On constructions and parameters of symmetric configurations v_k

Alexander A. Davydov · Giorgio Faina · Massimo Giulietti · Stefano Marcugini · Fernanda Pambianco

Received: / Accepted:

Abstract The spectrum of possible parameters of symmetric configurations is investigated. We propose some new constructions, mainly based on Finite Geometry and on extension methods. New parameters are provided, both for general symmetric configurations and for cyclic symmetric configurations. For several values of k, new upper bounds on the minimum integer E such that for each $v \ge E$ there exists a (cyclic) symmetric configuration v_k are obtained.

Keywords Configurations in Combinatorics · Symmetric configurations · Cyclic configurations · Golomb rulers · Projective geometry · LDPC codes

Mathematics Subject Classification (2000) 05C10 · 05B25 · 94B05

The research of G. Faina, M. Giulietti, S. Marcugini, and F. Pambianco was supported by Ministry for Education, University and Research of Italy (MIUR) (Project "Geometrie di Galois e strutture di incidenza", PRIN 2009–2010) and by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INdAM). The research of A.A. Davydov was carried out at the IITP RAS at the expense of the Russian Foundation for Sciences (project 14-50-00150).

A. A. Davydov

Institute for Information Transmission Problems (Kharkevich institute), Russian Academy of Sciences Bol'shoi Karetnyi per. 19, GSP-4, Moscow, 127994, Russian Federation E-mail: adav@iitp.ru

G. Faina · M. Giulietti · S. Marcugini · F. Pambianco (⊠) Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Via Vanvitelli 1, Perugia, 06123, Italy

G. Faina E-mail: faina@dmi.unipg.it

M. Giulietti E-mail: giuliet@dmi.unipg.it

S. Marcugini E-mail: gino@dmi.unipg.it

F. Pambianco E-mail: fernanda@dmi.unipg.it Tel.: +39-075-5855006 Fax: +39-075-5855024

1 Introduction

A configuration (v_r, b_k) is an incidence structure of v points and b lines such that each line contains k points, each point is contained in r lines, and two distinct points are joined by at most one line. If v = b the configuration is *symmetric*, and it is usually denoted as a configuration v_k . For a thorough introduction to configurations, see [32–34] and the references therein.

A symmetric configuration v_k is *cyclic* if there exists a cyclic permutation group acting regularly both on the set of its points and on the set of its blocks. Equivalently, v_k is cyclic if one of its incidence matrices is circulant.

Any incidence matrix $\mathbf{M}(v,k)$ of a symmetric configuration v_k is a $v \times v$ binary matrix with *k* elements equal to 1 in each row and column; moreover, the 2 × 2 matrix consisting of all 1s is not a submatrix of $\mathbf{M}(v,k)$. Two incidence matrices of the same configuration may differ by a permutation on the rows and the columns.

A matrix $\mathbf{M}(v,k)$ can be considered as a biadjacency matrix of the *Levi graph* of the configuration v_k , which is a *k*-regular bipartite graph without multiple edges [33, Sec. 7.2]. The graph has girth at least six, i.e. it does not contain 4-cycles. Interestingly, such graphs are useful for the construction of bipartite-graph codes that can be treated as *low-density parity-check* (LDPC) *codes*. If $\mathbf{M}(v,k)$ is *circulant*, then the corresponding LDPC code is *quasi-cyclic*; it can be encoded with the help of shift-registers with relatively small complexity; see [5,6,17,19,25,37,38,42] and the references therein. Matrices $\mathbf{M}(v,k)$ consisting of square circulant submatrices have a number of useful properties; for instance, they are more suitable for LDPC codes implementation. We say that a binary matrix \mathbf{A} is *block double-circulant* (BDC for short) if \mathbf{A} consists of square circulant blocks whose weights give rise to a circulant matrix (see Definition 1). A configuration v_k with a BDC incidence matrix $\mathbf{M}(v,k)$ is called a *BDC symmetric configuration*.

Cyclic configurations are considered, for instance, in [3,4,17–19,23,28,37,38, 44,48]. A standard method for constructing cyclic configurations is based on *Golomb rulers* [20,23,28,51–53]. In fact, a circulant $v \times v$ binary matrix with first row $(a_0, a_1, \ldots, a_{v-1})$ is an incidence matrix of a cyclic symmetric configuration v_k if and only if the set of indices *j* such that $a_j = 1$ is a (v, k) modular Golomb ruler. Let $L_{\overline{G}}(k)$ be the length of the *shortest known* Golomb ruler \overline{G}_k ; then for all *v* such that $v \ge 2L_{\overline{G}}(k)+1$, there exists a cyclic symmetric configuration v_k ; see [28, Sec. 4],[45]. We call the value $G(k) = 2L_{\overline{G}}(k) + 1$ the *Golomb bound*.

It is well known that $v \ge k^2 - k + 1$ for configurations v_k , and that equality holds if and only if there exists a projective plane of the order k - 1 [28,33]. We call $P(k) = k^2 - k + 1$ the *projective plane bound*.

For a positive integer k, let $v_{\delta}(k)$ denote the smallest v for which a cyclic symmetric configuration v_k exists. Also, let E(k) be the least integer such that for any $v \ge E(k)$, there exists a symmetric configuration v_k ; similarly, let $E_c(k)$ denote the least integer such that for any $v \ge E_c(k)$, there exists a cyclic v_k . Then

$$k^{2} - k + 1 = P(k) \le E(k) \le E_{c}(k) \le G(k) = 2L_{\overline{G}}(k) + 1.$$
(1.1)

$$k^{2} - k + 1 = P(k) \le v_{\delta}(k) \le E_{c}(k) \le G(k) = 2L_{\overline{G}}(k) + 1.$$
(1.2)

The aim of this work is twofold:

- to describe new constructions, paying special attention to both cyclic and BDC symmetric configurations;
- to investigate the *spectrum* of possible parameters of symmetric configurations *v_k* in the interval

$$k^{2} - k + 1 = P(k) \le v < G(k) = 2L_{\overline{G}}(k) + 1.$$
(1.3)

Configurations, both symmetric and non-symmetric, admitting an incidence matrix consisting of square circulant blocks have been considered in [3,4,17–19,37,38,49]. In [3,4,18,19] methods for obtaining new BDC indicence matrices from a given one are described. We remark that the notion of a BDC matrix is not explicitly used in the papers [3,4]; however it is easy to see that this is equivalent to that of a \mathbb{Z}_{μ} -scheme, as described in [3] (see Remarks 1 and 2 in Section 3). What is essentially new here with respect to the methods described in [3,4] is the systematic use of subgroups of the automorphism group of a cyclic configuration, which may produce several distinct BDC indicence matrices from the same configuration. This explains how classical configurations, such as projective planes or punctured affine planes, provide a number of new examples (see Theorem 3, together with the examples in Section 4). Other achievements here are some improvements on the known upper bounds on E(k) and $E_c(k)$, and several new parameters for cyclic and non-cyclic configurations v_k (see Sections 6 and 7).

The *Generalized Martinetti Construction* (Construction GM) proposed in [22] plays a key role for the investigation of the spectrum of possible parameters of symmetric configurations as it provides, for a fixed k, intervals of values of v for which a v_k exists. Construction GM has been considered also in $[3,5,6]^1$. To be successfully applied, Construction GM needs a convenient starting incidence matrix. To this end, BDC matrices turn out to be particularly useful; see Corollary 1. In this work new starting matrices are considered, see Example 6(ii), as well as those originally proposed in [3,6].

For applications, including Coding Theory, it is sometimes useful to have different matrices $\mathbf{M}(v,k)$ for the same v and k. This is why we attentively consider various constructions, even when they provide configurations with the same parameters.

The paper is organized as follows. In Section 2, we briefly summarize some constructions and parameters of configurations v_k . Preliminaries on BDC matrices are given in Section 3. Section 4 is the core of the paper and contains our new constructions of block double-circulant symmetric configurations $\mathbf{M}(v,k)$. In Section 5, methods for constructing matrices admitting extensions are described. In Sections 6 and 7, our results on the spectra of parameters of cyclic and non-cyclic configurations are reported.

We remark that some results from the present work were published without proofs in [17, 18].

¹ The authors of the papers [5,6] (represented here by Davydov) regret that the paper [22] is not cited in [5,6]; the reason is that, unfortunately, the authors did not know the paper [22] during the preparation of [5,6].

2 Some known configurations v_k with $P(k) \le v < G(k)$

In this section we briefly summarize a list of pairs (v,k) for which a (cyclic) symmetric configuration v_k is known to exist, see Equations (2.1)–(2.16), and that will be used later in the paper. Infinite families of configurations v_k given in this section are described in [1–8,10,13,16–19,22–24,26,28–34,44,48,50,51,55]; see also the references therein.

Throughout the paper, q is a prime power and p is a prime. Let \mathbb{F}_q be the Galois field of q elements. Let $\mathbb{F}_q^* = \mathbb{F}_q \setminus \{0\}$. For a positive integer u, let $\mathbf{0}_u$ be the zero $u \times u$ matrix. Also, a permutation matrix of order u will be denoted by \mathbf{P}_u .

We first recall a basic result on symmetric configurations.

Theorem 1 [3, Sec. 2],[31, Sec. 5.2],[34, Sec. 2.5], [48] *If a (cyclic) configuration* v_k *exists, then for each* δ *with* $0 \le \delta < k$ *there exists a (cyclic) configuration* $v_{k-\delta}$.

The value δ appearing in Equations (2.1)–(2.16) is connected with Theorem 1. When a reference is given, it usually refers to the case $\delta = 0$.

The projective plane PG(2,q) of order q provides configurations

cyclic
$$v_k: v = q^2 + q + 1, \ k = q + 1 - \delta, \ q + 1 > \delta \ge 0.$$
 (2.1)

We recall that the punctured affine plane of order q is the affine plane AG(2,q) where the origin and all the lines through the origin are dismissed. Punctured affine planes are also called elliptic (Desarguesian) semiplanes of type L. They are cyclic configurations giving rise to

cyclic
$$v_k : v = q^2 - 1, \ k = q - \delta, \ q > \delta \ge 0.$$
 (2.2)

Configurations with parameters (2.3) below arise from Ruzsa's construction [50], [20, Sec. 5.4], [21], [51, Th. 19.19].

cyclic
$$v_k : v = p^2 - p, \ k = p - 1 - \delta, \ p - 1 > \delta \ge 0.$$
 (2.3)

The non-cyclic families (2.4) and (2.5) below are described in [1, Constructions (i),(ii), p. 126] and [26, Constructions 3.2,3.3, Rem. 3.5]; see also the references therein and [5], [6, Sec. 3], [19, Sec. 7.3], [24, 28, 48].

$$v_k: v = q^2 - qs, \quad k = q - s - \delta, \quad q > s \ge 0, \quad q - s > \delta \ge 0;$$
 (2.4)

$$v_k: v = q^2 - (q-1)s - 1, \ k = q - s - \delta, \ q > s \ge 0, \ q - s > \delta \ge 0.$$
 (2.5)

For *q* a square, in [1, Conjec. 4.4, Rem. 4.5, Ex. 4.6], [3, Th. 6.4], and [26, Construction 3.7, Th. 3.8], families of non-cyclic configuration v_k with parameters (2.6) are provided; see also [19, Ex. 8]. Taking $c = q - \sqrt{q}$, we obtain (2.7); see also [17, Ex. 2(ii)], [24].

$$v_k: v = c(q + \sqrt{q} + 1), k = \sqrt{q} + c - \delta, c = 2, 3, \dots, q - \sqrt{q}, \delta \ge 0;$$
 (2.6)

$$v_k: v = q^2 - \sqrt{q}, \quad k = q - \delta, \quad q > \delta \ge 0.$$

$$(2.7)$$

In [24, Th. 1.1], a non-cyclic family with parameters

$$v_k: v = 2p^2, \ k = p + s - \delta, \ 0 < s \le q + 1, \ q^2 + q + 1 \le p, \ p + s > \delta \ge 0$$
 (2.8)

is given. In [19, Sec. 6] a construction of non-cyclic family with parameters

$$v_k : v = c(q-1), \quad k = c - \delta, \quad c = 2, 3, \dots, b, \quad b = q \text{ if } \delta \ge 1,$$

$$b = \left\lceil \frac{q}{2} \right\rceil \text{ if } \delta = 0, \quad c > \delta \ge 0,$$

$$(2.9)$$

is described.

In [17, Sec. 2], [19, Sec. 3], a geometrical construction which uses point orbits under the action of a collineation group is described. Families of non-cyclic configurations v_k with the following parameters are given in [19, Exs 2, 3].

$$v_k: v = \frac{q(q-1)}{2}, \ k = \frac{q+1}{2} - \delta, \ \frac{q+1}{2} > \delta \ge 0, \ q \text{ odd.}$$
 (2.10)

$$v_k: v = \frac{q(q+1)}{2}, \ k = \frac{q-1}{2} - \delta, \ \frac{q-1}{2} > \delta \ge 0, \ q \text{ odd.}$$
 (2.11)

$$v_k: v = q^2 + q - q\sqrt{q}, \ k = q - \sqrt{q}, \ q - \sqrt{q} > \delta \ge 0, \ q \text{ square.}$$
 (2.12)

In [7,8,10], non-cyclic families with parameters (2.13)–(2.16) are described in connection with graph theory; see also [4] for another construction of (2.14).

$$v_k: v = q^2 - rq - 1, \ k = q - r - \delta, \ q - r > \delta \ge 0, \ q - 3 \ge r \ge 0.$$
 (2.13)

 $v_k: v = q^2 - q - 2, \quad k = q - 1 - \delta, \quad q - 1 > \delta \ge 0.$ (2.14)

$$v_k: v = tq - 1, \qquad k = t - \delta, \qquad t > \delta \ge 0, \quad q > t \ge 3.$$
 (2.15)

$$v_k: v = tq - 2, \qquad k = t - \delta, \qquad t > \delta \ge 0, \quad q > t \ge 3.$$
 (2.16)

Use of Construction GM to obtain parameters for symmetric configurations will be considered in Section 5.

Some known results on existence and non-existence of sporadic symmetric configurations will be mentioned in Sections 6 and 7.

3 Preliminaries on block double-circulant incidence matrices

We first present the notion of a block double-circulant matrix, originally introduced in [18]; see also [17,19]. Recall that the weight of a circulant binary matrix is the number of 1s in each its rows.

Definition 1 Let v = td. A binary $v \times v$ matrix **A** is said to be a *block double-circulant matrix (BDC matrix* for short) if

$$\mathbf{A} = \begin{bmatrix} \mathbf{C}_{0,0} & \mathbf{C}_{0,1} & \dots & \mathbf{C}_{0,t-1} \\ \mathbf{C}_{1,0} & \mathbf{C}_{1,1} & \dots & \mathbf{C}_{1,t-1} \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{C}_{t-1,0} & \mathbf{C}_{t-1,1} & \dots & \mathbf{C}_{t-1,t-1} \end{bmatrix},$$
(3.1)

where $C_{i,j}$ is a *circulant* $d \times d$ binary matrix for all i, j, and submatrices $C_{i,j}$ and $C_{l,m}$ with $j - i \equiv m - l \pmod{t}$ have the same weight. The matrix

$$\mathbf{W}(\mathbf{A}) = \begin{bmatrix} w_0 & w_1 & w_2 & w_3 \dots & w_{t-2} & w_{t-1} \\ w_{t-1} & w_0 & w_1 & w_2 \dots & w_{t-3} & w_{t-2} \\ w_{t-2} & w_{t-1} & w_0 & w_1 \dots & w_{t-4} & w_{t-3} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ w_1 & w_2 & w_3 & w_4 \dots & w_{t-1} & w_0 \end{bmatrix}$$
(3.2)

is a *circulant* $t \times t$ matrix whose entry in position i, j is the *weight* of $C_{i,j}$. W(A) is called the *weight matrix* of A. The vector $\overline{W}(A) = (w_0, w_1, \dots, w_{t-1})$ is called the *weight vector* of A.

Remark 1 If in Definition 1 the matrices $C_{i,j}$ were assumed to be right-circulant and not left-circulant, then they would have been the sum of some right-circulant permutation matrices. A right-circulant $d \times d$ permutation matrix is always associated to a permutation of the set $\{1, 2, ..., d\}$ in the subgroup generated by the cycle (123 ... d). Then the notion of a BDC matrix is substantially equivalent to that of a \mathbb{Z}_d -scheme, as defined in [3].

Let **A** be as in Definition 1. In addition, assume that **A** is the incidence matrix of a symmetric configuration v_k with $k = \sum_{i=0}^{t} w_i$. We present three simple techniques for obtaining other BDC incidence matrices of symmetric configurations from **A**.

(i) For each $h \in \{0, 1, ..., t-1\}$, in each row of every submatrix $C_{i,j}$ with $j-i \equiv h \pmod{t}$ replace $\delta_h \ge 0$ values of 1 with zeros, in such a way that the obtained submatrix is still circulant. As a result a BDC incidence matrix of a configuration $v'_{k'}$ with

$$v' = v, \ k' = k - \sum_{h=0}^{t-1} \delta_h, \ 0 \le \delta_h \le w_h, \ w'_h = w_h - \delta_h, \overline{\mathbf{W}}(\mathbf{A}') = (w'_0, \dots, w'_{t-1})$$
 (3.3)

is obtained.

(ii) Fix some non-negative integer $j \le t - 1$. Let *m* be such that $w_m \le w_h$ for all $h \ne j$. Cyclically shift all block rows of **A** to the left by *j* block positions. A matrix \mathbf{A}^* with $\overline{\mathbf{W}}(\mathbf{A}^*) = (w_0^* = w_j, \dots, w_u^* = w_{u+j \pmod{t}}, \dots, w_{t-1}^* = w_{j-1})$ is obtained. By applying (i), construct a matrix \mathbf{A}^{**} with $w_0^{**} = w_0^* = w_j$, $w_h^{**} = w_m$, $h \ge 1$. Now remove from $\mathbf{A}^{**} t - c$ block rows and columns from the bottom and the right. In this way an incidence $cd \times cd$ BDC matrix \mathbf{A}' of a configuration $v'_{k'}$ is obtained with

$$v' = cd, k' = w_j + (c-1)w_m, c = 1, 2, \dots, t, \overline{\mathbf{W}}(\mathbf{A}') = (w_j, w_m, \dots, w_m).$$
 (3.4)

(iii) Let *t* be even. Let \mathbf{A}^* be as in (ii). Let w_0, w_E be weights such that $w_0 \le w_h^*$ for odd *h* and $w_E \le w_h^*$ for even *h*. By applying (i), construct a matrix \mathbf{A}^{**} with $w_0^{**} = w_0^* = w_j, w_h^{**} = w_0$ for odd *h*, $w_h^{**} = w_E$ for even $h \ge 2$. Let f = 1, 2, ..., t/2. From \mathbf{A}^{**} remove t - 2f block rows and columns from the bottom and the right. An incidence $2fd \times 2fd$ BDC matrix \mathbf{A}' of a configuration $v'_{k'}$ is obtained with

$$v' = 2fd, k' = w_j + w_0 + (f - 1)(w_E + w_0), \mathbf{W}(\mathbf{A}') = (w_j, w_0, \underbrace{w_E, w_0, \dots, w_E, w_0}_{f-1 \text{ pairs}}).$$
(3.5)

Remark 2 Construction (i) in this section essentially follows from Theorem 1; in [3] it is referred to as 1-factor deletion. Construction (ii) is essentially a different formulation of Proposition 4.3 in [3], which is stated in terms of \mathscr{S}_{μ} -schemes. Apart from terminology, the only difference is that here the case m > 1 is considered. Other methods for obtaining families of symmetric configurations from **A** can be found in [19, Sec. 4].

4 Constructions of block double-circulant symmetric configurations

The aim of this section is the construction of block double-circulant incidence matrices of a cyclic symmetric configuration. Our main tool will be a general method based on the action of the automorphism group of the configuration, originally presented in [17, 19]; it can be viewed as the geometrical counterpart of a procedure proposed in [18,37,38] for circulant matrices, and called *decomposition of a circulant matrix*. Here, after summarizing some of the results from [17, 19], we apply the procedure to cyclic configurations $(q^2 + q + 1)_{q+1}$ arising from projective planes PG(2,q) (Section 4.1), as well as to cyclic configurations $(q^2 - 1)_q$ associated to affine planes AG(2,q) (Section 4.2). We then briefly discuss BDC incidence matrices from Ruzsa's sequences (Section 4.3).

For a cyclic symmetric configuration v_k , viewed as an incidence structure $\mathscr{I} = (\mathscr{P}, \mathscr{L})$, let σ be a permutation of \mathscr{P} mapping lines to lines, such that the group S generated by σ acts regularly on both \mathscr{P} and \mathscr{L} . Let $\mathscr{P} = \{P_0, \ldots, P_{\nu-1}\}$ and $\mathscr{L} = \{\ell_0, \ldots, \ell_{\nu-1}\}$. Arrange indices so that $\sigma : P_i \mapsto P_{i+1 \pmod{\nu}}$ and $\ell_i = \sigma^i(\ell_0)$. Clearly, $P_i = \sigma^i(P_0)$ holds.

For any divisor *d* of *v*, the group *S* has a unique cyclic subgroup \widehat{S}_d of order *d*, namely the group generated by σ^t where t = v/d. Let $O_0, O_1, \ldots, O_{t-1}$ (resp. $L_0, L_1, \ldots, L_{t-1}$) be the orbits of \mathscr{P} (resp. \mathscr{L}) under the action of \widehat{S}_d . Clearly, $|O_i| = |L_i| = d$ for any *i*. We arrange indices so that $P_0 \in O_0$, $O_w = \sigma^w(O_0)$, $\ell_0 \in L_0$, $L_w = \sigma^w(L_0)$. For each $i = 0, 1, \ldots, t-1$,

$$O_i = \{P_i, \sigma^t(P_i), \sigma^{2t}(P_i), \dots, \sigma^{(d-1)t}(P_i)\}, L_i = \{\ell_i, \sigma^t(\ell_i), \sigma^{2t}(\ell_i), \dots, \sigma^{(d-1)t}(\ell_i)\}.$$

Equivalently, O_i (resp. L_i) consists of d points P_u (resp. d lines L_u) with u equal to i modulo t. Let

$$w_u = |\ell_0 \cap O_u|, \ u = 0, 1, \dots, t - 1.$$
(4.1)

Clearly, $w_0 + w_1 + ... + w_{t-1} = k$.

Theorem 2 [19] Let $\mathscr{I} = (\mathscr{P}, \mathscr{L})$ be a cyclic symmetric configuration v_k with v = td. Let $d, t, \hat{S}_d, O_i, L_i$ be as above.

(i) For any *i* and *j*, every line of the orbit L_i meets the orbit O_j in the same number of points $w_{j-i \pmod{t}}$ where w_u is defined by (4.1).

(ii) The incidence matrix of \mathscr{I} is a block double-circulant matrix **A** of type (3.1) where $\mathbf{C}_{i,j}$ is a circulant $d \times d$ matrix of weight $w_{j-i \pmod{t}}$, with w_u as in (4.1).

In order to use Theorem 2 effectively, one should find the intersection numbers of the orbits of the cyclic subgroup \widehat{S}_d .

4.1 BDC incidence matrices from projective planes

For cyclic projective planes, useful results on intersection numbers of orbits of the cyclic subgroup \hat{S}_d numbers are given in [15,19] and in some of the references therein.

Example 1 We consider the projective plane PG(2,q) as a cyclic symmetric configuration $(q^2 + q + 1)_{q+1}$ [55], [19, Sec. 5], [20, Sec. 5.5], [51, Th. 19.15]. In this case the group *S* is a Singer group of PG(2,q).

(i) Let t = 3, $t|(q^2 + q + 1)$, $p \equiv 2 \pmod{3}$, and let $\{i_0, i_1, i_2\} = \{0, 1, 2\}$. In [19, Prop. 4] the following is proven: $w_{i_0} = (q + 2\sqrt{q} + 1)/3$, $w_{i_1} = w_{i_2} = (q - \sqrt{q} + 1)/3$, if $q = p^{4m+2}$; $w_{i_0} = (q - 2\sqrt{q} + 1)/3$, $w_{i_1} = w_{i_2} = (q + \sqrt{q} + 1)/3$, if $q = p^{4m}$. We can use (ii) of Section 3. By (3.4) with c = 2, we obtain families of configurations v_k with parameters

$$v_k : v = 2\frac{q^2 + q + 1}{3}, \ k = \frac{2q + \sqrt{q} + 2}{3}, \ q = p^{4m+2}, \ p \equiv 2 \pmod{3};$$
$$v_k : v = 2\frac{q^2 + q + 1}{3}, \ k = \frac{2q - \sqrt{q} + 2}{3}, \ q = p^{4m}, \ p \equiv 2 \pmod{3}.$$

(ii) Let $q = p^{2m}$ be a square. Let *t* be a prime divisor of $q^2 + q + 1$. Then *t* divides either $q + \sqrt{q} + 1$ or $q - \sqrt{q} + 1$. Assume that $p \pmod{t}$ is a generator of the multiplicative group of \mathbb{Z}_t . By [19, Prop. 6], in this case $w_0 = (q + 1 \pm (1 - t)\sqrt{q})/t$, $w_1 = w_2 = \ldots = w_{t-1} = (q + 1 \pm \sqrt{q})/t$. We can use (ii) of Section 3. By (3.4), we obtain a family of configurations v_k with parameters

$$v_k : v = c \frac{q^2 + q + 1}{t}, \ k = \frac{q + 1 \pm (1 - t)\sqrt{q}}{t} + (c - 1) \frac{q + 1 \pm \sqrt{q}}{t}, \qquad (4.2)$$

$$c = 1, 2, \dots, t, \ q = p^{2m}, \ t \text{ prime.}$$

The hypothesis that $p \pmod{t}$ is a generator of the multiplicative group of \mathbb{Z}_t holds e.g. in the following cases: $q = 3^4$, t = 7; $q = 2^8$, t = 13; $q = 5^4$, t = 7; $q = 2^{12}$, t = 19; $q = 3^8$, t = 7; $q = 2^{16}$, t = 13; $q = 17^4$, t = 7; $p \equiv 2 \pmod{t}$, t = 3.

(iii) Let *q* be a square. Let $v \ge 1$, $v|(q - \sqrt{q} + 1)$, and $t = \frac{1}{v}(q - \sqrt{q} + 1)$. Then $d = v(q + \sqrt{q} + 1)$ and, by [19, Prop. 7], we have $w_0 = \sqrt{q} + v$, $w_1 = w_2 = ... = w_{t-1} = v$. Now using (ii) of Section 3, for v = 1 we obtain a family of configurations with parameters (2.6). The orbits $O_0, O_1, ..., O_{t-1}$ are Baer subplanes. It should be noted that such confugurations admit an extension, see Section 5 and Example 6(iii) below.

(iv) In rows marked by "*PG*" of Table 1, parameters of configurations v'_n with BDC incidence matrices are given. We use (ii) of Section 3. The starting weights w^*_i are obtained by computer forming orbits of subgroups \hat{S}_d of a Singer group of PG(2,q). The values k',v' are calculated by (3.4). Then the smallest value $k^{\#}$ for which $v' < G(k^{\#})$ is found. As a result, each row of Table 1 provides configurations v'_n with v' < G(n), $n = k', k' - 1, \dots, k^{\#}$, see (i) of Section 3 and (3.3).

Table 1 Parameters of configurations v'_n with BDC incidence matrices, v' < G(n), $n = k', k' - 1, ..., k^{\#}$, from the cyclic projective plane PG(2,q) and the cyclic punctured affine plane of order q

plane	q	t	d	w_i^*	с	f	k'	v'	G(k')	<i>k</i> [#]	$G(k^{\#})$
PG	25	3	217	12,7,7	2		19	434	493	19	493
PG	25	7	93	8,3,3,3,3,3,3	4		17	372	399	17	399
PG	25	7	93	8,3,3,3,3,3,3	5		20	465	567	19	493
PG	25	7	93	8,3,3,3,3,3,3	6		23	558	745	20	567
PG	32	7	151	0,5,5,6,5,6,6	6		25	906	961	25	961
PG	37	3	469	16,9,13	2		25	938	961	25	961
PG	43	3	631	19,13,12	2		31	1262	1495	30	1361
PG	49	3	817	21,16,13	2		34	1634	1877	33	1719
PG	97	3	3169	39,28,31	2		67	6338	7639	62	6431
PG	107	7	1651	24,15,15,13,15,13,13	6		89	9906	13557	75	9965
PG	107	7	1651	24,15,15,13,15,13,13	5		76	8255	10179	69	8291
PG	109	3	3997	43,36,31	2		74	7994	9507	69	8291
PG	109	7	1713	8,15,15,19,15,19,19	6		83	10278	12041	77	10409
AG	16	3	85	8,4,4	2		12	170	171	12	171
AG	31	3	320	14,9,8	2		22	640	713	21	667
AG	37	3	456	16,9,12	2		25	912	961	25	961
AG	49	4	600	16,12,9,12	3		34	1800	1877	34	1877
AG	49	6	400	4,9,12,8,8,8	5		36	2000	2011	36	2011
AG	53	4	702	17,12,10,14	3		37	2106	2199	37	2199
AG	79	3	2080	32,25,22	2		54	4160	4747	50	4189
AG	79	6	1040	8,14,13,14,18,12	5		56	5200	5451	56	5451
AG	79	6	1040	18,12,8,14,13,14		2	50	4160	4189	50	4189
AG	107	8	1431	17,15,10,13,10,12,17,13	7		77	10017	10409	76	10179
AG	107	8	1431	17,15,10,13,10,12,17,13		3	73	8586	9027	71	8661

Remark 3 In [49, Prop. 3, Th.9], parity check matrices of LDPC codes based on the Hermitian curve in $PG(2,q^2)$ and consisting of square cyclic submatrices are constructed by geometrical tools that can be considered as special cases of the more general approach of Theorem 2. The mentioned parity check matrices are incidence matrices of non-symmetric configurations. It is possible that by dismissing some units in the matrix, BDC configurations could be obtained. This problem is not considered here, nor in [49]. Note that the matrix of [49, Prop. 3] uses points belonging to the Hermitian curve, whereas the point set of the symmetric configuration in [19, Ex. 3], whose parameters are as in (2.12), coincides with the complement of the same curve.

4.2 BDC incidence matrices from punctured affine planes

The cyclic punctured affine planes $(q^2 - 1)_q$, see [13],[20, Sec. 5.6],[51, Th. 19.17], as well as [19, Ex. 5, Sec. 6], is a cyclic symmetric configuration where *S* is an affine Singer group of AG(2,q).

Example 2 Consider the $(q^2 - 1, q)$ modular Golomb ruler obtained from the cyclic punctured affine plane of order q [13]. Let $q^2 - 1 = td$. In [43] it is proven that if t is a divisor of q + 1 then exactly t - 1 values of w_h are equal to $\frac{q+1}{t}$, and there is precisely one $w_{h_0} = \frac{q+1}{t} - 1$. In [43] only proper divisors t of q + 1 are considered. Actually,

the same arguments work for t = q + 1; in this case $\overline{\mathbf{W}}(\mathbf{A}) = (0, 1, 1, ..., 1)$ can be assumed. For comparison, see Example 3 below.

In [19,43] useful results for t a divisor of q + 1 are obtained. Theorem 3 below extends our knowledge on this topic and gives new results for t dividing q - 1.

Theorem 3 Let q be an odd square. Consider the cyclic symmetric configuration $(q^2 - 1)_q$ associated to the punctured affine plane of order q. Let t be a divisor of q - 1, and let $d = (q^2 - 1)/t$. Let \mathbf{A} be an incidence BDC matrix of this configuration as in Theorem 2(ii). Let $w_0, w_1, \ldots, w_{t-1}$ be the weights of the circulant $d \times d$ blocks of \mathbf{A} .

- (i) Let $t = \sqrt{q} + 1$. Then $w_0 = 1$, $w_j = \sqrt{q} 1$ for j odd, $w_j = \sqrt{q} + 1$ for j even, $j = 1, 2, ..., \sqrt{q}$.
- (ii) Let $t = \frac{1}{2}(\sqrt{q}+1), \sqrt{q} \equiv 1 \pmod{4}$. Then $w_0 = \sqrt{q}, w_1, w_2, \dots, w_{t-1} = 2\sqrt{q}$.
- (iii) Let $t = \frac{1}{2}(\sqrt{q}+1), \sqrt{q} \equiv 3 \pmod{4}$. Then $w_0 = \sqrt{q}+2, w_j = 2\sqrt{q}-2$ for jodd, $w_j = 2\sqrt{q}+2$ for j even, $j = 1, 2, \dots, \frac{1}{2}(\sqrt{q}+1)-1$.

(iv) Let $t = \frac{1}{4}(\sqrt{q}+1), \sqrt{q} \equiv 3 \pmod{4}$.

- If $\frac{1}{4}(\sqrt{q}+1)$ is odd, then $w_0 = 3\sqrt{q}, w_1, w_2, \dots, w_{t-1} = 4\sqrt{q}$.
- If $\frac{1}{4}(\sqrt{q}+1)$ is even, then $w_0 = 3\sqrt{q}+4$, $w_j = 4\sqrt{q}-4$ for j odd, $w_j = 4\sqrt{q}+4$ for j even, $j = 1, 2, ..., \frac{1}{4}(\sqrt{q}+1)-1$.

Proof. Let ξ be a primitive element of \mathbb{F}_{q^2} . Let $\omega = \xi^{\frac{q+1}{2}}$, and $\theta = \omega^{q+1}$. Identify a point $(x, y) \in AG(2, q)$ with the element $z = x + \omega y \in \mathbb{F}_{q^2}$. As $\omega^{q-1} = -1$ it is straightforward to check that $z^{q+1} = x^2 + \theta y^2$.

We need to consider the orbits of $\mathbb{F}_{q^2}^*$ under the action of the cyclic group generated by σ^t where $\sigma(\xi^i) = \xi^{i+1}$. The orbit O_j of the element ξ^j is $\{\xi^j, \xi^{j+t}, \xi^{j+2t}, \ldots, \xi^{j+(\frac{q^2-1}{t}-1)t}\}$. Let μ be a primitive element in \mathbb{F}_q .

(i) Let $t = \sqrt{q} + 1$. For each $z \in O_j$ we have $z^{q+1} = \xi^{j(q+1)} (\xi^{(q+1)}(\sqrt{q}+1))^h$ for some *h*. Also, ξ^{q+1} is a primitive element of \mathbb{F}_q and $(\xi^{(q+1)}(\sqrt{q}+1))^h \in \mathbb{F}^*_{\sqrt{q}}$. This means that for each $j = 0, ..., \sqrt{q}$, the orbit O_j consists precisely of the elements *z* such that $z^{q+1} \in \mu^j \mathbb{F}^*_{\sqrt{q}}$. Therefore, the orbit O_j in AG(2,q) consists of the union of the $\sqrt{q} - 1$ conics with equation $x^2 + \theta y^2 = \mu^j \alpha$ where $\alpha \in \mathbb{F}^*_{\sqrt{q}}$.

A number of lemmas are necessary to compute the sizes w_j of the intersections $|O_j \cap \ell|$, where ℓ is any line of AG(2,q) not passing through the origin. Choose the line $\ell : x = 1$.

Lemma 1 $w_0 = 1$.

Proof We prove that $|\ell \cap O_0| = 1$. Note that O_0 consists of the conics $C_\alpha : x^2 + \theta y^2 = \alpha$. The line x = 1 meets the conic C_α in one point if $\alpha = 1$. If $\alpha \neq 1$ then the intersection is empty since θ is not a square in \mathbb{F}_q (and α is a square since it is an element of $\mathbb{F}_{\sqrt{q}}$).

Lemma 2 Let N_j be the number of non-squares in the set $\mu^j \mathbb{F}^*_{\sqrt{a}} - 1$. Then $w_j = 2N_j$.

Proof The conic C_{α} : $x^2 + \theta y^2 = \mu^j \alpha$ meets the line x = 1 in 0 or 2 points. The latter case occurs precisely when $\mu^j \alpha - 1$ is not a square.

In order to compute the integers N_i , the following lemmas will be useful.

Lemma 3 The collection of sets $H_{\beta} = \{\frac{\mu}{1-\mu\beta}\mathbb{F}^*_{\sqrt{q}} - 1 \mid \beta \in \mathbb{F}_{\sqrt{q}}\}$ coincides with $\{\mu^{j}\mathbb{F}^*_{\sqrt{q}} - 1 \mid j = 1, \dots, \sqrt{q}\}.$

Proof We only need to show that the sets $\frac{\mu}{1-\mu\beta}\mathbb{F}^*_{\sqrt{q}}$ are pairwise distinct. Assume on the contrary that $\frac{\mu}{1-\mu\beta} = \alpha \frac{\mu}{1-\mu\gamma}$ for $\beta, \gamma \in \mathbb{F}_{\sqrt{q}}, \alpha \in \mathbb{F}^*_{\sqrt{q}}$. Then $\alpha(1-\mu\beta) = 1-\mu\gamma$ that is $\mu(-\alpha\beta+\gamma) = 1-\alpha$. If $\alpha\beta-\gamma=0$ then $\alpha=1$ and hence $\beta=\gamma$. If $\alpha\beta-\gamma\neq 0$ then $\mu \in \mathbb{F}_{\sqrt{q}}$, which is a contradiction.

Lemma 4 Fix $\beta \in \mathbb{F}_{\sqrt{q}}$ and $j \in \{1, \dots, \sqrt{q}\}$. Assume that the set $\frac{\mu}{1-\mu\beta}\mathbb{F}^*_{\sqrt{q}}-1$ coincides with $\mu^j\mathbb{F}^*_{\sqrt{q}}-1$. Then $1-\mu\beta$ is a square if and only if j is odd.

Proof Note that $\frac{\mu}{1-\mu\beta}\mathbb{F}^*_{\sqrt{q}} - 1$ coincides with $\mu^j\mathbb{F}^*_{\sqrt{q}} - 1$ if and only if $\mu^{j-1}(1-\mu\beta) \in \mathbb{F}_{\sqrt{q}}$. Then $\mu^{j-1}(1-\mu\beta)$ is a square. Whence the assertion follows.

Let M_{β} be the number non-squares in the set $\frac{\mu}{1-\mu\beta}\mathbb{F}^*_{\sqrt{q}} - 1$. By the previous lemma, the set of integers M_{β} coincides with the set of integers N_j . Let $A = M_0 = N_1$. Next we show that every M_{β} is related to A.

Lemma 5 If $1 - \mu\beta$ is a square in \mathbb{F}_q then $M_\beta = A$. If $1 - \mu\beta$ is not a square in \mathbb{F}_q then $M_\beta = \sqrt{q} - A$.

Proof A is the number of non-squares in the set $H_0 = \{\mu \alpha - 1 \mid \alpha \in \mathbb{F}_{\sqrt{q}}^*\}$. For each $\beta \in \mathbb{F}_{\sqrt{q}}$, this set coincides with $\{\mu(\alpha + \beta) - 1 \mid \alpha \in \mathbb{F}_{\sqrt{q}}^*, \alpha \neq -\beta\} \cup \{\mu\beta - 1\}$. But since $\mu(\alpha + \beta) - 1 = \mu\alpha + \mu\beta - 1 = (1 - \mu\beta)(\frac{\mu}{1 - \mu\beta}\alpha - 1)$ we have that

$$H_0 = (1 - \mu\beta) \{ \frac{\mu}{1 - \mu\beta} \alpha - 1 \mid \alpha \in \mathbb{F}^*_{\sqrt{q}}, \alpha \neq -\beta \} \cup \{ \mu\beta - 1 \}$$

that is $H_0 = (1 - \mu\beta)H_\beta \setminus \{-1\} \cup \{\mu\beta - 1\}$. Two cases have to be distinguished.

a) $1 - \mu\beta$ is a square. Then either $\frac{1}{\mu\beta-1}$ and $\mu\beta-1$ are both squares or are both non-squares. It follows that the number of non-squares in H_0 equals the number of non-squares in H_β . Therefore, $M_\beta = A$.

b) $1 - \mu\beta$ is not a square. As -1 is a square, $\mu\beta - 1$ is not a square. The number of non-squares in H_0 equals the number of squares in H_β plus 1. Then $M_\beta = \sqrt{q} - A$.

As a corollary to Lemmas 4 and 5, the following result is obtained.

Lemma 6 If *j* is odd then $N_j = A$. If *j* is even then $N_j = \sqrt{q} - A$.

By the above lemma only two possibilities occur for w_j , namely 2A and $2(\sqrt{q} - A)$. Next we calculate A. Let u_1 be the number of $\beta's$ such that $1 - \mu\beta$ is a square in GF(q). Then, from $w_0 + w_1 + \ldots + w_{\sqrt{q}} = q$, we obtain

 $q = 1 + 2u_1A + 2(\sqrt{q} - u_1)(\sqrt{q} - A) = 1 + 4u_1A + 2q - 2\sqrt{q}(u_1 + A).$ Hence,

$$0 = q + 1 + 4u_1A - 2\sqrt{q}(u_1 + A) = (\sqrt{q} - 2u_1)(\sqrt{q} - 2A) + 1$$

Since both $\sqrt{q} - 2u_1$ and $\sqrt{q} - 2A$ are integers, the only possibility is that they are both equal to ± 1 . This implies that $A = \frac{\sqrt{q} \pm 1}{2}$, $u_1 = \frac{\sqrt{q} \pm 1}{2}$ is the only solution. So, we have proven that the integers $w_0, \ldots, w_{\sqrt{q}}$ are such that: 1 occurs precisely once; the integer $\sqrt{q} + 1$ occurs $\frac{\sqrt{q}-1}{2}$ times; the integer $\sqrt{q} - 1$ occurs $\frac{\sqrt{q}+1}{2}$ times. Finally, since $w_j = w_{j'}$ if $j = j' \pmod{2}$ and the number of odd integers in $[1, \sqrt{q}]$ is greater than that of even integers, the assertion of Theorem 3(i) follows.

(ii) Assume that $t = \frac{1}{2}(\sqrt{q}+1)$, $\sqrt{q} \equiv 1 \pmod{4}$. An orbit here is the union of two orbits O_j of case (i). More precisely, an orbit consists of the union of the $2(\sqrt{q}-1)$ conics with equation

$$x^2 + \theta y^2 = \mu^j \alpha, \qquad \alpha \in \mathbb{F}^*_{\sqrt{q}} \cup \mu^{\frac{\sqrt{q}+1}{2}} \mathbb{F}^*_{\sqrt{q}}$$

Equivalently, an orbit here is the union $O_j \cup O_{j+\frac{\sqrt{q}+1}{2}}$ for some $j = 0, \dots, \frac{\sqrt{q}-1}{2}$. Assume that j > 0. Since j and $j + \frac{\sqrt{q}+1}{2}$ are different modulo 2, we have that the number of points of ℓ_i in this orbit is $(\sqrt{q}-1) + (\sqrt{q}+1) = 2\sqrt{q}$. If j = 0, since $\frac{\sqrt{q}+1}{2}$ is odd we have that ℓ_1 meets $O_0 \cup O_{\frac{\sqrt{q}+1}{2}}$ in \sqrt{q} points.

(iii) Assume that $t = \frac{1}{2}(\sqrt{q}+1)$, $\sqrt{q} \equiv 3 \pmod{4}$. Again, an orbit here is the union $O_j \cup O_{j+\frac{\sqrt{q}+1}{2}}$ for some $j = 0, \dots, \frac{\sqrt{q}-1}{2}$. Assume that j > 0. Since j and $j + \frac{\sqrt{q}+1}{2}$ are equal modulo 2, we have that the number of points of ℓ_i in this orbit is $2\sqrt{q}-2$ if j is odd, $2\sqrt{q}+2$ if j is even. If j = 0, since $\frac{\sqrt{q}+1}{2}$ is even we have that ℓ_1 meets $O_0 \cup O_{\frac{\sqrt{q}+1}{2}}$ in $\sqrt{q}+2$ points.

(iv) Assume that $t = \frac{1}{4}(\sqrt{q}+1), \sqrt{q} \equiv 3 \pmod{4}$. An orbit here is the union $O_j \cup O_{j+\frac{\sqrt{q}+1}{4}} \cup O_{j+\frac{\sqrt{q}+1}{2}} \cup O_{j+3\frac{\sqrt{q}+1}{4}}$, for some $j = 0, \dots, \frac{\sqrt{q}-3}{4}$. Then it is easy to deduce the assertion of Theorem 3(iv).

Example 3 We consider the the cyclic symmetric configuration $(q^2 - q)_q$ associated to the punctured affine plane of order q.

(i) Let *t* be a divisor of q + 1. In [19, Prop. 10] it is proven that $w_0 = (q+1)/t - 1$, $w_1 = w_2 = \ldots = w_{t-1} = (q+1)/t$, cf. Example 2 which uses results of [43] obtained by a different approach. Putting t = q + 1 we obtain d = q - 1 and $w_0 = 0$, $w_1 = w_2 = \ldots = w_q = 1$. Now using (ii) in Section 3 one can obtain a family of configurations with parameters (2.9). It can be noted that when v = 1 the configuration admits an extension, see Section 5 and Example 6(i) below.

(ii) Let q be an odd square. Let $t = \sqrt{q} + 1$, $d = (\sqrt{q} - 1)(q + 1)$. By Theorem 3(i) and (iii) of Section 3 one can obtain a family of configurations with parameters

$$v_k: v = 2f(\sqrt{q}-1)(q+1), \ k = (2f-1)\sqrt{q}, \ f = 1, 2, \dots, \frac{\sqrt{q}+1}{2}, \ q \text{ odd square.}$$

(4.3)

By using Theorem 3(ii),(iii),(iv), together with (iii) of Section 3, we obtain the same parameters as in (4.3). But the structure of an incidence matrix $\mathbf{M}(v,k)$ is different from that arising from Theorem 3(i).

(iii) In rows marked by "AG" of Table 1, parameters of configurations v'_n with BDC incidence matrices are given. We use the both (ii) and (iii) of Section 3. The starting weights w_i^* are obtained by computer through the constructions of the orbits of subgroups \hat{S}_d of the affine Singer group. For k' and $k^{\#}$ see Example 1(iv).

More detailed tables similar to Table 1 can be found in [16].

4.3 BDC incidence matrices from Ruzsa's sequences

Example 4 For a prime p, let g be a primitive element of \mathbb{F}_p . The following Ruzsa's sequence [50], [20, Sec. 5.4], [51, Th. 19.19] forms a $(p^2 - p, p - 1)$ modular Golomb ruler:

$$e_h = ph + (p-1)g^h \pmod{p^2 - p}, \ h = 1, 2, \dots, p-1, \ v = p^2 - p.$$
 (4.4)

- (i) By the result in [54, Tab. 5], for a proper divisor *t* of p-1 we have $w_u = \frac{p-1}{t}$ for each u = 0, ..., t-1. Then the block double-circulant indicence matrix of the associated configuration has a weight vector $\overline{\mathbf{W}}(\mathbf{A}) = (\frac{p-1}{t}, ..., \frac{p-1}{t})$.
- (ii) There are two different possibilities to get a binary weight vector from (4.4).
 - a) Fix t = p 1, d = p. Then for each u = 0, 1, ..., t 1 there is precisely one element e_h such that $e_h \equiv u \pmod{t}$. We have $e_{p-1} \equiv 0 \pmod{t}$ and $e_h \equiv h \pmod{t}$, h = 1, 2, ..., p 2. Therefore, $\overline{\mathbf{W}}(\mathbf{A}) = (1, 1, ..., 1)$.
 - b) Fix t = p, d = p 1. In this case $e_u \neq 0 \pmod{t}$ for all u. Also, for each u = 1, 2, ..., t 1 there is precisely one element e_h such that $e_h \equiv u \pmod{t}$. We have $e_h \equiv u \pmod{s}$ if and only if $-g^h \equiv u \pmod{p}$. So, $\overline{\mathbf{W}}(\mathbf{A}) = (0, 1, 1, ..., 1)$.

Case (ii) in Example 4 is of particular interest. In fact, BDC matrices such that each weight w_h is in $\{0, 1\}$ admit an extension; see Section 5 and Example 6(ii) below.

5 Constructing configurations v_k admitting an extension

A classical construction for configurations v_3 due to Martinetti goes back to 1887 [46]; see also [3,6,12,14,22,29], [34, Sec. 2.4, Fig. 2.4.1]. A *Generalized Martinetti Construction* (Construction GM) for configurations v_k , $k \ge 3$, was proposed in [22]. In [3,5,6] Construction GM is used to obtain a wide spectrum of parameters v_k . To be successfully applied, Construction GM, as described in Theorem 4 below, needs a convenient starting incidence matrix. To this end, BDC matrices turn out to be particularly useful; see Corollary 1. In this section new starting matrices are considered, see Example 6(ii), as well as those originally proposed in [3,5,6].

Construction GM can be presented from different points of view, see [3,22]. Here we focus on an approach based on incidence matrices, which will be used in Section 7 for obtaining new values of v, k.

Definition 2 Let $\mathbf{M}(v,k)$ be an incidence matrix of a symmetric configuration v_k . In $\mathbf{M}(v,k)$, we consider a set \mathscr{A} consisting of k-1 rows corresponding to pairwise disjoint lines of v_k , together with k-1 columns corresponding to pairwise non-collinear points of v_k . If the $(k-1) \times (k-1)$ submatrix $\mathbf{C}(\mathscr{A})$ formed by the intersection of the rows and columns of \mathscr{A} is a permutation matrix \mathbf{P}_{k-1} then \mathscr{A} is called an *extending aggregate* (or *E-aggregate*). The matrix $\mathbf{M}(v,k)$ admits an extension if it contains at least one E-aggregate. The matrix $\mathbf{M}(v,k)$ admits θ extensions if it contains θ E-aggregates that do not intersect each other.

Theorem 4 (Procedure E) Let $\mathbf{M}(v,k)$ be an incidence matrix of a symmetric configuration v_k . Assume that $\mathbf{M}(v,k)$ admits θ extensions, for some $\theta \ge 1$.

(i) An incidence matrix $\mathbf{M}(v+\theta,k)$ of a symmetric configuration $(v+\theta)_k$ can be obtained from $\mathbf{M}(v,k)$ by adding θ rows and θ columns.

(ii) If $\theta \ge k - 1$, then any k - 1 new rows and k - 1 new columns added to $\mathbf{M}(v, k)$ according to (i) form an *E*-aggregate.

In Theorem 4(i), the form of the added rows/columns can be found in [22, Tab. 1] or in [6, Enlargement 2a, p. 310].

Establishing whether a configuration admits an extension or not is not an easy task in the general case. This leads us to consider distinguished classes of incidence matrices.

Definition 3 Let v = td, $t \ge k$, $d \ge k - 1$, and let v_k be a symmetric configuration. Let $\mathbf{M}(v,k)$ be an incidence matrix of v_k , viewed as a $t \times t$ block matrix, every block being of type $d \times d$. We say that $\mathbf{M}(v,k)$ has *Structure E* if every $d \times d$ block is either a permutation matrix \mathbf{P}_d or the zero $d \times d$ matrix $\mathbf{0}_d$.

Lemma 7 Let v = td, $t \ge k$, $d \ge k-1$, and let v_k be a symmetric configuration. Assume that $\mathbf{M}(v,k)$ is an incidence matrix of v_k having Structure E.

(i) The matrix $\mathbf{M}(v,k)$ admits $\theta(t,d,k) := t \cdot \lfloor d/(k-1) \rfloor \ge t \ge k$ extensions.

(ii) Let $\mathbf{M}(v + \theta(t, d, k), k)$ be the matrix obtained from (i) by applying $\theta(t, d, k)$ extensions. Then $\mathbf{M}(v + \theta(t, d, k), k)$ above admits $\theta_2(t, d, k) := \lfloor \theta(t, d, k)/(k-1) \rfloor \ge 1$ extensions.

Proof (i) We need to provide $\theta(t, d, k)$ pairwise disjoint E-aggregates of $\mathbf{M}(v, k)$. For each block of type \mathbf{P}_d , one can easily define a set \mathscr{E} of $\lfloor d/(k-1) \rfloor$ disjoint E-aggregates consisting of rows and columns with non-trivial intersection with \mathbf{P}_d . Let **B** be the binary $t \times t$ matrix where each entry corresponds to a $d \times d$ block in $\mathbf{M}(v, k)$: an entry is 1 if the corresponding block is of type \mathbf{P}_d . Each row and each column of **B** has weight *k*. Therefore, it is possible to obtain a permutation matrix \mathbf{P}_t by dismissing some units in **B**. The sets \mathscr{E} defined from blocks \mathbf{P}_d corresponding to units of \mathbf{P}_t are clearly disjoint, and their union gives $t \cdot |d/(k-1)|$ not intersecting E-aggregates.

(ii) Theorem 4(ii) can be applied $\theta_2(t, d, k)$ times.

Corollary 1 Let v = td, $t \ge k$, $d \ge k-1$, and let v_k be a symmetric configuration. Assume that an incidence matrix **A** of v_k is a BDC matrix as in (3.1) with weight vector $\overline{\mathbf{W}}(\mathbf{A}) = (w_0, \dots, w_{t-1})$.

(i) If all the weights w_u belong to the set $\{0,1\}$, then **A** admits t + 1 extensions.

(ii) If $\overline{\mathbf{W}}(\mathbf{A}) = (0, 1, 1, ..., 1)$ or $\overline{\mathbf{W}}(\mathbf{A}) = (1, 1, ..., 1)$ then one can obtain a family of symmetric configurations v_k with parameters (5.1) or (5.2), respectively

 $v_k: v = cd + \theta, \ k = c - 1 - \delta, \ c = 2, 3, \dots, t, \ \theta = 0, 1, \dots, c + 1, \ \delta \ge 0.$ (5.1)

 $v_k: v = cd + \theta, \ k = c - \delta, \ c = 2, 3, \dots, t, \ \theta = 0, 1, \dots, c + 1, \ \delta \ge 0.$ (5.2)

Proof The matrix **A** has clearly Structure E. Then (i) follows from Lemma 7, together with Theorem 4(i). For (ii), we use (ii) of Section 3. \Box

In order to obtain a configuration having Structure E from a given one, sometimes the procedures described in Section 3 are useful; see Example 6(iii) below.

Example 5 The following infinite family of symmetric configurations v_k is obtained in [3, Th. 6.2], [6, Th. 1(i)] with use of Construction GM:

$$v_k: v = q^2 - qs + \theta, \ k = q - s - \Delta, \ q > s \ge 0, \ q - s > \Delta \ge 0, \ \theta = 0, 1, \dots, q - s + 1.$$

(5.3)

Example 6 (i) We consider the punctured affine plane of order q as a cyclic configuration $(q^2 - 1)_q$; see Examples 2 and 3(i). Let t = q + 1, d = q - 1, $w_0 = 0$, $w_1 = w_2 = \ldots = w_q = 1$. By Corollary 1(ii) we obtain a family of symmetric configurations v_k with

$$v_k: v = c(q-1) + \theta, \ k = c-1-\delta, \ c = 2, 3, \dots, q+1, \ \theta = 0, 1, \dots, c+1, \ \delta \ge 0.$$
(5.4)

We remark that configurations with parameters (5.4) from the punctured affine plane were first obtained in [3, Th. 6.3] by using Construction GM; see also [18, Eqn. (8)].

(ii) We consider Ruzsa's configuration $(p^2 - p)_{p-1}$; see Example 4(ii). Put t = p - 1, d = p. Then $w_0 = \ldots = w_{p-2} = 1$. By Corollary 1(iii) we obtain a family with $v_k : v = cp + \theta, k = c - \delta, c = 2, 3, \ldots, p - 1, \theta = 0, 1, \ldots, c + 1, \delta \ge 0, p$ prime. (5.5)

If t = p, d = p - 1 then $w_0 = 0, w_1 = \dots = w_{p-1} = 1$. We obtain a family with $v_k : v = c(p-1) + \theta, \ k = c - 1 - \delta, \ c = 2, 3, \dots, p, \ \theta = 0, 1, \dots, c+1, \ \delta \ge 0, p$ prime.
(5.6)

(iii) Let q be a square. We consider PG(2,q) as a cyclic configuration $(q^2 + q + 1)_{q+1}$, see Example 1(iii). Let v = 1, $t = q - \sqrt{q} + 1$, $d = q + \sqrt{q} + 1$, $w_0 = \sqrt{q} + 1$, $w_1 = w_2 = \ldots = w_{t-1} = 1$. By (i) of Section 3 we can put $w'_0 = 1$ and obtain the weight vector $(1, 1, \ldots, 1)$. Now, by Corollary 1(iii), we obtain a family with

$$v_k : v = c(q + \sqrt{q} + 1) + \theta, \ k = c - \delta, \ c = 2, 3, \dots, q - \sqrt{q} + 1,$$

$$\theta = 0, 1, \dots, c + 1, \ \delta \ge 0, q \text{ square.}$$
(5.7)

6 The spectrum of parameters of cyclic symmetric configurations

Current data on the existence of cyclic configurations v_k , $k \le 37$, are given in Table 2. The value $v_{\delta}(k)$ is defined in Introduction. In the second column, the exact values of $v_{\delta}(k)$ are marked by the dot ".". For $k \le 16$, the exact values of $v_{\delta}(k)$ are taken from [27, Tab. IV], [35, Tab. 2], [53, Tab. 1a], [56]. Also, if k - 1 is a power prime then $v_{\delta}(k) = P(k) = k^2 - k + 1$. The remaining entries in the second column are lower bounds for $v_{\delta}(k)$. It is well known that $P(k) \le v_{\delta}(k)$, and that a *cyclic* symmetric configuration $(k^2 - k + 1)_k$ exists if and only if a *cyclic* projective plane of order k - 1 exists. By [11], no cyclic projective planes exist with non-prime power orders $\le 2 \cdot 10^9$. Therefore for k = 25,27,36 we write the lower bound for $v_{\delta}(k)$ as $k^2 - k + 2$. Also, we apply Theorem 5 that gives $k^2 - k + 3 \le v_{\delta}(k)$ for k = 19,21,22,23,26,29,31,34,35,37.

Theorem 5 [30, Th. 2.4] *There is no symmetric configuration* $(k^2 - k + 2)_k$ *if* $5 \le k \le 10$ *or if neither k or* k - 2 *is a square.*

In the third column of Table 2, in a row "k", the known (resp. new) values of v for which a cyclic symmetric configuration v_k exists are written in normal (resp. bold) font. Also, an entry \overline{v} (with v in italic font) means that no configuration v_k exists while $\overline{v^c}$ (again with v in italic font) indicates that no *cyclic* configuration v_k exists.

For $k \le 15$, we use data from [23,28,30,33,39,44,53], including those reported in (2.1)–(2.3). An entry of the form "t+" in a row "n" of [53, Tab. 1] indicates the existence of *all* cyclic symmetric configurations v_n with $v \ge t$. The entries v_a, v_b , and v_c mean, respectively, that (2.1),(2.2), and (2.3) are applied. We use the following *non-existence* results: $\overline{32_6}$ [28, Th. 4.8]; $\overline{33_6}$ [39]; $\overline{34_6^c}$, $\overline{59_8^c}$ - $\overline{62_8^c}$ [44]; $\overline{75_9^c}$ - $\overline{79_9^c}$, $\overline{81_9^c}$ - $\overline{84_9^c}$ [23]; $\overline{93_{10}^c} - \overline{106_{10}^c}$, $\overline{121_{11}^c} - \overline{132_{11}^c}$, $\overline{134_{11}^c}$, $\overline{135_{12}^c} - \overline{155_{12}^c}$, $\overline{157_{12}^c}$, $\overline{160_{12}^c}$, $\overline{169_{13}^c} - \overline{182_{13}^c}$, $\overline{184_{13}^c} - \overline{192_{13}^c}$, $\overline{185_{14}^c} - \overline{224_{14}^c}$, $\overline{256_{15}^c} - \overline{260_{15}^c}$, $\overline{263_{15}^c}$ [53, Tab. 1]; see also Theorem 5.

The values of k for which the spectrum of parameters of cyclic symmetric configurations v_k is completely known are indicated by a dot "."; the corresponding values of $E_c(k)$ are sharp and they are noted by the dot "." too.

In order to widen the ranges of parameter pairs $\{v,k\}$ for which a cyclic symmetric configuration v_k exists, we consider a number of procedures that allow to define a new modular Golomb ruler from a known one. We recall a result from [51], which describes a method to construct different rulers with the same parameters.

Theorem 6 [51] If $(a_1, a_2, ..., a_k)$ is a (v, k) modular Golomb ruler and m and b are integers with gcd(m, v) = 1 then $(ma_1 + b \pmod{v}, ma_2 + b \pmod{v}, ..., ma_k + b \pmod{v})$ is also a (v, k) modular Golomb ruler.

It should be noted that a (v,k) modular Golomb ruler can also be a $(v + \Delta, k)$ modular Golomb ruler for some integer Δ [28]. However, this possibility does not depend on parameters v and k only. This is why Theorem 6 can be useful for our purposes.

For $k \le 83$, we performed a computer search starting from the (v,k) modular Golomb rulers corresponding to (2.1)–(2.3). For projective and affine planes, we got concrete rulers from [52]. For Ruzsa's construction, we used (4.4). For every starting

k	$v_{\delta}(k)$	$v_{\delta}(k) \le v \le G(k) - 1$	$E_c(k)$	G(k)
5.	21.	21, 77	23.	23
6.	31.	$31 \frac{\overline{32}}{\overline{32}} \frac{\overline{33}}{\overline{34^c}}$	35.	35
7.	48.	48, 49 50	48.	51
8	57	$57 \overline{58} \overline{59^{c}} - \overline{62^{c}} 63 64 - 68$	63	69
9	73	$73 \frac{74}{74} \frac{75^{\circ}}{75^{\circ}} - \frac{79^{\circ}}{79^{\circ}} 80 \frac{81^{\circ}}{81^{\circ}} - \frac{84^{\circ}}{85} 85 - 88$	85	89
10	01	$91 \overline{02} \overline{03} \overline{03} \overline{03} \overline{03} \overline{03} \overline{01} \overline{07} \overline{03} \overline$	107	111
11	120	$120_{1}\frac{1}{121^{c}} = \frac{1}{132^{c}}\frac{1}{133}\frac{1}{134^{c}}\frac{1}{135} = 144$	135	145
12	133	$133 \overline{134} \overline{135^{c}} = \overline{155^{c}} 156 \overline{157^{c}} 158 159 \overline{160^{c}} 168, 161 = 170$	161	171
13	168	$\frac{155_{a},154,155}{168} - \frac{155}{160^{c}} - \frac{183^{c}}{182^{c}} 183 - \frac{156,157}{162^{c}} - \frac{100^{c}}{102^{c}} 103 - 212$	101	213
14	183	$\frac{100_{b},109}{183} = \frac{102}{184}, \frac{105_{a},104}{185^{c}} = \frac{192}{224^{c}}, \frac{105}{225} = 254$	225	215
14.	255	$\frac{105_a, 104, 105}{256^c} = \frac{105_a, 104, 105}{263^c} = \frac{224}{271}, \frac{225}{273} = \frac{254}{254}$	223	203
15	255	$255_{b}, 250 = 200, 205, 207 = 271, 272_{c}, 273_{a}, 274 = 287, 288_{b}, 289 = 502$	3207	355
17	255	$235_b, 272_c, 273_a, 280_b, 307_a, 313, 317, 310, 320-334$ 273 $\overline{274}$ 288, 307 342 343 340 353 360, 381 356-308	356	300
18	307	307 342 381 389 301 305 = 398 401 403 432	403	/33
19	> 345	360_{k} 381 - 445 450 453 455-458 460-492	460	493
20	381.	381 - 382 482 497 498 501-503 506- 505-509 528, 553- 511-566	511	567
21	> 423	506, 528, 553, 586, 589, 591, 592, 594, 595, 597, 598 , 624, 600-666	600	667
22	> 465	506, 528, 553, 624, 633, 637, 640-642, 651, 644-712	644	713
23	> 509	528b, 553a, 624b, 651a, 683, 686-688, 692, 695-700 , 728b, 702-744	702	745
24	553.	553 <i>a</i> , 554, 624 <i>b</i> , 651 <i>a</i> , 728 <i>b</i> , 738 , 739 , 742 , 747 , 749 , 752 , 753 , 755 , 757 <i>a</i> ,	757	851
		812 _c ,840 _b , 757-850		
25	≥ 602	624 _b ,651 _a ,728 _b ,757 _a ,812 _c , 830 ,840 _b ,871 _a ,930 _c ,960 _b , 837-960	837	961
26	651.	651 _a , <u>652</u> , 728 _b , 757 _a , 812 _c , 840 _b , 871 _a , 885 , 888 , 895 , 900 , 903 , 905 - 907 ,	929	985
		910-913, 915-917, 919-925, 927 , 930 _c , 960 _b , 929-984		
27	≥ 704	728 _b , 757 _a , 812 _c , 840 _b , 871 _a , 930 _c , 960 _b , 970 , 971 , 972 , 975 , 977 , 978 ,	1017	1107
		985 , 987 , 988 , 991 , 993 _a , 993 - 997 , 1000 , 1001 , 1003 - 1015 ,		
		1023 _b , 1057 _a , 1017-1106		
28	757.	$757_a, 758, 812_c, 840_b, 871_a, 930_c, 960_b, 993_a, 1006, 1023_b, 1045, 1051,$	1079	1171
		1053 ,1057 _{<i>a</i>} , 1063 -1067,1070-1072, 1074, 1075, 1077, 1079-1170		
29	≥ 815	$840_b, 871_a, 930_c, 960_b, 993_a, 1023_b, 1057_a, 1091, 1127, 1135,$	1151	1247
20	071	1137,1141,1143,1145,1146,1151-1246	1000	1261
30	8/1.	$8/1_a, 8/2, 930_c, 960_b, 993_a, 1023_b, 1057_a, 1196, 1198-1201, 1206,$	1220	1361
21	> 022	$1207, 1210, 1217, 1219-1224, 1552_c, 1220-1500$ 060 002 1022 1057 1208 1300 1314 1315 1320 1321 1324	12/10	1405
51	<i>≥</i> 933	$900_b, 995_a, 1025_b, 1057_a, 1296, 1309, 1314, 1315, 1320, 1321, 1324,$ 1225 1222 1220 1225 1220 1246 1269 1248 1404	1340	1493
32	003	$1323,1332_c,1330-1333,1337-1340,1300_b,1340-1494$ 003 $\overline{004}$ 1023, 1057 1332 1366 1368, 1383 1388	1/36	1560
52	<i>775</i>	$1301_{-}1305_{-}1307_{-}1308_{-}1400_{-}1403_{-}1407_{-}1406_{-}1400$	1430	1509
		1371-1375, 1377, 1378, 1400, 1401, 1405, 1407a, 1400-1407, 1411-1414, 1416, 1420, 1421, 1424-1434, 1436-1568		
33	1057.	1057 a. <u>7058</u> , 1332 a. 1368 a. 1407 a. 1492 , 1506 , 1507 , 1515 , 1518	1561	1719
55	10571	1520, 1521, 1528, 1529, 1533, 1535, 1537, 1540, 1542, 1543,	1001	1,17
		1545 , 1547 - 1553 , 1555 - 1559 , 1640 _c , 1680 _b , 1561 - 1718		
34	> 1125	$1332_c, 1368_b, 1407_a, 1640_c, 1664, 1665, 1670, 1676, 1680_b, 1686, 1693,$	1754	1877
		1698, 1699, 1702, 1705, 1708-1712, 1714, 1717, 1721, 1723, 1723-1726,		
		1728, 1730-1742, 1744-1752, 1806c, 1848b, 1754-1876		
35	\geq 1193	$1332_c, 1368_b, 1407_a, 1640_c, 1680_b, 1723_a, 1777, 1781, 1783, 1788,$	1817	1975
		$\textbf{1792}, \textbf{1793}, \textbf{1795}, \textbf{1798}, \textbf{1800-1803}, 1806_c, \textbf{1805-1807}, \textbf{1810},$		
		$\textbf{1812-1815}, 1848_b, 1893_a, \textbf{1817-1974}$		
36	≥ 1262	$1332_c, 1368_b, 1407_a, 1640_c, 1680_b, 1723_a, 1806_c, 1848_b, 1853, 1855,$	1886	2011
		1860 , 1867-1870 , 1872-1876 , 1878 , 1882-1884 , 1893 _{<i>a</i>} , 1886-2010		
37	\geq 1335	$1368_b, 1407_a, 1640_c, 1680_b, 1723_a, 1806_c, 1848_b, 1892, 1893_a, 1910,$	1972	2199
		1922, 1930, 1934, 1938, 1943, 1944, 1947-1953, 1957, 1959, 1960,		
		1962, 1963, 1965-1967, 1969,2162 _c , 1972-2198		

Table 2 Values of v for which a cyclic symmetric configuration v_k exists, $v_{\delta}(k) \le v \le G(k) - 1$, $k \le 37$

Table 3 Upper bounds on the cyclic existence bound $E_c(k)$, $38 \le k \le 83$

_																	
k	$E_c(k)$	G(k)	k	$E_c(k)$	G(k)												
38	2172	2293	46	3280	3407	54	4513	4747	62	6150	6431	70	8125	8435	78	10395	10599
39	2330	2505	47	3429	3609	55	5195	5197	63	6611	6783	71	8288	8661	79	10800	10817
40	2438	2565	48	3642	3775	56	5341	5451	64	6796	7055	72	8694	8947	80	10977	11127
41	2544	2611	49	3839	3917	57	5501	5547	65	6853	7187	73	8813	9027	81	11396	11435
42	2628	2795	50	3871	4189	58	5551	5703	66	7279	7515	74	8965	9507	82	11443	11629
43	2860	3015	51	4233	4381	59	5612	5823	67	7359	7639	75	9883	9965	83	11593	12041
44	2916	3193	52	4359	4541	60	5687	6039	68	7463	7913	76	10023	10179			
45	3165	3375	53	4463	4695	61	5994	6269	69	8111	8291	77	10229	10409			

(v,k) modular ruler we first considered all possible *m* with gcd(m,v) = 1, and applied Theorem 6 for all b < v to get new rulers with the same parameters *v* and *k*. Then, we checked whether new rulers are also $(v + \Delta, k)$ modular rulers for some Δ .

In Table 2, for $16 \le k \le 37$, the values of v obtained in this work are given in bold font; the entry **v**-**w** notes an interval of sizes from **v** to **w** without gaps. If an already known value lies within an interval **v**-**w** obtained in this work, then it is written immediately before the interval. Also, data on the non-existence by Theorem 5 are written in italic font, in the form \overline{v} .

In Table 3, for $38 \le k \le 83$, the upper bounds on the cyclic existence bound $E_c(k)$ obtained in this work are listed. For each k in the interval $E_c(k), E_c(k) + 1, ..., G(k) - 1$, at least one cyclic symmetric configuration v_k has been obtained. These configurations are new. We obtained also many other new cyclic symmetric configurations v_k for $38 \le k \le 83$; see [16].

The upper bounds on $E_c(k)$ in Table 2, for $16 \le k \le 37$, and all upper bounds in Table 3 are new. They are written in bold font.

Some new cyclic symmetric configurations important for Table 5 of Section 7 are given in Table 4 where we give the first rows of their incidence matrices; these rows may be the same for distinct v.

More detailed tables for cyclic symmetric configurations can be found in [16].

7 The spectrum of parameters of symmetric (not necessarily cyclic) configurations

The known results regarding parameters of symmetric configurations can be found in [1–10, 12–14, 16–19, 22–24, 26–35, 39, 41, 44–51, 53, 56]; see also the references therein. The known families of configurations are described in Section 2 and in (5.3). New families are given in Sections 4 and 5. In Table 5, for $k \le 37$, $P(k) \le v < G(k)$, values of v for which a symmetric configuration v_k from one of the families of Sections 2–5 exists are given. An entry of type $v_{subscript}$ indicates that relations (2.*i*),(3.*j*),(4.*k*) or Tables 1, 2 are used: more precisely v_a indicates that v is obtained from (2.1), and similarly $v_b \rightarrow (2.2)$, $v_c \rightarrow (2.3)$, $v_f \rightarrow (2.5)$, $v_g \rightarrow (2.6)$, $v_h \rightarrow (2.7)$, $v_j \rightarrow (2.8)$, $v_k \rightarrow (2.9)$, $v_\lambda \rightarrow (2.13) - (2.16)$, $v_m \rightarrow (5.3)$, $v_P \rightarrow (4.3)$, $v_r \rightarrow (5.4)$, $v_S \rightarrow (5.5)$, $v_T \rightarrow (5.6)$, $v_W \rightarrow$ Table 1, $v_y \rightarrow$ Table 2 with $k \le 15$. Here capital letters in subscripts remark new results and constructions while

Table 4 New cyclic symmetric configurations v_k

k	v	the 1-st row of incidence matrix
17	382	0,25,69,81,88,89,112,123,126,128,141,174,196,202,206,223,232
	383	
17	385	
17	386	0,5,15,34,35,42,/3,/5,86,89,98,134,151,155,1//,183,201
	388	
17	384	0,68,70,84,90,107,111,120,139,151,185,186,193,196,211,244,249
17	387	0,5,7,17,52,56,67,80,81,100,122,138,159,165,168,191,199
18	389	0,10,27,28,35,50,74,94,103,105,108,146,159,165,191,195,207,228
18	391	0, 1, 4, 15, 35, 42, 75, 85, 94, 111, 133, 139, 141, 157, 162, 194, 206, 219
18	395	0,71,73,81,85,88 117 118 141 167 172 183 192 210 231 244 250 272
18	396	0,79,89,106,107,114,129,153,173,182,184,187,225,238,244,270,274,286
18	397	0,36,50,56,59,74,78,85,122,139,147,149,179,180,192,226,231,247
18	398	0,18,30,32,71,84,90,93,119,127,152,169,176,192,196,197,207,243
18	401	0,71,94,104,136,160,164,176,195,217,238,243,256,263,290,292,293,301
18	404	0, 2,10,14,17,46,47,70,96,101,112,121,139,160,173,179,201,236
10	405	0.0.10.00.50.57.90.00.00.100.140.150.177.100.100.005.017
18	407	0,2,10,22,53,56,82,83,89,98,130,148,153,167,188,192,205,216
18	406	0,49,59,62,97,99,117,141,173,180,184,192,201,206,207,237,253,278
18	408	0,14,15,27,50,53,60,81,97,115,137,139,145,156,188,208,213,217
18	409	0,91,193,195,203,215,246,249,275,276,282,291,323,341,346,360,381,385
18	410	0,36,68,103,110,111,121,124,130,161,176,200,202,225,230,247,259,263
18	411	0,93,195,197,205,217,248,251,277,278,284,293,325,343,348,362,383,387

lowercase letters note the known ones. An entry $v_{subscript_1 \cdot subscript_2 \cdot ...}$ with more than one subscript means that the same value can be obtained from different constructions. An entry of type $v_{subscript_1 \cdot subscript_2 \cdot ...} - v'_{subscript_1 \cdot subscript_2 \cdot ...}$ indicates that a whole interval of values from v to v' can be obtained from the constructions corresponding to the subscripts. We use the following known results on the existence of sporadic symmetric configurations: 45_7 [9]; 98_{10} [24, Tab. 1]; 135_{12} [47, Ex. 3.10]; 34_6 [41], see also [4]. The non-existence of configuration 112_{11} is proven in [40]. The nonexistence of the plane PG(2, 10) implies the non-existence of configuration 111_{11} . The values of k for which the spectrum of parameters of symmetric configurations v_k is completely known are indicated by a dot "."; the corresponding values of E(k) are exact and they are indicated by a dot as well.

To save space, in Table 5 for given v, k, we do not write all constructions providing the configuration v_k , but often we describe *a few variants* for illustration. Also, to conserve space, for k > 29 we do not give any subscripts.

The *filling of the interval* P(k)-G(k) is expressed as a percentage in the last column. It is interesting to note that such a percentage is quite high, and that most gaps occur for *v* close to $k^2 - k + 1$.

We note that a number of parameters obtained in this work, see Sections 4–6, are *new*. For $k \le 37$, these new parameters are as follows: $382_{17} - 388_{17}$, 389_{18} , 391_{18} , $395_{18} - 398_{18}$, 401_{18} , $404_{18} - 411_{18}$. All these configurations are cyclic; they are given in Table 4 of Section 6. New parameters of configurations v_k and new bounds on E(k) are written in Table 5 in bold font. Note that parameters of some new families are too big to be included in Table 5, see e.g. Examples 1 and 3, Theorem 3,

configuration of (5.7). Recall also (see Introduction) that from the standpoint of applications, including Coding Theory, it is useful to have different matrices $\mathbf{M}(v,k)$ for the same v and k.

More detailed tables for parameters of symmetric configurations v_k can be found in [16].

Acknowledgements

The authors would like to thank one of the anonymous referees for his/her helpful comments and remarks, and for bringing to our attention papers [3, 10].

References

- Abreu, M., Funk, M., Labbate, D., Napolitano, V.: On (minimal) regular graphs of girth 6, Australas. J. Combin. 35, 119–132 (2006).
- Abreu, M., Funk, M., Labbate, D., Napolitano, V.: Configuration graphs of neighbourhood geometries, Contrib. Discr. Math. 3, 109–122 (2008).
- Abreu, M., Funk, M., Labbate, D., Napolitano, V.: Deletions, extension, and reductions of elliptic semiplanes, Innov. Incidence Geom. 11, 139–155 (2010).
- Abreu, M., Funk, M., Labbate, D., Napolitano, V.: On the ubiquity and utility of cyclic schemes, Australas. J. Combin. 55, 95–120 (2013).
- Afanassiev, V.B., Davydov, A.A., Zyablov, V.V.: Low density concatenated codes with Reed-Solomon component codes. In: Proc. XI Int. Symp. on Problems of Redundancy in Inf. and Control Syst., St.-Petersburg, Russia, pp. 47–51 (2007). http://k36.org/redundancy2007/files/Proceedings.pdf.
- Afanassiev, V.B., Davydov, A.A., Zyablov, V.V.: Low density parity check codes on bipartite graphs with Reed-Solomon constituent codes, Information Processes (Electronic Journal) 9, no. 4, 301–331 (2009). http://www.jip.ru/2009/301-331-2009.pdf.
- 7. Araujo-Pardo, G., Balbuena, C.: Constructions of small regular bipartite graphs of girth 6, Networks **57**, 121–127 (2011).
- 8. Araujo-Pardo, G., Balbuena, C., Héger, T.: Finding small regular graphs of girths 6, 8 and 12 as subgraphs of cages, Discrete Math. **310**, 1301–1306 (2010).
- 9. Baker, R.D.: An elliptic semiplane, J. Combin. Theory A 25, 193-195 (1978).
- 10. Balbuena, C.: Incidence matrices of projective planes and of some regular bipartite graphs of girth 6 with few vertices, SIAM J. Discrete Math. **22**, 1351–1363 (2008).
- Baumert, L.D., Gordon, D.M.: On the existence of cyclic difference sets with small parameters, In: High Primes and Misdemeanours: Lectures in Honour of the 60th Birthday of Hugh Cowie Williams, van der Poorten, A., Stein, A., eds., Amer. Math. Soc., Fields Institute Communications, vol. 41, pp. 61–68, Providence (2004).
- 12. Boben, M.: Irreducible (v3) configurations and graphs, Discrete Math. 307, 331-344, (2007).
- 13. Bose, R.C.: An affine analogue of Singer's theorem, J. Ind. Math. Society 6, 1–15 (1942).
- 14. Carstens, H.G., Dinski, T., Steffen, E.: Reduction of symmetric configurations *n*₃, Discrete Applied Math. **99**, 401–411 (2000).
- Coykendall, J., Dover, J.: Sets with few intersection numbers from Singer subgroup orbits, Europ. J. Combin. 22, 455–464 (2001).
- Davydov, A.A., Faina, G., Giulietti, M., Marcugini, S., Pambianco, F.: Tables of parameters of symmetric configurations v_k. (2014). arXiv:1312.3837 [math.CO], http://arxiv.org/pdf/1312.3837v2.pdf.
- Davydov, A.A., Giulietti, M., Marcugini, S., Pambianco, F.: Symmetric configurations for bipartitegraph codes. In: Proc. XI Int. Workshop Algebraic Comb. Coding Theory, ACCT2008, Pamporovo, Bulgaria, pp. 63–69 (2008). http://www.moi.math.bas.bg/acct2008/b11.pdf.
- Davydov, A.A., Giulietti, M., Marcugini, S., Pambianco, F.: On the spectrum of possible parameters of symmetric configurations. In: Proc. XII Int. Symp. on Problems of Redundancy in Inform. and Control Systems, Saint-Petersburg, Russia, pp. 59–64 (2009). http://k36.org/redundancy2009/proceedings.pdf.

			E(k)		
k P(k)		$P(k) \le v < G(k)$	\leq	G(k)	filling
3.	7	7	7.	7	100%
4.	13	13	13.	13	100%
5.	21	$21_a,\overline{22}$	23.	23	100%
6.	31	$31_a, \overline{32}, \overline{33}, 34$	34.	35	100%
7	43	$\overline{43}, \overline{44}, 45, 48_{b \cdot f \cdot r}, 49_{m \cdot r}, 50_{m \cdot r}$	48	51	75%
8	57	$57_a, \overline{58}, 63_{b \cdot f \cdot r}, 64_{m \cdot r} - 68_{m \cdot r}$	63	69	67%
9	73	$73_a, \overline{74}, 78_{g \cdot h}, 80_{b \cdot f \cdot r}, 81_{m \cdot r} - 88_{m \cdot r}$	80	- 89	75%
10	91	$91_a, \overline{92}, 98_j, 107_v - 109_v, 110_{c \cdot f \cdot k \cdot m \cdot r \cdot S \cdot T}$	107	111	35%
11	111	$\overline{111}, \overline{112}, 120_{b \cdot f \cdot r}, 121_{m \cdot r} - 133_{m \cdot r}, 135_{y} - 142_{y}, 143_{m \cdot y \cdot S}, 144_{m \cdot y \cdot r \cdot S \cdot T}$	135	145	76%
12	133	$133_a, \overline{134}, 135, 154_{\lambda}, 155_{\lambda}, 156_{m \cdot r \cdot S \cdot T} - 169_{m \cdot r \cdot S \cdot T}, 170_{m \cdot r \cdot T \cdot W}$	154	171	52%
13	157	$\overline{158}, 168_{b \cdot f \cdot r}, 169_{m \cdot r} - 183_{m \cdot r}, 189_g, 193_v - 209_v, 210_{m \cdot v \cdot r} - 212_{m \cdot v \cdot r}$	193	213	68%
14	183	$183_a, \overline{184}, 210_g, 222_\lambda, 223_\lambda, 224_m, 225_{m \cdot y \cdot r} - 254_{m \cdot y \cdot r}$	222	255	50%
15	211	$\overline{211}, \overline{212}, 231_{g}, 238_{\lambda}, 239_{\lambda}, 240_{m\cdot r} - 266_{m\cdot r}, 267_{m\cdot v\cdot r} - 302_{m\cdot v\cdot r}$	238	303	73%
16	241	$252_{g\cdot h}, 255_{b\cdot f\cdot r}, 256_{m\cdot r} - 321_{m\cdot r}, 322_{\lambda\cdot r}, 323_{m\cdot r\cdot S} - 354_{m\cdot r\cdot S}$	255	355	89%
17	273	$273_a, \overline{274}, 288_{b\cdot f \cdot r}, 289_{m \cdot r} - 307_{m \cdot r}, 321_{\lambda}, 322_{\lambda}, 323_{m \cdot S}, 372_W,$	321	399	79%
		$324_{m \cdot r} - 381_{m \cdot r}, 382_Z - 388_Z, 389_{\lambda \cdot Z}, 390_{\lambda \cdot Z}, 391_{m \cdot S \cdot Z} - 398_{m \cdot S \cdot Z}$			
18	307	$307_a, 340_{\lambda}, 341_{\lambda}, 342_{m \cdot r} - 381_{m \cdot r}, 389_Z, 391_Z, 395_Z - 398_Z, 401_Z,$	403	433	63%
		$403_{g\cdot Z}, 404_Z - 411_Z, 412_{\lambda \cdot Z}, 413_{\lambda \cdot Z}, 414_{m \cdot S} - 432_{m \cdot S}$			
19	343	$\overline{344}, 360_{b \cdot f \cdot r}, 361_{m \cdot r} - 381_{m \cdot r}, 434_{g \cdot W}, 435_{\lambda}, 436_{\lambda}, 437_{m \cdot S} - 457_{m \cdot S},$	434	493	54%
		$458_{\lambda \cdot r \cdot T}, 459_{\lambda \cdot r \cdot T}, 465_W, 460_{m \cdot r \cdot T} - 492_{m \cdot r \cdot T}$			
20	381	$381_a, \overline{382}, 458_{\lambda}, 459_{\lambda}, 465_W, 460_{m\cdot S} - 481_{m\cdot S}, 482_{\lambda \cdot r \cdot T}, 558_W,$	458	567	59%
		$483_{m \cdot r \cdot T} - 566_{m \cdot r \cdot T}$			
21	421	$\overline{422}, 481_{\lambda}, 482_{\lambda}, 483_{m \cdot S}, 558_{W}, 640_{W}, 484_{m \cdot r} - 666_{m \cdot r}$	481	667	76%
22	463	$\overline{463}, \overline{464}, 504_{\lambda}, 505_{\lambda}, 506_{m \cdot r} - 573_{m \cdot r}, 574_{\lambda \cdot r}, 558_{W}, 575_{m \cdot r} - 712_{m \cdot r}, 640_{W}$	504	713	84%
23	507	$\overline{507}, \overline{508}, 528_{b \cdot f \cdot r}, 529_{m \cdot r} - 553_{m \cdot r}, 558_{g \cdot W}, 573_{\lambda}, 574_{\lambda}, 575_{m}, 576_{m \cdot r} - 744_{m \cdot r}$	573	745	84%
24	553	$553_a, \overline{554}, 589_g, 598_{\lambda}, 599_{\lambda}, 600_{m \cdot r} - 673_{m \cdot r}, 674_{\lambda \cdot r}, 675_{m \cdot r} - 850_{m \cdot r}$	598	851	85%
25	601	$620_{g\cdot h}, 624_{b\cdot f\cdot P\cdot r}, 625_{m\cdot r} - 651_{m\cdot r}, 673_{\lambda}, 674_{\lambda}, 675_{m}, 676_{m\cdot r} - 960_{m\cdot r},$	673	961	88%
		$906_W, 912_W, 938_W$			
26	651	$651_a, \overline{652}, 700_{\lambda}, 701_{\lambda}, 702_{m \cdot r} - 781_{m \cdot r}, 782_{\lambda \cdot r}, 783_{m \cdot r} - 984_{m \cdot r}$	700	985	85%
27	703	$728_{b \cdot f \cdot r}, 729_{m \cdot r} - 757_{m \cdot r}, 781_{\lambda}, 782_{\lambda}, 783_{m \cdot S}, 784_{m \cdot r} - 1065_{m \cdot r},$	781	1107	88%
		$1066_{r\cdot T\cdot Z} - 1072_{r\cdot T\cdot Z}, 1073_{m\cdot S\cdot Z} - 1103_{m\cdot S\cdot Z}, 1104_{r\cdot T\cdot Z}, 1105_{\lambda \cdot r\cdot T\cdot Z},$			
		$1106_{\lambda \cdot r \cdot T \cdot Z}$			
28	757	$757_a, 758, 810_{\lambda}, 811_{\lambda}, 812_{m \cdot r} - 1065_{m \cdot r}, 1066_{r \cdot T} - 1072_{r \cdot T},$	810	1171	87%
		$1073_{m\cdot S} - 1103_{m\cdot S}, 1104_{r\cdot T\cdot Z} - 1109_{r\cdot T\cdot Z}, 1110_{m\cdot r\cdot S\cdot Z} - 1141_{m\cdot r\cdot S\cdot Z},$			
		$1142_{r\cdot T\cdot Z} - 1145_{r\cdot T\cdot Z}, 1146_{\lambda \cdot r\cdot T\cdot Z}, 1147_{m\cdot r\cdot S\cdot Z} - 1170_{m\cdot r\cdot S\cdot Z}$			
29	813	$814,840_{b\cdot f\cdot r},841_{m\cdot r}-871_{m\cdot r},897_{\lambda},898_{\lambda},899_{m\cdot s},900_{m\cdot r}-1057_{m\cdot r},$	1071	1247	85%
		$1071_{\lambda}, 1072_{\lambda}, 1073_{m\cdot S} - 1103_{m\cdot S}, 1104_{r\cdot T} - 1109_{r\cdot T}, 1110_{m\cdot S} - 1141_{m\cdot S},$			
		$1142_{r\cdot T} - 1146_{r\cdot T}, 1147_{m\cdot S} - 1179_{m\cdot S}, 1180_{r\cdot T\cdot Z} - 1183_{r\cdot T\cdot Z},$			
•	0.74	$1184_{m\cdot S} - 1219_{m\cdot S}, 1220_{r\cdot T\cdot Z}, 1221_{m\cdot S} - 1246_{m\cdot S}$			-000
30	871	$\frac{871}{822}, \frac{872}{228}, \frac{928}{1057}, \frac{1108}{1108} - \frac{1360}{1360}$	1108	1361	78%
31	931	931,932,960 - 1057,1145 - 1494	1145	1495	79%
32	993	993,994,1023 - 1057,1182 - 1568	1182	1569	73%
33	1057	$\frac{1057}{1020}, \frac{1058}{1020}, \frac{1219}{1020} = 1718$	1219	1719	75%
34	1123	1123, 1124, 1256 - 1876	1256	1877	82%
35	1191	1192,1293 - 1407,1433 - 1974	1433	1975	83%
36	1261	1330 - 1407, 1474 - 2010	14/4	2011	82%
51	1333	1334,1368 - 1407,1515 - 2198	1515	2199	83%

Table 5 The current known parameters of symmetric configurations v_k (cyclic and non-cyclic)

Key to Table 5: $a \rightarrow (2.1), b \rightarrow (2.2), c \rightarrow (2.3), f \rightarrow (2.5), g \rightarrow (2.6), h \rightarrow (2.7), j \rightarrow (2.8), k \rightarrow (2.9), \lambda \rightarrow (2.13) - (2.16), m \rightarrow (5.3), P \rightarrow (4.3), r \rightarrow (5.4), S \rightarrow (5.5), T \rightarrow (5.6), W \rightarrow \text{Table 1, } y \rightarrow \text{Table 2}$ with $k \leq 15, Z \rightarrow \text{Table 2}$ with k > 15

- Davydov, A.A., Giulietti, M., Marcugini, S., Pambianco, F.: Some combinatorial aspects of constructing bipartite-graph codes, Graphs Combin. 29(2), 187–212 (2013).
- Dimitromanolakis, A.: Analysis of the Golomb Ruler and the Sidon Set Problems, and Determination of Large, Near-Optimal Golomb Rulers, Depart. Electronic Comput. Eng. Techn. University of Crete, 2002. http://www.cs.toronto.edu/~apostol/golomb/main.pdf.
- Drakakis, K.: A review of the available construction methods for Golomb rulers, Advanc. Math. Commun. 3, 235–250 (2009).
- Funk, M.: On configurations of type n_k with constant degree of irreducibility, J. Combin. Theory, ser. A, 65, 173–201 (1993).
- 23. Funk, M.: Cyclic difference sets of positive deficiency, Bull. Inst. Combin. Appl. 53, 47-56 (2008).
- Funk, M., Labbate, D., Napolitano, V.: Tactical (de-)compositions of symmetric configurations, Discrete Math. 309, 741–747 (2009).
- Gabidulin, E., Moinian, A., Honary, B.: Generalized construction of quasi-cyclic regular LDPC codes based on permutation matrices. In: Proc. Int. Symp. Inf. Theory 2006, ISIT 2006, Seattle, USA, pp. 679–683 (2006).
- 26. Gács, A., Héger, T.: On geometric constructions of (k,g)-graphs, Contrib. Discr. Math. 3, 63–80 (2008).
- Graham, R.L., Sloane, N.J.A.: On additive bases and Harmonious Graphs, Siam J. Algeb. Discrete Methods 1, 382–404 (1980).
- 28. Gropp, H.: On the existence and non-existence of configurations n_k , J. Combin. Inform. System Sci. **15**, 34–48 (1990).
- Gropp, H.: Configurations, regular graphs and chemical compounds, J. Mathematical Chemistry 11, 145-153 (1992).
- Gropp, H.: Non-symmetric configurations with deficiencies 1 and 2. In: Barlotti, A., Bichara, A., Ceccherini, P.V., Tallini, G. (eds.) Combinatorics '90: Recent Trends and Applications. Ann. Discrete Math. vol. 52, pp. 227–239. Elsevier, Amsterdam (1992).
- 31. Gropp, H.: Configurations and graps II, Discrete Math. 164, 155-163 (1997).
- 32. Gropp, H.: Configurations between geometry and combinatorics, Discr. Appl. Math. 138, 79–88 (2004).
- Gropp, H.: Configurations. In: Colbourn, C.J., Dinitz, J. (eds.) The CRC Handbook of Combinatorial Designs, 2-nd edition, Chapter VI.7, pp. 353–355. CRC Press, Boca Raton (2007).
- 34. Grünbaum, B.: Configurations of points and line. Gradute studies in mathematics vol. 103, American Mathematical Society, Providence (2009).
- Haanpää, H., Huima, A., Östergård, P.R.J.: Sets in Z_n with distinct sums of pairs, Discrete Appl. Math. 138, 99–106 (2004).
- Hirschfeld, J.W.P.: Projective Geometries over Finite Fields. Second edition, Oxford University Press, Oxford (1998).
- 37. Q. Huang, Q. Diao, S. Lin, Circulant decomposition: Cyclic, quasi-cyclic and LDPC codes, 2010 International Symposium on Information Theory and its Applications (ISITA), pp.383–388.
- Q. Huang, Q. Diao, S. Lin, K. Abdel-Ghaffar, Cyclic and quasi-cyclic LDPC codes: new developments, Information Theory and Applications Workshop (ITA), 2011, pp. 1–10.
- Kaski, P., Östergård, P.R.J.: There exists no symmetric configuration with 33 points and line size 6, Australasian Journal of Combin. 38, 273–277 (2007).
- Kaski, P., Östergård, P.R.J.: There are exactly five biplanes with k = 11, J. Combin. Des. 16 117-127 (2007).
- Krčadinac, V.: Construction and classification of finite structures by computer. PhD thesis, University of Zagreb, in Croatian. (2004).
- Li, Z.-W., Chen, L., Zeng, L., Lin, S., Fong, W.H.: Efficient encoding of quasi-cyclic low-density parity-check codes, IEEE Trans. Commun. 54, 71–81 (2006).
- Ling, A.C.H.: Difference triangle sets from affine planes, IEEE Trans. Inform. Theory 48, 2399–2401 (2002).
- Lipman, M.J.: The existence of small tactical configurations. In: Graphs and Combinatorics, Springer Lecture Notes in Mathematics 406, Springer-Verlag, pp. 319–324 (1974).
- 45. Longyear, J.Q.: Tactical constructions, J. Combin. Theory, ser. A, 19, 200–207 (1975).
- 46. Martinetti, V.: Sulle configurazioni piane μ_3 . Annali di matematica pura ed applicata (2) 15 1–26 (1887-88).
- Mathon, R.: Divisible semiplanes. In: Colbourn, C.J., Dinitz, J. (eds.) The CRC Handbook of Combinatorial Designs, 2-nd edition, Chapter VII.3, pp. 729–731. CRC Press, Boca Raton (2007).

- Mendelsohn, N.S., Padmanabhan, R., Wolk, B.: Planar projective configurations I, Note di Matematica 7, 91–112 (1987). http://siba-ese.unisalento.it/index.php/notemat/issue/view/196.
- 49. Pepe, V.: LDPC codes from the Hermitian curve, Des. Codes Crypt. 42, 303–315 (2007).
- 50. Ruzsa, I.Z.: Solving a linear equation in a set of integers I, Acta Arithmetica 65, 259–282 (1993).
- 51. Shearer, J.: Difference triangle sets. In: Colbourn, C.J., Dinitz, J. (eds.) The CRC Handbook of Com-
- binatorial Designs, 2-nd edition, Chapter VI.19, pp. 436–440. CRC Press, Boca Raton (2007).52. Shearer, J.: Table of lengths of shortest known Golomb rulers,
- http://www.research.ibm.com/people/s/shearer/grtab.html.
- Shearer, J.: Modular Golomb rulers, http://www.research.ibm.com/people/s/shearer/mgrule.html.
 Shearer, J.B.: Difference triangle sets constructions, IBM Research report, RC24623(W0808-045) (2008).
- Singer, J.: A theorem in finite projective geometry and some applications to number theory, Trans. American Math. Soc. 43, 377–385 (1938).
- 56. Swanson, C.N.: Planar cyclic difference packings, J. Combin. Des. 8, 426-434 (2000).