PG(2, q).

(i) The numbers of hi-secants of S through any point of PG(2, q)\S is

(7.3) vi =
n− (q + 1)h3−i

hi − h3−i
, i = 1, 2.

(ii) The set S is an optimal (1, µ)-saturating set in PG(2, q) with

µ = v1

(
h1

2

)
+ v2

(
h2

2

)
.

Proof. Since there are q + 1 lines through every point of PG(2, q), the values of vi
can be obtained from the linear system

(7.4)

{
v1 + v2 = q + 1
h1v1 + h2v2 = n

.

Taking into account multiplicity, every point outside S is covered v1

(
h1

2

)
+ v2

(
h2

2

)
times.

Several examples of projective (n, 3, h1, h2) sets in PG(2, q) are given in [6,10,29];
see also the references therein. In [10] it is shown also that from a starting projective
(n, 3, h1, h2) set one can obtain such sets with new parameters using complementing
and duality.
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Note also that for k > 3, all two-weight projective [n, k]q codes and the cor-
responding projective (n, k, h1, h2) sets in PG(k − 1, q) give rise to (2, µ)-MCF
codes and (1, µ)-saturating sets. However these sets in general can be non-optimal.
Nevertheless there are cases when optimality occurs. For example, the affine space
AG(k − 1, q) is a (1, µ)-OS in PG(k − 1, q). It corresponds to the two-weight code
from [10, Example SU1]. Also, an elliptic quadric in PG(3, q) is a (1, µ)-OS. It
corresponds to the two-weight code of [10, Example TF3].

7.3. Optimal (1, µ)-saturating sets and partitions of PG(2, q) in Singer
point orbits. In [13, 14, 16], partitions of PG(2, q) by Singer subgroups are con-
sidered.

Definition 7.6. [13] Let v = dt. A binary v × v matrix A is said to be a block
double-circulant matrix (BDC matrix for short) if

(7.5) A =


C0,0 C0,1 . . . C0,t−1
C1,0 C1,1 . . . C1,t−1

...
...

...
...

Ct−1,0 Ct−1,1 . . . Ct−1,t−1

 ,
where Ci,j is a circulant d× d binary matrix for all i, j, and submatrices Ci,j and
Cl,m with j − i ≡ m− l (mod t) have the same weight. The matrix

(7.6) W(A) =


w0 w1 w2 w3 . . . wt−2 wt−1
wt−1 w0 w1 w2 . . . wt−3 wt−2
wt−2 wt−1 w0 w1 . . . wt−4 wt−3

...
...

...
...

...
...

...
w1 w2 w3 w4 . . . wt−1 w0


is a circulant t× t matrix whose entry in position i, j is the weight of Ci,j . W(A)

is called the weight matrix of A. The vector W(A) = (w0, w1, . . . , wt−1) is called
the weight vector of A.

Let q2 + q + 1 = dt. Then, by using the cyclic Singer group of PG(2, q), the
incidence matrix of the plane PG(2, q) can be chosen as a BDC matrix A as in (7.5).
Let P1, P2, . . . , Pq2+q+1 be the points of PG(2, q), numbered so that Pi corresponds
to the i-th column of A. Let `1, `2, . . . , `q2+q+1 be the lines of PG(2, q) numbered so
that `i corresponds to the i-th row of A. Denote by Pv = {Pdv+1, Pdv+2, . . . , Pdv+d},
0 ≤ v ≤ t− 1, the point set corresponding to the (v+ 1)-th block column of A. Let
Lu = {`du+1, `du+2, . . . , `du+d}, 0 ≤ u ≤ t− 1, be the line set corresponding to the
(u + 1)-th block row of A. Here addition and subtraction of indices are calculated
modulo t.

Lemma 7.7. Let 1 ≤ m ≤ t− 1. A set

P(m) = P0 ∪P1 ∪ . . . ∪Pm−1

corresponding to the first md columns of A is a (1, µ)-saturating set in PG(2, q)

with µ = minvN
(m)
v , where

N (m)
v =

t−1∑
u=0

wt−u+v

(
w

(m)
u

2

)
≥ 0,(7.7)

w(m)
u =

m−1∑
j=0

wt−u+j , 1 ≤ m ≤ v ≤ t− 1.
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Proof. Every line of Lu is a w
(m)
u -secant of P(m). Let v ≥ m. Every point of Pv

is covered by as many as wt−u+v w
(m)
u -secants of P(m) with multiplicity

(
w(m)
u
2

)
for

0 ≤ u ≤ t − 1. As a result, taking into account multiplicity, every point of Pv,

m ≤ v ≤ t− 1, is covered by N
(m)
v secants of P(m).

Theorem 7.8. Let A be a BDC incidence matrix of the plane PG(2, q), as in (7.5)

with v = q2+q+1 = dt. Let P(m) and N
(m)
v be as in Lemma 7.7. Then the following

hold.

(i) The set P(t−1) is an optimal (1, µ)-saturating set of size (t− 1)d in PG(2, q)
with

µ = N
(t−1)
t−1 .

(ii) If the weight vector of A is of type

W(A) = (w0, w, . . . , w︸ ︷︷ ︸
t−1 times

),

then any set P(m) with 1 ≤ m ≤ t − 1 is an optimal (1, µ)-saturating set in
PG(2, q) with

µ = mw

(
w0 + (m− 1)w

2

)
+ (w0 + (t−m− 1)w)

(
mw

2

)
.

(iii) If the weight vector W(A) contains exactly two distinct weights, say ŵ1 and
ŵ2, then the set P(1) is an optimal (1, µ)-saturating set in PG(2, q) with pa-
rameters as in Proposition 7.5 for n = d, h1 = ŵ1, h2 = ŵ2.

Proof. (i) The claim follows from Lemma 7.7.
(ii) For 0 ≤ u ≤ m−1, every line of Lu is a (w0 +(m−1)w)-secant of P(m). Every

point of Pv, m ≤ v ≤ t − 1, is covered by mw such secants with multiplicity(
w0+(m−1)w

2

)
. Also for m ≤ u ≤ t − 1, every line of Lu is an mw-secant of

P(m). Every point of Pv, m ≤ v ≤ t− 1, is covered by w0 + (t−m− 1)w such
secants with multiplicity

(
mw

2

)
.

(iii) By construction, the set P(1) is a projective (d, 3, ŵ1, ŵ2) set in PG(2, q).

Several examples of representations of the incidence matrix of PG(2, q) in a BDC
form (7.5) are considered in [16, Propositions 4,6,7, Table 1], where both theoretical
and computer assisted results are listed. Both cases (ii) and (iii) of Theorem 7.8
occur for some q’s.

Note that codes corresponding to Theorem 7.8 are cyclic in the case (ii) if m = 1
and in case (iii); they are quasi-cyclic in the case (i) and in the case (ii) if m ≥ 2.

Remark 7.9. In Theorem 7.8, the points of P(t−1) as in case (i), viewed as the
columns of a generator matrix, give rise to a projective code with 2 ≤ s ≤ t non-
zero weights. On the other hand, the set P(m) of case (ii) provides a projective
two-weight code.

Remark 7.10. By Propositon 2.2 the APMCF codes corresponding to the optimal
(1, µ)-saturating sets constructed in this section are actually PMFC precisely when
no three points in the saturating set are collinear.
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