COMPUTER TECHNIQUES IN AUTOMATIC CONTROL

ERROR CORRECTION IN MAIN MEMORY OF A HIGH-CAPACITY COMPUTER

I. M. Boyarinov, A. A. Davydov, UbC 681 .326 7
and B. M. Shabanov

We examine the features and means of constructing uniform test matrices for modified
Hamming codes having minimal ones that correct single and detect double independent
errors and error bytes of length four. A number of uniform test matrices for
(72,64)- and (137,128)-codes are presented which allow a maximally fast coder and
decoder to be constructed in large-scale integrated circuits. The structure of de-
vices for correcting errors in main memory of high-capacity computers are discussed.

1. Introduction

The use of codes that correct errors in computer memories substantially improves their
reliability. In supercomputers, hundreds of millions of operations are executed«per second on
64-bit words [1] whose main (operating) memory is on the order of a million words and a modi-
fied Hamming code of distance four [2-5] is used to improve reliability.

The operations of coding and correcting single errors must be completed during one com-
puter operating cycle. This requirement is met by choosing an element base, a test matrix for
the code, and logical and construction circuits for the coding and decoding devices. The coder
and decoder are usually fabricated on LSI circuits. Therefore, the test matrix for the code
selected must be sufficiently uniform and must at the same time meet the required device oper-
ating speed.

The features and means of constructing uniform test matrices for (72,64)- and (137,128)-
codes that allow maximally fast LSI coders and decoders to be constructed will be discussed
here, along with correcting single and detecting double independent errors and error bytes
of length four. The structure of an LSI coder and decoder intended for correcting errors in
main memory of high-capacity computers is examined.

2. Uniform Test Matrices for Modified Hamming Codes Having Minimal Ones

Matrices A; and A, are mutually uniform if they can be obtained individually from one
another by replacing the rows. If the replacements are cyclic the matrices are cyclic mutuall:
uniform.

A matrix P of size r x k is A-uniform (cyclic A-uniform) if a representation

P=|A, A, ... A, (1)

exists such that for any pair of numbers j; and j, (1 £ ji, j2 S A, and k/\A = v is an integer)
in an r x v-matrix Aj, and Aj, are mutually uniform (cyclic mutually uniform).

The largest A (hereafter denoted A) for which the representation, Eq. (1), with the pro-
perties indicated exists is the level of uniformity for the P matrix. Matrices with A 222
are uniform at level A.

The number of different rows in the Aj, j =1, 2, ..., A matrices of Eq. (1) are desig-
nated f). For uniform matrices, f) < r. %or cyclic uniform matrices, fy = r. The number
f), may be much smaller than r.

The test matrix H = IPQI for an abbreviated (2F~2 + r, 2F”?) Hamming code with a minimal
distance of four, where P is a r X 2Tr-2 matrix corresponding to information symbols, Q is a
square matrix of order r corresponding to the test symbols (for a systematic code Q = I,
and: I is a unit matrix) is uniform at level A if the matrix P is uniform at level A.

To determine the location of an error symbol the syndrome for the Hamming code word
being decoded is compared with each column of the test matrix H.
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1111 1111 : 0000 0000 ; 0000 0000 : 0000 0000 : 0000 1111 : 0000 1111 : 0000 1111 i 0000 1111 : 0111 0000

0000 0000 : 1111 1111 i 0000 0000 : 0000 0000 : 0011 0011 : 0011 0011 : 0011 0011 : 0011 0011 : 1011 0000

0000 0000 i 0000 0000 : 1141 1141 : 0000 0000 : 0101 0101 : 0101 0101 : 0101 0101 i 0101 0101 : 1101 0000

10000 0000 : 0000 0000 : 0000 0000 : 1111 1111 : 0L10 1001 : OL10 1001 : 0110 1001 ; 0110 1001 : 1110 0000
a)y— : : : : : 3 :

e |OOOO 1111 : 0000 1111 : 0000 1111 : 0000 11ft i 111t 1111 : 0000 0000 : 0000 0000 : 0000 0000 : 0000 Ofitt
0011 0011 i 0011 0011l : 0011 0011 i 0011 0011 i 0000 0000 i 1111 1111 ; 0000 0000 i 0000 0000 : 0000 1011
iOlOl 0101 : 0101 0101 : 0101 0101 : 0101 0101 i 0000 0000 : 0000 0000 : 1111 1111 : 0000 0000 : 0000 1101 |
JO[lO {001 i 0110 1001 : 0110 1001 : ®110 1001 : 0000 0000 : 0000 0000 ; 0000 0000 i t1tl 1111 i 0000 1110 |
1212 5003 : 3422 4314 : 4352 5366 : 6451 5001 : 1212 5002 : 3321 4304 : 4342 5356 : 6451 5001 ; 6667 6677
4894 9741 ;0030 4517 ; 6617 6903 ; 2352 2385 : 6672 7529 : 2818 2395 : 8495 4781 ; 4130 0163 ; 5690 7812

a
0111 1111 : 1000 0000 : 1000 0000 : 1000 0000 : 0000 1111 : 0000 1111 ; 0000 4111 : 0000 1111 : 1000 0000
1000 0000 : 0111 1111 : 1000 0000 : 1000 0000 i 0011 0011 : 0011 0011 : 0011 0011 : 0011 0011 i 0100 0000
1000 0000 : 1000 0000 : O111 1111 : 1000 0000 : 0101 010t : 0101 0101 : 0101 0101 : 0101 0101 ; 0010 0000
1000 0000 : 1000 0000 : 1000 0000 : 0111 1111 i 0110 1001 i 0110 1001 : 0110 1001 ; 0110 1001 : 0001 0000
(2= : : : i i : :

= 0000 1111 i 0000 1111 i 0000 1111 i 0000 1111 : 0111 4111 : 1000 0000 : 1000 0000 : 1000 0000 ; 00C0 1000
0011 0011 i 0011 0011 : 0011 0011 : 0011 0011 : 1000 0000 : 0111 1111 i 1000 0000 : 1000 0000 : 0000 0100
0101 0101 0101 0101 i 0101 0101 i 0101 0101 i 1000 0000 : 1000 0000 : 0111 1111 ; 1000 0000 : 0000 0010
10110 1001 i 0110 1001 i 0110 1001 i 0110 1001 : 1000 0000 : 1000 0000 i 1000 0000 : 0111 1111 i 0000 0001

b -
Fig. 1. Uniform minimal test matrices for a (72,64)-code.
The comparison circuits (decoders) for mutually uniform matrices are identical. The

complexity of a decoder depends on the regularity of the columns; specifically, on the exist-

ence of common terms in the columns. The columns in cyclic mutually uniform matrices do not,

generally speaking, have common and regular terms.

A numerical locator for a column (hg,

1
ber N = Z hi2it
=1

The regularity of the columns is defined by a rule associated with their numerical loc-

ators.

., h;)T (T is the transpose symbol) is the num-

We will incorporate the following matrices into our examination.

¢al loecator.
which is an inversion of the sum (the sum) of rows in M.
is odd (even).

An u x 2-matrix Ly consisting if identical columns having numerical locator N is called a

matrix locator.

We designate Lﬁi and Lﬁ

tively.

M
Mutually uniform ” Lll matrices are constructed by respectively combining the M,,

"

A matrix M, of size

v x m consists of m = 2V different columns of length v arranged in order of increasing numeri-
A matrix M,,'(M,") is obtained from M, by adding the rows of M, to the last row,
The weight of each column in M,,'(M,")

5 to be the matrix locators whose columns are odd and even respec-

Ml

and MS matrices having locators Ly, L&i’ and Ly..

matrices are mutually uniform if columns in the LN, and LN, ma-

Thus, “ AL,' and HMv
I LN‘ LNz
trices have identical weight.

The test matrix for a (72,64)-code is shown in Fig. la, and its structure can be given as

Lf L' L' L' M” M M M

H“’=||P(”Q“)[|=l Ma” Ms” M;” Ms” Ls’ L" Lzl L1’

o s

The level of uniformity for a H(1) matrix is eight.

By summing and replacing the rows of the g(1) matrix, a reduced-partitioned matrix H(é)
is obtained (see Table 6 [5]). The H ; matrix has the same level of uniformity as does
H(1), but more ones in each row.
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If we exchange locations for the first columns of all eight mutually uniform matrices
in P with the corresponding columns of the Q(l) matrix we obtain the H\?) matrix of Fig. 1b.
The H(2) matrix is a reduced-partitioned matrix convenient for decoding, but one column
differs from those remaining in matrices obtained from L;' matrices and complicates the trans-
fer operation when decoding.

The number of logic levels in a logic circuit in which a test symbol or a syndrome sym-
bol is computed depends on the number of ones in the corresponding row of the test matrix.

Computing the sum of N binary symbols in modulo two is done in'a combinational circuit
consisting of two-input or three-input adders as well as, possibly, combinations of these.
The number of logic levels in each case is [log, N], [logs N] and i + j, respectively, where
{al is the smallest integer greater than or equal to a, N < D, and D is the smallest integer
of the 2%3m, p = 2i3j,

The time needed to code and compute a syndrome is determined by the number of ones in a
row of the test matrix having the maximal number of ones.

The location of an error symbol is uniquely determined by r — 1 of r syndrome symbols.

A smaller number of ones in a test matrix produces, in principle, a smaller number of
address in the coder and decoder and thereby greater reliability in these devices.

Therefore, it is desirable when meeting a required level of uniformity to choose a test
matrix having the fewest ones and the least maximal number of ones in a row (by excluding a
row of ones).

There is a row of ones in a test matrix for the standard Hamming code and only the num-
ber of ones in r — 1 rows can be minimized. Such a row does not exist in a test matrix for-a
modified Hamming code and all the columns have odd weight [2, 3].

For a given length n and number of test symbols r a modified Hamming code and its test
matrix are minimal if the test matrix for the code contains a minimal number of ones Hmin and
the number of ones in each row is not more than [upjn/r].

There are 27 ones in every row of a minimal (72, 64)-code. The H(1), H(%), and H(2)
matrixes for a (72, 64)-code are minimal and have a level of uniformity eight.

A minimal test matrix for a modified (137, 128)-Hamming code contains 481 ones and no
more than 54 ones in each row. A minimal uniform test matrix for a (137,128)-code having a
level of uniformity A = 4 is

H(”="A1 Az Aa At 10“1 (3)

where

RVU R U, RIF

Jo i J1 ,
1000 1000 1100 1101
1000 1001 0010 0411
0100 0011 0001 1014
0010 1100 0101 0104

0100 0100 1011 0101
0004 0010 0114 0010
0011 0010 4000 1110
0001 0101 0010 1010

A=

a U, matrix is obtained from a RgU, matrix by eliminating the last column F = (01000100)T,
R, is a matrix for a cyclic row replacement of order u, J, = (J0), J; = (J1), and J =
CF11600000011100), 5 = 1, 2, 3, 4.
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Increasing the level of uniformity increases the number of ones in a matrix. For a
level of uniformity A = 8 the minimal number of ones in a uniform (cyclic uniform) test matrix
for a systematic modified (137, 128)-Hamming code is 489 (505).

A uniform (A = 8) test matrix for a (137, 128)-code having these properties is

Y U, RyU, RgUO... ;Uo i

N LI (4)

The maximal number of ones in rows of an H(“) matrissis 55.

A cyclic uniform test matrix for a (137, 128)-code is

H(”_——"Ag A,... 4, I'”’ -

where

1010 0001 0100 1011
1010 0010 0011 0101
1001 1000 0011 0101
0101 0001 0011 0110

4,=1{ 0110 0010 1010 1100 |, A= Ry Ay
0000 1101 0101 1001
0100 1000 1441 0010
0001 0400 0100 1011
0000 0110 1100 1110

The H(5) matrix has a level of uniformity eight. There are 505 ones in this matrix and
no more than 57 ones in each row. >

Along with uniform matrices, we will examine almost uniform matrices. This substantially
expands the class of test matrices that allow a coder and a decoder to be realized in LSI.

Matrices A and A' of size £ xm (m > log, %) are mutually almost uniform if they can be
written

a ] a5,

where Tp and Tp' are nonzero, mutually uniform matrices and L and L' are matrix locators.

The difference in column weights in the L and L' matrices is called the level of non-
uniformity in the A and A' matrices. If the level of nonuniformity in the A and A' matrices
is zero, these matrices are mutually uniform.

A matrix P of size r xk is almost A-uniform if there is a representation of the type
Eq. (1) in which the A; and Aj matrices are mutually almost uniform.

The largest A (designated A') for which such a representation exists is the level of uni-
formity for an almost uniform matrix. Almost uniform test matrices can be constructed for
more than just Hamming codes. Thus, an almost uniform test matrix for a Bose—Chaudhuri-—
Hocquenghem (BCH) code having a minimal distance six was constructed for implementation in
LSI [6]. When r is odd a test matrix for a Hyp (2F"2 + r, 2Y"2)-Hamming code with minimal
distance four is frequently given as

91
P e Pry Q:- (7)
EElag=y — i T T Lk
11...1100...0i00...0} 1
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where Heo; = NPr_lQ¥-1H is a test matrix for a (2¥"2 + r — 1, 2T~ 3)-Hamming code with d = %
and (qi, ..., qp-1)T is an arbitrary column of the Q- matrix.

If Pyr-, is a uniform matrix having a level of uniformity A, a matrix P, will be almost
uniform with a level of uniformity A' = 24.

Thus, ifsfor Hee oo g metrix H(1) i chosen a test matrix H(®) (see Fig. la) for a (137,
128)-code constructed according to Eq. (7) will have a level of uniformity A = 16,

3. Uniform Test Matrices for a Modified Hamming Code That Corrects Single and Detects
Double Errors and Error Bytes of Length Four

The main memory of a supercomputer is organized so that each bit in a code word is locateqd
in a separate LSI microcircuit. Microcircuits corresponding to one or more (two or four) word
bits can be located on a substrate. In the latter case the problem arises of detecting error
bytes while correcting single and detecting double errors [3]. The practically important
problem of detecting error bytes of length four while correcting single and detecting double in-
dependent errors in (72, 64)- and (137, 128)-codes is examined in this section.

Test matrices for a (72, 64)-code that detect all error bytes of length four are not mini-
mal and have a level of uniformity A < 2 [3, 7]. Uniform test matrices having A = 4 and A =8
that have minimal, or nearly minimal ones are constructed below.

A matrix
H(7)=__“U(7) T‘U(” T‘zU(” T"U(” Q(””, (8)
where
1101 1110 1000 1100 0100 1100
0100 0100 1110 1000 1000 1100
1000 41000 0100 1000 1100 0100
0010 0001 0001 1010 1100 1000
U(7)= % 0(7)= :
011 1011 0010 0011 0001 0011
0001 0001 1011 0010 0010 0011 || -
0010 0010 0001 0010 0011 0001
| 1000 0100 0100 1010 0011 0010
0001 | |
R, 0 1000
T4="o R Ba=low0|"
0010

has a level of uniformity A = 4 and yields a minimal (72, 64)-code that corrects single and
detects double independent errors and error bytes of length four.

To prove that a code is capable of detecting error bytes of length four we need only
verify that the sum of three and four test matrix columns corresponding to any error byte are
not equal to one matrix column. In H(7) the sums of any three columns are columns of the
(2, 3) and (3, 2) type that do not occur in the matrix. (A column vector of length eight is
a (w;, wy;) column if the upper four bits of the column have weight w; and the lower four have
weight w,). :

An H(7) matrix can be obtained from an H(!) matrix by replacing columns in the order
shown in the two lower rows of Fig. la, where the notation % in the example denotes the number
275

A reduced-partitioned test matrix for a modified (72, 64)-Hamming code that detects error
bytes of length four has no fewer than 29 ones in each row, because it cannot contain columns of the
(3, 0) and (0, 3) type. A uniform A = 4 matrix H(®) having these properties is shown in
Fig. Za;

An H(®)matrix has the following structure

HO—|[UOTUOT U T Uw,), g
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1010 1010 1001 1111 : 0100 0100 0100 1110 : 0100 1001 0100 0011 : 1001 0100 1010 0001 : 1000 0000
1001 0100 1010 0001 i 1010 1010 1001 1111 i 0100 0100 0100 1110 : 0100 1001 0100 0011 i 0100 0000
0100 1001 0100 0011 i 1001 0100 1010 0001 § 1010 1010 1001 1111 i 0100 0100 0100 1110 : 0010 0000
= 0100 0100 0100 1110 0100 1001 0100 0011 i 1001 0100 1010 0001 i 1010 1010 1001 1111 i 0001 0000
HF = : : : i !
1010 1010 0110 1111 : 0001 0001 0001 1011 i 0001 0110 0001 1100 : 0110 0001 1010 0100 : 0000 1000
0110 0001 1010 0100 : 1010 1010 0110 1111 i 0001 0001 0001 1011 : 0001 0110 0001 1100 : 0000 0100
0001 0110 0001 1100 i 0110 0001 1010 0100 i 1010 1010 0110 1111 : 0001 0001 0001 101t i 0000 0010
0001 0001 0001 1041 ; 0001 0110 0001 1100 : 0110 0001 1010 0100 i 1010 1010 0110 {111 i 0000 0001

0001 1110 ; 1000 0111 : 1100 0011 : 0011 1100 : 0111 1000 : 0000 1111 : 0000 1111 : 1110 0001 : 1000 0000
0011 1100 ; 0001 1110 ; 1000 0111 : 1400 0011 i 1110 0001 ; 0111 1000 : 0000 1111 : 0000 1111 : 0100 0000
1100 0011 ; 0011 1100 : 0001 1110 : 1000 0111 : 0000 1111 : 1410 0001 i 011t 1000 : 0000 1111 : 0010 0000
1000 0111 : 1100 0011 : 0011 1100 i 0001 1110 : 0000 1111 i 0000 1111 i 1110 0001 : 0111 1000 i 0001 0000

0111 1000 ; 0000 1111 i 0000 1111 i 1110 0001 i 0001 1110 } 1000 0111 ; 1100 0011 : 0011 1100 i 0000 1000
1110 0001 { 0111 1000 i 0000 1111 i 0000 1111 i 0011 1100 : 0001 1110 i 1000 0111 : 1100 0011 : 0000 0100
0000 1111 i 1410 0001 i 0111 1000 i 0000 1111 } 1100 0011 i 0011 1100 i 0001 1110 : 1000 O1t1 : 0000 0010
0000 1111 ;0000 1111 ;1110 0001 ; 0111 1000 i 1000 0111 i 1100 0011 ; 0011 1100 i 0001 1110 | 0000 0001

H(Q) =

Fig. 2. Uniform test matrices for a (72, 64)-code with d = 4 that detect error bytes

four.
where U(a)="Box Boz B:o D1303”y 2
B”_"H+mﬁmer+Pi’m f oy H
1 = m; ymi + myimi +my+ p||’
1 0 0 0 1
10 -4 10 _lo L
mo_- 0 9 m; = O ’ my = 1 ’ mg = 0 ’ P —= 1 »
0 0 0 1 1t

D _mk+mrlmk+mrima+p{mf+p"
o=l m,+p i mi+p \me+m me+m|’

the "+" sign in operations on the p and my, u =0, 1, 2, 3 column vectors means bit-by-bit
addition in modulo two.

In a U(®) matrix we can replace any submatrix Bj; or Dgiky with TkuBij or T B rr. ra-
s%ectively. This leads to replacing the columns and redistributing the ones in rows of the
H{®) matrix. Thus, having replaced D;s,5 with T,%D;3,5, we obtain a matrix U(®) having seven
ones in each row. Other columns of weight five may be included in H(3), having replaced
Di303 with the matrices Djs535 Diz02s Di201s Di2125 and Dyjp3.

Increasing the level of uniformity of a test matrix increases the number of ones it con-
tains. The H(s) test matrix of Fig. 2b allows errors of length four to be detected and
and contains 33 ones in each row. The H'®/) matrix is uniform at level A = 8 and is almost
uniform at level A' = 16.

The structure of the H(g) matrix is

F RF RF RIFIGC REG R R

H(9)= ! S =
6 RG RG RGIiF BRF RF R

(10)

where F=|¢®| and G=|gg| ; the bars indicate that all elements of the matrix are inverted;
o=[m,+m;, m,, m,, mytm,| and g=|m, mytm, myatm, m|.

The construction, Eq. (7), is used to build a test matrix for a (137, 128)-code with d =
4 that detects all error bytes of length four. Having substituted this matrix into H{7/ we
obtain an almost uniform matrix H(1°) having a level of uniformity A' = 8.

4. Structure of the Coder and Decoder

To obtain the maximal speed promised by operations paralleling and the possibility of
computing and recording data simultaneously the main memory of a high-capacity computer is
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Information to be recorded

Computed information

Fig. 3. Block diagram of the main memory in a
high-capacity computer (MU-1, MU-2, ..., MU-n
are independent memory units, and CU is the
control unit).

composed of n (n 2 8) memory units. The block diagram of the main memory in a high-capacity
computer is shown in Fig. 3.

The coding and decoding devices (coder and decoder) are separate devices of the pipeline
type. The next word arrives at the device input and the previous word arrives at the output
on every clock pulse.

The time required for coding and detecting single errors must be less than one computer
operating cycle and is measured in nanoseconds [1, 4]. These times are governed not only by
the number of logic levels (the coder and decoder are combinational circuits), but depend on
the lengths of the conductors connecting the functional elements. The number of junctions
between microcircuits also affects this time.

Therefore, constructing the devices on LSI allows greater operating speed to be obtained
than is possible with medium- and small-scale integration. For reasons of technology and
construction, it is desirable to use one type of LSI to construct the coder and decoder. At
the same time, a coder and decoder, each constructed on its own type of LSI, can be effective
in specific situations. When this is done circuits that perform other functions, specifically,
multiplexing, are included in an LSI coder.

Hamming code coder and decoder circuits other than LSI contain medium- and small-scale
integrated circuits [5, 8]. The approach examined in this section for achieving maximal speed
consisting of constructing the coder and decoder only on LSI without using medium- and small-
scale integration and minimizing the number of junctions between the microcircuits.

If the test matrix for the code being used is uniform or almost uniform the coder and
decoder may be constructed of the same type of units, the connections between and within which
are regular and nearly minimal.

Single errors in the information symbols are corrected and double errors and errors of
even weight are detected during decoding (as in standard algorithms [5, 8]), along with all
odd weight errors that are potentially detectable by the code [3]. When this happens the
syndrome is compared with each column of the test matrix and if the syndrome does not agree
with any of them, the decoder aborts the decoding operation.

This approach is considered in an example of a coder and decoder for a minimal (72, 64)-
code with a uniform test matrix (A = 8). The block diagram of a decoder consisting of eight
identical LSI is shown in Fig. 4.

Aword (a;'; ...584,', €;', ..., ©4') arriving at the decoder input is distributed around
the LSI as follows: the a;', ..., 3%, ¢c,', cy'yiey! symbols arrive at the input register
Of tHeTicet I61, tha &,', ..., a;.', ©5'; c3', c,' symbols arrive at the input register of

the second LSI, etc.
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TABLE 1. Characteristics of Test Matrices 6i‘:'/or: (72 64)- and (137, 128)-Hamming Codes

coge, wrods
2 Number of |Maximal Number Eaw oy o
Levelof h : Distribution of ones
i ; onesinthe [number of : s | Marix ; :
Code Matrix uniform- | g erix i fa i g pEOperties efes in the matrix Comments
1ty four rows
7480 8 216 27 5| 8408  [0,5639(U, M. ML | (8, 0, 0, 0, 4, 4, 4, 4; 3)| Fig. 1, a
H([n 8 328 41 5| 8408  10,5639|U, UL, RP | (0, 8, 8, 8, 4, 4, 4, 4; 1)| Table 6 [5]
H® 8 216 27 618408 (0,5639/UsRP, M | (7,1, 1,1, 4, 4,4, 4 1)| Fig. 1, b
Hy 8 264 33 58912 10,5977\/U, ML, RP | (8, 0, 0, 8, 4, 4, 4, 4; 1) Fig.. 3(4)[3]
(72,64) ", 8 216 27 88392 10,5628/CU, M, RP | (8, 3, 3, 2, 1, 3, 3, 3; 1)| Fig.. 5[2]
Hy 3 248 31 818200 [0,5500U, RP,OB | (10, 20; 1), (11, 19; 1) Fig. 2[7]
HO 4 216 27 8 | 8408 [0,5639{U, M, 0B | (9, 5 4, 6; 3 ®
H® 4 232 29 8 | 8256 0,5537|/U, RP,OB (10, 6, 6, 6; 1) Fig. 2, a
o) 8 264 33 78912 |0,5977|U, RP, OB | (4, 4, 4, 4, 4, 4, 4, 4; 1)[ Fig. 2, b
H® 4 481 54 9 | 56354 10,5377|\U, M, RP | (13, 13, 13, 13; 1), 3)
(13,713, 18, 44 1)
H® 8 489 55 9 | 56252 |0,5367|U, RP (6, 6,6,6,6, 6, 6, 6; 1),| (4
(bl & )
(137,128)
H® 8 505 57 9 | 55792 |0,5323|CU, RP (et 0.7, 1, 2.0 T 15)
(6 6l 1 T )
H® 16 476 65 5| 57339 |0,5471|AU, E/O (D:Fig. 1,2 |
’ . »
g0 8 476 65 9 | 57339 |0,5471| AU, OB, (7, (8)
; : ‘E/0
The functions
t ¥ ’ ! ’
(Pl( )=an+2+a%/+3+a'x:-5+an+87 (Pz( )=ax/+2+ax+’.+a;+6+a;4.s,
L 7 ! 4 - 2
@ =Cst 0 Ot al,, @ ma) e al,, (12)
%=8(l—1)

are defined in the 2-th (2 =1, 2, ..., 8) LSI in unit 3 of the syndrome preparation computer.

Values of the @:,..., @ functions arrive at the output of the 2-th LSI and are then

distributed to the inputs of all the LSI. The functions (pﬁ”=2ax,+p computed in unit 2 of

p=1

the syndrome preparation computer are used only in the 2-th LSI. At the v-th ol o h)

LSI of the v-syndrome symbol computer (unit 4) input arrive the ¢, ¢.®, ¢,” and @,®. At the
u-th (u =5, ..., 8) LSI of the u-syndrome symbol computerinput arrive the q>,._‘,(p,fi)‘, % and P

A function

S.= Ecp“”+ P ta, 8= Z%‘fH‘P;")“m ik

p=>5 p=1

where y,= Zc,'+c,,' and u, =2 C e v=1,...,4 p=5,... ,8 is determined at the syndrome sym-

p=1 p=5
bol computer in each LSI.
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G 64172 2
7 I
| TR Tod | 7042
| g L
S g, s e s 2(8)
6 3 6 J
; TN . L D 7 RG
L T J E-Tqyf T mi’a
¢ s el
Y g, ..,

Fig. 4. Block diagram of a decoder for a (72, 64)-code fabricated
on LSI circuits [1) input register; 2, 3) syndrome preparation com-
puters; 4) syndrome symbol computer; 5) error position symbol shaper;
6) corrector; 7) output register; 8) error analyzer].

Values of the syndrome symbols arrive at the error position symbol generator and errors
analyzer in each LSI. In the errors position symbol generator (decoder) in the i-th LSI for
the syndrome S = (S,, S,, ..., Sg) a double vector £(i) = (21+8(i—1), «e., Ya+s(i-1)), is gen-
erated such that all, or all but one symbol %t are zero. In the latter case the t-th column
of a test matrix H(l} must be equal to the transposed syndrome ST.

In the corrector of the i-th LSI, in the error symbols position generator from whi
vector 2\1/ having a nonzero 2+ is obtained, ar = a¢' + 2+ errors are corrected and corrected
information symbols arrive at the output register.

In the errors analyzer of the i-th LSI the syndrome is compared with the test matrix
columns corresponding to the information symbols aLJU_U,n.,aLJU_I, and test symbol cj. If
ST is not equal to one of these columns a Yi signal that single errors are absent from the
i-th LSI is generated. The signals that single errors are absent from all LSI arrive at the
errors analyzer of one of the LSI (in Fig. 4 this is the first LSI) and if these signals are
equal to eight and S # 0, a decoding abort signal y is generated.

A test'symbol c; is computed from (compare H(1) and H(;))

8 4
o= Zcpv‘”’ﬂv', Cu= Z S, (14)
p=1

p=>5
where

& 8
uv°=2¢§”+q>§”, uu'=2w§p’+¢§"’; v=1,...,4; p=5,...,8,
p=1 p=>5

in the syndrome symbol computer during coding.

Replacing the columns of a test matrix is equivalent to reswitching LSI inputs. There-
fore, the coding and decoding devices for a (72, 64)-code with test matrices H(l), H(%),
u(2) and H(7) can be constructed on a single type of LSI.

Comparative characteristics of (72, 64)- and (137, 128)-codes examined here and optimal
in terms of uniformity are shown in Table 1. The folowing designations are used in the column

"matrix properties': @ — uniform, CU — cyclic uniform, AU — almost uniform, M — minimal,
ML — numbered with a matrix locator, RP — reduced-partitioned, OB — detects error bytes at
the same time it corrects single and detects double independent errors, and E/O — has columns

of equal, as well as odd, weight (if this designation is absent all columns in a matrix have
odd weight).
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The (72, 64)- and (137, 128)-Hamming codes shown in Table 1 correct single and detect
double independent errors and, in a number of cases, error bytes of length four. The decod-
ing algorithm examined here even allows a substantial number of triple errors to be detected
at the same time. The fraction of incorrectly decoded triple errors is & = AA“/CS, where A, is
the number of code words of weight four [2]. For a minimal (72, 64)-code, A, 2 8392 [9]. For
arbitrary (137, 128)- and (72, 64)-Hamming codes with d = 4, A, 2 55182 and A, > 8157 respec-
tively [10]. Numerical values of A, shown in Table 1 were calculated on a BESM-6 computer.
The distribution of ones in the H(53 and H(19) matrix rows were obtained by applying Eq. (7)

to H(1) and H(7),
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