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Introduction

The main goal of science and real life – getting the right predic-
tions about the future behavior of complex systems on the basis of
their past behavior.

Many problems, occurring in the real life, cannot be solved us-
ing previously known methods or algorithms. This is for the reason
that we are not known mechanisms generating baseline data or the
information available for us is insufficient to build a model explained
data. As they say, we get the data from “the black box”.

Under these conditions, we have no choice but learn available to us
sequence of input data and to try to construct predictions improving
our scheme in the process of prediction. The approach, in which past
data or examples are used for the initial formation and improvement
schemes of prediction is called Supervised machine learning.

Note two types of machine learning methods: batch and online
learning. Under batch learning, a part of a data set – training set is
used for training. Once the method of prediction is determined by
the training set, it does not change more in the future. Further this
method is used for performing predictions on a testing set.

In the second type of learning – online learning, the process of
training never stops. We produce predictions and provide training
permanently in the process of data availability.

Machine learning methods of the first type will be considered in
Chapters 1 and 2. These chapters are devoted to statistical theory of
machine learning and support vector machines.
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Methods of the second type will be studied in Chapter 3 in which
a theory of the well calibrated forecasting is presented, and in Chap-
ters 4 and 6, where competitive theory of prediction or prediction with
expert advice are studied.

In the statistical theory of machine learning the problems of clas-
sification and regression are considered. The learning process starts
with selecting a classification or a regression function from the pre-
defined large class of such functions.

When the prediction scheme is specified, we have to assess its ca-
pability, ie, the quality of its predictions. We first recall, the process
of an online statistical model assessment. We suppose that the ob-
served data is generated by some stationary stochastic process. Given
past outcomes, we estimate the parameters of this process and up-
date our prediction rule. In this case, a risk functional of a given
prediction rule is defined as the mean value of some loss function.
This expectation is calculated with respect to the “true” underlying
probability distribution generating data. Different prediction rules
are compared according to values of the risk functional.

In the statistical theory of machine learning, we also refer to some
underlying probability distribution generating data. We assume that
each training or test example is generated at random from a fixed
but unknown to us probability distribution and that the data is in-
dependently and identically distributed (i.i.d.). The first step aside
from the classical theory is that the distribution generating the data,
we may not be known and we can not estimate its parameters. In
this case, the bounds of classification (or regression) errors are distri-
bution independent. We refer to such a bound as to a generalization
error.

A set of methods for assessing the quality of classification and
regression schemes is called generalization theory.

In this theory, the estimates of classification error are computed,
provided that the training was carried out on a random training sam-
ple large enough and its resulting classification function agreed with
the training set.

The most important parameter of such an assessment is capacity
or dimension of a class of classification functions. Usually in assessing
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of classification errors the length of a training set and the capacity
of a class of classification functions are competing – the longer the
training set the greater the capacity of a class of hypotheses can be
used.

Methods for computing the generalization error and dimension
theory of classes of functions are discussed in Chapter 1.

Chapter 2 is devoted to construction of algorithms of classifica-
tion and regression. Basically, these are algorithms that use Support
Vector Machines.

The theory of sequential prediction (Chapter 3) does not use the
hypotheses on existing of stochastic mechanism generating the data.

Observed outcomes can be generated by an unknown mechanism,
which can be either deterministic or stochastic, or even adversatively
adaptive to our predictions (ie, it can use our past predictions for
generation of the next outcome).

A natural problem arises – how to evaluate the quality of our
predictions. The risk function in the form of the mathematical ex-
pectation can not be used, since a probabilistic model is undefined.
We shall change them for specific tests that evaluate the disagree-
ment between the predictions and the corresponding outcomes. We
consider the calibration tests. The purpose of a forecasting algorithm
– to output predictions that passed all tests of calibration.

The basic principles of the prediction with expert advice are dis-
cussed in Chapter 4. In the theory of prediction with expert advice,
the effectiveness of any forecasting algorithm or a learner is evalu-
ated in the form of competition with the a set of expert methods or
just the experts. Some loss function measuring the conformity of the
prediction and outcome is fixed. The set of experts can be finite or
infinite. Experts are presented by the different forecasting methods,
stochastic or deterministic. The experts offer their predictions before
the outcome be presented. The learner observing these predictions
and the cumulative losses of experts, outputs its prediction. After
that a new outcome appear and the experts and the learner suffer
their losses. The quality of the learner is evaluated in the worst case,
namely, in the form of the difference between the cumulative loss of
the learner and cumulative losses of the experts. The minimal value
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of this difference is called regret of the learning algorithm.
In Section 4.1 we study the weighted majority algorithm proposed

by Littlestone and Warmuth that is the first known algorithm of
this type. In Section 4.2 we consider the decision-theoretic online
allocation algorithm proposed by Freund and Schapire which solves
the problem of prediction with expert advice in most general setting,
where only losses of of experts are known. We study in Section 4.4
an exponential weighted forecaster that computes its own predictions
using the method of exponential weighting of predictions made by the
experts.

In Section 4.7 the method of decision-theoretic online learning
is applied for constructing the boosting algorithm. In this case “a
weak” learning algorithm that performs just slightly better than ran-
dom guessing can be “boosted” into an arbitrarily accurate “strong”
learning algorithm. The famous algorithm AdaBoost of Freund and
Shapire is presented.

In Chapter 5 we consider the Vovk’s aggregating algorithm which
is in some sense equivalent to all previously considered algorithms.
The aggregating algorithm be applied to some specific loss functions
has significantly smaller regret than algorithms of the exponential
weighting. Some applications of this algorithm will be considered,
in particular, for multidimensional online regression and for Cover’s
universal portfolio selection.

Some elements of the classical game theory are studied in Chap-
ter 6. We consider the two-person zero-sum matrix game and prove
the von Neumann minimax theorem. This proof is in the theory of
machine learning style, it uses the exponential weighting algorithm.
In this chapter, we introduce also the notion of the Nash equilibrium
and the notion of the correlated equilibrium of Aumann.

Chapter 7 is devoted to a new game-theoretic approach to prob-
ability theory proposed by Vovk and Shafer [26]. In this framework,
the games of prediction are presented. The forecasting process is con-
sidered as a repetitive perfect-information game with players: Fore-
caster generating predictions and Nature generating outcomes. The
restrictions for the players are regulated by a protocol of the game.
Any player receives gain or suffer loss at each round of the game. A

10



player wins if his cumulative gain increases indefinitely as the number
of rounds increases. An additional requirement is that the playing
strategy of Forecaster should be “defensive”. This means, that start-
ing with some initial capital the player never incur debt in the process
of the game. An auxiliary player Skeptic determines the goal of the
game. We show that Skeptic can “force” infinite and finite game-
theoretic versions of the law of large numbers from the probability
theory.

Under this approach, the problem of universal predictions dis-
cussed in Chapter 3 is formulated in a natural way. It is shown that
Skeptic can force Forecaster to output forecasts well calibrated on
a sequence of outcomes generated by Nature independently of that
strategy Nature uses. These the well calibrated forecasts are con-
structed using the minimax theorem.

In Chapter 8 the more advanced problems of the game theory are
studied. The basis of the proposed theory is the famous Blackwell
approachability theorem. The Blackwell’s theorem is a generalization
of the minimax theorem for vector-valued payoff functions. Using this
theorem, we construct the well calibrated forecasts for the case of an
arbitrary finite outcome space.

We apply the Blackwell approachability theorem to prove that
empirical frequencies of play in any normal-form game with finite
strategy sets converges to a set of correlated equilibrium if each player
chooses his gamble as the best response to the well calibrated forecasts
of the gambles of other players.

We have mapped out various one-semester courses on machine
learning and prediction based on this guide. The first of them –
“Statistical learning and support vector machines”, can be based on
Chapters 1 and 2. The second course – “Prediction with experts ad-
vice”, can be based on Chapters 4 and 5. The third course – “Games
on prediction”, can be based on the material of Chapters 3, 6, 7
and maybe on Chapter 8. Chapters 6 and 8 can also be a base for
an advanced mini-course “Blackwell approachability theorem and its
applications”.
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Part I

Statistical Learning
Theory
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Chapter 1

Generalization theory

1.1. Classification

1.1.1. Bayes classifier

Given a probability distribution generating pairs (x, y), one may eas-
ily construct a classifier with minimal probability of error.

Let a pair of random variables (X,Y ) taking values in a set X ×
{−1, 1} and distributed with respect to a probability distribution P
are given such that the a posteriori probabilities of objects x can
exist:

P{Y = 1|X = x} = cP (x|Y = 1)P{Y = 1),

P{Y = −1|X = x} = cP (x|Y = −1)P{Y = −1),

where

c =
1

P (x|Y = 1)P{Y = 1}+ P (x|Y = −1)P{Y = −1}
,

Let us denote:

η(x) = P{Y = 1|X = x}.

For any classifier g : X → {−1, 1}, the probability of error is defined:

errP (h) = P{g(X) 6= Y }.

13



The Bayes classifier is defined:

h(x) =

{
1 if η(x) > 1

2 ,
−1 otherwise.

The following proposition shows that the Bayes classifier has a
minimal probability of error. This error is called Bayes error.

Proposition 1.1. For any classifier g : X → {−1, 1}:

P{h(X) 6= Y } 6 P{g(X) 6= Y }. (1.1)

Proof. For any classifier g, the conditional probability of error
given X = x is defined:

P{g(X) 6= Y |X = x} =

= 1− P{g(X) = Y |X = x} =

= 1− (P{Y = 1, g(X) = 1|X = x}+

+P{Y = −1, g(X) = −1|X = x}) =

= 1− (1g(x)=1P{Y = 1|X = x}+

+1g(x)=−1P{Y = 0|X = x}) =

= 1− (1g(x)=1η(x) + 1g(x)=−1(1− η(x))}),

where for any predicate R(x) we write 1R(x)(x) = 1 if R(x) is true
and 1R(x)(x) = 0 otherwise.

The similar equalities hold for the classifier h(x).
Notice that 1g(x)=−1 = 1− 1g(x)=1 for any classifier g. By defini-

tion of Bayes classifier, for all x ∈ X :

P{g(X) 6= Y |X = x} − P{h(X) 6= Y |X = x} =

= η(x)(1h(x)=1 − 1g(x)=1) +

+(1− η(x))(1h(x)=−1 − 1g(x)=−1) =

= (2η(x)− 1)(1h(x)=1 − 1g(x)=1) > 0.

Integrating both sides of this inequality by x, we obtain the needed
inequality (1.1). 4

To use the Bayes classifier in practice we have to know the a pos-
teriori distribution η(x) that is defined by the distribution P (x, y)
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generating pairs (x, y). But statistical parameters of mechanisms
generating data is usually hard to recover and even they fully un-
known to us.

The focus of the theory (and practice) of classification is to con-
struct classifiers g(x) whose probability of error is as close to the
Bayes error as possible. Obviously, the whole arsenal of traditional
parametric and nonparametric statistics may be used to attack this
problem. However, the high-dimensional nature of many of the new
applications (such as image recognition, text classification, micro-
biological applications, etc.) leads to territories beyond the reach of
traditional methods. Most new advances of statistical learning theory
aim to face these new challenges.

In what follows the introduction of new probability distribution
free techniques of handling high-dimensional problems such as boost-
ing and support vector machines have revolutionized the practice of
pattern recognition.

1.1.2. Problem setting

Machine Learning theory solves the problems of prediction of a future
evolution of complex systems in case where no information is given
about mechanisms defining this evolution.

In this books we consider two classes of problems of statistical
learning theory: classification problems and regression problems.

The problem of pattern classification is about guessing or predict-
ing the unknown class of an observation. An observation is often a
collection of numerical and/or categorical measurements represented
by a n-dimensional vector x that in some cases may be a numerical
representation of a curve or of an image.

In general case we simply assume that x ∈ X , where X is some
abstract measurable object space equipped with an σ-algebra of Borel
sets. The unknown nature of the observation is called a class. It is
denoted by y and in the simplest case takes values in a finite set D.

In what follows we consider a binary case where D = {−1,+1}.
The reason is simplicity and that the binary problem already captures
many of the main features of more general problems. Even though
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there is much to say about multiclass classification, this lecture notes
does not cover this increasing field of research.

First, we recall the classical setting of PAC-learning model pro-
posed by Valliant [32].

PAC-learning. To formalize the learning problem, we introduce
a probabilistic setting. We assume that each training or test example
x is generated at random from a fixed but unknown distribution P
and that the data is independently and identically distributed (i.i.d.).
We next assume that each label is generated by a fixed but unknown
target concept c ∈ C. In other words, we assume that the label of x
is c(x)

Assume that some hypothesis h is defined using a random sample
generated by the distribution P . By this definition h can be consid-
ered as a random variable. We then define the error of hypothesis h
with respect to the target c as

errP (h) = P{h(x) 6= c(x)}.

The function errP (h) is a random variable, since h is defined by a
random sample.

Our goal will be to find a hypothesis h such that the probability
that err(h) is large is small. In other words, we would like to claim
that h is probably approximately correct. The “approximately” can
be quantified through an accuracy parameter ε. In particular, since
we will generally not have enough data to learn the target c perfectly,
we require only that err(h) 6 ε. The “probably” can be quantified
through a confidence parameter δ. We can never rule out the unlucky
event that we draw an unrepresentative training set and are unable to
learn a good approximation of c with the data we have. We instead
require that we are able to learn a good approximation with high
probability. In particular, we require that err(h) 6 ε with probability
at least 1− δ. This leads to the following definition of PAC learning:

An algorithm A PAC-learns a concept class C using a hypothesis
class H if for any c ∈ C, for any distribution P over the input space,
for any ε ∈ (0, 1/2) and δ ∈ (0, 1/2), given access to a polynomial
(in 1/ε and 1/δ) number of examples drawn i.i.d. from P and labeled
by c, the algorithm A outputs a function h ∈ H such that err(h) 6 ε
with probability at least 1− δ.
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In this lecture notes, we consider a slightly different model con-
sidered in the statistical learning theory. We give up the idea of the
concept and we assume that the pairs (x, y) of objects x and their la-
bels y are generated i.i.d. by some probability distribution on X ×D.

Strongly speaking, the pairs (x, y) are realizations of a pair of
random variables (X,Y ) distributed with a density P (x, y).

A classifier, or a classification rule, or a hypothesis, is a function
h : X → D that defines a partition of objects from the set X . In bi-
nary case the classifier h : X → D is also called an indicator function.
A set H of hypotheses is often called a hypotheses class.

In some cases, the indicator function h is defined using some real
function valued f : X → R and a threshold r ∈ R:

h(x) =

{
1 if f(x) > r,
−1 otherwise.

We measure the performance of a classifier h by its probability of
error. Let a pair (x, y) be a realization of a random variable (X,Y ).
The classifier h errs on x if h(x) 6= y. We evaluate the performance of
a function h by its classification error that is the probability of error

errP (h) = P{h(x) 6= y} = P{(x, y) : h(x) 6= y}.

The function errP (h) is also called a risk-functional.
Main goal of the classification task is to construct a classifier

h ∈ H with minimal probability of error errP (h).
A simple and natural approach to the classification problem is

to consider a class H of classifiers h : X → {−1,+1} and use
data-based estimates of the probabilities of error errP (h) to select
a classifier from the class. The most natural choice to estimate the
probability of error errP (h) is the error count on a training sample
S = ((x1, y1), . . . , (xl, yl)), where xi ∈ X and yi ∈ {−1, 1} for all
i = 1, . . . , l.

We use the assumption that the ordered sample

S = ((x̄1, y1), . . . , (x̄l, yl))

is generated by some i.i.d. source. This means that some probability
distribution P on the probability space X × D exists and that all
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pairs (x̄i, yi), i = 1, 2, . . . , l, are identically and independently dis-
tributed according to P . We will also use the corresponding product
probability P l = P × P · · · × P on the product space (X ×D)l.

In binary case, the training sample S is divided on two subsam-
ples: S+ = ((x̄i, yi) : yi = 1) – positive examples, and S− = ((x̄i, yi) :
yi = −1) – negative examples.

The empirical error of a classifier h on a training sample S is
defined as the portion of mistakes on the sample:

errS(h) =
1

l
|{i : h(xi) 6= yi, 1 6 i 6 l}|.

Here |A| is the cardinality of a finite set A.
We study these notions in Section 1.2 in a more detail.
In the applications considered below, X = Rn, where R is a set

of all real numbers, Rn is the set of all n dimensional vectors, and D
is a finite set.

Elements of Rn are called vectors (points) and denoted by un-
derlined letters: x̄, ȳ, . . . ∈ Rn; in coorditates, we write x̄ =
(x1, . . . , xn)′ – a column-vector. 1

The standard operations will be considered: summation of vectors

x̄+ ȳ =


x1 + y1

x2 + y2

. . .
xn + yn


and multiplication of a vector by a real number:

αx̄ =


αx1

αx2

. . .
αxn

 ,

where x̄ = (x1, . . . , xn)′ and ȳ = (y1, . . . , yn)′.

1Using ′ sign, we specify the type of the matrix representation of a vector –
direct of transposed, but only in cases where this representation is essential.
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Another well known operation on Rn is the dot product: (x̄ · ȳ) =
x1y1 + · · · + xnyn. The Equlidian norm of a vector x̄ of length n is
defined:

‖x̄‖ =
√

(x̄ · x̄) =

√√√√ n∑
i=1

x2
i .

When solving the multidimensional regression task, we also con-
sider a training set S = ((x̄1, y1), . . . , (x̄l, yl)), where yi is a real
number, ie, D = R. The regression task will be considered in Sec-
tions 2.8, 2.9, 2.9.1, and in Section 5.9.

1.1.3. Linear classifiers: Perceptron

Perceprton represents some technical model of imagination. 2 This
model has two layers: the first receptor layer send a signal to inputs
of threshholding elements – neurones of second transforming layer.

Mathematical model of perceptron is described as follows. Let X
be a set of initial descriptions of objects. We call X the set of initial
features. A transformation ȳ = ϕ̄(x̄), that is written in coordinates
as yi = ϕi(x̄), i = 1, . . . , n, transforms initial description x̄ =
(x1, . . . , xm) ∈ X of an object to transformed description ȳ =
(y1, . . . , yn) ∈ Y of this object. We suppose that X ⊆ Rm and
Y ⊆ Rn for some m and n. We call Y the set of transformed features.

Perceptron is defined by a homogeneous linear function from the
transformed variables:

L(x̄) = (Λ · ϕ̄(x̄)) =

n∑
i=1

λiϕi(x̄) =

n∑
i=1

λiyi,

where real numbers λi are called weights associated with transformed
descriptions yi. Here (Λ·ϕ̄(x̄)) denotes the dot product of two vectors
Λ = (λ1, . . . , λn) and ϕ̄(x̄) = (ϕ1(x̄), . . . , ϕn(x̄)) in the Euclidian
space Rn.

We associate with any perceptron an activation function:

f(x̄) = σ

(
n∑
i=1

λiϕi(x̄)

)
.

2This section has a rather historical meaning.
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Some examples of activation functions:

σ(t) = sign(t),

σ(t) =
1

1 + e−t
,

σ(t) = arctan(t),

where

sign(t) =

{
1 if t > 0,
−1 if t < 0.

In what follows we consider the binary activation function σ(t) =
sign(t) defined by a classifier: a vector x̄ belongs to the first class if

n∑
i=1

λiϕi(x̄) > 0,

a vector x̄ belongs to the second class otherwise. 3

Geometrically, this means that a multi-dimensional manifold

n∑
i=1

λiϕi(x̄) = 0 (1.2)

is defined in the initial feature space X . This manifold defines a
division of the space X into two subspaces. Objects of the first class
locate in one subspace, objects of the second class locate in the second
subspace. Such the manifold is called separating manifold.

The separating manifold (1.2) corresponds to a separating hyper-
plane:

n∑
i=1

λiyi = 0

in the transformed feature space Y.
Let an infinite oredered training sample

S = ((ȳ1, ε1), (ȳ2, ε2), . . . )

3Somewhat different techniques are needed for perceptrons with sigmoidal ac-
tivation functions.
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in the transformed feature space Y be given, where εi ∈ {−1,+1},
i = 1, 2, . . . .

Suppose that a hyperplane strongly dividing the sample S on two
classes according to values of εi exists. This means that

εi(Λ · ȳi) > 0 (1.3)

for all i, where Λ = (λ1, . . . , λn) is a vector of coefficients of the
separating hyperplane.

For technical convenience, we transform the sample S as follows.
Define a sequence of vectors ỹ1, y2, . . . , where

ỹi =

{
ȳi if εi = 1,
−ȳi if εi = −1,

for all i. Then we can rewrite (1.3) in the form

(Λ · ỹi) > 0

for all i. Denote

ρ(Λ) = min
i

(Λ · ỹi)
|Λ|

,

ρ0 = sup
Λ6=0̄

ρ(Λ), (1.4)

where |Λ| =
√

n∑
i=1

λ2
i is the norm of Λ in the Euclidian space Rn.

Then the condition (1.3) is equivalent to the condition: ρ0 > 0.
Historically, the Rosenblatt’s algorithm is the first algorithm for

computing a separating hyperplane.
Let an infinite ordered training sample

S = (ȳ1, ε1), (ȳ2, ε2), . . .

be given and let a hyperplane (Λ∗ · ȳ) = 0 strongly separating this
sample exists. This means that

(Λ∗ · ỹi) > 0 (1.5)
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for all i. Suppose that |Λ∗| = 1.
We strengthen the condition of the strong separability (1.5): we

suppose that a separating threshold ρ0 > 0 exists such that

(Λ∗ · ỹi) > ρ0 (1.6)

for all i. We suppose also that the lengths of vectors ȳi are bounded:

sup
i
|ȳi| = D <∞.

Rosenblatt’s algorithm
We will learn the perceptron by updating the weight vector Λ at

each step of the algorithm.
Let Λt = (λ1,t, . . . , λn,t) be the current vector of coefficients at

step t, t = 1, 2, . . . .
We use the sequence of vectors ỹ1, ỹ2, . . . defined above.
Define Λ0 = (0, . . . , 0).

FOR t = 1, 2, . . .
If (Λt−1 · ỹt) > 0 then define Λt = Λt−1. In case of right classification
we do not update the hyperplane.
If (Λt−1 · ỹt) < 0 (a case of wrong classification) then define Λt =
Λt−1 + ỹt. We call this improving a mistake.
ENDFOR

The following theorem first proved by A.A. Novikov says that in
case where a hyperplane strongly dividing a sample with a positive
threshold exists, Rosenblatt’s algorithm outputs a strongly separating
hyperplane after a finite number of updates.

Theorem 1.1. If a hyperplane strongly dividing a sample

(ȳ1, ε1), (ȳ2, ε2), . . .

with a positive threshold exists then the Rosenblatt’s algorithm im-
proves a mistake only at most ⌊

D2

ρ2
0

⌋
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times. This means that the inequality Λt 6= Λt−1 holds for at most⌊
D2

ρ2
0

⌋
distinct t. 4 After that, the separating hyperplane stabilizes and

will divide the rest part of infinite sample without mistakes.

Proof. If Λt changes at step t then

‖Λt‖2 = ‖Λt−1‖2 + 2(Λt−1 · ỹt) + ‖ỹt‖2.

Since (Λt−1 · ỹt) 6 0 (a case of wrong classification) and ‖ỹt‖ 6 D,
we obtain:

‖Λt‖2 6 ‖Λt−1‖2 +D2.

If k such improving happen before step T then

‖Λt‖2 6 kD2. (1.7)

By (1.6) a unit vector Λ∗ exists such that

εi(Λ
∗ · ỹi) > ρ0

for all i.
Let us estimate (Λt · Λ∗). By definition (Λ0 · Λ∗) = 0. If the

algorithm improves a mistake on step t then

(Λt · Λ∗) = (Λt−1 · Λ∗) + (Λ∗ · ỹt) > (Λt−1 · Λ∗) + ρ0.

Otherwise,
(Λt · Λ∗) = (Λt−1 · Λ∗).

Therefore, if the algorithm makes k improvements on steps 6 t then

(Λt · Λ∗) > kρ0.

By Cauchy–Shwarz inequality:

(Λt · Λ∗) 6 ‖Λt‖ · ‖Λ∗‖ = ‖Λt‖.

Hence,

‖Λt‖ > kρ0. (1.8)

4brc is the integer part of a real number r.
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Combining (1.7) and (1.8), we obtain

k 6
D2

ρ2
0

.

Hence, the total number of improvements is bounded:

k 6

⌊
D2

ρ2
0

⌋
Theorem is proved. 4

The drawback of this theorem is that though it gives an upper
bound for total number k of improvements but we cannot compute
this number in advance.

Multilayer neural networks.
We can combine perceptrons in multilayer neural networks. Any

node ν in a neural network computes a function

fν(x̄) = σ((w̄ν · x̄) + bν),

where σ is an activation function.
Consider a network containing l layers. Let n1, . . . , nl be num-

bers of nodes in the layers of this network. Suppose that the upper
layer has only one node: nl = 1.

With any jth node of the ith layer of the network a function
fi,j(x̄) = σ((w̄i,j · x̄) + bi,j) is associated, where w̄i,j , x̄ ∈ Rni−1 , bi,j ∈
R and n0 > 0.

The neural network can be represented by a set of vector-valued
functions

fi : Rni−1 → Rni ,

i = 1, . . . , l, where fi = (fi,1, . . . , fi,ni).
The output of the neural network is defined by a real-valued func-

tion that is a composition:

fl ◦ fl−1 ◦ · · · ◦ f2 ◦ f1.

Vectors w̄i,j are called weights associated with the jth node in the
layer i.
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1.2. Vapnik–Chervonienkis generalization the-
ory

1.2.1. Upper bounds for classification error

The generalization theory presents upper bounds for classification
error of a classifier defined using random training sample.

Statistical learning theory uses a hypothesis on existing a proba-
bilistic mechanism generating the observed data. In classification or
regression problems, this data are pairs (xi, yi) of objects and their
labels generating sequentially according to some unknown to us prob-
ability distribution. We do not try to find parameters of this distri-
bution. We suppose only that pairs (xi, yi) are i.i.d. (independently
identically distributed) with respect to this distribution. Methods
used in the statistical learning theory are uniform with respect to all
probability distributions from this very broad class.

A classifier (or regression function) is constructed by a training
sample using methods of optimization. A class of classification func-
tions can be very broad – from the class of all separating hyperplanes
in n-dimensional Euclidian space to a class of arbitrary n-dimensional
manifolds that are mapped using kernel methods to hyperplanes in
m-dimensional spaces, where m much bigger than n. No probabil-
ity distributions are used in algorithms computing values of these
classifiers.

In this section, let X be a set of objects supplied by an σ-algebra
of Borel sets and a probability distribution P . Also, let D = {−1,+1}
be a set of labels of elements of X .

Let S = ((x1, y1), . . . , (xl, yl)) be a training sample, where xi ∈
X and yi ∈ {−1, 1} for 1 6 i 6 l.

In probabilistic analysis, we suppose that the training sample S
is a vector random variable consisting of random variables (xi, yi),
i = 1, . . . l.

Let a classifier h : X → {−1, 1} be given. A classification error
(risk-functional) is defined:

errP (h) = P{(x, y) : h(x) 6= y},

that is the probability of a wrong classification.
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The classifier h is agreed with a sample

S = ((x1, y1), . . . , (xl, yl))

if h(xi) = yi for all 1 6 i 6 l.
A simple and natural approach to the classification problem is to

consider a class of classifiers h and use data-based estimates of the
probabilities of error errP (h) to select a classifier from the class. The
most natural choice to estimate the probability of error errP (h) is the
error count:

errS(h) =
1

l
|{i : h(xi) 6= yi, 1 6 i 6 l}|

that is called the empirical error of the classifier h on a sample S.
Here |A| is the cardinality of a finite set A.

The classifier h is agreed with a sample S if errS(h) = 0.
For any classifier h and ε > 0 we have:

P l{S : errS(h) = 0&errP (h) > ε} =

=

l∏
i=1

P{h(xi) = yi} =

=
l∏

i=1

(1− P{h(xi) 6= yi}) =

= (1− errP (h))l 6 e−lε, (1.9)

where P l is the product probability distribution generated by P .
We have used in this derivation the i.i.d. property of random pairs
(xi, yi).

Let H be a class of classification hypotheses. For case of finite
class H, by (1.9), we have:

P l{S : (∃h ∈ H)(errS(h) = 0&errP (h) > ε)} 6 |H|e−lε. (1.10)

We can interpreted the bound (1.10) as follows. Let a critical
level δ > 0 of accepting an error classifier h ∈ H agreeing with a
sample S be given. Then by (1.10) we can assert that with probability
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> 1 − δ any classifier hS ∈ H constructed using a random training
sample S and agreeing with this sample has the classification error
errP (h) 6 ε = 1

l ln |H|δ .
In other words, any classifier h having a classification error errP (h) >

ε, with probability > 1 − |H|e−lε, will not agreed with any random
sample of length l.

For an infinite class H of classifiers a similar bound can be ob-
tained using Vapnik–Chervonenkis generalization theory.

In this case the cardinality of a finite class is replaced by a growth
function of an infinite class:

BH(l) = max
(x1,x2,...,xl)

|{(h(x1), h(x2), . . . , h(xl)) : h ∈ H}|.

We will study this function in the next section.
Main result of Vapnik–Chervonenkis theory is an analogue of the

inequality (1.10) for infinite class H:

Theorem 1.2. For l > 2/ε, the following upper bound is valid:

P l{S : (∃ h ∈ H)(errS(h) = 0&errP (h) > ε)} 6 2BH(2l)e−εl/4.(1.11)

Proof. Let 1A(x) = 1 if x ∈ A and 1A(x) = 0 if x 6∈ A. Similarly,
1h(x)6=y(x, y) is a random variable which equals 1, if h(x) 6= y, and
equals 0 otherwise. Evidently:

E1h(x)6=y = errP (h),

where E is the mathematical expectation by the measure P . By
definition:

errS(h) =
1

l

l∑
i=1

1h(xi) 6=yi

is the frequency of mistakes on a sample S.
The proof of the theorem is based on the following two lemmas.

Lemma 1.1. Let a class H of classifiers and two random samples S
and S′ of length l be given.Then, for any ε > 0 such that l > 2/ε, the
inequality:

P l{S : (∃ h ∈ H)(errS(h) = 0&errP (h) > ε)} 6

6 2P 2l{SS′ : (∃h ∈ H)(errS(h) = 0&errS′(h) >
1

2
ε)} (1.12)
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holds.

Proof. The inequality (1.12) is equivalent to the inequality:

P l{S : sup
h:errS(h)=0

errP (h) > ε} 6

6 2P 2l{SS′ : sup
h:errS(h)=0

errS′(h) >
1

2
ε}. (1.13)

We will prove the inequality (1.13). For any sample S from the left
side of the inequality (1.13), denote by hS some classifier from H such
that errS(hS) = 0 and errP (hS) > ε. By definition hS is a random
variable.

The following inequality is valid by definition of its terms: 5

1errS(hS) = 0&errP (hS) > ε1errP (hS) − errS′ (hS) 6 1
2
ε 6

6 1errS(hS) = 0&errS′ (hS)> 1
2
ε. (1.14)

Integrating both sides of the inequality (1.14) by the sample S′, we
obtain a new inequality:

1errS(hS) = 0&errP (hS) > εP
l{S′ : errP (hS)− errS′(hS) 6

1

2
ε} 6

6 P l{S′ : errS(hS) = 0&errS′(hS) >
1

2
ε} (1.15)

depending on the sample S.
Using properties of the binomial distribution, we obtain:

P l{S′ : errP (hS)− errS′(hS) 6
1

2
ε} =

= P l{S′ : errS′(hS) > errP (hS)− 1

2
ε} =

=
∑

{k:k/l>p−ε/2}

(
l

k

)
pk(1− p)n−k > 1

2
(1.16)

5Here 1errS(hS)=0&errP (hS)>ε(S) = 0 if S does not belong to the left side of the
inequality (1.13). Also, 1errS(hS)=0&errS′ (hS)> 1

2
ε(SS

′) = 0 if SS′ does not belong

to the right side of the inequality (1.13).
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for l > 2/ε, where p = errP (hS).
Indeed, if l > 2/ε then p− ε/2 < p−1/l. Therefore, it is sufficient

to prove that∑
{k:k/l>p−1/l}

(
l

k

)
pk(1− p)n−k =

∑
{k:k>lp−1}

(
l

k

)
pk(1− p)n−k > 1

2
.

This inequality is equivalent to the inequality∑
{k:k<lp−1}

(
l

k

)
pk(1− p)n−k < 1

2

which is a corollary from the well known fact that the mediane of
binomial distribution is equal to the integer number closest to lp.

Combining the inequalities (1.16) and (1.15), we obtain:

1errS(hS)=0&errP (hS)>ε 6

6 2P l{S′ : errS(hS) = 0&errS′(hS) >
1

2
ε}. (1.17)

Computing the average by S, we obtain:

P l{S : errS(hS) = 0&errP (hS) > ε} 6

6 2P 2l{SS′ : errS(hS) = 0&errS′(hS) >
1

2
ε} 6

6 2P 2l{SS′ : sup
h:errS(h)=0

errS′(h) >
1

2
ε}. (1.18)

From this (1.13) follows. Lemma is proved. 4

Lemma 1.2. For any random samples S and S′ of length l and ε > 0,
the probability of that a classifier h ∈ H is agreed with S and makes
more than εl mistakes on S′ is bounded:

P 2l{SS′ : (∃h ∈ H)(errS(h) = 0&errS′(h) > ε)} 6 BH(2l)e−εl/2.

Proof. Define a function η that when fed with a sample SS′ =
((x1, y1), . . . , (x2l, y2l)) of length 2l outputs a bag (or multiset)
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whivh is the set is a set of all pairs from the sample SS′ with their
multiplicities:

η(SS′) = {((x1, y1), k1), . . . , ((xL, yL), kL)},

where ki is the total number of occurrences of the pair (xi, yi) in the
sample SS′, i = 1, . . . , L, L is the total number of distinct pairs
(xi, yi) in the sample SS′. By definition k1 + · · ·+ kL = 2l.

Unlike the sample, the bag is a non ordered object – a set. The
probability measure P 2l on samples of length 2l induces a measure P̂
on bags:

P̂ (Ξ) = P 2l{SS′ : η(SS′) ∈ Ξ},

where Ξ is any set of bags Υ.
Let us fix some bag Υ for samples of length 2l. We fix also some

classifier h.
For any double sample SS′ = ((x1, y1), . . . , (x2l, y2l)) define a

binary sequence ε1, . . . , ε2l representing all classification errors of h
on SS′:

εi =

{
1 if h(xi) 6= yi,
−1 if h(xi) = yi,

where i = 1, . . . , 2l.
Since the classification mistakes are distributed according to the

Bernoulli distribution with probability of error P{h(x) 6= y}, any two
sequences ε1, . . . , ε2l and ε′1, . . . , ε

′
2l defined by two samples with

the same bag Υ are equiprobable. 6

Therefore, given a bag Υ, the probability of that for some double
random sample SS′ such that η(SS′) = Υ the classifier h makes
m > εl mistakes and all these mistakes are located in the second half

6These probabilities are defined by the binomial distribution and equal to(
2l
k

)
pk(1 − p)2l−k, where p = P{h(x) 6= y} and k is the number of ones (the

number of mistakes) in the sample.
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S′ of the sample SS′ is bounded by the total number of such samples:(
l
m

)(
2l
m

) =
l!

(l −m)!m!
· (2l −m)!m!

(2l)!
=

=
(2l −m) . . . (l −m+ 1)

2l . . . (l + 1)
6

6
(

1− m

2l

)l
6
(

1− ε

2

)l
< e−εl/2. (1.19)

Now, let the classifier h is not fixed and takes any value from the
class H. The total number of all projections of functions h ∈ H
on the set {x1, . . . , x2l} does not exceed the cardinality of the set
{(h(x1), h(x2), . . . , h(x2l) : h ∈ H} consisting from binary sequences
of length 2l.

For any N the total number of all projections of functions h ∈ H
on sets of N objects is upper bounded by growth function of the class
H:

BH(N) = max
(x1,x2,...,xN )

|{(h(x1), h(x2), . . . , h(xN )) : h ∈ H}|.

Evidently, BH(N) 6 2N . Tight estimates of the growth functions for
different classes H of classifiers will be given in the next section.

By definition of the growth function the total number of all pro-
jections of functions h ∈ H on the set {x1, . . . , x2l} of all objects from
the double sample SS′ is less or equal to BH(2l).

Then the conditional probability of that a classifier h ∈ H makes
> εl mistakes on a double sample SS′ such that η(SS′) = Υ and
all these mistakes are located in the second half S′ of this sample is
bounded:

P 2l{SS′ : (∃ h ∈ H)(errS(h) = 0&errS′(h) > ε)|η(SS′) = Υ} 6
6 BH(2l)e−εl/2.

The left part of this inequality is a random variable that is a function
from the bag Υ. The right part is independent from the bag Υ.
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Integrating this inequality by the measure P̂ on bags Υ, we obtain
the unconditional inequality:

P 2l{SS′ : (∃ h ∈ H)(errS(h) = 0&errS′(h) > ε)} 6
6 BH(2l)e−εl/2.

Lemma 1.2 is proved. 4
Theorem 1.2 follows immediately from Lemmas 1.1 and 1.2.
Theorem 1.2 implies that any classifier h, which has a classifica-

tion mistake errP (h) > ε, with probability > 1 − 2BH(2l)e−εl/4 will
not agreed with a random training sample of length l > 2/ε. In the
process of learning this classifier will be rejected with probability at
least 1− 2BH(2l)e−εl/4 as a wrong classifier.

Denote δ = 2BH(2l)e−εl/4. Then for 0 < δ < 1 the inequality
lε > 2 holds, ie the assumption of Theorem 1.2 is valid. From this,
the following corollary can be easily obtained:

Corollary 1.1. Assume that a class H of classifiers has a finite VC-
dimension d. 7

Let a critical level 0 < δ < 1 of accepting a wrong classification
hypothesis h ∈ H agreeing with a training sample S be given.

Then with P l-probability > 1− δ a classifier hS ∈ H defined by a
training sample S and agreeing with it has a classification error:

errP (hS) 6
4

l

(
d ln

2el

d
+ ln

2

δ

)
for l > d.

These results can be generalized for the case of learning with
mistakes. The following two Lemmas 1.3 and 1.4 and Theorem 1.3
can be proved.

Lemma 1.3. Let a class H of classifiers and two random samples
S and S′ of length l be given. For any ε > 0, if l > 2/ε then the

7The definition of VC-dimension is given in the next Section 1.2.2. The bound

BH(l) 6
(
el
d

)d
for l > d is obtained in that section.
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following inequality holds:

P l{S : (∃ h ∈ H)(errP (h)− errS(h) > ε)} 6

6 2P 2l{SS′ : (∃ h ∈ H)(errS′(h)− errS(h) >
1

2
ε)}.

The proof of this lemma is similar to the proof of Lemma 1.1.

Lemma 1.4. The probability of that the empirical errors of a clas-
sifier h ∈ H on two random samples S and S′ of length l differs on
ε > 0 is bounded:

P 2l{SS′ : (∃h ∈ H)(errS′(h)− errS(h) > ε)} 6 2BH(2l)e−2ε2l.

The proof of this lemma is similar to the proof of Lemma 1.2 with
a more complex combinatorical bounds.

In the following theorem we present an upper bound for the prob-
ability of that the difference between classification error and empirical
error of some classifier h ∈ H is more than ε > 0.

Theorem 1.3. The following upper bound is valid:

P l{S : (∃ h ∈ H)(errP (h)− errS(h) > ε)} 6 4BH(2l)e−ε
2l/2 (1.20)

for l > 2/ε.

The following corollary gives a bound for the classification error
of a classifier h ∈ H in terms of empirical error of this classifier on
training sample.

Corollary 1.2. Assume that a class H of classifiers has a finite VC-
dimension d. Then for any 0 < δ < 1 and h ∈ H, with probability
> 1− δ, the following inequality holds:

errP (h) 6 errS(h) +

√
2

l

(
d ln

2el

d
+ ln

4

δ

)
,

where l > d.
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Notice, that the upper bounds given in Theorems 1.2, 1.3, and in
Corollaries 1.1 and 1.2 are too rough and mainly have only theoretical
meaning, since VC-dimension d of many natural classes is comparable
with the length l of a training sample. A more tight dimension free
upper bounds will be given in terms of margin-based performance
bounds for classification, Rademacher averages and other capacity
measures that will be studied in the following sections.

1.2.2. VC-dimension

In this section we study definition and and properties of the Vapnik–
Chervonienkis dimension, shortly, VC-dimension, which characterizes
a capacity (complexity) of arbitrary infinite class of indicator func-
tions.

Let X be an object set and H be an arbitrary class of indica-
tor functions defined on X . Let also h ∈ H. A binary sequence
(h(x1), . . . , h(xl)) consisting of elements of the set {−1, 1} sepa-
rates the set {x1, . . . , xl} on two subsets: {xi : h(xi) = 1} – positive
examples, and {xi : h(xi) = −1} – negative examples.

The set {x1, . . . , xl} is shattered by the class H if

{(h(x1), . . . , h(xl)) : h ∈ H} = {−1, 1}l.

A growth function of the class H is defined as the maximal number
of separations of samples of length l on two subsets by means of
classifiers from H:

BH(l) = max
(x1,x2, ..., xl)

|{(h(x1), h(x2), . . . , h(xl) : h ∈ H}|.

As follows from the definition, BH(l) 6 2l for all l, and if there exists
a sample of length l, that is shattered by H, then BH(l) = 2l.

The following theorem (Sauer’s lemma) is the main result of the
theory of VC-dimension: 8

Theorem 1.4. For any class H of indicator functions, one of two
following conditions hold:

8This result was also obtained independently by Vapnik and Chervonenkis (see
Vapnik [33], [34]).
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1. BH(l) = 2l for all l, ie, for each l an ordered sample of length
l shattered by H exists.

2. There exists a sample of maximal length d that is shattered by
H. In this case BH(l) = 2l for l 6 d and

BH(l) 6
d∑
i=0

(
l

i

)
6

(
el

d

)d
(1.21)

for l > d.

In other words, the function GH(l) = lnBH(l) is linear for all l
or becomes logarithmic: O(d ln l) for all l > d. For example, it cannot
be O(ld) for 0 < d < 1.

The number d is called VC-dimension (Vapnik–Chervonienkis di-
mension). If the case (1) is valid then VC-dimension of the class H
is infinite.

Proof. Assume that VC-dimension of a class H of indicator func-
tions is equal to d. Then by definition BH(l) = 2l for all l 6 d.

We will prove the inequality (1.21) using the method of mathe-
matical induction by l + d.

For l = d = 1 this inequality is valid, since both sides of it are
equal to 2.

Assume that this inequality is valid for any sum < l + d, in par-
ticular, for l − 1 and d, and for l − 1 and d− 1.

Let us prove this inequality for the case where the sample size is
equal to l and VC-dimension of a class H is equal to d. Denote

h(l, d) =

d∑
i=0

(
l

i

)
.

We have to prove that for any class H with VC-dimension 6 d it
holds BH(l) 6 h(l, d) for all l.

Using the standard equality for binomial coefficients:(
l

i

)
=

(
l − 1

i

)
+

(
l − 1

i− 1

)
,
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we obtain the corresponding equality:

h(l, d) = h(l − 1, d) + h(l − 1, d− 1).

Let H be a class of indicator functions with VC-dimension d and
let X1 = {x1, x2, . . . , xl} be a set of objects of cardinality l, X2 =
{x2, . . . , xl} be the same set where the first element is removed.

Let H1 = H|X1
be a set of all projection of functions from the

class H on the set X1 and H2 = H|X2
be a set of all projection of

functions from the class H on the set X2.
Let also, H3 be a class of functions f ∈ H2 such that a function

f ′ ∈ H exists which negates a value of f on the removed object:
f ′(x1) = −f(x1).

It holds |H1| = |H2|+|H3|, since the class H2 differs from the class
H1 by the property: for any indicator functions f and f ′ from the
class H1 taking different values on the object x1 (in case where such
a function exists) only one function from the class H2 corresponds.

VC-dimension of the class H2 is less or equal to d, since H2 is a
subclass of the class H1.

VC-dimension of the class H3 is less or equal to d− 1. Indeed, if
some set X of cardinality d is shattered by H3 then the set X ∪{x1},
where x1 is the removed element, is shattered by the class H1, since
for any function f ∈ H3 two functions f, f ′ ∈ H1 exist such that
f(x1) = −f ′(x1). We have the set X∪{x1} of cardinality d+1 which
is shattered by the class H1. This is a contradiction.

By the induction hypothesis:

|H2| 6 h(l − 1, d) and |H3| 6 h(l − 1, d− 1).

Then:

|H1| = |H2|+ |H3| 6 h(l − 1, d) + h(l − 1, d− 1) = h(l, d).

Since X is an arbitrary set, we obtain:

BH(l) 6 h(l, d) =

d∑
i=0

(
l

i

)
.

Therefore, the inequality (1.21) is proved.
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For l > d, the upper bound:

BH(l) 6
d∑
i=0

(
l

i

)
6

(
el

d

)d
follows from the following chain of inequalities:

d∑
i=0

(
l

i

)
6

(
l

d

)d d∑
i=0

(
l

i

)(
d

l

)i
6

6

(
l

d

)d l∑
i=0

(
l

i

)(
d

l

)i
=

=

(
l

d

)d(
1 +

d

l

)l
<

(
l

d

)d
ed =

(
el

d

)d
. (1.22)

Theorem is proved. 4
In what follows the objects are n-dimensional vectors from the

Euclidian space: X = Rn, where n > 1.
We will compute VC-dimension of the class L of all linear clas-

sifiers on Rn that are indicator functions h(x̄) = sign(L(x̄)), where
L(x̄) is a linear function. Recall that sign(r) = 1 if r > 0 and
sign(r) = −1 otherwise.

Linear function is any function

L(x̄) = (ā · x̄) + b,

where x̄ ∈ Rn is a variable vector, ā ∈ Rn is a vector of weights, b is
a constant.

If b = 0 then the linear classifier sign(L(x̄)) = sign(ā · x̄) is called
homogeneous linear classifier.

Evidently, if some set is separated by a linear classifier then it is
strongly separated by this classifier.

Theorem 1.5. 1. VC-dimension of the class of all linear classi-
fiers on Rn is equal to n+ 1.

2. VC-dimension of the class of all homogeneous linear classifiers
on Rn is equal to n.
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3. The growth function of the class of all homogeneous linear clas-
sifiers on Rn satisfies the inequality:

GL(l) = lnHL(l) = ln

(
2
n−1∑
i=1

(
l − 1

i

))
<

< (n− 1)(ln(l − 1)− ln(n− 1) + 1) + ln 2 (1.23)

for l > n.

Proof. First, we prove the item 2. A set of n vectors

S = {ē1 = (1, 0, . . . , 0), . . . , ēn = (0, 0, . . . , 1)}

is shattered by the class of all homogeneous linear classifiers, since
for any its subset ēi1 , . . . , ēik a homogeneous linear classifier h(x̄) =
sign(L(x̄)), where L(x̄) = a1x1 + · · · + anxn, exists which separates
this subset from its complement in S. We define coefficients of L(x̄)
as follows: aij = 1 for 1 6 j 6 k and ai = −1 for all other i. Then
L(ēij ) = 1 for 1 6 j 6 k and L(ēij ) = −1 for all other j.

Consider an auxiliary matrix:

Z =


z1,1, . . . , z1,j, . . . , z1,2n+1

. . .
zi,1, . . . , zi,j, . . . , zi,2n+1

. . .
zn+1,1, . . . , zn+1,j, . . . , zn+1,2n+1

 ,

that is defined by the numbers zi,j = (āj · ūi), i = 1, . . . , n + 1,
j = 1, . . . , 2n+1.

Suppose that some n+1 vectors ū1, . . . , ūn, ūn+1 can be (strongly)
shattered by the class of all homogeneous linear classifiers. Then 2n+1

weight vectors ā1, . . . , ā2n+1 exist such that the signs of elements of
the jth column of the matrix Z correspond to the jth separation of
the set S. Hence, there are all 2n+1 possible combinations of these
signs that are defined by those columns.

Vectors ū1, . . . , ūn, ūn+1 are located in the n-dimensional space
and, hence, they are linearly dependent:

λ1ū1 + · · ·+ λnūn + λn+1ūn+1 = 0 (1.24)
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for some real numbers λi, i = 1, . . . n, where λi 6= 0 for some i.
Let us consider the dot products of both sides of the equality

(1.24) by the vectors āj for j = 1, . . . , 2n+1. We obtain 2n+1 equal-
ities:

λ1(āj · ū1) + · · ·+ λn+1(āj · ūn+1) = 0.

There exists a column with the same signs as the numbers λ1, . . . , λn+1.
Since λi 6= 0,

λ1(āi · ū1) + · · ·+ λn+1(āi · ūn+1) > 0

for some i. This contradiction proves item 2 of the theorem.
Let us prove the item 1. We will prove that the set:

ē0 = (0, 0, . . . , 0)′, ē1 = (1, 0, . . . , 0)′, . . . , ēn = (0, 0, . . . , 1)′

of n+ 1 vectors is strongly shattered by the class of all linear classi-
fiers. For any subset S = {ēi1 , . . . , ēik} of this set consider a linear
classifier

h(x̄) = sign(a1x1 + · · ·+ anxn + b), x̄ = (x1, . . . , xn),

where aij = 1 for 1 6 j 6 k, and ai = −1 for all other i, b = 1
2 if

ē0 ∈ S and b = −1
2 otherwise. It is easy to verify that L(ēij ) > 0 for

all 1 6 j 6 k and L(ēij ) < 0 for all other j.
Suppose that a set of n-dimensional vectors

x̄1 = (x1,1, . . . , x1,n)′, . . . , x̄n+2 = (xn+2,1, . . . , xn+2,n)′

of cardinality n + 2 is strongly shattered by the class of all linear
classifiers.

We will prove that the set of n+ 1-dimensional vectors

x̄′1 = (x1,1, . . . , x1,n, 1)′, . . . , x̄′n+2 = (xn+2,1, . . . , xn+2,n, 1)′(1.25)

of cardinality n+ 2 is strongly shattered by the class of homogeneous
linear classifiers.

Consider an arbitrary subset x̄′i1 , . . . , x̄′ik of this set and the
corresponding subset x̄i1 , . . . , x̄ik of the set (1.25). Suppose that a
hyperplane

L(x̄) = a1x1 + · · ·+ anxn + b
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separates subset x̄i1 , . . . , x̄ik from other vectors of the set (1.25):
L(x̄ij ) > 0 for j = 1, . . . , k and L(x̄i) < 0 for all other i. Define a
linear homogeneous classifier in n+ 1-dimensional space:

L′(x̄) = a1x1 + · · ·+ anxn + bxn+1.

Then L′(x̄′i) = L(x̄i) for i = 1, . . . , n + 2. Therefore, the lin-
ear homogeneous classifier L′(x̄′) separates the corresponding subset
x̄′i1 , . . . , x̄

′
ik

from its complement in the set

x̄′1 = (x1,1, . . . , x1,n, 1)′, . . . , x̄′n+2 = (xn+2,1, . . . , xn+2,n, 1)′.

Hence, we construct a subset of n+1-dimensional space of cardinality
n+ 2 shattered by the class of all homogeneous linear classifiers.

This contradiction with the item 2 proves item 1.
Now we turn to the proof of the item 3. Let vectors x̄1, . . . , x̄l be

given. Consider all separations of these set on two classes by means
of hyperplanes L(ū) = (ū · x̄), where ū is a weight vector defining the
hyperplane and x̄ is an argument.

For convenience of presentation, we introduce notations: Rn(ū) =
Rn(x̄) = Rn. Using notation Rn(ū) we emphasize that the main
variable in this set is u.

Any vector ū ∈ Rn(u) defines a hyperplane L(x̄) = (ū · x̄) in
Rn(x).

We also consider the dual presentation. A vector x̄ ∈ Rn(x)
defines a hyperplane L(ū) = (x̄ · ū) in the space Rn(u), and l vectors
x̄1, . . . , x̄l from Rn(x) define l hyperplanes X1, . . . , Xl in the space
Rn(u) trespassing the zero point.

Let ū ∈ Rn(u) be a vector defining a hyperplane L(ū) = (ū · x̄)
in Rn(x) separating the points x̄1, . . . , x̄l into two subsets. If one
continuously rotates this hyperplane in the space Rn(x) such that the
separation of x̄1, . . . , x̄l remains in fact, the corresponding trajectory
of the vector ū belongs to the same component of the space Rn(u).

A component is a set of vectors (points) in the space Rn(u)
bounded by the hyperplanes X1, . . . , Xl defining by the weight
vectors x̄1, . . . , x̄l. Any such component corresponds to a variant of
separation of the vectors x̄1, . . . , x̄l.
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The maximal number of different separations of l vectors x̄1, . . . , x̄l
by hyperplanes passing through origin in the space Rn(x) is equal
to the number of different components into which l hyperplanes
X1, . . . , Xl separate the n-dimensional space Rn(u).

Let Φ(n, l) be the maximal number of components into which l
hyperplanes X1, . . . , Xl can divide the n-dimensional space Rn(u).

We have Φ(1, l) = 2, since the function L(x) = ux can divide any
l points on the line into two classes. Also, Φ(n, 1) = 2, since one
hyperplane can divide the space Rn(u) only on two classes.

Given l− 1 vectors x̄1, . . . , x̄l−1 in the space Rn(x) consider the
corresponding l − 1 hyperplanes X1, . . . , Xl−1 in the space Rn(u).
They divide this space into at most Φ(n, l − 1) components.

Adding a new vector x̄l to these l − 1 vectors x̄1, . . . , x̄l−1,
we obtain a new hyperplane Xl in the space Rn(u). The number
of components is increased by the quantity equal to the number of
components which are split by the hyperplane Xl. Conversely, any
such component makes a trace on Xl. The total number of such
traces is the total numbers of all parts into which l − 1 hyperplanes
X1, . . . , Xl−1 divide the hyperplane Xl.

Since the dimensionality of Xl is equal to n − 1, the number of
these traces does not exceed Φ(n− 1, l − 1).

Then we obtain the following recurrent equation:

Φ(n, l) = Φ(n, l − 1) + Φ(n− 1, l − 1), (1.26)

where Φ(1, l) = 2, Φ(n, 1) = 2.
Prove as a problem that the recurrence relation (1.26) has the

solution:

Φ(n, l) =


2l l 6 n

2
n−1∑
i=1

(
l−1
i

)
l > n.

To prove the last inequality from (1.23) and the last inequality

from (1.21), we can use the bound
n∑
i=0

(
l
i

)
6
(
el
n

)n
, which holds for all

n 6 l. This bound follows from the chain of equalities and inequalities
(1.22). The theorem is proved. 4
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Let us obtain an upper bound of VC-dimension of the class of all
multilayer neural networks of a given size with the activation function
σ(t) = sign(t).

Let F be a class of the vector-valued indicator functions defined
on Rn.

The growth function of the class F can be written as

BF (m) = max
X⊂Rn,|X|=m

|F|X |,

where F|X is the class of function which are restrictions of functions
from F on a finite set X.

The needed bound follows from the following proposition.

Proposition 1.2. Let F1 and F2 be two classes of functions and
F = F1 × F2 be their Cartesian product. Let also, G = F1 ◦ F2 be
the class of functions which are compositions of functions from these
classes. Then for any n:

1. BF (m) 6 BF1(m) ·BF2(m);

2. BG(m) 6 BF1(m) ·BF2(m)

Proof. To prove (1) notice that for any X such that |X| = m:

|F|X | 6 |F1
|X | · |F

2
|X | 6 BF1(m) ·BF2(m).

We leave the proof of (2) to the reader. 4
As noted in section 1.1.3 any neural network can be represented

as a set of vector-valued functions:

fi : Rni−1 → Rni ,

where ni are positive integer numbers and fi = (fi,1, . . . , fi,ni) is
the a collection of one-dimensional functions of type Rni−1 → R,
i = 1, . . . , l.

The output of the neural network is a one-dimensional function
which is a composition

f = fl ◦ fl−1 ◦ · · · ◦ f2 ◦ f1.
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Let F be a class of all functions f computed by means of the neural
networks, F i be a class of vector-valued functions fi : Rni−1 → Rni ,
and F i,j be the class of jth components of these compositions.

All functions associated with the nodes of the ith layer are linear
threshold functions, and thus, VC-dimension of the class F i,j is equal
to ni−1 + 1 for all j.

By proposition 1.2, and by Sauer lemma, we have:

BF (m) 6
l∏

i=1

BF i(m) 6

6
l∏

i=1

ni∏
j=1

BFi,j (m) 6

6
l∏

i=1

ni∏
j=1

(
le

ni−1 + 1

)di−1+1

=

=
l∏

i=1

(
me

ni−1 + 1

)ni(ni−1+1)

6 (me)N ,

where

N =
l∑

i=1

di(di−1 + 1)

is the total number of all parameters of the neural network.
We now estimate the VC-dimension of the class F . Let m be the

maximum of the cardinality of sets shattered by functions from the
class F . Then 2m 6 (me)N . In order to satisfy this inequality m
should be m = O(N logN). Therefore, VC-dimension of the class F
is bounded by O(N logN).

1.3. Margin-based performance bounds for clas-
sification

We have shown in previous sections that VC-dimension of the class
of all linear classifiers is equal to n + 1, where n is dimension of the
Euclidian space Rn. In practice, the length of a sample can be less
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than n, and bounds of the classification error like (1.11) and (1.20)
are useless in this case.

By this reasons, Theorem 1.2 and Corollary 1.1 can have only a
theoretical meaning. These drawbacks are connected with too poor
method used for separation of the data. Separating data with ar-
bitrary small thresholds we loss the predictive performance of our
classification algorithms. Also, we do not restrict the space where
our training sample is located.

In what follows we will consider methods of separation with a
given positive threshold γ and will suppose that the points generating
by the probability distributions are located in some ball of a given
radius R. Using γ and R as the new parameters, we will define a new
dimension free notion of capacity of a functional class.

We obtain new upper bounds of classification error which can
have some practical meaning.

1.3.1. Fat-shattering dimension and its applications

Let F be a class of real valued functions with domain X , S =
((x1, y1), . . . , (xl, yl)) be a sample of length l, and ε > 0.

Any function f ∈ F defines a classifier:

hf (x) =

{
1 if f(x) > 0,
−1 otherwise.

For a function f ∈ F we define its margin on an example (xi, yi)
to be γi = yif(xi).

The functional margin of a training set S = ((x1, y1), . . . , (xl, yl))
is defined to be:

mS(f) = min
i=1,..., l

γi

If γi > 0 then the classification by means of f is right. It holds
mS(f) > 0 if and only if the function f classifies all examples from
the sample S right and with a positive threshold.

A finite set B of functions is called ε-cover of a functional class F
on a set X = {x1, . . . , xl} if for any f ∈ F a function g ∈ B exists
such that |f(xi)− g(xi)| < ε for all i = 1, . . . , l.
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Define the covering number of a class F on a set X:

N (ε,F , X) = min{|B| : B is ε-cover of F}.

Define the covering number N (ε,F , l) of a class F as the maximum
number of all covering numbers of the class F on the sets X such
that |X| = l:

N (ε,F , l) = max
|X|=l

N (ε,F , X).

Denote by errS(f) the empirical error of a classifier hf on a sample
S = ((x1, y1), . . . , (xl, yl)). This number is equal to the portion in
S of all examples (xi, yi) such that hf (xi) 6= yi.

Let P be a probability distribution on R × {−1, 1} generating
elements of the sample S. Then the classification mistake of the
classifier hf can be written as:

errP (f) = P{hf (x) 6= y}.

The following theorem is an analogue of Theorem 1.2.

Theorem 1.6. For any ε > 0, γ > 0, and l > 2/ε:

P l{S : (∃ f ∈ F)(errS(f) = 0&mS(f) > γ&errP (f) > ε)} 6
6 2N (γ/2,F , 2l)e−εl/4.

The proof of Theorem 1.6 is similar to the proof of Theorem 1.2.
We have only to add to the equality errS(f) = 0 in the right side of
the condition (1.12) of Lemma 1.3 the inequality mS(f) > γ. So, we
replace Lemma 1.3 on the following lemma:

Lemma 1.5. For l > 2/ε:

P l{S : (∃ f ∈ F)(errS(f) = 0&mS(f) > γ&errP (f) > ε)} 6

6 2P 2l{SŜ : (∃ f ∈ F)(errS(f) = 0&mS(f) > γ&errŜ(f) >
ε

2
)}.

The proof of this lemma is almost identical to the proof of
Lemma 1.1.

The second lemma is an analogue of Lemma 1.2.
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Lemma 1.6. For l > 2/ε:

P 2l{SŜ : (∃ f ∈ F)(errS(f) = 0&mS(f) > γ&errS(f) >
ε

2
)} 6

6 N (γ/2,F , 2l)e−εl/4.

Proof. Consider an γ/2-cover B of the class F of objects of a
double sample SŜ. Let g ∈ B approximates the function f ∈ F up
to γ/2. If mS(f) > γ then mS(g) > γ/2. Also, if errS(f) = 0 and
mS(f) > γ then errS(g) = 0.

If the function f makes a mistake on an object xi, ie, yif(xi) 6 0,
then yig(xi) < γ/2. Let errŜ(γ/2, g) denotes a portion of all i such
that yig(xi) < γ/2, where xi locates at the second half of the double
sample SŜ. This implies the inequality:

P 2l{SŜ : (∃ f ∈ F)(errS(f) = 0&mS(f) > γ&errS(f) >
ε

2
)} 6

6 P 2l{SŜ : (∃ g ∈ B)(errS(g) = 0&mS(g) >
γ

2
&errŜ(γ/2, g) >

ε

2
)}.

The further proof repeats the combinatorial part of the proof of
Lemma 1.4. In this part, we bound a portion of variants such that
some function g ∈ B:

• separates the first half S of the double sample SS′ without
mistakes: errS(g) = 0, moreover, this is a strong separation
with a threshold: mS(g) > γ/2;

• at the same time, the function g makes a portion of errŜ(γ/2, g) >
ε
2 mistakes or has margin bound 6 γ/2 on the second half S′

of the double sample.

The rest part of proof coincides with the corresponding part of the
proof of Lemma 1.2.

As a result we obtain a bound:

P 2l{SŜ : (∃ g ∈ B)(errS(g) = 0&mS(g) >
γ

2
&errŜ(γ/2, g) >

ε

2
)} 6

6 N (γ/2,F , 2l)e−εl/4.

Lemmas 1.5 and 1.6 imply Theorem 1.6. 4
Theorem 1.6 implies the following corallary:
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Corollary 1.3. Let a class F of real functions and numbers γ > 0,
δ > 0 be given. Then for any probability distribution P on Rn ×
{−1, 1}, with probability 1−δ, any function f ∈ F with margin bound
mS(f) > γ on a random sample S has classification error:

errP (f) 6
4

l

(
lnN (γ/2,F , 2l) + ln

2

δ

)
for all l.

We define a fat-shattering dimension of a class F of functions. Let
γ > 0. A set X = {x1, . . . , xl} of objects is called γ-shattered if the
numbers r1, . . . , rl exist such that for any subset E ⊆ X a function
fE ∈ F exists such that fE(xi) > ri+γ if xi ∈ E and fE(xi) < ri−γ
if xi 6∈ E for all i.

A set X is γ-shattered on a given level r if ri = r for all i.
A fat-shattering dimension fatγ(F) of a class F is equal to car-

dinality of the maximal γ-shattered set X. The fat-shattering di-
mension of the class F depends on the parameter γ > 0. A class F
has infinite fat-shattering dimension if there are γ-shattered sets of
arbitrary big size.

The following theorem is a direct corollary of Theorem 1.10, which
will be proved in the Section 1.3.2 below.

Theorem 1.7. Let F be a class of functions X → [a, b], where a < b.
For 0 < γ < 1 denote d = fatγ/4(F). Then

lnN (γ,F , l) 6 1 + d ln
2el(b− a)

dγ
ln

4l(b− a)2

γ2
.

Theorem 1.7 and Corollary 1.3 imply the following corollary.

Corollary 1.4. Let F be a class of real functions with the range
[−1, 1], γ > 0, δ > 0, and P be a probability distribution generating
a sample S. Then, with probability 1− δ, any hypothesis f ∈ F , with
the margin bound mS(f) > γ has a classification error:

errP (f) 6
4

l

(
d ln

16el

dγ
ln

128l

γ2
+ ln

2

δ

)
,

where d = fatγ/8(F).
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A dimension free upper bound of the fat-dimension can be ob-
tained for the class of all (homogeneous) linear functions with re-
stricted domain in Rn:

Theorem 1.8. Let X = {x̄ : |x̄| 6 R} be a ball of radius R in the
n-dimensional Euclidian space and F be the class of all homogeneous
linear functions f(x̄) = (w̄ · x̄), where ‖w̄‖ 6 1 and x̄ ∈ X. Then

fatγ(F) 6

(
R

γ

)2

.

Proof. Assume that a set Y = {x̄1, . . . , x̄l} is γ-shattered by the
class F of all homogeneous linear functions with witnesses r1, . . . , rl.

Let Ŷ be an arbitrary subset of Y . Assume that∑
x̄i∈Ŷ

ri >
∑

x̄i∈Y \Ŷ

ri.

By definition a weight vector w̄, ‖w̄‖ 6 1 exists such that (w̄ · x̄i) >
ri + γ for x̄i ∈ Ŷ and (w̄ · x̄i) 6 ri − γ for x̄i 6∈ Ŷ . Then we have∑

x̄i∈Ŷ

(w̄ · x̄i) >
∑
x̄i∈Ŷ

ri + |Ŷ |γ

and ∑
x̄i∈Y \Ŷ

(w̄ · x̄i) 6
∑

x̄i∈Y \Ŷ

ri − |Y \ Ŷ |γ.

The difference of these sums is estimated:∑
xi∈Ŷ

(w̄ · x̄i)−
∑

xi∈Y \Ŷ

(w̄ · x̄i) > γl. (1.27)

Using Cauchy–Shwarz inequality for the Euclidian norm, we obtain∑
xi∈Ŷ

(w̄ · x̄i)−
∑
xi 6∈Ŷ

(w̄ · x̄i) =

=

w̄ ·
∑
xi∈Ŷ

x̄i −
∑
xi 6∈Ŷ

x̄i

 6

6

∥∥∥∥∥∥
∑
xi∈Ŷ

x̄i −
∑
xi 6∈Ŷ

x̄i

∥∥∥∥∥∥ · ‖w̄‖. (1.28)
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By (1.27), (1.28) and ‖w̄‖ 6 1, we obtain a lower bound∥∥∥∥∥∥
∑
xi∈Ŷ

x̄i −
∑
xi 6∈Ŷ

x̄i

∥∥∥∥∥∥ > γl. (1.29)

Assume now that ∑
x̄i∈Ŷ

ri <
∑

x̄i∈Y \Ŷ

ri.

Interchange the sets Ŷ and Y \ Ŷ and obtain∥∥∥∥∥∥
∑

xi∈Y \Ŷ

x̄i −
∑
xi∈Ŷ

x̄i

∥∥∥∥∥∥ > γl.

Therefore, the inequality (1.29) is valid in both cases.
Continue the proof of of the theorem.
Let ξ̄ = (ξ1, . . . , ξl) be a uniformly distributed random vector of

length l such that ξi ∈ {−1, 1} for i = 1 , . . . , l.
The binary vector ξ̄ shatters naturally the vectors of Y on two

subsets Ŷ and Y \ Ŷ .
Let us compute the mathematical expectation of the square norm

of the difference (1.29) with respect to the probability distribution
generating vector ξ̄:

E

∥∥∥∥∥∥
∑
xi∈Ŷ

x̄i −
∑
xi 6∈Ŷ

x̄i

∥∥∥∥∥∥
2

= E

∥∥∥∥∥
l∑

i=1

ξix̄i

∥∥∥∥∥
2

=

= E
l∑

i=1

ξ2
i ‖x̄i‖2 + 2E

l∑
i,j=1,i 6=j

ξiξj(x̄i · x̄j) =

= E
l∑

i=1

‖x̄i‖2 6 R2l.

A subset Ŷ exists such that the square norm of the difference (1.29)
is less or equal than its mathematical expectation:∥∥∥∥∥∥

∑
xi∈Ŷ

x̄i −
∑
xi 6∈Ŷ

x̄i

∥∥∥∥∥∥ 6 R
√
l.
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Together with the inequality (1.29), this implies R
√
l > γl. From

this l 6 (R/γ)2 follows. This means that fatγ(F) 6 (R/γ)2. 4
Substituting the bound of Theorem 1.8 in the bound of Corol-

lary 1.4, we obtain the final theorem:

Theorem 1.9. Let the classification problem by use of linear homo-
geneous functions f(x̄) = (w̄ · x̄), where x̄ ∈ Rn and ‖w̄‖ 6 1, be
considered.

Let a number γ > 0 and a probability distribution P concentrated
in the ball of the radius R and centered in the origin be given. Let
also, a sample S = ((x̄1, y1), . . . , (x̄l, yl)) be generated by the proba-
bility distribution P . Then, with probability 1 − δ, any classification
hypothesis f with the margin bound mS(f) > γ has the classification
error:

errP (f) 6
4

l

(
64R2

γ2
ln
elγ

4R
ln

128Rl

γ2
+ ln

2

δ

)
. (1.30)

For this evaluation, we used the fact that in the inequality (??) of
Theorem 1.8 instead of d we can take any upper bound of the number
d′ = Sdim(Fα/2). In this case it is convenient to take d = 64R2

γ2 .
The bounds of Theorems 1.8 and 1.9 serve as a basis of the theory

of dimension-free bounds of classification errors for Suppotr Vector
Machines presented in Theorem 2.4 of Section 2.6.1.

1.3.2. Covering and Packing numbers

In this section we consider the material of the previous section from
a more general position.

Let (X , d) be a metric space with a metrics d(x, y) which defines
the distance between any two elements x, y ∈ X .

Let A ⊆ X , B ⊆ A, and α be a positive number. The set B is
called α-cover of the set A if for any a ∈ A an b ∈ B exists such that
d(a, b) < α. A covering number of the set A is a function:

Nd(α,A) = min{|B| : B is α-covering of A}. (1.31)

We say that the set B ⊆ X is α−separated if d(a, b) > α for any
a, b ∈ B such that a 6= b.
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A packing number of the set A is a function:

Md(α,A) = max{|B| : B ⊆ A is α-separated}. (1.32)

The covering number and the packing number are closely related:

Lemma 1.7. For any A ⊆ X and α > 0

Md(2α,A) 6 Nd(α,A) 6Md(α,A).

Proof. Let M be 2α-separated subset of A and N be α-covering
of A. By definition of the set N for any a ∈M an b ∈ N exists such
that d(a, b) < α. If a, a′ ∈ M are different and b, b′ ∈ N such that
d(a, b) < α and d(a′, b′) < α then b and b′ are also different, since
if b = b′ then d(a, a′) 6 d(a, b) + d(b, a′) < 2α. This contradicts to
the fact that any two distinct elements of M are within a larger than
2α. From this the inequality |M | 6 |N | follows. The left-hand side
inequality is proven.

Let M be a maximal under inclusion α-separated subset of A. We
shall prove that M is an α-covering of the set A. Suppose it is not.
Then an x ∈ A exists such that there are no elements of M in the
ball of the radius α centered in x. Adding x to M , we obtain the
strictly larger subset M ∪{x} of the set A which is also α-separated.
This contradicts to the choice of M . This contradiction proves the
right-hand inequality. 4

The main purpose of this section is to prove Theorem 1.10. To
carry it out, we need some development of the dimension theory for
functions with a finite number of values.

Let X be a set and B = {0, 1, . . . , b} be a finite set. Let also,
F ⊆ BX be a class of functions with domain X and range in the finite
set B. Consider a metrics on F :

l(f, g) = sup
x∈X
|f(x)− g(x)|.

Any two functions f, g ∈ F are said to be separated (2-separated) if
l(f, g) > 2. In other words, an x ∈ X exists such that |f(x)−g(x)| >
2. A class F is said to be pairwise separated if any two different
functions f, g ∈ F are separated.
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Let X = {x1, . . . , xn} ⊆ X be a linear ordered set – a sample –
and F ⊆ BX . We say that the class F strongly shatters the set X if
there exists a collection s = (s1, . . . , sn} of elements of B such that
for all E ⊆ X a function fE ∈ F exists such that

xi ∈ E =⇒ fE(xi) > si + 1

xi 6∈ E =⇒ fE(xi) 6 si − 1

for all i.
In this case we also say that F strongly shatters the set X ac-

cording to s. The strong dimension of F , denoted Sdim(F), is the
size of a largest strongly shattered set.

We will shift our attention from real valued functions f : X →
[0, 1] to ones taking values in a finite set by a simple discretization.
For any real α > 0 define

fα(x) =

[
f(x)

α

]
for all x, where [r] is the closest to r integer number such that |r −
[r]| 6 1

2 . If the number r is located in the middle of the interval
between two integer numbers we define [r] using some tie breaking
rule. Define Fα = {fα : f ∈ F}.

Clearly, the range of any function fα is a subset of the set
{0, 1, . . . , b1/αc}.

The covering numberNd(α,A) and the packing numberMd(α,A)
were defined by (1.31) and (1.32).

Let us define a specific metrics on the class F connected with the
set X = {x1, . . . , xn}:

lX(f, g) = max
16i6n

|f(xi)− g(xi)|.

Consider the corresponding covering and packing numbers:

N (α,F , X) = NlX (α,F),

M(α,F , X) =MlX (α,F).

The following lemma relates the combinatorial dimensions and
packing numbers of the classes F and Fα.
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Lemma 1.8. Let F ⊆ BX and α > 0. Then

Sdim(Fα) 6 fatα/2(F), (1.33)

M(α,F , X) 6M(2,Fα/2, X) (1.34)

The proof is offered to the reader as a problem.
The following lemma is the main technical part the proof of The-

orem 1.10.

Lemma 1.9. Let |X | = n and B = {0, 1, . . . , b}. Let also, F ⊆ BX
and d = Sdim(F). Then

Ml(2,F) 6 2(n(b+ 1)2)dlog ye,

where y =
d∑
i=1

(
n
i

)
bi.

Proof. Assume that b > 2 and define a function t(h, n) as fol-
lows. Consider all pairwise separated subclasses F of the class F
of cardinality h. Let Sh be the set of all such subclasses F . Any
class F ∈ Sh can strongly shatter some sets X ⊆ X with respect to
some sequence s. Let kF be the total number of all such pairs (X, s).
Define t(h, n) = minF∈Sh kF . More formally,

t(h, n) = max{k : ∀F ⊆ F , |F | = n, F pairwise separated

⇒ F strongly shatters at least k (X, s) pairs}.

When we say that F strongly shatters a pair (X, s), we mean that F
strongly shatters X according to s.

Lemma 1.10. If t(h, n) > y and Sdim(F) 6 d then Ml(2,F) < h,

where y =
d∑
i=0

(
n
i

)
bi.

Proof. Assume that Ml(2,F) > h. This means that a pairwise
separated set F ⊆ F of size > h exists. Since t(h, n) > y, F strongly
shatters at least y pairs (X, s).

Since Sdim(F) 6 d, if F strongly shatters the pair (X, s) then
|X| 6 d. A subset X of size i can be chosen by

(
n
i

)
ways; besides,
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there are < bi possible sequences s of length i (since X is strongly
separated s cannot contain 0 and b). Therefore, F strongly separates
less than

d∑
i=1

(
n

i

)
bi = y

pairs (X, s). This contradiction proves the lemma. 4
It follows from Lemma 1.10 that in order to prove Lemma 1.9 we

need to prove the inequality

t
(

2(n(b+ 1)2)dlog ye, n
)
> y, (1.35)

where y =
d∑
i=1

(
n
i

)
bi.

To prove the inequality (1.35) we first prove the following state-
ment.

Lemma 1.11.

t(2, n) > 1 for n > 1, (1.36)

t(2mn(b+ 1)2, n) > 2t(2m,n− 1) for n > 2,m > 1. (1.37)

Proof. For any two separated functions f and g, |f(x)−g(x)| > 2
for at least one x, ie, these functions strongly shatters at least some
singleton {x}. and so t(2, n) > 1, The inequality (1.36) is valid.

To prove (1.37) consider a set F containing at least 2mn(b +
1)2 pairwise separable functions. If there are no such set F then
t(2mn(b + 1)2, n) = ∞ and the inequality (1.37) is satisfied. Divide
all function from F on pairs {f, g}. There are at least mn(b+ 1)2 of
such pairs.

Let P be the set of all such pairs. For any pair {f, g} ∈ P , let
χ(f, g) be an x such that |f(x)− g(x)| > 2.

For any x ∈ X , i, j ∈ B, and j > i+ 2, define

bin(x, i, j) = {{f, g} ∈ P : χ(f, g) = x, {f(x), g(x)} = {i, j}}.

The total number of such sets does not exceed

n

(
b+ 2

2

)
< n(b+ 1)2/2.
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Recall that by Lemma 1.9, we have |X | = n.
Since the total nubber of all pairs is at least mn(b + 1)2, the

numbers x∗, i∗ and j∗, j∗ > i∗ + 1 exist such that

|bin(x∗, i∗, j∗)| > 2m.

Let us define two sets of functions

F1 = {f ∈ ∪bin(x∗, i∗, j∗) : f(x∗) = i∗} ,
F2 = {g ∈ ∪bin(x∗, i∗, j∗) : g(x∗) = j∗} .

Here, for any set A consisting of pairs, we denote by ∪A the set of
all elements of such pairs.

Clearly, |F1| = |F2| > 2m. The class F of functions is pairwise
separated if we restrict all these functions on the set X \{x∗}. Indeed,
the class of F , and thus the class F1 are pairwise separated on the
set X . Therefore, for any two functions f, f ′ ∈ F1 the inequality
|f(x′) − f ′(x′)| > 2 is valid for some x′. Moreover, x′ ∈ X \ {x∗},
since f(x∗) = f ′(x∗).

Similarly, the class of functions F2 is also pairwise separated on
the set X \ {x∗}.

Consequently, there exists two sets U and V of size > t(2m,n−1)
consisting of pairs (X, s) such that F1 strongly shatters pairs in U
and F2 strongly shatters pairs in V . Further, |U | > t(2m,n− 1) and
|V | > t(2m,n− 1).

Any pair in U ∪ V is obviously shattered by the class F . Let
(X, s) ∈ U ∩V . Then the pair ({x∗}∪X, b i

∗+j∗

2 c, s) is also shattered
by F . This is because any functions f ∈ F1 and g ∈ F2 strongly
shattering X also satisfy conditions f(x∗) = i∗ and g(x∗) = j∗, and
j∗ > i∗+ 2. Then g(x∗) = j∗ > i∗+j∗

2 + 1 and f(x∗) = i∗ 6 i∗+j∗

2 − 1.
Hence, at least one such function strongly shatters this set.

Indeed, let E ⊆ X and f(x) > si + 1 if x ∈ E and f(x) 6
si − 1 if x 6∈ E for some sequence s = (s1, . . . , sn−1). Similarly,
let g(x) > s′i + 1 if x ∈ E and f(x) 6 s′i − 1 if x 6∈ E for some
sequence s′ = (s′1, . . . , s

′
n−1). Also, f ∈ F1 and g ∈ F2. Then the

function f strongly shatters E with respect to the sequence s1 =
(b i
∗+j∗

2 c, s1, . . . , sn−1) if x∗ 6∈ E or the function g strongly shatters

E with respect to the sequence s2 = (b i
∗+j∗

2 c, s′1, . . . , s′n−1) if x∗ ∈ E.
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Thus, the class F strongly shatters

|U ∪ V |+ |U ∩ V | = |U |+ |V | > 2t(2m,n− 1)

pairs (X, s).
The inequality (1.37) and Lemma 1.11 are proved. 4
We now turn to the proof of Lemma 1.9. Applying the inequalities

(1.36) and (1.37) recursively, we obtain

t(2(n(b+ 1)2)r, n) > 2rt(2, n− r) > 2r (1.38)

for n > r > 1.
If dlog ye < n then taking r = dlog ye in (1.38) we obtain the

inequality (1.9).
If dlog ye > n then the number

2(n(b+ 1)2)dlog ye > (b+ 1)n

exceeds the total number of all functions with range in B and with
domain X , |X | = n.

Thus, a pairwise separated set F of size 2(n(b + 1)2)dlog ye does
not exist and hence

t(2(n(b+ 1)2)dlog ye, n) =∞.

Lemma (1.9) is proved. 4
We can now state and prove the main result of this section – Alon,

Ben-Dawid, Cesa-Bianchi and Haussler theorem [1].

Theorem 1.10. Let F ⊆ [0, 1]X and α ∈ [0, 1]. Denote d =
fatα/4(F). Then

N (α,F , n) 6 2

(
n

(
2

α
+ 1

)2
)dd log( 2en

dα
)e

.

Proof. Using the fact that the covering number does not ex-
ceed the packing number, the inequality (1.34) of Lemma 1.8, and
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Lemma 1.9, we obtain the following chain of inequalities:

N (α,F , n) = sup
|X|=n

N (α,F , X) 6

6 sup
|X|=n

M(α,F , X) 6

6 sup
|X|=n

M(2,Fα/2, X) =M(2,Fα/2) 6

6 2(n(b+ 1)2)dlog ye,

where b = d 2
αe, y =

d′∑
i=1

(
n
i

)
bi, d′ = Sdim(Fα/2).

Note that the class Fα/2 satisfies the assumption of Lemma 1.9
for b = d 2

αe.
From the inequality (1.33) of Lemma 1.8, the inequality d′ 6

fatα/4(F) = d follows. Hence,

y 6
d∑
i=1

(
n

i

)
bi 6 bd

d∑
i=1

(
n

i

)
6 bd

(en
d

)d
.

In particular, log y 6 d log
(
ben
d

)
.

The theorem is proved. 4
Theorem 1.7 in Section 1.3 is a reformulation of this theorem with

a little attenuation of estimates.

1.4. Rademacher averages

In this section, we consider another definition of the capacity of a
class of functions – Rademacher averages (the sources for this section
are Bousquet et al. [7], Bartlett and Mendelson [3], and Kakade and
Tewari [18]). This concept allows us to obtain new upper bounds for
the generalization error.

Let zl = (z1, . . . , zl) be a sample of unlabeled examples, whose
elements belong to some set X with a structure of probability space,
P be a probability distribution on X . Assume that elements of zl are
generated i.i.d. according to the probability distribution P .
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Let also, F be a class of uniformly bounded functions defined on
X .

Let σ1, . . . , σl be i.i.d. Bernoulli variables taking values +1 and
−1 with equal probabilities: B1/2(σi = 1) = B1/2(σi = −1) = 1/2 for
all 1 6 i 6 l. These variables are called Rademacher variables.

Denote σ = Bl
1/2 the probability of generating a sequence σ1 , . . . , σl

of length l.
Define the empirical Rademacher average of the class F as the

random variable (that is a function of random variables z1, . . . , zl)

R̃l(F) = Eσ

(
sup
f∈F

1

l

l∑
i=1

σif(zi)

)
.

Note that the probability distribution P on X generates the
product probability distribution P l on the set of all samples zl =
(z1, . . . , zl) of length l.

The Rademacher average of the class F is defined as

Rl(F) = EP l(R̃l(F)) = EP lEσ

(
sup
f∈F

1

l

l∑
i=1

σif(zi)

)
.

By definition the Rademacher average is the mathematical expecta-
tion of the empirical Rademacher average with respect to probability
distribution P l.

Rademacher averages give us a powerful tool to obtain uniform
convergence bounds. We present some properties of Rademacher av-
erages, which will be used for obtaining in Section 2.7 the uniform
upper bounds of generalization error.

Assume that the elements of a sample zl = (z1, . . . , zl) be gen-
erated i.i.d. by some probability distribution P . By definition the
empirical mean of a function f on the sample zl equals

Êzl(f) =
1

l

l∑
i=1

f(zi).

The true mathematical expectation of the function f is equal to
EP (f) =

∫
f(z)dP .
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In the following theorem a bound of the difference between the
empirical and true expectations is presented. This bound is uniform
over the functional class F .

Theorem 1.11. The following inequality is valid:

Ezl∼P l(sup
f∈F

(EP (f)− Ẽ(f(zl)))) 6 2Rl(F). (1.39)

Proof. Given a random sample zl = (z1, . . . , zl), let z̃l =
(z̃1, . . . , z̃l) be a “ghost sample”. This means that random vari-
ables z̃i are independent of each other and of zi, i = 1, . . . , l, and
have the same distribution as the latter.

The following chain of equalities and inequalities is valid:

Ezl∼P l

(
sup
f∈F

(
EP (f(z))− 1

l

l∑
i=1

f(zi)

))
=

= Ezl∼P l

(
sup
f∈F

(
1

l

l∑
i=1

Ez̃i∼P (f(z̃i))− f(zi))

))
6

6 Ezl∼P l

(
Ez̃l∼P l

(
sup
f∈F

(
1

l

l∑
i=1

(f(z̃i))− f(zi))

)))
=

= Ezlz̃l∼P 2l

(
sup
f∈F

(
1

l

l∑
i=1

(f(z̃i))− f(zi))

))
=

= Ezlz̃l∼P 2lEσ∼B1/2

(
sup
f∈F

(
1

l

l∑
i=1

σi(f(z̃i))− f(zi))

))
6

= Ez̃l∼P lEσ∼B1/2

(
sup
f∈F

(
1

l

l∑
i=1

σif(z̃i)

))
+

+Ezl∼P lEσ∼B1/2

(
sup
f∈F

(
1

l

l∑
i=1

σif(zi)

))
=

= 2Rl(F). (1.40)

The transition from the 2th line to 3th one is valid, since supremum
of a sum does not exceed the sum of suprema. Inserting σi in the
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5th line do not change the supremum, since the mathematical expec-
tation of supremum is invariant under transposition of any variables
zi and z̃i. By this reason we can insert in the 6th line the symbol of
mathematical expectation Eσ∼B1/2

.
The inequality (1.39) is proved. 4
Now we give two corollaries of Theorem 1.11.
First, the inequality (1.39) can be inverted:

Corollary 1.5. For any function f ∈ F ,

EP l(sup
f∈F

(Ẽzl(f)− EP (f)) 6 2Rl(F). (1.41)

The inequality (1.41) follows directly from the inequality (1.39)
and from the obvious equality Rl(F) = Rl(−F), where −F = {−f :
f ∈ F}.

To prove the second corollary, we need the following lemma which
is presented without a proof.

Lemma 1.12. Let f : X l → R be a function satisfying

|f(z1, . . . , zi−1, zi, zi+1, . . . , zl)−
−f(z1, . . . , zi−1, z

′
i, zi+1, . . . , zl)| 6 ci

for all i and for all z1, . . . , zl, z
′
i ∈ Z, where c1, . . . , cl are some

constants.
Let also, z̃1, . . . , z̃l be i.i.d. random variables with range in X

distributed according to a probability distribution P . Then

P l{f(z̃1, . . . , z̃l)− EP l(f(z̃1, . . . , z̃l)) > t} 6

6 exp

−2t2

l∑
i=1

c2
i

 , (1.42)

where EP l is a symbol of the mathematical expectation with respect
to the probability distribution P l on samples of length l.
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The proof of this lemma can be found in [25] and [28].
Since the condition of this lemma is satisfied, where we replace f

on −f , the following inequality also holds:

P l{EP l(f(z1, . . . , zl))− f(z1, . . . , zl) > t} 6

6 exp

−2t2

l∑
i=1

c2
i

 . (1.43)

The following corollary presents the uniform bound of the differ-
ence between the expectation of the function and the sample mean
of this function:

Corollary 1.6. Assume that all functions from a class F take values
in [0, 1]. Then for any f ∈ F and any δ > 0, with probability 1− δ:

EP (f(z)) 6 Êzl(f) + 2Rl(F) +

√
ln 2

δ

2l
6

6 EP (f(z)) 6 Êzl(f) + 2R̃l(F) + 3

√
ln 2

δ

2l
. (1.44)

Proof. For any function f , the following inequality obviously
holds:

EP (f(z)) 6 Êzl(f) + sup
h∈F

(EP (h)− Ẽzl(h)). (1.45)

Let us apply the inequality (1.42) of Lemma 1.12 to the second
term of (1.45).

Since the function f is nonnegative and bounded by 1, one can
take ci = 1/l for all 1 6 i 6 l. Substituting these values in the right-
hand side of the inequality (1.42) and equate it to δ/2, we obtain

exp

−2t2

l∑
i=1

c2
i

 = e−2t2l = δ/2.
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Then t =

√
ln 2
δ

2l . By (1.42), with probability 1− δ/2,

sup
h∈F

(EP (h)− Ẽ(h)) 6 EP l(sup
h∈F

(EP (h)− Ẽ(h))) +

√
ln 2

δ

2l
. (1.46)

The inequality (1.39) says that

EP l(sup
f∈F

(EP (f)− Ẽzl(f)) 6 2Rl(F).

From this and from (1.46), we obtain

sup
h∈F

(EP (h)− Ẽzl(h)) 6 2Rl(F) +

√
ln 2

δ

2l
. (1.47)

Hence, with probability 1− δ/2, the bound

EP (f) 6 Ẽ(f)) + 2Rl(F) +

√
ln 2

δ

2l
(1.48)

is valid for all f ∈ F . Thus, the inequality (1.44) is proved.
Similarly, using the inequality (1.43) of Lemma 1.12, we obtain

that, with probability 1− δ/2,

Rl(F) 6 R̃l(F) +

√
ln 2

δ

2l
. (1.49)

By (1.48) and (1.49) we obtain that, with probability 1 − δ, the
inequality (1.44) holds. 4

In order to use our Rademacher bound, we need to find Rademacher
complexities of composition φ ◦ F = φ(F) = {φ(f) : f ∈ F}, where
φ is some function.

Theorem 1.12. Assume that φ be L-Lipschitz continuous function,
ie

|φ(x)− φ(y)| 6 L|x− y|
for all x and y. Then

R̃l(φ(F)) 6 LR̃l(F), (1.50)

Rl(φ(F)) 6 LRl(F). (1.51)
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Proof. Let zl = (z1, . . . , zl) be a random sample distributed
according to a probability distribution P , σ1, . . . , σl be the i.i.d.
Bernoulli random variables taking values in the set {−1,+1}, and let
σ be the probability distribution on the set of all such sequences of
length l induced by P .

The transformations given below are valid for mathematical ex-
pectations E = Eσ and E = EP lEσ simultaneously. Thus we will
prove both inequalities (1.50) and (1.51) simultaneously.

By definition the empirical Rademacher average of the class φ(F)
is equal to

Rl(φ(F)) = E

(
1

l

l∑
i=1

σiφ(f(zi))

)
. (1.52)

For simplicity, we assume that L = 1. 9 We need to prove that

Rl(φ(F)) 6 Rl(F) = E

(
1

l

l∑
i=1

σif(zi)

)
. (1.53)

We make the transition from (1.52) to (1.53) step-by-step. At each
step, we consider a sequence of auxiliary functions (φ1, . . . , φl),
where each function φi is φ or it is identity function I.

At the first step all the functions are φ: φi = φ for all i, at the
last step of all these functions are identity functions: φi = I for all i.

We also assume that at each step, except the last one, φ1 = φ.
In the transition to the next step the next function φi = φ will be
replaced by the identity function: φ′i = I. This will be achieved by

9One can replace the function φ on φ/L.
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the following chain of equalities and inequalities:

E(sup
f∈F

1

l

l∑
i=1

σiφi(f(zi))) =

1

2l
E(sup

f∈F
(φ(f(z1)) +

l∑
i=2

σiφi(f(zi))) +

+ sup
f∈F

(−φ(f(z1)) +
l∑

i=2

σiφi(f(zi)))) =

=
1

2l
E( sup

f,f ′∈F
(φ(f(z1)) +

l∑
i=2

σiφi(f(zi))−

−φ(f ′(z1)) +
l∑

i=2

σiφi(f
′(zi)))) 6

6
1

2l
E( sup

f,f ′∈F
(|f(z1)− f ′(z1)|+

+
l∑

i=2

σiφi(f(zi)) +
l∑

i=2

σiφi(f
′(zi)))) =

=
1

2l
E( sup

f,f ′∈F
(f(z1)− f ′(z1) +

+
l∑

i=2

σiφi(f(zi)) +
l∑

i=2

σiφi(f
′(zi)))) 6

6
1

2l
E(sup

f∈F
(f(z1) +

l∑
i=2

σiφi(f(zi)) +

sup
f ′∈F

(−f ′(z1) +

l∑
i=2

σiφi(f
′(zi))) =

= E(sup
f∈F

1

l

l∑
i=1

σiφ
′
i(f(zi))), (1.54)

where the collection of functions φ′1, . . . , φ
′
l contains one more iden-

tity function than the previous collection φ1, . . . , φl.
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In transition from the 1th line to the 2th and 3th lines, we take
the mathematical expectation by σ1; after that one can still consider
E as the expectation by the whole set σ, because now the variable
σ1 absent.

In transition from the 4th and 5th lines to the 6th and 7th, we have
used an observation that the supremum is achieved by non-negative
values of the difference φ(f(z1))−φ(f ′(z1)), so we can replace it by its
absolute value. After that, Lipschitz’s condition has used for L = 1.
A similar reason was used in transition from the 6th and 7th lines to
the 8th and 9th lines.

Transition from the 8th and 9th lines to the 10th line has done
by the same reason as transition from the 1th line to the 2th and 3th
lines.

Applying several times the chain of transformations (1.54) we
obtain the expression

E

(
sup
f∈F

1

l

l∑
i=1

σiφ
′
i(f(zi))

)
, (1.55)

where all φ′i are identity functions, and so, the sum (1.55) is equal to
Rl(F).

The first line of the chain (1.54) is equal to Rl(φ(F)) for E =
EP lEσ or to R̃l(φ(F)) for E = Eσ.

Thus, the inequalities (1.50) and (1.51) are satisfied, and the the-
orem is proved. 4

1.5. Rademacher averages and other capacity
measures

In this section we study connection of Rademacher average with other
known measures of capacity of the classes of functions – the growth
function BF (l) and the covering number N (α,F , l).

Comparison with the growth function
We need the following auxiliary statement - Massar Lemma:
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Lemma 1.13. Let A be a finite subset of Rl and σ1, . . . , σl be i.i.d.
random variables. Then

Eσ

(
sup
a∈A

1

m

l∑
i=1

σiai

)
6 sup

a∈A
‖a‖

√
2 ln |A|
l

,

where a = (a1, . . . , al).

Proof. Denote E = Eσ. The following chain of equalities and
inequalities is valid:

exp

(
λE

(
sup
a∈A

l∑
i=1

σiai

))
6

6 E

(
exp

(
λ sup
a∈A

l∑
i=1

σiai

))
=

= E

(
sup
a∈A

exp

(
λ

l∑
i=1

σiai

))
6

6 E

(∑
a∈A

exp

(
λ

l∑
i=1

σiai

))
=

=
∑
a∈A

E

(
exp

(
λ

l∑
i=1

σiai

))
=

=
∑
a∈A

l∏
i=1

E(exp(λσiai)) =

=
∑
a∈A

l∏
i=1

eλai + e−λai

2
6

6
∑
a∈A

l∏
i=1

eλ
2‖a‖2/2 6

6 |A|eλ2r2/2,

where r = sup
a∈A
‖a‖. Here, in the transition from the first to the second

line, the convexity of the exponent was used. In the transition from
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the 7th row to the 8th one, we use the inequality ex + e−x 6 2ex
2/2.

Other transitions are obvious.
Taking logarithm of the first and the second lines of this inequal-

ity, we obtain the inequality:

E

(
sup
a∈A

l∑
i=1

σiai

)
6

ln |A|
λ

+
λr2

2
. (1.56)

It is easy to verify that the right-hand side of (1.56) attains its min-
imum at λ =

√
2 ln |A|/r2. Substituting this value in the right-hand

side of (1.56), we obtain:

E

(
sup
a∈A

l∑
i=1

σiai

)
6 r
√

2 ln |A|.

Lemma is proved. 4
The inequality between the Rademacher average and the growth

function is presented in the following theorem.

Theorem 1.13. Let F be a class of indicator functions taking values
in the set {−1,+1}. Then

Rl(F) 6

√
2 lnBF (l)

m

for all l.

Proof. Let E = EP l and a binary string a = (a1, . . . , al) repre-
sents all values (f(z1), . . . , f(zl)). The following chain of inequalities
is valid:

Rl(F) = EEσ

(
sup
a

1

l

l∑
i=1

σiai

)
6

6 E

sup
a
‖a‖

√
2 ln |F|Xl|

l

 6

6 E

(
√
l

√
2 lnBF (l)

l

)
=

=

√
2 lnBF

l
.
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In transition from the 1th line to 2th, Lemma 1.13 has used, in tran-
sition from 2th line to 3th, we have used the value of the norm of
the binary vector ‖a‖ =

√
l. We have used also the definition of the

growth function.
Theorem is proved. 4
Comparison with the covering number

Let a set X is equipped by some probability distribution P and xl =
(x1, . . . , xl) be a random sample in X . Let also, F be a class of
uniformly bounded functions defined on X with the range in [−1, 1].

Recall the norm lxl(f, g) = sup16i6l |f(xi)− g(xi)| on F and the
corresponding covering number N (α,F , xl) associated with the sam-
ple xl. The covering number is equal to the minimal size of sets
B ⊆ F such that for any f ∈ F an g ∈ B exists for that lxl(f, g) < α.

Theorem 1.14. The empirical Rademacher average satisfies:

R̃l(F) 6 inf
α

(√
2 lnN (α,F , xl)

l
+ α

)
. (1.57)

Proof. Let B be a minimal cover of the class F with respect to
the sample xl.

We can assume that the domain of functions fromB is {x1, . . . , xl}.
Let also,

Bα(g) = {f ∈ F : lxl(f, g) < α}.
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By definition of the cover ∪g∈BBα(g) = F . Then

R̃l(F) = Eσ

(
sup
f∈F

(
1

l

l∑
i=1

σif(xi)

))
=

= Eσ

(
sup
g∈B

sup
f∈Bα(g)

(
1

l

l∑
i=1

σif(xi)

))
=

= Eσ

(
sup
g∈B

sup
f∈Bα(g)

(
1

l

l∑
i=1

σig(xi) +
1

l

l∑
i=1

σi(f(xi)− g(xi))

))
6

6 Eσ

(
sup
g∈B

1

l

l∑
i=1

σig(xi)

)
+

+Eσ

(
sup
g∈B

sup
f∈Bα(g)

1

l

l∑
i=1

σi(f(xi)− g(xi))

)
. (1.58)

For mathematical expectation from the last line of (1.58), the follow-
ing inequality holds:

Eσ

(
sup
g∈B

sup
f∈Bα(g)

1

l

l∑
i=1

σi(f(xi)− g(xi))

)
=

= Eσ

(
sup
g∈B

sup
f∈Bα(g)

∣∣∣∣∣1l
l∑

i=1

σi(f(xi)− g(xi))

∣∣∣∣∣
)

6

6 Eσ

(
sup
g∈B

sup
f∈Bα(g)

1

l

l∑
i=1

σi|f(xi)− g(xi)|

)
6 α. (1.59)

By Lemma 1.13:

Eσ

(
sup
g∈B

1

l

l∑
i=1

σig(xi)

)
6

6 sup
g∈B
‖g‖

√
2 ln |B|
l

6

6

√
2 ln |B|

l
=

√
2 lnN (α,F , xl)

l
. (1.60)
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We have used ‖g‖ =

√
l∑

i=1
g2(xi) 6

√
l, since the size of domain of g

is equal to l and this function is bounded by one.
Combining the inequalities (1.59) and (1.60), we obtain:

R̃l(F) 6

(√
2 lnN (α,F , xl)

l
+ α

)
. (1.61)

Since the inequality (1.61) is valid for all α > 0, its is valid for infimum
by α > 0. From this the inequality (1.57) follows. Theorem is proved.
4

Theorem 1.14 clearly implies a similar inequality between Rademacher
average and covering number.

Corollary 1.7.

Rl(F) 6 inf
α

(√
2 lnN (α,F , l)

l
+ α

)
.

For more information on Rademacher averages see Bartlett et
al. [3], Bartlett et al. [4], Ledoux and Talagrand [21].

1.6. Problems

1. Give a complete proof of Lemmas 1.3 and 1.4.
2. Let Z be an infinite set and

Pk(Z) = {A : A ⊆ Z&|A| 6 k}

be a set of all its subsets containing no more than k elements, fA be
the characteristic function of a subset A, ie, a function equal to 1 on A
and 0 on its complement. Let also, HZ be a class of all characteristic
functions. Prove that the growth function BHZ (l) satisfies

BHZ (l) = 2l

for l 6 k, and

BHZ (l) =
k∑
i=0

(
l

i

)
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for l > k.
3. Compute the values of growth function: BH(3), BH(4),

BH(5), . . . , where
a) H be a class of all homogeneous linear classifiers;
b) H be a class of all linear classifiers;
c) H be a class of all classifiers defining by polynomials of 2th degree,
3th degree, and so on.

4. Give examples of classes of indicator functions, for which
V C-dimension is equal to ∞ (Note: Consider the class of functions
F = {sign(sin(tx)) : t ∈ R}. For any l, let xi = 2π10−i, i = 1, . . . , l,
and δ1, . . . , δl be an arbitrary set or real numbers from {0, 1} repre-
senting the partition of elements xi on two classes. Prove that for

t = 1
2

(
l∑

i=1
(1− δi)10i + 1

)
the equalities sign(sin(txi)) = δi hold for

all i, where sig(r) = 1 for r > 0 and sig(r) = 0 for r < 0 (see [34])).
5. Check VC-dimension of the class F of classifiers:
a) VC-dimension of the class F defined by convex polygons in R2

is ∞;
b) VC-dimension of the class F defined by axis-aligned rectangles

in R2 is 4;
c) Find VC-dimension of the class F defined by convex polygons

with d vertices in R2.
6. Obtain a bound 3) of Theorem 1.5 for the class of all classifiers

defined by linear functions.
7. Prove that the recurrence relation (1.26) has the solution

Φ(n, l) =


2l if l 6 n

2
n−1∑
i=1

(
l−1
i

)
if l > n.

8. Let G be a k-dimensional vector space of functions on Rn and

F = {f : f(x̄) = sign(g(x̄)) : g ∈ G}.

Prove that VC-dimension of class F is less or equal to k (Hint: The
class of all homogeneous linear functions is an example of such func-
tional space G).
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9. Let L be the class of linear functions f(x̄) = (w̄ · x̄), where
‖w̄‖2 =

√
(w̄ · w̄) 6 A and ‖x̄‖2 6 R. Prove that the Rademacher

complexity is bounded:

Rl(L) 6
AR√
l
.
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Chapter 2

Support vector machines

The problem of classification and regression using Support Vector
Machines (SVM) aims to develop efficient algorithmic techniques for
constructing an optimal separating hyperplane in the feature space
of high dimension. The optimality is in the sense of minimizing the
upper bounds of generalization error.

2.1. Optimal hyperplane

We first consider the case of a fully separated training sample, ie, the
case where training may be carried out without errors.

An ordered sample S = ((x̄1, y1), (x̄2, y2), . . . , (x̄l, yl)), where
x̄i ∈ Rn and yi ∈ {−1, 1}, i = 1, . . . , l, is called separable by
a hyperplane (w̄ · x̄i) − c = 0 if there exists a vector w̄ of length
(|w̄| = 1) and the number c such that

(w̄ · x̄i)− c > 0 if yi = 1,

(w̄ · x̄i)− c < 0 if yi = −1. (2.1)

In the case, where a separating hyperplane (w̄ · x̄i) − c = 0 exists,
define

c1(w̄) = min
yi=1

(w̄ · x̄i),

c2(w̄) = max
yi=−1

(w̄ · x̄i). (2.2)
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By definition c1(w̄) > c2(w̄). Besides, c1(w̄) > c > c2(w̄) if the
hyperplane (w̄ · x̄i)− c = 0 fully separates the sample.

Define

ρ(w̄) =
c1(w̄)− c2(w̄)

2
. (2.3)

Then ρ(w̄) = 1
2((c1(w̄) − c) + (c − c2(w̄)) is equal to the half of the

sum of the distances from the nearest points of the top and bottom
to the separating hyperplane (w̄ · x̄)− c = 0 (see (2.1)).

Assume that a sample S is separable, ie, a number c exists such
that (2.1) satisfies.

The maximum of the continuous function ρ(w̄) defined on the
compact set {w̄ : |w̄| 6 1} exists. Let w̄ = w̄0 be a maximum point.

Lemma 2.1. The hyperplane (w̄0 ·x̄)−c0 = 0, where c0 = 1
2(c1(w̄0)+

c2(w̄0)), separates the sample S. It is exactly in the middle between
the nearest points of the top and bottom of positive and negative parts
of the sample.

Proof. Indeed, if yi = 1 then

(w̄0 · x̄i)− c0 > c1(w̄0)− c1(w̄0) + c2(w̄0)

2
=

=
c1(w̄0)− c2(w̄0)

2
> 0. (2.4)

If yi = −1 then

(w̄0 · x̄i)− c0 6 c2(w̄0)− c1(w̄0) + c2(w̄0)

2
=

= −c1(w̄0)− c2(w̄0)

2
< 0. (2.5)

The rest part of the lemma is left to the reader as a problem. 4
The hyperplane (w̄0 · x̄) − c0 = 0 is called optimal. For this hy-

perplane, the sum of the distances from the nearest to it (top and
bottom) sample points is maximal among all separating S hyper-
planes.
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Lemma 2.2. The optimal hyperplane is a unique hyperplane such
that the sum of the distances from the nearest to it, from above and
below, sample points is maximal among all separating S hyperplanes
located at equal distances from them.

Proof. The maximum point w̄0 of the continuous function ρ(w̄)
defined on the compact {w̄ : ‖w̄‖ 6 1} is achived on the boundary,
since otherwise the vector w̄∗ = w̄0

‖w̄0‖ would satisfy ‖w̄∗‖ = 1 and

ρ(w̄∗) = ρ(w̄0)
‖w̄0‖ > ρ(w̄0).

This maximum is unique because the function ρ(w̄) is concave
(see a problem in Section 2.12).

If its maximum is attained at two different points lying on the
boundary of the compact, it would also attained at an interior point,
contrary to has just been proved. 4

Let us consider an equivalent definition of the optimal separating
hyperplane. On the basis of this definition an algorithmically effi-
cient method for constructing an optimal hyperplane in the form of
quadratic programming problem will be developed. The exact algo-
rithm constructed by this method will be given in the next section.

Find a vector w̄0 and a threshold b0 such that

(w̄0 · x̄i) + b0 > 1 yi = 1,

(w̄0 · x̄i) + b0 6 −1 yi = −1, (2.6)

where i = 1, . . . , l, and such that the vector ‖w̄0‖ has the smallest
possible norm.

Theorem 2.1. A vector w̄0 minimizing ‖w̄‖2 under constraints (2.6)
defines the optimal hyperplane with the weight vector w̄∗0 = w̄0

‖w̄0‖ . The
margin between the optimal hyperplane and separated vectors is equal:

ρ(w̄∗0) = max
‖w̄‖=1

(
1

2
(min
yi=1

(w̄ · x̄i)− max
yi=−1

(w̄ · x̄i))
)

=
1

‖w̄0‖
.

Proof. It holds

ρ(w̄∗0) =
1

2

(
c1

(
w̄0

‖w̄0‖

)
− c2

(
w̄0

‖w̄0‖

))
>

1

‖w̄0‖
,
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since by (2.6)

c1

(
w̄0

‖w̄0‖

)
>

1− b0
‖w̄0‖

,

c2

(
w̄0

‖w̄0‖

)
6
−1− b0
‖w̄0‖

.

It remains to prove that the inequality ρ(w̄∗0) > 1
‖w̄0‖ is impossible.

Assume the contrary. Let us define the vector w̄1 =
w̄∗0
ρ(w̄∗0) . We have

‖w̄1‖ =
‖w̄∗0‖
ρ(w̄∗0)

< ‖w̄0‖,

since ‖w̄∗0‖ = 1.

The vector w̄1 satisfies the constraints (2.6) for b0 = − c1(w̄1)+c2(w̄1)
2 .

Indeed, for yi = 1 :

(w̄1 · x̄i)−
c1(w̄1) + c2(w̄1)

2
=

=
1

ρ(w∗0)
(w̄∗0 · x̄i)−

c1(w̄∗0) + c2(w̄∗0)

2ρ(w∗0)
>

>
c1(w̄∗0)

1
2(c1(w̄∗0)− c2(w̄∗0))

− c1(w̄∗0) + c2(w̄∗0)

c1(w̄∗0)− c2(w̄∗0)
= 1.

The case yi = −1 is considered similarly.
This is a contradiction, since the norm of the vector w̄∗1 is less

than the norm of the vector w̄∗0. Therefore, ρ(w̄∗0) = 1
‖w̄0‖ . Theorem

is proved. 4
By definition of w̄∗0:

ρ(w̄∗0) = max
‖w̄‖=1

ρ(w̄) =
1

‖w̄0‖
.

By Theorem 2.1 the quantity ρ(w̄∗0) = 1
‖w̄0‖ is equal to the distance

from the nearest points (positive or negative) of the sample to the
optimal hyperplane

(w̄∗0 · x̄)− c1(w̄∗0) + c2(w̄∗0)

2
= 0,
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which is located at equal distances between hyperplanes:

(w̄∗0 · x̄)− c1(w̄∗0) + c2(w̄∗0)

2
= ±1

optimally separating vectors of the positive and negative parts of the
sample.

The equation of the optimal hyperplane can also be written as

(w̄0 · x̄)− c1(w̄0) + c2(w̄0)

2
= 0.

2.2. Algorithm for constructing the optimal hy-
perplane

In this section, we present an algorithm for constructing an optimal
hyperplane.

Two sets of conditions (2.6) can be written as

yi((w̄ · x̄i) + b) > 1 (2.7)

for i = 1, . . . , l.
According to the results of the previous section, to find the opti-

mal hyperplane, we have to minimize norm of the weight vector ‖w̄‖
subject to the constraints (2.7).

The section 2.10 (below) shows that to solve the quadratic opti-
mization problem

(w̄ · w̄) =
l∑

i=1

w2
i → min

under constraints (2.6) (or equivalent constraints (2.7)) we have to
form the Lagrangian

L(w̄, b, ᾱ) =
1

2
(w̄ · w̄)−

l∑
i=1

αi(yi((w̄ · x̄i) + b)− 1), (2.8)

where αi > 0 are Lagrange multipliers.
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In order to find the saddle point of the Lagrangian (2.8), it is
necessary to minimize it over w̄ and b, and then, maximize it over
the Lagrange multipliers under constraints αi > 0, i = 1, . . . , l.

A necessary condition for the minimum of the Lagrangian is

∂L(w̄, b, ᾱ)

∂w̄
= w̄ −

l∑
i=1

αiyix̄i = 0̄, (2.9)

∂L(w̄, b, ᾱ)

∂b
=

l∑
i=1

αiyi = 0. (2.10)

It follows from (2.9) – (2.10) that

w̄ =
l∑

i=1

αiyix̄i, (2.11)

l∑
i=1

αiyi = 0. (2.12)

Substitute (2.11) into (2.8) and denote W (ᾱ) = L(w̄, b, ᾱ). Taking
into account (2.12), one obtains

W (α) =
l∑

i=1

αi −
1

2

l∑
i,j=1

αiαjyiyj(x̄i · x̄j). (2.13)

To construct the optimal hyperplane one has to maximize the func-
tion (2.13) under constraints (2.12) and αi > 0, where i = 1, . . . , l.

Let this maximum is attained for αi = α0
i , i = 1, . . . , l. Then

the solution of the problem of finding the optimal hyperplane has the
form

w̄0 =
l∑

i=1

α0
i yix̄i. (2.14)

In this case,

b0 =

min
yi=1

(w̄0 · x̄i) + max
yi=−1

(w̄0 · x̄i)

2
.
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The optimal solution w̄0 and b0 must satisfy Kuhn–Tucker conditions

α0
i (yi((w̄0 · x̄i) + b)− 1) = 0 (2.15)

for i = 1, . . . , l.
From this follows that α0

i > 0 can be only for those i, for which
yi((w̄0 · x̄i) + b0) − 1 = 0. The corresponding vectors x̄i lie on the
hyperplanes (w̄0 · x̄i)+ b0 = ±1. We call such vectors support vectors.

The weight vector w̄0 of the optimal hyperlane is expanded with
nonzero coefficients on support vectors x̄is , s = 1, . . . , k, (k is the
number of support vectors):

w̄0 =

k∑
s=1

α0
isyis x̄is .

The optimal hyperplane has the form

k∑
s=1

α0
isyis(x̄is · x̄) + b0 = 0. (2.16)

Others, non-support vectors, can not be taken into account, for ex-
ample, they can be changed, with the optimal hyperplane does not
change.

We also present some relations with the support vectors:

‖w̄0‖2 = (w̄0 · w̄0) =
k∑

s,q=1

α0
isα

0
iqyisyiq(x̄is · x̄iq) (2.17)

and

W (ᾱ0) =

k∑
s,q=1

α0
is −

1

2
‖w̄0‖2.

Summing (2.15) over i, we obtain

k∑
s=1

α0
isyis(w̄0 · x̄is) + b0

k∑
s=1

α0
isyis =

k∑
s=1

α0
is .
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Fig. 1.1. Support vectors locate on the boundary hyperplanes H1 and H2

By (2.10) the second term in this sum is 0. Hence, using (2.17), we
obtain

k∑
s=1

α0
is =

k∑
s,q=1

α0
isα

0
iqyisyiq(x̄is · x̄iq) = ‖w̄0‖2.

Therefore, W (ᾱ0) = 1
2‖w̄0‖2. We have also

‖w̄0‖ =
1√
k∑
s=1

α0
is

.
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2.3. Upper bound for generalization error in
terms of support vectors

We have shown that the optimal separating hyperplane is defined not
by all vectors of the sample S, but only by support vectors. One can
consider the transition from a sample S to the separating hyperplane
ρ(S) as an information compression scheme applied to the sample
S. A subsample Ŝ composed by support vectors defines the same
hyperplane: ρ(Ŝ) = ρ(S).

Assume that size of Ŝ is d. There are
(
l
d

)
subsets of of the sample

S. Any such subset consider the corresponding classifier hŜ defined
by S. For any such classifier hŜ , the probability that it is compatible
with the other l − d points but has a generalization error more than
ε, is bounded by (1− ε)l−d 6 exp(−ε(l − d)).

Therefore, the probability that any classifier hŜ defined by a sub-
set of size d is compatible with the other l − d points but has a
generalization error more than ε, is bounded by(

l − d
d

)
exp(−ε(l − d)).

Thus, we have proved the theorem:

Theorem 2.2. For any probability distribution P on X × {−1, 1},
with P l-probability 1 − δ, any classifier Ŝ defined by a subset of a
random sample S of size d has a generalization error no more than

errP (hŜ) 6
1

l − d

(
d ln

(
el

d

)
+ ln

(
l

δ

))
.

This theorem implies that, for d > 2 and sufficiently large l

errP (hŜ) 6
d ln l

l − d
,

where d is the number of support vectors.
Unfortunately, in practical applications, the number of support

vectors is often comparable in order to sample size. For this reason,
the bound of Theorem 2.2 is useless.
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2.4. SVM-method in feature space

SVM method is based on the following idea. Let an ordered training
sample S = ((x̄1, y1), (x̄2, y2), . . . , (x̄l, yl)) be given.

Sample vectors x̄1, . . . , x̄l belonging to the space Rn are mapped
to a feature space of a higher dimension RN using some non-linear
mapping φ̄ : Rn → RN chosing a priory:

x̄ = (x1, . . . , xn)→ φ̄(x̄) = (φ1(x̄), . . . , φN (x̄)). (2.18)

Consider the induced training sample

φ(S) = ((φ̄(x̄1), y1) . . . , (φ̄(x̄l), yl))

in the feature space RN .
In general case the mapping (2.18) can be non-invertible. The

initial space Rn is mapped by x̄ → φ̄(x̄) to a subset of the features
space RN . We construct the optimal hyperplane separating the vec-
tors φ̄(x̄1), . . . , φ̄(x̄l) in the space RN .

Example. Suppose that we solve a classification problem in the
n-dimensional space using polynomials of the 2nd degree of n vari-
ables. Then we can consider the following construction. Define new
variables in a feature space:

z1 = x1, . . . , zn = xn,

zn+1 = x2
1, . . . , z2n = x2

n,

z2n+1 = x1x2, . . . , zN = xnxn−1.

There are N = 2n + n(n−1)
2 of such variables. Thus, we have con-

structed the following non-linear mapping:

x̄ = (x1, . . . , xn)→ φ̄(x̄) = z̄ = (z1, . . . , zN )

of the space Rn to the space RN .
A separating hyperplane in the feature space Z = RN :

(w̄ · z̄) + b = 0,
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has a preimage in the initial space Rn that is a second-order hyper-
surface:

(w̄ · φ̄(x̄)) + b =

N∑
i=1

wizi + b =

=

n∑
i=1

wixi +

2n∑
i=n+1

wix
2
i +

N∑
i=2n+1

wixjixki + b = 0,

where (ji, ki) is the ith pair of positive integer numbers in some one-
one enumeration of all pairs of positive integers less than or equal to
n.

Now consider the general case. Let a mapping (2.18)

φ̄(x̄) = (φ1(x̄), . . . , φN (x̄))

of the space Rn to a feature space

RN = {z̄ = (z1, . . . , zN ) : zi ∈ R, i = 1, . . . , N}

be given. In the coordinate form it can be written as zj = φj(x̄),
j = 1, . . . , N .

The vectors x̄1, . . . , x̄l of the spaceRn are mapped to the vectors
φ̄(x̄1), . . . , φ̄(x̄l) of the feature space RN .

Using the method developed in Section 2.2, we construct the op-
timal hyperplane in the feature space RN :

N∑
j=1

wjzj + b = 0, (2.19)

separating the vectors φ̄(x̄1), . . . , φ̄(x̄l).
The preimage of this hyperplane in the space Rn is a non-linear

hypersurface:

N∑
j=1

wjφj(x̄) + b = 0. (2.20)
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Using the dual form of the optimal hyperplane in the feature space
we can represent its weight vector as a linear combination of support
vectors from the set {φ̄(x̄i) : α0

i > 0}:

w̄ =
l∑

i=1

α0
i yiφ̄(x̄i).

In the coordinate form, we have

wj =

l∑
i=1

α0
i yiφj(x̄i) (2.21)

for j = 1, . . . , N . The number of terms in this sum is independent of
dimension of the feature space.

Substituting (2.21) in (2.20), we obtain a non-linear equation
defining the preimage in Rn of the optimal separating hyperplane
constructed in the feature space RN :

N∑
j=1

wjφj(x̄) + b =

=
N∑
j=1

(
l∑

i=1

α0
i yiφj(x̄i)

)
φj(x̄) + b =

=
l∑

i=1

α0
i yi

N∑
j=1

φj(x̄)φj(x̄i) + b =

=
l∑

i=1

α0
i yi(φ̄(x̄) · φ̄(x̄i)) + b =

=

l∑
i=1

α0
i yiK(x̄, x̄i) + b = 0, (2.22)

where

K(x̄i, x̄) = (φ̄(x̄i) · φ̄(x̄)). (2.23)
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Thus, all statements about linear SVM (optimal hyperplanes in the
space Rn) hold also for non-linear SVM in the same space if we
replace the dot product (x̄i · x̄) in the dual representation (2.16) :

k∑
s=1

α0
i yi(x̄i · x̄) + b = 0

on the function K(x̄i, x̄) defined by (2.23). We call it the kernel.
Note that the process of computation of the non-linear function

f(x̄) =
l∑

i=1

α0
i yiK(x̄i, x̄) + b, (2.24)

corresponding to the hyperplane (2.22) requires only l operations and
does not depend on the dimension N of the feature space. It is also
clear, that to define a non-linear classifier in the space Rn we need
not know the mapping x̄→ φ̄(x̄), and it is sufficient to know only the
kernel K(x̄i, x̄).

To solve the primal problem, we construct a hyperplane in RN
separating the images:

φ̄(x̄1), . . . , φ̄(x̄l)

of vectors x̄1, . . . , x̄l. To define the optimal hyperplane in RN , we
have to solve the dual problem – to maximize the function W (α)
defined by (2.13).

Using the kernel, we obtain

W (α) =

l∑
i=1

αi −
1

2

l∑
i,j=1

αiαjyiyj(φ̄(x̄i) · φ̄(x̄j)) =

=

l∑
i=1

αi −
1

2

l∑
i,j=1

αiαjyiyjK(x̄i, x̄j) (2.25)

Thus, to find the optimal hypersurface (2.24) separating a sample
((x̄1, y1), . . . , (x̄l, yl)) we have to maximize the non-linear function
(2.25) under constraints (2.12) and αi > 0, i = 1, . . . , l.
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In this case, we do not require the knowledge of N -dimensional
vectors φ̄(x̄1), . . . , φ̄(x̄l). It is enough to know their pairwise inner
products defined by the kernel K(x̄i, x̄j).

In practice, we choose a kernel for which the corresponding hy-
persurface best separates the training sample.

2.5. Kernels

In this section we consider the properties of kernels in more detail. Let
X be an arbitrary set. In general, by a kernel we mean any function
K(x, y) mapping the set X × X into the set of all real numbers R,
which can be represented as a dot product:

K(x, y) = (φ(x) · φ(y)), (2.26)

where φ : X → F is a mapping from the set X into some feature
space F endowed with the dot product.

Let us consider some examples of kernels, which are used in prac-
tical applications.

Example. K(x̄, ȳ) = (x̄ · ȳ)d or K(x̄, ȳ) = ((x̄ · ȳ) + c)d – polyno-
mial kernels.

Consider a mapping from Rn to R
n(n+1)

2 :

φ̄(x̄) = φ̄(x1, . . . , xn) =

= (1, x2
1, . . . , x

2
n,
√

2x1x2, . . . ,
√

2x1x2, . . . ,
√

2xn−1xn).

We have

K(x̄, ȳ) = (φ̄(x̄)·φ̄(ȳ)) = 1+

n∑
i=1

x2
i y

2
i +

n∑
i,j=1,i<j

2xixjyiyj = (1+x̄·ȳ)2.

Therefore, we have obtained the polynomial kernel of the second or-
der: K(x̄, ȳ) = (1 + (x̄ · ȳ))2.

The classifier (2.24) defined by the optimal separating hyperplane

in the feature space R
n(n+1)

2 has the form:

f(x̄) =
l∑

i=1

α0
i yi(x̄i · x̄)2 + b. (2.27)
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Another set of kernels is defined by functions that have the form
K(x̄, ȳ) = K(x̄− ȳ). Any such a function is invariant with respect to
the addition to x̄ and ȳ of the same vector.

In case of dimension one, let a function K(x) is defined on [0, 2π].
In this case, it can be extended to a periodic function on the real line
and expanded in a uniformly convergent Fourier series:

K(x) =
∞∑
n=0

an cos(nx).

Then

K(x, y) = K(x− y) =

= a0 +

∞∑
n=0

an sin(nx) sin(ny) +

∞∑
n=0

an cos(nx) cos(ny).

This kernel is defined by the mapping:

x→ (1, sinx, cosx, sin 2x, cos 2x, . . . , sin(nx), cos(nx), . . . )

of the initial space to a feature space.
In regression problems is widely used Gaussian kernel:

K(x̄, ȳ) = exp(−‖x̄− ȳ‖2/σ2).

Gaussian kernel can be obtained by transformation of the exponential
kernel

K(ū, v̄) = exp((ū · v̄)/σ2),

where σ > 0 is a parameter. This can be done as follows.
Exponential kernel can be expanded in Taylor series as the infinite

sum of polynomial kernels:

exp((ū · v̄)) =

∞∑
k=0

(ū · v̄)k

k!
.
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Exponential kernel is transformed into a Gaussian kernel as follows:

K(ū, v̄)√
K(ū, ū)K(v̄, v̄)

=

=
exp((ū · v̄)/σ2)√

exp((ū · ū)/σ2) exp((v̄ · v̄)/σ2)
=

= exp(−‖ū− v̄‖2/2σ2).

In the problem of text recognition, kernels defined on discrete sets
are used. Here is an example of such a kernel and the corresponding
feature space.

Let Ξ be a finite alphabet. A word s is a finite sequence of letters
s = s1 s2 . . . sn; Ξ∗ be a set of all words in the alphabet Ξ including
empty set. Also, |s| = n be the length of a word s ∈ Ξ∗, ie, the
number of its letters; the length of empty set is 0.

Let Ξn be a set of all words of length n. By definition Ξ∗ =
∪∞n=0Ξn.

Let st be a concatenation of word s and t, s[i : j] = si si+1 . . . sj .
A word u is a subword (subsequence) of a word s if a sequence of

indices ī = (i1, . . . , i|u|) exists such that 1 6 i1 < · · · < i|u| 6 |s|
and uj = sij for all j = 1, . . . , |u|; this is also denote u = s[̄i]. By
the length of a subsequence u of a sequence s we mean a number
l(̄i) = i|u| − i1 + 1.

We assume that all words are linearly ordered: words of shorter
length precedes to the words of greater length, and all the words of
the same length are ordered lexicographically.

For any n, define a feature space Fn = RΞn and a mapping

φ̄n(s) = (φnu(s) : u ∈ Ξn),

where

φnu(s) =
∑

ī:u=s[̄i]

λl(̄i)

for 0 < λ 6 1.
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The corresponding kernel is defined as a dot product:

Kn(s, t) =
∑
u∈Ξn

(φnu(s) · φnu(t)) =

=
∑
u∈Ξn

∑
ī:u=s[̄i]

λl(̄i)
∑

j̄:u=s[j̄]

λl(j̄) =

=
∑
u∈Ξn

∑
ī:u=s[̄i]

∑
j̄:u=s[j̄]

λl(̄i)+l(j̄).

This definition is computational inefficient: the direct computation
of the kernel of Kn(s, t) requires a huge number of computational
operations. There is a recursive scheme for computation Kn(s, t) in
the polynomial time (see [10]).

For more details of the kernel theory see [30].

2.5.1. Positive semidefinite kernels

.
In this section we shall study the kernels of special type – positive

semidefinite kernels. For any such kernel, a canonical Hilbert feature
space can be constructed.

First consider the example from Section 2.4. Let a function
K(x̄, ȳ) = (φ̄(x̄) · φ̄(x̄)) be defined by some mapping φ̄ from the
Euclidian space Rn to the Euclidian feature space RN .

By definition the function K(x̄, ȳ) is symmetric: K(x̄, ȳ) =
K(ȳ, x̄) for all x̄ ȳ. Besides, another important property is valid:
for any sequence x̄1 , . . . , x̄n of vectors and for any sequence of real
numbers α1 , . . . , αn:

n∑
i,j=1

αiαjK(x̄i, x̄j) =
n∑

i,j=1

αiαj(φ̄(x̄i) · φ̄(x̄j)) =

=

(
n∑
i=1

αiφ̄(x̄i) ·
n∑
i=1

αiφ̄(x̄i)

)
=

∥∥∥∥∥
n∑
i=1

αiφ̄(x̄i)

∥∥∥∥∥
2

> 0. (2.28)

We state the property (2.28) as a definition. Let X be a set. A
function K : X × X → R is called positive semidefinite if for any
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collection x1 , . . . , xn of vectors and for any sequence α1 , . . . , αn of
real numbers the following inequality is valid:

n∑
i,j=1

αiαjK(xi, xj) > 0.

By (2.28) the function K(x̄, ȳ) = (φ̄(x̄) · φ̄(x̄)) is positive definite.
A matrix (K(xi, xj)

n
i,j=1 is called Gram matrix of the kernel K.

Reproducing kernel Hilbert space
Let X be a set. For any symmetric positive semidefinite function

K(x, y) on X × X define a canonical functional Hilbert space F .
Define a mapping φ : X → RX from the set X to the set of all
functions from X to R:

φ(x) = K(·, x) = Kx.

By definition φ(x) is a function, for which Kx(y) = K(x, y) for all y.
Consider a function space generated by all linear combinations:

f =

n∑
i=1

αiKxi , (2.29)

for all n, αi ∈ R, and xi ∈ X.
Operations of sum and multiplication by a constant are defined

in the standard way. The dot product of two functions f =
n∑
i=1

αiKxi

and g =
n′∑
j=1

βjKx′j
is defined as

(f · g) =
n∑
i=1

n′∑
j=1

αiβjK(xi, x
′
j). (2.30)

It is easy to verify that the expression (2.30) can be written as (f ·g) =
n′∑
j=1

βjf(x′j) or (f · g) =
n∑
i=1

αig(xi).

It follows that the expression (2.30) is uniquely defined and does
not depend on the representation of the functions f and g in the
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form of linear combinations. It follows also that the function (f · g)
is bilinear in f and g. It is also symmetric: (f · g) = (g · f) for all f
and g and positive semidefinite.

First, note that

(f · f) =
n∑
i=1

n′∑
i,j=1

αiαjK(xi, xj) > 0.

Taking into account this property, we obtain that for any set of func-
tions f1 , . . . , fn and for any set α1 , . . . , αn ∈ R of real numbers
the condition

n∑
i,j=1

n′∑
j=1

αiαj(fi · fj) =

 n∑
i=1

αifi ·
n∑
j=1

αjfj

 > 0

is valid. This means that (f · g) is positive semidefinite function.
By (2.30) the identity (Kx · f) = f(x) holds. In particular,

(Kx · Ky) = K(x, y) for all x and y. By this reason, any positive
semidefinite symmetric function K(x, y) is called reproducing kernel.

From this and by (2.29), see also (2.89) in a problem of Sec-
tion 2.12, we have

|f(x)|2 = |(f ·Kx)|2 6 K(x, x)(f · f).

In particular, (f · f) = 0 implies that f(x) = 0 for all x.
The function ‖f‖ =

√
(f · f) is a norm, since it is defined by the

dot product.
Consider the completion of the set of all linear combinations of

(2.29) with respect to this norm to a complete metric space F .
The obtained canonical Hilbert space is called Reproducing Kernel

Hilbert Space – RKHS.
An alternative variant of RKHS definition is as follows. RKHS is a

Hilbert space F of functions on X, which has the following property:
the functional f → f(x) is a continuous linear functional. By Riesz–
Fisher theorem for each x ∈ X there exists Kx ∈ F such that f(x) =
(Kx · f). The reproducing kernel is defined K(x, y) = (Kx ·Ky).
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The Gaussian kernel K(x̄, ȳ) = exp(−‖x̄ − ȳ‖2/σ2) is also pos-
itive semidefinite, and so, defines a canonical Hilbert space and a
corresponding mapping.

We note without proof that although the kernel defined by some
mapping φ in a feature space, using the equation (2.26), is symmet-
ric and positive semidefinite the canonical Hilbert space F and the
corresponding mapping may be different from the original feature
space and mapping φ. On the other hand, each symmetric positive
semidefinite kernel defines a unique RKHS (see [2]).

Representer theorem
Theorem of the representative (Representer theorem) shows that

solutions of a wide class of optimization problems can be expressed
as linear combinations of values of kernels in the training data points.
This theorem was proved by Kimmeldorf and Wahba [20]. See
also [30].

Theorem 2.3. Let X be a set and S = ((x1, y1) , . . . , (xl, yl)) be
a training sample, where (xi, yi) ∈ X × R. Let also, K(x, x′) be a
positive semidefinite kernel on X × X and F be the corresponding
canonical RKHS with a norm ‖ · ‖.

A loss function c : (X2 ×R)l → R∪ {∞} and strictly monotonic
function Ω defined on R are given.

Then any function f ∈ F minimizing the regularized risk func-
tional

c((x1, y1, f(x1)) , . . . , (xl, yl, f(xl))) + Ω(‖f‖) (2.31)

can be represented as

f(x) =

l∑
i=1

αiK(xi, x) (2.32)

for some real numbers α1 , . . . , αl.

An example of such functional for regression problem in a feature
space f ∈ F is:

c((x1, y1, f(x1)) , . . . , (xl, yl, f(xl))) =
1

l

l∑
i=1

(yi − f(xi))
2 + λ‖f‖2,
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where λ > 0.
Proof. Recall that Kxi = K(xi, ·) is a function defined by the

kernel K(x, y). Any function f ∈ F can be represented as f(x) =
(f ·Kx) for all x.

Consider a decomposition of the linear space F into a direct sum
of a finite space generated by all linear combinations of the functions
Kxi , i = 1 , . . . , l, and its orthogonal complement. Then any function
f ∈ F is represented as:

f =

l∑
i=1

αiKxi + f∗,

where (f∗ ·Kxi) = 0 for all i = 1 , . . . , l.
Compute the values f(xj) for all j = 1 , . . . , l:

f(xj) = (f ·Kxj ) =

=

((
l∑

i=1

αiKxi + f∗

)
·Kxj

)
=

=
l∑

i=1

αi(Kxi ·Kxj ).

It is important that the value of f(xj) does not depend on the ele-
ment f∗ from the orthogonal complement. Thus, the value of the main
part c((x1, y1, f(x1)) , . . . , (xl, yl, f(xl))) of the regularized functional
(2.31) does not depend on f∗.

Since f∗ is orthogonal to the element
l∑

i=1
αiKxi and the function

Ω is strictly monotone, the following inequality holds:

Ω(‖f‖) = Ω

(
‖

l∑
i=1

αiKxi + f∗‖

)
=

= Ω


√√√√‖ l∑

i=1

αiKxi‖2 + ‖f∗‖2

 >

> Ω

(
‖

l∑
i=1

αi(Kxi‖

)
,
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with equality if and only if f∗ = 0. Therefore, at the minimum point
of the functional (2.31) it must be f∗ = 0.

Hence, the solution of the problem of minimizing the functional
(2.31) must have the form (2.32):

f =
l∑

i=1

αiKxi .

Theorem is proved. 4
Theorem 2.3 shows that to obtain a solution of the problem (2.31)

of functional minimization in any RKHS (which may be infinite di-
mensional), it is sufficient to solve the minimization problem in a
finite dimensional space Rn.

An example of a risk functional corresponding to the optimization
problem for SVM:

c((x1, y1, f(x1)) , . . . , (xl, yl, f(xl))) =

=
1

λ

l∑
i=1

max{0, 1− yif(xi)}+ ‖f‖2,

where xi ∈ Rn and yi ∈ {−1,+1} for i = 1 , . . . , l.
The corresponding feature space F is generated by the kernel

K(x, x′). A function f ∈ F minimizing the risk functional (2.31) has
the form

f =

l∑
i=1

αiKxi .

2.6. Inseparable training sample

First, we obtain an upper bound for the generalization error in the
case when a sample is not completely separated by a classification
function. This estimate serves as a basis for setting the corresponding
optimization problem of constructing an optimal classifier.
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2.6.1. Margin slack variables

Now consider the problem of classification of an inseparable sample.
Problems of this type are typical for practical applications.

Let a class F of functions of type X → R be given. Any such a
function f ∈ F defines a classifier:

h(x) =

{
1 if f(x) > 0,
−1 otherwise.

Let a sample S = ((x1, y1), . . . , (xl, yl)) be given and γi = yif(xi)
be the margin of an example (xi, yi) ∈ X × {−1, 1} with respect to a
function f ∈ F .

Note that γi > 0 means that the classification by f is correct.
The margin distribution of f with respect to the training set S =

((x1, y1), . . . , (xl, yl)) is defined by the vector MS(f) = (γ1, . . . , γl).
We refer to the minimum of the margin distribution as the margin

mS(f) = min
i=1,...,l

γi

of f with respect to the sample S. Eviently, mS(f) > 0 if and only
if when f strongly separates S.

The margin of a training set S with respect to the class F is the
maximal margin over all f ∈ F .

We define the margin slack variable of an example (xi, yi) ∈ X ×
{−1, 1} with respect to a function f ∈ F and target margin γ > 0 to
be the quantity

ξi = max{0, γ − yif(x̄i)}.

This is the amount by which the function f fails to achieve margin γ
for the example (xi, yi).

A vector ξ̄ = (ξ1, . . . , ξl) is called margin slack vector of a train-
ing set S = ((x1, y1), . . . , (xl, yl)). By definition yif(xi) + ξi > γ for
all i.

If ξi > γ then yif(x̄i) < 0, ie, classification of the example (xi, yi)
by f is incorrect. In this case, the quantity of ξi reflects the value of
remoteness of the example (xi, yi) from the separating hyperplane –
it is greater, the greater the error of classification.
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It hold ξi = 0 if and only if yif(xi) > γ; in this case classification
is correct and even with some margin.

The case 0 < ξi 6 γ is intermediate; in this case the classification
0 < yif(xi) 6 γ is correct, but with a very low threshold. For
example, it may be because of presence of noise in the original data.

In general, the norm of the error vector ξ̄ reflects the number
and the value of classification errors, and also the role of noise in the
training set. In what follows, a value ‖ξ̄‖ will be part of the upper
bounds of generalization error.

If the norm of vector ξ̄ is positive the training sample is insepa-
rable by the classifier f(x̄) with a threshold of γ > 0. Theorem 1.9 is
not directly applicable in this case.

However, in the case of a linear classifier onRn we can replace this
problem by equivalent one in a space of higher dimension, where a
modified training set is separable. The corresponding result of Shawe-
Taylor and Cristianini [27] is presented in the following theorem.

Theorem 2.4. Let γ > 0 and L be a class of all linear homogeneous
functions on Rn. L(x̄) = (w̄ · x̄) with a unit weight vector ‖w̄‖ = 1.
Let also, P be a continuous probability distribution on X × {−1, 1}
with a support into a ball of radius R centered at the origin. 1

Then for any δ > 0, with probability 1−δ, any classifier f ∈ L with
the margin slack variable ξ satifying ‖ξ‖ 6 ‖ξ0‖ has a generalization
error

errP (f) 6
c

l

(
R2 + ‖ξ̄0‖2

γ2
log2 l + log

2

δ

)
, (2.33)

where c > 0 is a constant and ξ̄0 is the upper bound of the margin
slack vectors with respect to functions from L and a target margin
γ > 0.

Proof. Let f(x̄) = (w̄ · x̄) be a classifier such that ‖w̄‖ = 1. By
definition of the margin slack variable ξ̄ = (ξ1, . . . , ξl) defined for

1Here we mean a ball in Rn containing elements x̄1, . . . , x̄l of the training
sample. A probability distribution is continuous if probability of any pair (x̄, y)
is 0.
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a sample x̄1, . . . , x̄l with respect to a function L and target margin
γ > 0

yif(x̄i) + ξi > γ (2.34)

for i = 1, . . . , l.
Let ν > 0 be a parameter whose value we will optimize later.

Replace the training vectors x̄1, . . . , x̄l of dimension n on auxiliary
vectors x̄′1, . . . , x̄

′
l of dimension n+ l defined as

x̄′i = (xi,1, . . . , xi,n, 0, . . . , ν, . . . , 0)

for i = 1, . . . , l, where (n + i)th coordinate of the vector x̄′i is ν
and other extra coordinates are 0. The resulting sample is denoted
S′ = ((x̄′1, y1) . . . , (x̄′l, yl)). We extend all other vectors by l zeros.

The hyperplane f(x̄) = (w̄ · x̄) is replaced by the hyperplane

f ′(x̄′) = (w̄′ · x̄′), where

w̄′ = (w1, . . . , wn,
1

ν
y1ξ1, . . . ,

1

ν
ylξl), (2.35)

and x̄′ is a vector of dimension n+ l.
By (2.34) a new sample S′ is separated by the new classifier (2.35)

with the margin γ:

yi(w̄
′ · x̄′i) = yi(w̄ · x̄i) + (yi)

2ξi > γ (2.36)

for i = 1, . . . , l.
The classifiers f f ′ work in the same way outside S and S′:

yf ′(x̄′) = yf(x̄). Then error probabilities of these classifiers are the
same.

In order to apply Theorem 1.9 from Section 1.3 to the new sample
and new classifier, it is necessary to normalize the weight vector of
the hyperplane (2.35). We have

‖w̄′‖2 = ‖w̄‖2 +
1

ν2
‖ξ̄‖2 = 1 +

1

ν2
‖ξ̄‖2.

Besides, by definition all vectors x̄′i belong to the ball of radius R′,
where R′2 = R2 + ν2.
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After normalization, condition (2.36) reduces to the condition

yi

(
w̄′

‖w̄′‖
· x̄′i
)

> γ′ =
γ

‖w̄′‖
.

for i = 1, . . . , l.
From this follows that the main factor of the bound of Corol-

lary 1.4 has the form

R′2

γ′2
=

(R2 + ν2)(1 + 1
ν2 ‖ξ‖2)

γ2
.

Transform it to the expression

(R2 + ν2)(1 +
1

ν2
‖ξ‖2) = R2 + ‖ξ‖2 + ν2 +

1

ν2
R2‖ξ‖2.

A minimum of this expression is attained at ν2 = R‖ξ‖, and the
expression takes the form

R2 + 2R‖ξ‖+ ‖ξ‖2 = (R+ ‖ξ‖)2 6 2(R2 + ‖ξ‖2).

Radius if a new ball is defined R′ =
√

2(R2 + ‖ξ0‖2), where ‖ξ0‖ – is
the upper bound of norms of margin slack variables.

Applying Theorem 1.9 from Section 1.3, we obtain a bound (2.33).
Theorem is proved. 4

2.6.2. Soft margin optimization

Quadratic norm optimization
In case where a training sample S = ((x̄1, y1), . . . , (x̄l, yl)) is

inseparable the optimization problem with a margin slack vector ξi,
i = 1, . . . , l is considered.

In the soft setting we allow the margin constrains to be violated.
Search for vectors w̄, ξ̄ and a number b such that

(w̄ · w̄) + C

l∑
i=1

ξ2
i → min, (2.37)

yi((w̄ · x̄i) + b) > 1− ξi, (2.38)

ξi > 0 (2.39)
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for i = 1, . . . , l. A constant C defines a balance between two parts
of the functional.

In practice the parameter C is varied through a wide range of val-
ues and the optimal performance assessed using a separate validation
set or the technics of cross-validation for verifying the performance
using only the training sample.

Note that the condition ξi > 0 can be dropped, since the optimal
solution w̄, ξ, b, where ξi < 0 for some i, is also optimal for ξi = 0.

The Lagrangian of the primal problem (2.37) – (2.39) is

L(w̄, b, ξ̄, ᾱ) =
1

2
(w̄ · w̄) +

C

2

l∑
i=1

ξ2
i −

−
l∑

i=1

αi(yi((w̄ · x̄i) + b)− 1 + ξi), (2.40)

where αi > 0 are the Lagrange multipliers.
The corresponding dual problem is solved by differentiating by w̄,

ξ̄ and b:

∂L(w̄, b, ξ̄, ᾱ)

∂w̄
= w̄ −

l∑
i=1

yiαix̄i = 0̄, (2.41)

∂L(w̄, b, ξ̄, ᾱ)

∂ξ̄
= Cξ̄ − ᾱ = 0̄,

∂L(w̄, b, ξ̄, ᾱ)

∂b
=

l∑
i=1

yiαi = 0,

and substituting the relations obtained into the primal (2.40) to ob-
tain the following adaptation of the dual objective functions:

L(w̄, b, ξ̄, ᾱ) =

l∑
i=1

αi −
1

2

l∑
i,j=1

yiyjαiαj(x̄i · x̄j) +

+
1

2C
(ᾱ · ᾱ)− 1

C
(ᾱ · ᾱ) =

=

l∑
i=1

αi −
1

2

l∑
i,j=1

yiyjαiαj(x̄i · x̄j)−
1

2C
(ᾱ · ᾱ). (2.42)
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After that, we maximize over ᾱ the quantity

W (ᾱ) =
l∑

i=1

αi −
1

2

l∑
i,j=1

yiyjαiαj((x̄i · x̄j) +
1

C
δij) (2.43)

under constraints αi > 0, i = 1, 2, . . . l, where δij = 1 i = j and δij =
0 for i 6= j. The corresponding Karush–Kuhn–Tucker conditions are:

αi(yi((w̄ · x̄i) + b)− 1 + ξi) = 0

for i = 1, . . . , l.
By (2.41) the weight vector is a linear combination of support

vectors:

w̄ =

l∑
i=1

yiαix̄i.

From the Karush–Kuhn–Tucker conditions follows that αi = 0 and
ξi = 0 if yi((w̄ · x̄i) + b) > 1.

These vectors are correctly classified and lie on the outside of
the boundary hyperplanes. Support vectors are those vectors x̄i for
which yi((w̄ · x̄i) + b) 6 1, with αi > 0 and ξi > 0. These are those
vectors that lie on the boundary hyperplanes or incorrectly classified
by them, in this case yi((w̄ · x̄i) + b) < 1 ξi > 0.

Let us formulate the optimization problem for a feature space
defined by some kernel K(x̄i, x̄j).

Theorem 2.5. Assume that a feature space defined by a kernel
K(x̄i, x̄j) and a training sample S = ((x̄1, y1), . . . , (x̄l, yl)) be given.
Let the parameter vector ᾱ∗ be a solution of the optimization problem:

W (ᾱ) =
l∑

i=1

αi −

−1

2

l∑
i,j=1

yiyjαiαj(K(x̄i, x̄j) +
1

C
δij)→ max (2.44)

subject to
l∑

i=1

yiαi = 0,

αi > 0 i = 1, . . . , l. (2.45)
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Then the corresponding separating hypersurface is given by

f(x̄) =
l∑

i=1

yiα
∗
iK(x̄i, x̄) + b∗,

where b∗ is chosen so that yif(x̄i) = 1 − α∗i /C for any i such that
α∗i 6= 0.

The classifier sign(f(x̄)) separates the training set as well as the
corresponding hyperplane in the feature space implicitly defined by
the kernel K(x̄, z̄), where the slack variables are defined relative to
the margin

γ =

∑
j∈sv

α∗j −
1

C
(ᾱ∗ · ᾱ∗)

−1/2

.

The value of b∗ is chosen using the relation αi = Cξi and by
reference to the primal constraints defined by the Karush–Kuhn–
Tucker conditions:

αi(yi((w̄ · x̄i) + b)− 1 + ξi) = 0

for i = 1, . . . , l.
The quantity ρ(w̄) = 1

|w̄| which determines the size of the margin

(w̄ · x̄i) + b) = ±1 is defined

(w̄ · w̄) =
l∑

i,j=1

yiyjα
∗
iα
∗
jK(x̄i, x̄j) =

=
∑
j∈sv

yjα
∗
j

∑
i∈sv

yiα
∗
iK(x̄i, x̄j) =

=
∑
j∈sv

α∗j (1− ξ∗j − yjb∗) =

=
∑
j∈sv

α∗j −
∑
j∈sv

α∗jξ
∗
j =

=
∑
j∈sv

α∗j −
1

C
(ᾱ∗ · ᾱ∗).
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The upper bound (2.33) of the generalization error does not de-
pend on the dimension that allows us to apply this bound to the case
of separation with a kernel K(x̄, z̄) generating a feature space of high
dimension.

Now we apply Theorem 2.4. The bound (2.33) of the generaliza-
tion error holds for classifiers defined by linear functions with unit
weight vectors w̄. In order to apply it for the problem (2.37) – (2.39),
divide both sides of the inequality (2.38) on ‖w̄‖, where w̄ is the op-
timal solution of the problem. We get the quantity ξi/‖w̄‖ as ξi in
(2.33). Define also γ = 1/‖w̄‖. Then we obtain the inequality

errP (f) = P{yf(x̄) < 0} 6

6
c

l
((‖w̄‖2R2 + ‖ξ̄‖2) ln2 l + ln

1

δ
). (2.46)

The inequality (2.46) shows that in order to minimize the upper
bound of the generalization error we really need to minimize a value
(2.37).

Linear norm optimization
It is also often an analogous optimization problem is considered

in which, instead of the quadratic norm of a vector of margin slack
variables ξ̄, the linear norm is used. In this case, we have the following
optimization problem.

Search for vectors w̄, ξ̄ and a number b such that

(w̄ · w̄) + C

l∑
i=1

ξi → min, (2.47)

yi((w̄ · x̄i) + b0) > 1− ξi,
ξi > 0 (2.48)

for i = 1, . . . , l. The constant C determines the balance between
two parts of the functional.

The corresponding Lagrangian is

L(w̄, b, ξ̄, ᾱ, r̄) =
1

2
(w̄ · w̄) + C

l∑
i=1

ξi −

−
l∑

i=1

αi(yi((w̄ · x̄i) + b0)− 1 + ξi)−
l∑

i=1

riξi,
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Fig. 1.2. Support vectors are located on the boundary hyperplanes or

incorrectly classified by them

where αi > 0, ri > 0 for i = 1, . . . , l.
The correspondent dual problem is obtained by equating to zero

the derivatives:

∂L(w̄, b, ξ̄, ᾱ, r̄)

∂w̄
= w̄ −

l∑
i=1

yiαix̄i = 0̄,

∂L(w̄, b, ξ̄, ᾱ, r̄)

∂ξi
= C − αi − ri = 0,

∂L(w̄, b, ξ̄, ᾱ, r̄)

∂b
=

l∑
i=1

yiαi = 0.

Substituting the solution of these equations in the direct problem,
we obtain the dual representation of the problem as a maximization

103



problem:

L(w̄, b, ξ̄, ᾱ, r̄) =
l∑

i=1

αi −
1

2

l∑
i,j=1

yiyjαiαj(x̄i · x̄j),

which is almost identical with the functional for the case of quadratic
norm. The only difference from the problem for the quadratic norm
is that the condition C − αi − ri = 0 together with the condition
ri > 0 forces the inequality αi 6 C. At the same time, ξi > 0 is
only if ri = 0. This implies that αi = C for all such i. Thus, the
Karush–Kuhn–Tucker conditions have the form:

αi(yi((x̄i · x̄j) + b)− 1 + ξi) = 0, i = 1, . . . , l,

ξi(αi − C) = 0, i = 1, . . . , l.

According to these conditions the margin slack variable ξi is nonzero
only when αi = C.

Support vectors – are those vectors x̄i for that αi > 0 (in this case
αi = C). For them, yi((x̄i · x̄j) + b) 6 1 and ξi > 0. It is easy to see
that the distance from this vector to the corresponding separating
hyperplane is equal to − ξi

‖w̄‖ (see Fig. 1.2).
For an arbitrary kernel the following statement holds.

Theorem 2.6. Assume that a training sample S = ((x̄1, y1), . . . , (x̄l, yl))
and a feature space defined by a kernel K(x̄i, x̄j) be given. Let also,
a parameter vector ᾱ∗ is a solution of the optimization problem

W (ᾱ) =
l∑

i=1

αi −
1

2

l∑
i,j=1

yiyjαiαjK(x̄i, x̄j)→ max (2.49)

subject to
l∑

i=1

yiαi = 0,

C > αi > 0 i = 1, . . . , l. (2.50)

Then the corresponding separating hypersurface is given by

f(x̄) =
l∑

i=1

yiα
∗
iK(x̄i, x̄) + b∗,
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where b∗ can be found from the condition yif(x̄i) = 1 for any i such
that C > α∗i > 0.

Then the classifier sign(f(x̄)) separates elements of a sample as
well as the corresponding hyperplane obtained as the solution of the
optimization problem (2.47) – (2.48) in the feature space defined by
the kernel K(x̄, z̄), where the margin slack variables are defined for
the margin

γ =

∑
i,j∈sv

yiyjα
∗
iα
∗
jK(x̄i, x̄j)

−1/2

.

Thus, the optimization problem (2.47) – (2.48) is equivalent to
the optimization problem (2.37) – (2.39) with an additional condi-
tion that αi 6 C. For this reason, these restrictions are called box
constraints, since they require that all αi be inside a square with side
C located in the positive octant.

The parameter C controls the ratio between the accuracy of the
regularization coefficient and value of αi. In particular, the smaller
the parameter C, the less the value of αi, ie, the less influence of
examples that are far from separating hyperplane.

Soft margin optimization as a linear programming prob-
lem

The previous problem can be formulated as a linear programming
problem, in which, instead of the quadratic norm of the vector w̄ the
sum of the coefficients αi is minimized. These coefficients characterize
the degree of participation of examples in constructing the separating
hyperplane.

The upper bound of the generalization error through the number
of support vectors, given in Theorem 2.2, can serve as a justification
of the applicability of the method.
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In this case, we consider the problem of optimization:

l∑
i=1

αi + C
l∑

i=1

ξi → min

subject to yi

 l∑
j=1

αi(x̄i · x̄j) + b

 > 1− ξi,

αi > 0, ξi > 0,

where i = 1, . . . , l. The constant C determines a balance between
two parts of the functional.

The advantage of this setting is that here the linear programming
problem is solved instead of a quadratic programming problem.

2.7. Rademacher averages and generalization
error

In this section, we present upper bounds of the generalization error
for the classification functions defined by threshold functions from
RKHS.2

Let F be an Hilbert space of functions defined on some set X .
We also assume that this space is RKHS, ie, it is generated by a
reproducing kernel K(x, y). Any function f ∈ F is represented as a
scalar product f(x) = (f · φ(x)), where φ(x) = K(x, ·).

An example of such RKHS can be defined by the mapping φ :
Rn → RN . Let F be a space of functions f(x̄) = (w̄ · φ(x̄)), where
x̄ ∈ Rn, w̄ ∈ RN and (w̄ · w̄′) is the dot product in RN . The norm
of f is defined ‖f‖ = ‖w̄‖, and the scalar product of functions f
and g(x̄) = (w̄′ · φ(x̄)) is defined (f · g) = (w̄ · w̄′). The function
K(x̄, ȳ) = (φ(x̄) · φ(ȳ)) is the corresponding kernel.

Any function f ∈ F defines the classifier

h(x̄) =

{
1 if f(x) > 0,
−1 otherwise.

2The material in this section uses the results of Bartlett and Mendelson [3] and
Shaw-Taylor and Cristianini [28].
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Let F1 = {f ∈ F : ‖f‖ 6 1}. In the example above F1 is the class of
functions f(x̄) = (w̄ · φ(x̄)) such that ‖w̄‖ 6 1.

Assume that a training set S = ((x1, y1), . . . , (xl, yl)) be given,
where xi ∈ X and yi ∈ {−1, 1}.

Let K = (K(xi, xj))
n
i,j=1 be the Gram matrix defined by the val-

ues of the kernel on objects of the sample S; tr(K) =
∑l

i=1K(xi, xi)
be the trace of the matrix K.

Now we estimate the empirical Rademacher average of the class
F1 relative to the training set S.

Theorem 2.7. The empirical Rademacher average of the class F1

relative to the training set S = ((x1, y1), . . . , (xl, yl)) satisfies the
inequality:

R̃l(F1) 6
1

l

√
tr(K). (2.51)

Proof. The following chain of equalities and inequalities is valid:

R̃l(F1) = Eσ

(
sup
f∈F1

∣∣∣∣∣1l
l∑

i=1

σif(xi)

∣∣∣∣∣
)

=

= Eσ

(
sup
‖f‖61

∣∣∣∣∣
(
f · 1

l

l∑
i=1

σiφ(xi)

)∣∣∣∣∣
)

6

6
1

l
Eσ

(∥∥∥∥∥
l∑

i=1

σiφ(x̄i)

∥∥∥∥∥
)

=

=
1

l
Eσ

( l∑
i=1

σiφ(xi) ·
l∑

i=1

σiφ(xi)

)1/2
 6

6
1

l

Eσ
 l∑
i,j=1

σiσjK(xi, xj)

1/2

=

=
1

l

(
l∑

i=1

K(xi, xi)

)1/2

.

Here in the transition from the 2nd line to the third the Cauchy–
Schwarz inequality was used, in transition from the third row to
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the 4th the definition of the norm vector was used. In the tran-
sition from the 4th row to the 5th Jensen inequality was used, in
the transition from the 5th row to the 6th, we have used the inde-
pendence of the random variables σi and equalities E(σ2

i ) = 1 and
E(σiσj) = E(σi)E(σj) = 0 for i 6= j. Theorem is proved. 4

Recall that a number γi = yif(xi) is called the margin of an
example (xi, yi) ∈ X × {−1, 1} with respect to a function f ∈ F .
Note that if γi > 0 then the classification using f is correct.

Let a sample S = ((x1, y1), . . . , (xl, yl)) and a number γ > 0
be given. The margin slack variable for a function f and a margin
bound γ is defined:

ξi = max{(0, γ − yif(xi))}. (2.52)

Recall that if ξi > γ then the classification of the example (xi, yi) is
wrong.

Let ξ̄ = (ξ1, . . . , ξl) be the margin slack vector of a training set
S = ((x1, y1), . . . , (xl, yl)).

Define an auxiliary function f(x, y) = −yf(x) and the corre-
sponding class of functions with domain X × {−1, 1}:

F2 = {f(x, y) : f(x, y) = −yf(x), f ∈ F1}.

Let

χ(x) =

{
1 if x > 0,
0 otherwise.

Assume that examples (xi, yi) of the training set S are generated i.i.d.
by some probability distribution P . It is easy to verify that

P{(x, y) : y 6= sign(f(x))} 6 EP (χ(−yf(x))).

Let K = (K(xi, xj))
n
i,j=1 be the Gram matrix defined by the kernel

and the training set S.
The following theorem gives an upper bound for the generalization

error of the classifier defined by the kernel K.
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Theorem 2.8. For any δ > 0 and l, with probability 1 − δ, for any
function f ∈ F1:

P{y 6= sign(f(x))} 6 1

lγ

l∑
i=1

ξi +
2

lγ

√
tr(K) + 3

√
ln 2

δ

2l
. (2.53)

Note that the right side of (2.53) is a random variable, since the
margin slack variables ξi are depend on x̄i.

Proof. Recall that γ > 0 is a margin bound. Define the auxilliary
function g : R → [0, 1]:

g(r) =


1 if r > 0,
1 + r/γ if − γ 6 r 6 0,
0 otherwise.

Since g(r) > χ(r) for all r, and by Corollary 1.6, with probability
1− δ:

EP (χ(f(x, y))) 6 EP (g(f(x, y))) 6

6 ẼS(g(f(x, y))) + 2R̃l(g ◦ F2) + 3

√
ln(2/δ)

2l
. (2.54)

By definition of the margin slack variable (2.52):

g(−yif(xi)) 6 ξi/γ

for 1 6 i 6 l.
Let us bound the empirical Rademacher average of the class F2:

R̃l(F2) = Eσ

(
sup
f∈F2

1

l

l∑
i=1

σif(xi, yi)

)
=

= Eσ

(
sup
f∈F1

1

l

l∑
i=1

σiyif(xi)

)
=

= Eσ

(
sup
f∈F1

1

l

l∑
i=1

σif(xi)

)
=

= R̃l(F1) 6
1

l

√
tr(K).
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Since the function g is Lipschitz continuous with the constant L =
1/γ, we have by Theorem 1.12 R̃l(g ◦ F2) 6 R̃l(F2)/γ = R̃l(F1)/γ.
By definition for any f ∈ F2

ẼS(g ◦ f)) =
1

l

l∑
i=1

g(−yif(x̄i)) 6
1

lγ

l∑
i=1

ξi.

By the inequalities (2.54) and (2.51) of Theorem 2.7, with probability
1− δ:

EP (χ(f(x, y))) 6
1

lγ

l∑
i=1

ξi +
2

lγ

√
tr(K) + 3

√
ln(2/δ)

2l
. (2.55)

Theorem is proved. 4
In particular, in the case, where a function f(x) separates a sam-

ple S without errors, the following upper bound is valid:

Corollary 2.1. Assume that a function f(x̄) separates a sample S
without errors, and all assumptions used in Theorem 2.8 hold. Then
for any δ > 0, with probability 1− δ,

P l{y 6= sign(f(x))} 6 2

lγ

√
tr(K) + 3

√
ln 2

δ

2l
.

In the example considered above, f(x̄) = (w̄·φ(x̄)), where x̄ ∈ Rn,
w̄ ∈ RN .

Unlike the bound (1.30) and (2.33) obtained in the theory of fat-
shattering dimension the bound (2.53) has best constants and does
not require prior knowledge of the radius of the ball containing vectors
of the training sample.

The bound (2.53) is worse than a similar estimate obtained using
fat-shattering dimension. Let ‖x̄i‖ 6 R for all 1 6 i 6 l. For small
valies, the order of the variable:

2

lγ

√
tr(K) 6

2

lγ

√
lR2 = 2

√
R2

lγ2

is much more than the order of the leading term of the bound (1.30)
of Theorem 1.9 and the order of the leading term of the bound (2.33)
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of Theorem 2.4, which are of order O
(
R2

lγ2

)
. The bounds (1.30) and

(2.33) have been obtained in the theory of the fat-shattering dimen-
sion.

2.8. Multidimensional regression

2.8.1. Linear regression

LetS = ((x̄1, y1), . . . , (x̄l, yl)) be a training sample, where x̄i ∈ Rn,
yi ∈ R for i = 1, . . . , l.

Linear regression problem consists in searching for a linear func-
tion

f(x̄) = (w̄ · x̄) + b

interpolating the elements of a sample S with with the greatest accu-
racy. Geometrically, this function is a hyperplane that approximates
values yi on arguments x̄i i = 1, . . . , l.

This problem was solved by Gauss and Legendre in the XVIII
century by minimizing the sum of squared differences of values f(x̄i)
and yi for i = 1, . . . , l. The generalization theory for this method is
well presented in mathematical statistics for linear models generating
data with Gaussian random noise.

In that follows any vector x̄ will be represented as a matrix of
dimension (n× 1) or as a column vector

x̄ =



x1

x2

·
·
·
xn

 .

We also use a transposed form of this vector – a row vector x̄′ =
(x1, . . . , xn).

The product of two matrices A and B is denoted AB without a
point between them. We often identify the dot product of vectors
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(x̄ · z̄) and the matrix x̄′z̄:

x̄′z̄ = (x1, . . . , xn)



z1

z2

·
·
·
zn

 = (x1z1 + . . . xnzn)

of dimension (1×1) with a single element equal to this scalar product.
By the method of least squares, we minimize the square loss func-

tion:

L(w̄, b) =
l∑

i=1

(yi − (w̄ · x̄i)− b)2. (2.56)

Let us denote by w̃ an extended column vector of weight coefficients
and the constant term:

w̃ =



w1

w2

·
·
·
wn
b


.

Similarly, denote by x̃ an extended column vector of variables:

x̃ =



x1

x2

·
·
·
xn
1


.

In the new extended variables, the regression function has a homoge-
neous form:

f(x̃) = (w̃ · x̃). (2.57)
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Consider a matrix of dimension (l × (n + 1)), whose rows are
expanded row vectors x̃′i = (x̄′i, 1):

X̃ =



x̃′1
x̃′2
·
·
·
x̃′l

 =



x11, . . . , x1n, 1
x21, . . . , x2n, 1

·
·
·

xl1, . . . , xln, 1

 .

Define an l-dimensional column vector

ȳ =



y1

y2

·
·
·
yl

 .

Differences |f(x̄i)− yi| (and also yi− f(x̄i) and f(x̄i)− yi) are called
residuals. The row vector of residuals is of the form ȳ−(X̃ · w̃). Then
the functional (2.56) can be represented as a squared norm of the row
vector:

L(w̃) = ‖X̃w̃ − ȳ‖2 = (ȳ − X̃w̃)′(ȳ − X̃w̃).

In what follows denote by A′ the transpose of a matrix A.
Now the regression problem can be written as the problem of

minimizing the squared norm of the vector of residuals:

L(w̃) = ‖X̃w̃ − ȳ‖2 → min . (2.58)

Geometrically, this can be interpreted just as the search for a pro-
jection of the vector ȳ with the smallest length on the hyperplane
generated by column vectors of the matrix X̃.

For finding the minimum equate the partial derivatives of this
functional with respect to w1, . . . , wn, b to zero and obtain a system
of n+ 1 equations:

∂L(w̃)

∂w̃
= −2X̃ ′ȳ + 2X̃ ′X̃w̃ = 0̄.
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Transform this system to the form:

X̃ ′X̃w̃ = X̃ ′ȳ.

If the matrix X ′X̃ is invertible, we obtain the solution of this system:

w̃ = (X̃ ′X̃)−1X̃ ′ȳ.

2.8.2. Ridge regression

Ridge regression – a method supporting the numerical stability, was
discovered by Hoerl and Kennard.

Recall that in order to get rid of the constant term in the re-
gression equation, we consider the problem of regression with the
extended column vector w̃ of weight coefficients and the constant
term

w̃ =



w1

w2

·
·
·
wn
b


,

and also, x̃ – the extended column vector of variables

x̃ =



x1

x2

·
·
·
xn
1


.

In these new variables, the regression function has a homogeneous
form without a constant term

f(x̃) = (w̃ · x̃).
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Let us conside the following loss function:

L(w̃) = λ(w̃ · w̃) +

l∑
i=1

(yi − (w̃ · x̃i))2 =

= λ‖w̃‖2 + ‖X̃w̃ − ȳ‖2. (2.59)

The parameter λ controls a balance between the square loss and the
norm of the weight vector.

Ridge regression in the primal form
To find the extremum equate the to zero the partial derivatives:

L(w̃) wi:

λw̃ −
l∑

i=1

((yi − (w̃ · x̃i))x̃i = 0̃,

i = 1, . . . , n+ 1. In matrix form, this equation is

λw̃ − X̃ ′ỹ + X̃ ′X̃w̃ = 0̃.

The solution is written in matrix form:

w̃ = (λI + X̃ ′X̃)−1X̃ ′ỹ,

where I is the unit matrix.
The matrices X̃ ′X̃, I and λI+X̃ ′X̃ have the size (n+1)×(n+1).

The matrix X̃ ′X̃ is positive definite, ie

z̃′(X̃ ′X̃)z̃ > 0

for each vector z̃. This follows from the equality:

z̃′(X̃ ′X̃)z̃ = (X̃z̃)′(X̃z̃) = ‖X̃z̃‖2 > 0.

Once added to the matrix X̃ ′X̃ the matrix λI, where λ > 0, a new
matrix becomes strictly positive definite:

z̃′(λI + X̃ ′X̃)z̃ = λ‖z̃‖2 + ‖X̃z̃‖2 > 0

for z̃ 6= 0̃. It is well known that any positive definite matrix is in-
vertible. Therefore, a solution of the problem of ridge regression is
always exists for λ > 0.
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When λ = 0 the matrix X̃ ′X̃ can be non-invertible. In this case,
solution of regression problem is not unique. Therefore, the problem
of ridge regression with λ > 0 is numerically much simpler than the
problem of simple regression. Also, the parameter λ plays the role of
the penalty for a large norm of the weight vector w̃.

If λ is approaching zero, the matrix λI + X̃ ′X̃ can become closer
to a non-invertible matrix. In this case, the inversion algorithm of
this matrix is becoming increasingly unstable. The large values λ
make the process of computing the inverse matrix more stable.

On the other hand, for large values of λ the matrix λI starts
to predominate over the matrix X̃ ′X̃ and, so, regression residuals
become larger and the regression predictor loses its predictive capa-
bilities. So the value of λ must be of the same order as the elements
of the matrix X̃ ′X̃.

The dual form of the problem of ridge regression and its general-
ization to the nonlinear case will be considered in Section 2.9.2.

2.9. Support vector regression

2.9.1. Solution of the problem of regression with SVM

Support vector machines are also used for solving the problem of
regression. In this case, as well as in the problem of classification,
nonlinear separating functions correspond to linear separating func-
tions in a feature space defined by a kernel.

By a linear ε-insensative loss function we mean a function

Lε(x̄, y, f) = |y − f(x̄)|ε = max{0, |y − f(x̄)| − ε}, (2.60)

where f is an arbitrary function of type Rn → R.
Let ξ̄ = (ξ1, . . . , ξl) be a vector of the margin slack variables,

where ξi = Lε(x̄i, yi, f), i = 1, . . . , l.
Similarly, ε-insensative quadratic loss function is defined as

Lε2(x̄, y, f) = (|y − f(x̄)|ε)2. (2.61)

Quadratic ε-insensitive loss
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In this case we have to minimize the quantity:

R2‖w̄‖2 +
l∑

i=1

Lε2(x̄i, yi, f),

where f(x̄) = (w̄ · x̄) + b.
We will minimize the loss function at once for all possible values

of γ and for all possible values of θ = ε + γ for fixed ε > 0. To do
this we introduce in the optimization problem the variables ξi and
ξ̂i, which control the deviations of residuals by a value ε in greater or
down direction from a fixed boundary. The parameter C controls a
balance between the complexity of a regression hypothesis and sums
of corresponding quadratic residuals.

The primal optimization problem for the square loss function
(2.61) and for fixed values of the parameters C and ε is formulated
as follows:

‖w̄‖2 + C

l∑
i=1

(ξ2
i + ξ̂2

i )→ min

subject to ((w̄ · x̄i) + b)− yi 6 ε+ ξi, i = 1, . . . , l,

yi − ((w̄ · x̄i) + b) 6 ε+ ξ̂i, i = 1, . . . , l,

ξi, ξ̂i > 0, i = 1, . . . , l. (2.62)

In practical applications, the parameter C can be defined using a
procedure of exhaustive search.

The Lagrangian of the primal problem is:

L(w̄, b, ξ̄, ξ̂, ᾱ, α̂) = |w̄|2 + C
l∑

i=1

(ξ2
i + ξ̂2

i ) +

+
l∑

i=1

αi((w̄ · x̄i) + b− yi − ε− ξi) +

+

l∑
i=1

α̂i(yi − (w̄ · x̄i)− b− ε− ξ̂i),

where ᾱ = (α1, . . . , αl) and α̂ = (α̂1, . . . , α̂l).
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Note that just like in the classification problem, the conditions
ξi > 0 and ξ̂i > 0 may be omitted since any solution where ξi < 0 or
ξ̂i < 0 can be transformed into a solution where ξi = 0 or ξ̂i = 0.

To find the minimum equate the partial derivatives of the La-
grangian to zero:

∂L(w̄, b, ξ̄, ξ̂, ᾱ, α̂)

∂w̄
= 0̄,

∂L(w̄, b, ξ̄, ξ̂, ᾱ, α̂)

∂b
= 0,

∂L(w̄, b, ξ̄, ξ̂, ᾱ, α̂)

∂ξ̄
= 0̄,

∂L(w̄, b, ξ̄, ξ̂, ᾱ, α̂)

∂ξ̂
= 0̄.

From the first equation, we obtain an expression for the weight vector:

w̄ =
1

2

l∑
i=1

(α̂i − αi)x̄i. (2.63)

Note that for any valid solution of (2.62), we have ξiξ̂i = 0 for all
i Therefore, for the dual problem αiα̂i = 0.

The corresponding dual problem is formulated as follows:

l∑
i=1

yi(α̂i − αi)− ε
l∑

i=1

(α̂i + αi)−

−1

2

l∑
i,j=1

(α̂i − αi)(α̂j − αj)((x̄i · x̄j) +
1

C
δij)→ max

subject to
l∑

i=1

(α̂i − αi) = 0,

α̂i > 0, αi > 0, i = 1, . . . , l, (2.64)

where δij = 1 if and only if i = j.
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The Karush–Kuhn–Tucker conditions are:

αi((w̄ · x̄i) + b− yi − ε− ξi) = 0, i = 1, . . . , l,

α̂i(yi − (w̄ · x̄i)− b− ε− ξ̂i) = 0, i = 1, . . . , l,

ξiξ̂i = 0, αiα̂i = 0, i = 1, . . . , l. (2.65)

Denote βi = α̂i − αi, i = 1, . . . , l. Then using equalities αiα̂i = 0
for all i, the dual problem (2.64) is similar to a dual problem for
classification:

l∑
i=1

yiβi − ε
l∑

i=1

|βi| −

−1

2

l∑
i,j=1

βiβj((x̄i · x̄j) +
1

C
δij)→ max

subject to
l∑

i=1

βi = 0, i = 1, . . . , l. (2.66)

It follows from the Karush–Kuhn–Tucker conditions (2.65) that αi =
α̂i = 0 for all vectors x̄i fallen into a layer of width ε around the
regression hyperplane. Therefore, in the sum (2.63), the correspond-
ing terms are absent. The number of support vectors decreases, and
the the dual maximization problem is simplified. Support vectors are
those vectors x̄i for which (w̄ · x̄i) + b 6 yi− ε or (w̄ · x̄i) + b > yi + ε.

Kernel SVM regression
Since the sample vectors are used in the optimization problem

only through inner products, we can replace them by their images in
a feature space and move on to a kernel version.

For simplicity, replace βi = α̂i − αi on αi. So αi has a different
meaning in this subsection than in the past. The kernel version of
the regression problem is formulated in the form:

Theorem 2.9. Let S = ((x̄1, y1), . . . , (x̄l, yl)) be a training sample,
where x̄i ∈ X and yi ∈ R. Let also, a kernel K(x̄, z̄) defines a feature
space and ᾱ∗ be a solution of the corresponding quadratic optimization
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problem:

W (ᾱ) =
l∑

i=1

yiαi − ε
l∑

i=1

|αi| −

−1

2

l∑
i,j=1

αiαj(K(x̄i, x̄j) +
1

C
δij)→ max

subject to

l∑
i=1

αi = 0, i = 1, . . . , l. (2.67)

Also, f(x̄) =
l∑

i=1
αiK(x̄i, x̄) + b∗, where b∗ is such that f(x̄i) − yi =

−ε− αi/C for any i with αi > 0.
Then the function f(x̄) is equivalent to a hyperplane in the feature

space defined by the kernel K(x̄i, x̄) which solves the optimization
problem (2.62).

Linear ε-insensitive loss function
The regression problem for the linear ε-insensitive loss function

(2.60) is considered similarly. We will minimize the function:

1

2
‖w̄‖2 + C

l∑
i=1

Lε(x̄i, yi, f),

where f(x̄) = (w̄ · x̄) + b, C is a parameter controlling a balance
between the complexity of a regression hypothesis and a sum of linear
residuals.

The primal optimization problem in case of ε-insensitive loss func-
tion (2.60) for given parameters C and ε is formulated as follows:

1

2
‖w̄‖2 + C

l∑
i=1

(ξi + ξ̂i)→ min

subject to ((w̄ · x̄i) + b)− yi 6 ε+ ξi, i = 1, . . . , l,

yi − ((w̄ · x̄i) + b) 6 ε+ ξ̂i, i = 1, . . . , l,

ξi, ξ̂i > 0, i = 1, . . . , l. (2.68)
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The Lagrangian of the primal problem is:

L(w̄, b, ξ̄, ξ̂, ᾱ, α̂) = ‖w̄‖2 + C
l∑

i=1

(ξi + ξ̂i) +

+

l∑
i=1

αi((w̄ · x̄i) + b− yi − ε− ξi) +

+
l∑

i=1

α̂i(yi − (w̄ · x̄i)− b− ε− ξ̂i).

The corresponding to (2.68) dual problem is formulated as follows:

l∑
i=1

yi(α̂i − αi)− ε
l∑

i=1

(α̂i + αi)−

−1

2

l∑
i,j=1

(α̂i − αi)(α̂j − αj)(x̄i · x̄j)→ max

subject to

l∑
i=1

(α̂i − αi) = 0,

α̂i > 0, αi > 0, (2.69)

0 6 αi, α̂i 6 C, i = 1, . . . , l. (2.70)

The corresponding Karush–Kuhn–Tucker conditions are:

αi((w̄ · x̄i) + b− yi − ε− ξi) = 0, i = 1, . . . , l,

α̂i(yi − (w̄ · x̄i)− b− ε− ξ̂i) = 0, i = 1, . . . , l,

(αi − C)ξi = 0, (α̂i − C)ξ̂i = 0, (2.71)

ξiξ̂i = 0, αiα̂i = 0, i = 1, . . . , l. (2.72)

Support vectors are those vectors x̄i for which αi > 0 or α̂i > 0. If
the point yi is fallen outside the layer of width ε located around the
optimal hyperplane then αi = C or α̂i = C.

It holds 0 < αi < C or 0 < α̂i < C only for vectors x̄i such that
the corresponding label yi is located on the boundary of the layer.
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Vectors x̄i, for which the values yi are located inside the layer are
certainly not support vectors, and for them αi = 0 and α̂i = 0, since
in this case the following inequalities hold

(w̄ · x̄i) + b+ ε < yi, ξi > 0,

and

(w̄ · x̄i) + b− ε < yi, ξ̂i > 0.

The weight vector is a linear combination of support vectors:

w̄ =
1

2

l∑
i=1

(α̂i − αi)x̄i.

It holds αiα̂i = 0.
The regression function is:

f(x̄) =
l∑

i=1

βi(x̄i · x̄) + b∗,

where βi = α̂i − αi.
The dual problem for the kernel version is formulated:

l∑
i=1

yi(α̂i − αi)− ε
l∑

i=1

(α̂i + αi)−

−1

2

l∑
i,j=1

(α̂i − αi)(α̂j − αj)K(x̄i, x̄j)→ max

subject to

l∑
i=1

(α̂i − αi) = 0,

α̂i > 0, αi > 0,

0 6 αi, α̂i 6 C, i = 1, . . . , l.

The regression function for the kernel version:

f(x̄) =
l∑

i=1

βiK(x̄i, x̄) + b∗,

where βi = α̂i − αi.
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2.9.2. Ridge regression in the dual form

Ridge regression can be represented as a special case of support vector
regression with ε-insensitive square loss function (2.61), where ε = 0.

We illustrate the solution of this problem as a special case of
support vector regression irrespective of the results of Section 2.8.2.

Consider the margin slack variables defined in Section 2.8.1; we
will use the same notations. Then the regression function with ex-
tended variables x̃ has a homogeneous form:

f(x̃) = (w̃ · x̃).

The primal minimization problem is formulated as follows:

λ‖w̃‖2 +

l∑
i=1

ξ2
i → min

subject to yi − (w̃ · x̃i) = ξi, i = 1, . . . , l.

In this case, the Lagrangian has the form:

L(w̃, ξ̄, ᾱ) = λ‖w̃‖2 +
l∑

i=1

ξ2
i +

l∑
i=1

αi(yi − (w̃ · x̃i)− ξi). (2.73)

Equating to zero the partial derivatives of the Lagrangian (2.73) by
wj and ξj , we obtain:

∂L(w̃, ξ̄, ᾱ)

∂w̃
= 2λw̃ −

l∑
i=1

αix̃i = 0,

2ξi − αi = 0

for i = 1, . . . , l. Let us express the weight vector of regression
functions and the margin slack variables through variables of the
dual problem:

w̃ =
1

2λ

l∑
i=1

αix̃i,

ξi =
αi
2
.
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At first, calculate:

λ(w̃ · w̃) =
1

4λ

l∑
i,j=1

αiαj(x̃i · x̃j),

l∑
i=1

αi(w̃ · x̃i) =
1

2λ

l∑
i,j=1

αiαj(x̃i · x̃j).

Substituting these expressions in (2.73), we obtain the dual problem

W (ᾱ) =

l∑
i=1

yiαi −
1

4λ

l∑
i,j=1

αiαj(x̃i · x̃j)−

−1

4

l∑
i=1

α2
i → max . (2.74)

This problem can be rewritten in the vector form:

W (ᾱ) = ȳ′ᾱ− 1

4λ
ᾱ′Kᾱ− 1

4
ᾱ′ᾱ→ max,

where K is the Gram matrix; its elements are pairwise dot products
of vectors Ki,j = (x̃i · x̃j).

Equating to zero the partial derivatives of W (ᾱ) (defined by
(2.74)) by αi, we obtain the system of equations in the vector form:

− 1

2λ
Kᾱ− 1

2
ᾱ+ ȳ = 0̄.

The solution of this equation in the vector form is written as:

ᾱ = 2λ(K + λI)−1ȳ. (2.75)

Therefore, we have obtained the regression equation in the dual form.
We represent the dot product of the extended weight vector and

the vector the extended variables:

(w̃ · x̃) =
1

2λ

l∑
i=1

αi(x̃i · x̃) =
1

2λ
(ᾱ′ · k̄),
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where ᾱ = (α1, . . . , αl), k̄ = (k1, . . . , kl) for ki = (x̃i · x̃).
Since the matrix K is symmetric, K ′ = K. Using identity

(AB)′ = B′A′ and (2.75), we obtain:

ᾱ′ = 2λȳ′(K + λI)−1.

Then the regression function has the form:

f(x̃) = (w̃ · x̃) = ȳ′(K + λI)−1k̄. (2.76)

Note one shortcoming of this production. Since ε = θ − γ = 0, the
number of parameters αi is equal to l and the size of the matrix
K + λI is equal to l × l. By this reason, we cannot use for learning
too much sample.

In the case of large sample the data can be separated into clus-
ters and a regression hyperplane can be constructed for each cluster
separately.

Non-linear kernel ridge regression
Dual form of the regression serves as a basis for considering non-

linear regression defined by a kernel K(x̃, ỹ).
We recall the scheme of transition to nonlinear regression in more

detail. Consider a mapping x̃→ φ̄(x̃) of the input space to a feature
space RN of greater dimension. The dot product in RN defines a
kernel K(x̃i, x̃j) = (φ̄(x̃i) · φ̄(x̃j)). The corresponding Gram matrix
has the form:

K =



K(x̃1, x̃1), . . . , K(x̃1, x̃l)
K(x̃2, x̃1), . . . , K(x̃2, x̃l)

·
·
·

K(x̃l, x̃1), . . . , K(x̃l, x̃l)

 .

Let z̄ be the vector:

z̄ =



K(x̃1, x̃)
K(x̃2, x̃)
·
·
·

K(x̃l, x̃)

 .
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Let z̄ = (z1, . . . , zl) and zi = K(x̃, x̃i) for i = 1, . . . , l. A non-linear
hypersurface:

f(x̃) = ȳ′(λI +K)−1z̄ (2.77)

is a preimage of a linear hyperplace (2.76) constructed in the feature
space RN by images φ̄(x̃1), . . . , φ̄(x̃l) of vectors of the training
sample.

Probabilistic analogue of ridge regression with an arbitrary kernel
is called Krieging. In probabilistic setting, vectors x̃1, . . . , x̃l are
random variables with a given covariance function R(x̃i, x̃j) = E(x̃i ·
x̃j) known up to a small number of parameters.

2.10. Non-linear optimization

The main advantage of the support vector method is associated with
the use of dual representation of the problem. The dual optimiza-
tion problem is not only simplifies the boundary conditions for an
optimization problem, but also provides the weights of a separating
hyperplane (hypersurface) through support vectors. This represen-
tation does not depend on dimension of the input space. It can be
considered as a method of compressing the information contained in
a training set.

In this section we consider the direct and dual optimization prob-
lems and give their basic properties.

The primal optimization problem
Let the real valued functions f(w̄), gi(w̄), and hi(w̄) with domain

Rn be given, where i = 1, . . . , m and w̄ ∈ Rn. The problem is to
find an infimum:

inf
w̄
f(w̄) subject to constraints:

gi(w̄) 6 0, i = 1, . . . , m, (2.78)

hi(w̄) = 0, i = 1, . . . , m, . (2.79)

where f(w̄) is called the objective function and (2.78) and (2.79) are
called the equality and inequality constraints.
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The last two constraints can be written in the vector form: ḡ(w̄) 6
0̄ and h̄(w̄) = 0̄. Let

R = {w̄ ∈ Rn : ḡ(w̄) 6 0̄, h̄(w̄) = 0}

be the feasible region.
A solution of the optimization problem is a vector w̄∗ such that

w̄∗ ∈ R and there exists no vector w̄ ∈ Rn for which f(w̄) < f(w̄∗).
Such a vector is also called a global minimum. A point w̄∗ is called
a local minimum of f(w̄) if the same property holds in some neigh-
borhood of w̄∗.

If f(w̄) is a quadratic function from coordinates of w̄ and ḡ, h̄ are
linear functions then the optimization problem is called the quadratic
optimization problem.

A real valued function f is called convex if for any w̄, ū ∈ Rn and
0 6 λ 6 1:

f(λw̄ + (1− λ)ū) 6 λf(w̄) + (1− λ)f(ū).

Lagrangian theory is the optimization theory for the case, where there
are only equality constraints h̄(w̄) = 0̄. The Lagrangian function is:

L(w̄, β̄) = f(w̄) + β̄h̄(w̄),

where the coefficients β̄ are called the Lagrange multipliers.
A necessary condition for a minimum of f(w̄) subject to h̄(w̄) = 0̄

is:

∂L(w̄, β̄)

∂w̄
= 0̄,

∂L(w̄, β̄)

∂β̄
= 0̄.

The above conditions are also sufficient provided the function L con-
vex by w̄.

In the general case (2.79) the Lagrangian has the form:

L(w̄, ᾱ, β̄) = f(w̄) +
m∑
i=1

αigi(w̄) +
m∑
i=1

βihi(w̄) =

= f(w̄) + ᾱḡ(w̄) + β̄h̄(w̄).
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The dual optimization problem
The dual optimization problem is simpler than the primal opti-

mization problem, since their constraints are simpler. Let

Θ(ᾱ, β̄) = inf
w̄
L(ᾱ, β̄, w̄).

The dual optimization problem is to find a maximum:

max
(ᾱ,β̄)

Θ(ᾱ, β̄) subject to

αi > 0, i = 1, . . . , m. (2.80)

The following is a weak duality theorem.

Theorem 2.10. Let a vector w̄ satisfies the conditions (2.78) and
(2.79) of the primal optimization problem (in particular, it can be a
solution of the primal problem) and (ᾱ, β̄) be a solution of the dual
problem (2.80). Then f(w̄) > Θ(ᾱ, β̄).

Proof. By definition:

Θ(ᾱ, β̄) = inf
ū
L(ū, ᾱ, β̄) 6 L(w̄, ᾱ, β̄) =

= f(w̄) + ᾱḡ(w̄) + β̄h̄(w̄) 6 f(w̄). (2.81)

Here ᾱḡ(w̄) 6 0, since ᾱ > 0̄ and ḡ(w̄) 6 0̄, h̄(w̄) = 0̄. 4
This theorem immediately implies:

Corollary 2.2. The value of the dual problem is upper bounded by
the value of the primal problem:

sup{Θ(ᾱ, β̄) : ᾱ > 0̄} 6 inf{f(w̄) : ḡ(w̄) 6 0̄, h̄(w̄) = 0̄}.

Another consequence of this theorem gives a sufficient condition
for that the values of solutions of the primal and dual problems co-
incide.

Corollary 2.3. If f(w̄∗) = Θ(ᾱ∗, β̄∗), where ᾱ∗ > 0̄, ḡ(w̄∗) 6 0̄,
h̄(w̄∗) = 0̄, then w̄∗ and (ᾱ∗, β∗) are solutions of the primal and dual
problems respectively. Also, ᾱ∗ḡ(w̄∗) = 0.
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Proof. Since in the inequality (2.81) two extreme terms are equal,
so it is an equality. In particular, f(w̄∗) = inf

ū
L(ū, ᾱ∗, β̄∗) and

ᾱ∗ḡ(w̄∗) = 0. 4
A sufficient condition for the existence of a solution of the pri-

mal and the dual problem is the existence of a saddle point of the
Lagrangian. The saddle point (w̄∗, ᾱ∗, β̄∗) satisfies the inequalities:

L(w̄∗, ᾱ, β̄) 6 L(w̄∗, ᾱ∗, β̄∗) 6 L(w̄, ᾱ∗, β̄∗)

for all w̄, ᾱ, β̄.
The strong duality theorem gives a sufficient condition for that the

dual and primal problems have the same value for the optimization
problems considered above.

Theorem 2.11. Assume that the feasible set Ω is a convex subset of
Rn, the functions h̄, ḡ are affine (this means that hi(w̄), gi(w̄) has
a form Aiw̄ + b̄i, where Ai is some matrix). Then solutions of the
primal and the dual problems coincide.

We now in a position to give the Kuhn–Tucker theorem giving
conditions for an optimum solution to a general optimization prob-
lem.

Theorem 2.12. Assume that a feasible set Ω is a convex subset of
Rn, the function f is convex, and the functions h̄, ḡ are affine.

Then a vector w̄∗ is a solution of the primal optimization problem:

inf f(w̄), w̄ ∈ Ω, subject to

ḡ(w̄) 6 0̄,

h̄(w̄) = 0̄,

if and only if a pair (ᾱ∗, β̄∗) exists such that

∂L(w̄∗, ᾱ∗, β̄∗)

∂w̄
= 0̄,

∂L(w̄∗, ᾱ∗, β̄∗)

∂β̄
= 0̄, (2.82)

α∗i gi(w̄
∗) = 0, i = 1, . . . , m, (2.83)

gi(w̄
∗) 6 0, i = 1, . . . , m,

α∗i > 0, i = 1, . . . , m.
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Necessary conditions for maximum of the linear function L(w̄∗, ᾱ, β̄)
by β̄ are given by the conditions (2.82); these conditions are equiva-
lent to the conditions: hi(w̄

∗) = 0, i = 1, . . . , k.
Necessary conditions for maximum of the linear function L(w̄∗, ᾱ, β̄)

by α∗i are contained in the conditions (2.83), since for α∗i > 0, any
such condition is equivalent to the equality gi(w̄

∗) = 0. The last

equality is equivalent to the equality ∂L(w̄∗,ᾱ,β̄)
∂αi

= 0. Also, α∗i = 0 at

the maximum point of L(w̄∗, ᾱ, β̄).
The conditions (2.83) are called the Karush–Kuhn–Tucker con-

ditions. They mean that if a solution the optimization problem is
achieved at the boundary of the ith constraints then α∗i > 0, and
α∗i = 0 otherwise.

Quadratic programming
The quadratic optimization problem is defined:

1

2
w̄′Qw̄ − k̄w̄ → min

subject to Xw̄ 6 c̄, (2.84)

where Q is an n×n-positive definite matrix, k̄ is an n-vector, c̄ is an
m-vector, w̄ is an n-vector of vector of unknown variables, and X is
an (m,n)-matrix.

Assume that these conditions define a non-emply set. Then the
optimization problems can be rewritten:

min
w̄

(
1

2
w̄′Qw̄ − k̄w̄ + ᾱ′(Xw̄ − c̄)

)
→ max

ᾱ
(2.85)

subject to ᾱ > 0̄.

A minimun in (2.85) by w̄ is attained for

w̄ = Q−1(k̄ −X ′ᾱ).

We substitute this expression in (2.84) and obtain the dual problem:

−1

2
ᾱ′Pᾱ− ᾱ′d̄− 1

2
k̄′Qk̄ → max

subject to ᾱ > 0̄, (2.86)
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where P = XQ−1X ′, d̄ = c̄−XQ−1k̄.
The dual problem is also quadratic, but their constraints are much

simpler than the constraints of the primal problem.

2.11. Conformal predictions

Assume that an ordered sample S = ((x̄1, y1), . . . , (x̄l, yl)) be given,
where x̄i ∈ Rn and yi ∈ {−1,+1} for 1 6 i 6 l. When solving
the problem of classification using the separating hypersurface differ-
ent examples of the sample are classified with a different degree of
confidence.

Vovk and Gammerman [39] introduced a measure of non-conformity
of an example (x̄i, yi). This non-conformity measure can be used to
improve the performance of well-known prediction algorithms.

We define a measure of non-conformity for the problem of SVM
classification. Recall the method of the SVM classification. The vec-
tors x̄i of the sample S are mapped to vectors φ̄(x̄i) in a feature space
defined by a kernel K(x̄, x̄′) = (φ̄(x̄) · φ̄(x̄′)). After that, a separating
hyperplane in the feature space is constructed, and the weight vectors
of this hyperplane are expressed as a linear combination of images of
support vectors:

w̄ =
l∑

i=1

yiαiφ̄(x̄i),

where αi are Lagrange multipliers obtained by solving the correspond-
ing dual optimization problem.

The corresponding hypersurface in the initial space has the form:

f(x̄) =

l∑
i=1

yiαiK(x̄i, x̄) + b.

Define the non-conformity measure of an example (x̄i, yi) be equal
to the Lagrange multiplier αi.

This definition is justified as follows. By Karush–Kuhn–Tucker
conditions αi = 0 if yi((w̄ · φ̄(x̄i)) + b) > 1. Such vectors φ̄(x̄i)
are correctly classified and lies outside of the boundary hyperplanes.
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Support vectors are those vectors φ̄(x̄i), for which yi((w̄ ·φ̄(x̄i))+b) 6
1, also, αi > 0 and ξi = αi/C. These are the vectors φ̄(x̄i) which are
on the boundary hyperplanes or incorrectly classified by them, in this
case yi((w̄ · φ̄(x̄i)) + b) < 1. In case of linear norm αi 6 C, where C
is a balance constant from the corresponding optimization problem.
Therefore:

• The examples with αi = 0 are correctly classified and, so, they
have the highest degree of conformity with the sample.

• The examples with positive values of αi either lie on the bound-
ary hyperplanes or are incorrectly classified and, therefore, the
degree of conformity of the example the worse the greater the
value αi.

Define p-value of an example (x̄i, yi):

pi =
|{j : αj > αi}|

l
.

By definition 0 6 pi 6 1. The small value of pi means that the
example (x̄i, yi) has one of the biggest non-conformity measure among
the examples of the sample S.

We construct a meta-algorithm for conformal SVM classification
using p-values.

Assume that a sample S = ((x̄1, y1), . . . , (x̄l, yl)) and unlabeled
example x̄l+1 be given. We have to assign a label yl+1 ∈ {−1,+1} to
this vector.

Some level of confidence ε > 0 also be given.
Meta-algorithm:
For each y ∈ {−1,+1}, solve the optimization problem of SVM

classification using the extended sample:

S′ = ((x̄1, y1), . . . , (x̄l, yl), (x̄l+1, y)),

find the values of Lagrange multipliers αi, 1 6 i 6 l+ 1 and calculate
p-value:

p(y) =
|{j : αj > αl+1}|

l + 1
.

Output of the algorithm:
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• if p(y) < ε for all y then algorithm does not output any result;

• if p(y) > ε for some y then output as a result the value of y, for
which the quantity p(y) takes its maximal value:

yl+1 = arg max
y
p(y).

Such a procedure is justified by a probabilistic result which states
that under certain probabilistic assumptions about the mechanism of
generation of examples p-value satisfies the natural condition for a
test:

P{pi 6 ε} 6 ε,

where P is a measure on samples of αi invariant with respect to their
permutations (see Vovk et al. [39]).

A non-conformity measure is defined depending on specificity of a
data model. Vovk et al. [39] constructed non-conformity measures for
for the nearest neighbor algorithm, SVM, bootstrap, neural networks,
decision trees, ridge regression and Bayes algorithm.

Consider an example of non-conformity measure for classification
using the method of nearest neighbor. The idea of the method of
k-nearest neighbors consist in the following. In order to predict the
label of the new unlabeled object x̄ we find k nearest by distance
neighbors x̄i of this object. In the classification problem, “a voting”
method is used – we assign to the object x̄ a label which occurs most
frequently in the nearest k objects. In the regression problem, we can
take the median of their labels.

We consider examples (x̄, y), where x̄ ∈ Rn, y ∈ D, and D is a
finite set. Assume that {x̄1, . . . , x̄k} be a set of all k nearest to x̄
objects and {y1, . . . , yk} be their labels.

We define a non-conformity measure of an example (x̄, y), as the
ratio of the minimal distance of the object x̄ to the objects x̄i with
the same label yi = y to the minimum distance of the object x̄ to the
objects x̄i with different labels yi 6= y:

α(x̄,y) =
min16j6k,yj=y d(x̄, x̄j)

min16j6k,yj 6=y d(x̄, x̄j)
.
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The distance d(x̄, x̄′) refers to the standard Euclidean distance be-
tween two vectors.

The greater the value α(x̄,y) the closer the object x̄ to other objects
indicated by the labels different from y, ie, the greater the degree of
non-conformity of the example (x̄, y).

2.12. Problems

1. Prove that the function ρ(w̄) defined by (2.3) in Section 2.1 is
concave. (Hint: We have to verify that

ρ(λw̄ + (1− λ)ū)) > λρ(w̄) + (1− λ)λ(ū) (2.87)

for all 0 6 λ 6 1 and w̄, ū lying in the unit ball.
The following inequalities:

min
i∈I

(f(i) + g(i)) > min
i∈I

f(i) + min
i∈I

g(i),

max
i∈I

(f(i) + g(i)) 6 max
i∈I

f(i) + max
i∈I

g(i) (2.88)

hold for all functions f and g and sets I.
By definition

ρ(w̄) =
1

2
(min
yi=1

(w̄ · x̄i)− max
yi=−1

(w̄ · x̄i)),

By (2.88), where f(i) = (w̄ · x̄i) and g(i) = (ū · x̄i), we have

min
yi=1

((λw̄ + (1− λ)ū) · x̄i) =

= min
yi=1

(λ(w̄ · x̄i) + (1− λ)(ū · x̄i)) >

> λmin
yi=1

(w̄ · x̄i) + (1− λ) min
yi=1

(ū · x̄i).

A similar inequality holds for the maximum. Subtracting the corre-
sponding inequalities, we obtain (2.87)).

2. Prove the rest part of Lemma 2.1.
3. Construct the mappings from Rn to a feature space and the

corresponding polynomial kernels for polynomials of general form and
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higher-order (k = 3, 4, . . . ), and for the appropriate classification
functions of the form (2.24).

4. Prove that for any positive definite function K(x, y) the
Cauchy–Schwartz inequality holds:

K(x1, x2) 6
√
K(x1, x1)K(x2, x2) x1, x2 ∈ X. (2.89)

Note: The eigenvalues of any positive definite (2×2) matrix K(xi, xj)
are non-negative. Therefore, the same holds for the determinant.

5. Prove that for any kernel K(x, y):
(i) K(x, x) > 0 for all x.
(ii) If K(x, x) = 0 for all x then K(x, y) = 0 for all x and y.
Note that a function kernel K(x, y) is non bilinear in general case.

6. Let F be a Hilbert space of functions on X such that any linear
functional f → f(x) is continuous. By Riesz–Fisher theorem for each
x ∈ X there exists a function Kx ∈ F such that f(x) = (Kx · f)
for all x. The reproducing kernel is determined K(x, y) = (Kx ·Ky).
Prove that the function K(x, y) = (Kx ·Ky) is symmetric and positive
definite.

7.Let K1(x, y),K2(x, y), . . . , be a kernel on a set X. Prove that
the following combinations are also kernels:
(i) α1K1(x, y) + α2K2(x, y), where α1, α2 > 0;
(ii) K(x, y) = lim

n→∞
Kn(x, y);

(iii) K1(x, y)K2(x, y) (Hint: use a representation of any positive def-
inite Gram matrix in the form K = MM ′);
(iv) K(A,B) =

∑
x∈A,y∈B

K(x, y), where A, B are finite subsets of X

(this is a kernel on the set of all finite subsets of X).
Construct the corresponding mappings in the feature spaces.
8. Prove that in the optimization problem (2.67) a value of b∗

does not depend on i.
9. Show that a dual problem corresponding to the primal problem

(2.68) has a form (2.70). Prove relations (2.72) for the dual problem.
10. Prove that the Gram matrix Ki,j = (x̃i · x̃j) is invertible if

and only if the vectors x̃1, . . . , x̃l are linear independent.
11. (i) Find the maximum volume of volume of of the paral-

lelepiped for a given surface area.
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(ii) Find the maximum of entropy H(p1, . . . , pn) = −
n∑
i=1

pi ln pi

subject to
∑
pi = 1,

∑
cipi = e.

12. Perform all necessary calculations to obtain the solution (2.86)
of the quadratic optimization problem.

13. Prove that given the class F of all linear (homogeneous)
functions a set is γ-separable if and only if it is γ-separable (maybe
for a different γ) on the same level, where r = 0.

14. Prove relations (2.66) for the dual regression problem.

2.13. Laboratory work

In this section we offer the basic laboratory work for solving the
problem of classification using SVM.

Performance of the work includes the following procedures:

• Download the input data from the appropriate web-site. As a
rule, the input data is a set of vectors of large dimension, for
which the object classes are already specified.

• Divide the data into a training set and a test set. The object
class is used in the training set for the training and in the test set
for validation of the classification. Following the procedure of
classification you have to count a proportion of correct answers.

• Calibrate (rescale) the original data if needed. Scaling of the
data helps to avoid loss of accuracy due to too small or too large
values of certain attributes. In particular, this is important
when the Gaussian kernel is used. We recommend to normalize
the numerical value of each feature so that it falls within the
range of [−1, 1] or [0, 1].

• Choose the kernel best classifying the training set. Usually, the
standard SVM software use the following kernels:

1) the linear kernel K(x̄, ȳ) = (x̄ · ȳ),

2) the polynomial kernel K(x̄, ȳ) = (γ(x̄ · ȳ) + r)d, where γ > 0,

3) the Gaussian kernel K(x̄, ȳ) = e−
‖x̄−ȳ‖2

σ2 ,
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4) the sigmoid kernel K(x̄, ȳ) = tanh(γ(x̄ · ȳ) + r).

We recommend to choose the Gaussian kernelK(x̄, ȳ) = e−
‖x̄−ȳ‖2

σ2

at first time.

• Cross-check the results in order to find the best values of the
parameters C and γ. Note that it is not enough to find the pa-
rameter values that give the best accuracy only on the training
set. To avoid the overfitting – to divide the sample set into two
parts, to find the best values parameters at training on the first
part, and to use the results of classification in the second part
for the evaluation of the parameter estimation.

There is a more complicated procedure of cross-validation, in
which the training set is divided into N equal parts. Consis-
tently choose one of the subsets, after that, train the classifier
on the union of N − 1 remaining subsets and verify it on the
selected subset. Fix the parameter values giving the greatest
accuracy for one of these subsets.

The parameters C and γ can also be selected using an exhaus-
tive search on a discrete subset – lattice. The disadvantage of
this the method is the big calculation time.

• Perform the constructed classifier on the test set. Compare the
accuracy of classification for training and for the test sets.

There are a number of websites that contain SVM software relevant
examples for experimental calculations. We mention some of them.

SVM software can be found at websites:
http://www.csie.ntu.edu.tw and www.support-vector.net

Website: http://archive.ics.uci.edu contains input data for solv-
ing classification and regression tasks.

Laboratory work 1
Conduct training and solve classification task for handwritten dig-

its. Data for MATLAB can be found at website:
http://www.cs.toronto.edu

In particular, at this website, you can find data from the database
USPS, containing digital images of the different spellings of handwrit-
ten digits.
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Laboratory work 2
Provide training and classification with data of the following web-

sites. Choose a data set to conduct training on SVM and testing on
a test set.

LIBSVM library for support vector machines can be found at
website: http://www.csie.ntu.edu.tw

The database for machine learning is located at website:
http://www.csie.ntu.edu.tw

Laboratory work 3
Conduct training and classification on previous data with the per-

ceptron and Rosenblatt’s algorithm.
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Part II

Prediction
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Chapter 3

Universal prediction

3.1. Universal online forecasting

The following forecasting task is considered: for any n, a forecaster
have to predict some information about a future outcome ωn given
past outcomes ω1, ω2, . . . , ωn−1.

For simplicity, we consider in this section only binary outcomes
ωi ∈ {0, 1}. In the measure-theoretic framework, we expect that
the outcomes are generated by some probabilistic measure P and
the conditional probabilities pn = P (ωn = 1|ω1, ω2, . . . , ωn−1), n =
1, 2, . . . , exist for all binary sequences ω1, ω2, . . . , ωn−1 of length n.
In this case, the forecaster must solve the classical statistical problem
– reconstruction of the measure P given past observations.

Historically, the first universal prediction procedure was the Laplace
rule. This procedure is based on the assumption that outcomes ωi
are generated by some i.i.d. source with the same probability p of
generating 1 (and with probability 1 − p of generating 0). We do
not know the true value of p, and we want to construct a forecasting
procedure, which would be good enough for all p such that 0 6 p 6 1.

Assume that we observe the outcomes ωn = ω1, . . . , ωn, in which
there are n1 ones and n2 zeros, where n1 + n2 = n. The probability
of getting such a sequence of outcomes is pn1(1 − p)n2 , where p is
probability of generating 1. Since a true value of p is unknown, it
is natural to consider the Bayesian mixture of oll such probabilities
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with respect to the uniform measure:

P (ωn) =

1∫
0

pn1(1− p)n2dp.

The value of this integral is easy to calculate.

Lemma 3.1.

1∫
0

pn1(1− p)n2dp =
1

(n+ 1)
(
n
n1

) .
Proof. We prove this equality by backwards induction on n1. For

n1 = n, it holds
1∫
0

pndp = 1
(n+1) .

Assume that

1∫
0

pn1+1(1− p)n2−1dp =
1

(n+ 1)
(

n
n1+1

) .
Integrating by parts, we obtain

1∫
0

pn1(1− p)n2dp =
n− n1

n1 + 1

1∫
0

pn1+1(1− p)n2−1dp =

=
n− n1

n1 + 1

1

(n+ 1)
(

n
n1+1

) =
1

(n+ 1)
(
n
n1

) .
Lemma is proved. 4

The conditional probability of the event ωn+1 = 1 given past
outcomes ωn = ω1, . . . , ωn is equal:

P{ωn+1 = 1|ωn} =
P (ωn1)

P (ωn)
=

1
(n+2)( n+1

n1+1)
1

(n+1)( nn1
)

=
n1 + 1

n+ 2
.
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Therefore, we obtain the Laplace rule:

P{ωn+1 = 1|ωn} =
n1 + 1

n+ 2
,

P{ωn+1 = 0|ωn} =
n2 + 1

n+ 2
.

The performance of such forecasting procedure can be evaluated us-
ing some loss function. An example of such a loss function is the
logarithmic loss function:

Lp(ω
n) = − ln(pn1(1− p)n2).

It is known from the information theory that this quantity coincides
up to 1 with the average number of binary bits needed to encode the
sequences ωn, consisting of n1 ones and n2 zeros, and generated by a
source with the given probability distribution.

For the Laplace rule:

L(ωn) = − lnP (ωn) = − ln

1∫
0

pn1(1− p)n2dp.

Easy to verify that:

sup
06p61

pn1(1− p)n2 =
(n1

n

)n1
(n2

n

)n2

.

Then for any sequence ωn:

L(ωn)− inf
06p61

Lp(ω
n) = ln

sup
06p61

pn1(1− p)n2

1∫
0

pn1(1− p)n2dp

=

= ln

(
n1
n

)n1
(
n2
n

)n2

1
(n+1)( nn1

)

6 ln(n+ 1).

Thus, using the encoding probabilities, calculated by the Laplace
rule, we will spend ln(n+ 1) extra bits as compared with the length
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of the optimal code built on the basis of the true source generating
outcomes ωi.

Another, the more precise method of forecasting, was proposed
by Krichevsky and Trofimov. We consider a Bayesian mixture of
probabilities of all sequences of length n over all possible 0 < p < 1
with the density 1/(π

√
p(1− p)) :

P (ωn) =

1∫
0

pn1(1− p)n2

π
√
p(1− p)

dp.

In this case, the conditional probability of generating 1 given past
outcomes ωn = ω1, . . . , ωn is equal to

P (1|ωn) =
n1 + 1/2

n+ 1
.

The following bound is valid:

1∫
0

pn1(1− p)n2

π
√
p(1− p)

dp >
1

2
√
n

(n1

n

)n1
(n2

n

)n2

.

These statements are offered as the problems in Section 3.6 below.
From this we obtain the bound for the extra number of bits when

encoding using the prediction by the method of Krichevsky and Trofi-
mov:

L(ωn)− inf
06p61

Lp(ω
n) = ln

sup
06p61

pn1(1− p)n2∫ 1
0
pn1 (1−p)n2

π
√
p(1−p)

dp
6

6 ln

(
n1
n

)n1
(
n2
n

)n2

1
2
√
n

(
n1
n

)n1
(
n2
n

)n2
6 ln(2

√
n) =

1

2
lnn+ ln 2.

In this bound the regret is asymptotically two times less than in the
corresponding bound for the Laplace method.
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3.2. Asymptotic calibration

Recall that we have to predict a value of pn representing some infor-
mation about a future outcome ωn given past outcomes ω1, ω2, . . . , ωn−1.
In binary case, the number pn can be interpreted as a probability of
the event ωn = 1. It is easy to see that in this case the number pn
is also the mathematical expectation of a random variable ωn taking
values: 1 – with probability pn, and 0 – with probability 1− pn.

In the case of finite outcomes set, pn can be a vector of probabil-
ities of all possible outcomes.

In the measure-theoretic framework, we can suppose that pn is a
conditional probability distribution of a future outcome ωn = 1 given
past outcomes ω1, ω2 , . . . , ωn−1.

But in reality, we should recognize that we have only individual
sequence ω1, ω2, . . . , ωn−1 of outcomes and that the corresponding
forecasts pn whose testing is considered may fall short of defining the
full probability distribution in the whole space of infinite sequences
of outcomes. In this section, we do not suppose that any such overall
probability distribution exists.

At the same time, without a probabilistic model it is not obvious
how to measure the performance of the method of prediction. We
consider the case where there is no hypothesis about a mechanism
generating outcomes ωi. In this case we use different cost functionals
and tests free from probability distribution to evaluate the perfor-
mance of our forecasts.

A minimal requirement for testing any prediction algorithm is
that it should be calibrated (see Dawid [11]). Dawid gave an infor-
mal explanation of calibration for binary outcomes. Let a sequence
ω1, ω2, . . . , ωn−1 of binary outcomes be observed by a forecaster whose
task is to give a probability pn of a future event ωn = 1. In a typical
example, pn is interpreted as a probability that it will rain. A fore-
caster is said to be well-calibrated if it rains as often as he leads us
to expect. It should rain about 80% of the days for which pn = 0.8,
and so on.

The average deviation of the empirical frequency of the event
ωn = 1 from the average value of predictions pn such that pn ≈ p∗

for different values of p∗ can be used as a test for rejecting “bad”

144



predictors.
The checking rule of weather forecaster can be written as follows:

for any real number p∗ ∈ [0, 1], it holds∑n
i=1&pi≈p∗ ωi∑n

i=1&pi≈p∗ 1pi≈p∗
≈ p∗ (3.1)

as the denominator of the (3.1) tends to infinity for n→∞. Here we
used the symbol ≈ of approximate equality because in applications
the number p∗ may be specified only with some degree of accuracy.
The condition pi ≈ p∗ requires further clarification.

In this section we consider a more general set of outcomes: now
ωn ∈ [0, 1] for all n and the forecast pn ∈ [0, 1] is interpreted as a
mean value of a future outcome ωn with respect to an unknown to
us probability distribution. We do not know precise form of such
distributions – we should predict only future means.

Consider the scheme of actions of Forecaster and Nature in the
form of the following perfect-information protocol of a game between
these two players.
FOR n = 1, 2, . . .
Forecaster announces a forecast pn ∈ [0, 1].
Nature announces an outcome ωn ∈ {0, 1}.
ENDFOR

Since we consider a perfect information protocol (a game), Fore-
caster and Nature can use all the information known by the time of
their action.

In particular, at step n, Nature can use the forecast pn issued by
Forecaster; Forecaster does not know the outcome ωn, since at the
moment of issue of the forecast pn Nature has not yet announced its
outcome.

Let us give a precise definition of calibration proposed by Dawid [12].
Consider any subintervals I = [a, b], (a, b], [a, b), (a, b) of the unit in-
terval [0, 1] and their characteristic functions

I(p) =

{
1 if p ∈ I,
0 otherwise.

A sequence of forecasts p1, p2, . . . is well-calibrated on an infinite se-
quence of outcomes ω1, ω2, . . . if for characteristic function I(p) of
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any subinterval [0, 1] the calibration error tends to zero, ie,∑n
i=1 I(pi)(ωi − pi)∑n

i=1 I(pi)
−→ 0 (3.2)

as the denominator of the ratio (3.2) tends to zero for n →∞. Any
characteristic function I(pi) defines some checking rule which selects
time moments i, where we calculate the difference between the out-
come ωi and the forecast pi.

A simple observation shows that any deterministic forecasting al-
gorithm f will not always be calibrated. In particular, for any such
forecasting algorithm we can define a sequence ω = ω1, ω2, . . . such
that

ωi =

{
1 if pi <

1
2 ,

0 otherwise,

where pi = f(ω1, . . . , ωi−1) are predictions computing by this algo-
rithm, i = 1, 2, . . . . Easy to see that for the interval I = [0, 1

2) or for
the interval I = [1

2 , 1), the condition of calibration (3.2) is violated.
The sequence ω = ω1, ω2, . . . defined above is the simplest exam-

ple of “an adversatively adaptive” strategy of Nature.
Generating the next outcome ωi Nature already knows the forecast

pi and uses this knowledge to create the next outcome.
This example shows that “a universal” deterministic forecasting

procedure does not exist. Such drawback can be overcome with the
help of the notion of randomized forecasting system. Let P[0, 1] be
the set of all probability measures in the set [0, 1].

A randomized forecasting system is a function f : Ξ → P[0, 1]
whose values are probability distributions in the unit interval [0, 1].
Denote any such probability distribution Prx(·) = f(x), where x is a
finite sequence of outcomes.

Nature is oblivious if it does not use predictions made by Fore-
caster. In other words, Nature generate all outcomes in advance be-
fore the process of forecasting and reveals them step-by-step accord-
ing to the protocol of the game.

We denote ωi−1 = ω1, . . . , ωi−1. In case of oblivious Nature, for
any infinite sequence of outcomes ω = ω1, ω2, . . . , the independent
conditional probabilities Prωi−1(·), i = 1, 2, . . . , define an overall
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probability distribution Pr =
∏∞
i=1 Prωi−1 in the set of all infinite

trajectories of forecasts p1, p2, . . . , where pi ∈ [0, 1], i = 1, 2, . . . . A
sequence of outcomes ω is a parameter of this distribution.

An overall probability distribution Pr exists in a more general case
of non-oblivious Nature. In this case the sequence of outcomes ω =
ω1, ω2, . . . issued by Nature depends on the sequence of predictions
p1, p2, . . . made by Forecaster. More precise, any finite sequence of
outcomes ωn = ω1, . . . , ωn is a measurable function of a sequence of
predictions p1, . . . , pn for n = 1, . . . , n. In this case by Ionesco–
Tulcea theorem (see Schiryev [29]) an overall probability distribution
exists such that

Pr{pn ∈ A|p1, . . . , pn−1} = Prωn−1(A)

for any Borel set A ⊆ [0, 1] and for all trajectories of forecasts
p1, p2, . . . .

In all these cases we can consider the probability Pr of the event
(3.2).

Foster and Fohra [13] and Kakade and Foster [17], defined a uni-
versal method of forecasting: given ∆ > 0 a randomizing forecasting
system f can be constructed such that for any infinite bynary se-
quence ω = ω1, ω2, . . . :

lim sup
n→∞

∣∣∣∣∣ 1n
n∑
i=1

I(p̃i)(ωi − p̃i)

∣∣∣∣∣ 6 ∆,

with Pr-probability one, where trajectories of forecasts p̃1, p̃2, . . .
are distributed by the probability distribution Pr and I(p) is the
characteristic function of any subinterval of the unit interval [0, 1].

3.3. Computing the well-calibrated forecasts

We present a modified version of the randomized forecasting algo-
rithm of Kakade and Foster [17].

Unlike the previous section we consider real outcomes. Let
ω1, ω2 , . . . be an infinite sequence of elements of [0, 1] given online.
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We construct an algorithm for computing the random forecasts
pn ∈ [0, 1] of future outcomes ωn given the past outcomes ω1, . . . , ωn−1.
The main requirement for such forecasts: they should be well-calibrated
with probability one. The corresponding probability distribution is
the internal distribution constructed in the process of adaptation.

Define a partition of the unit interval [0, 1] on subintervals of
length ∆ = 1/K by means of rational points vi = i∆, where i =
0, 1, . . . , K. Let V be the set of all this points. Any number p ∈ [0, 1]
can be represented as a linear combination of two boundary points
of the subinterval containing p:

p =
∑
v∈V

wv(p)v = wvi−1(p)vi−1 + wvi(p)vi,

where p ∈ [vi−1, vi], i = bp/∆ + 1c, and

wvi−1(p) = 1− p− vi−1

∆
, wvi(p) = 1− vi − p

∆
.

Define wv(p) = 0 for all other values v ∈ V .
In what follows a deterministic forecast p issued by the algorithm

described below will be rounded to vi−1 with probability wvi−1(p) and
to vi with probability wvi(p).

We first construct an algorithm computing deterministic fore-
casts.

Suppose that forecasts p1, . . . , pn−1 be already defined (let p1 =
0).

Let us compute the forecast pn. Define an auxiliary vector

µ̄n−1 = (µn−1(v0), . . . , µn−1(vK)),

where

µn−1(v) =

n−1∑
i=1

wv(pi)(ωi − pi)

for v ∈ V . It holds

(µn(v))2 = (µn−1(v))2 + 2wv(pn)µn−1(v)(ωn − pn) +

+(wv(pn))2(ωn − pn)2. (3.3)
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Summing (3.3) over v, we obtain:∑
v∈V

(µn(v))2 =
∑
v∈V

(µn−1(v))2 +

+2(ωn − pn)
∑
v∈V

wv(pn)µn−1(v) +

+
∑
v∈V

(wv(pn))2(ωn − pn)2. (3.4)

Change the order of summation in the sum of auxiliary variables:∑
v∈V

wv(p)µn−1(v) =

=
∑
v∈V

wv(p)
n−1∑
i=1

wv(pi)(ωi − pi) =

=

n−1∑
i=1

(
∑
v∈V

wv(p)wv(pi))(ωi − pi) =

=

n−1∑
i=1

(w̄(p) · w̄(pi))(ωi − pi) =

=

n−1∑
i=1

K(p, pi)(ωi − pi),

where

w̄(p) = (w0, . . . , wvK ) = (0, . . . , wvi−1(p), wvi(p), . . . , 0)

be the vector of probabilities of rounding, p ∈ [vi−1, vi], and

K(p, pi) = (w̄(p) · w̄(pi)) (3.5)

be the dot product of the corresponding vectors (a kernel). By defi-
nition K(p, pi) is a continuous function.

The second term on the right-hand side of the equality (3.4) can
be made less than or equal to zero for an appropriate value of pn.
Indeed, we can define pn = 0 if this term is negative for all p ∈ [0, 1]
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and pn = 1 if this term is positive for all p ∈ [0, 1]. Otherwise, define
pn be equal to some root pn = p of the equation:

∑
v∈V

wv(p)µn−1(v) =

n−1∑
i=1

K(p, pi)(ωi − pi) = 0. (3.6)

Such a root exists by the intermediate value theorem. We call pn the
deterministic forecast.

The third term of (3.4) is bounded by 1. Indeed, since |ωi−pi| 6 1
for all i, we have for any n:∑

v∈V
(wv(pn))2(ωn − pn)2 6

∑
v∈V

wv(pn) = 1.

Therefore, the forecasts pi satisfy:∑
v∈V

(µn(v))2 6
n∑
i=1

∑
v∈V

(wv(pi))
2(ωi − pi)2 6 n.

Let now p̃i be a random variable taking values v ∈ V with proba-
bilities wv(pi).

1 Let also, I(p) be the characteristic function of any
subinterval of [0, 1]. For any i, the mathematical expectation of the
random variable I(p̃i)(ωi − p̃i) is equal:

E(I(p̃i)(ωi − p̃i)) =
∑
v∈V

wv(pi)I(v)(ωi − v). (3.7)

By the strong martingale law of large numbers (see Corollary 8.7
below), with Pr-probability one:∣∣∣∣∣ 1n

n∑
i=1

I(p̃i)(ωi − p̃i)−
1

n

n∑
i=1

E(I(p̃i)(ωi − p̃i))

∣∣∣∣∣→ 0 (3.8)

as n→∞.
By definition of deterministic forecast pi and wv(p):∣∣∣∣∣∑
v∈V

wv(pi)I(v)(ωi − v)−
∑
v∈V

wv(pi)I(v)(ωi − pi)

∣∣∣∣∣ < ∆ (3.9)

1Only wvi(p) and wvi+1(p) are nonzero, where pn ∈ [vi, vi+1].
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for each i.
Applying the Cauchy–Schwarz inequality to vectors µ̄n = {µn(v) :

v ∈ V } and {I(v) : v ∈ V } and taking into account (3.9), we obtain:∣∣∣∣∣
n∑
i=1

∑
v∈V

wv(pi)I(v)(ωi − pi)

∣∣∣∣∣ =

=

∣∣∣∣∣∑
v∈V

I(v)
n∑
i=1

wv(pi)(ωi − pi)

∣∣∣∣∣ 6
6

√∑
v∈V

(µn(v))2

√∑
v∈V

I(v) 6

6
√

(K + 1)n, (3.10)

where K = 1/∆ is the cardinality of the partition.
Using (3.9) and (3.10), we obtain the upper bound:∣∣∣∣∣

n∑
i=1

E(I(p̃i)(ωi − p̃i))

∣∣∣∣∣ =

=

∣∣∣∣∣
n∑
i=1

∑
v∈V

wv(pi)I(v)(ωi − v)

∣∣∣∣∣ 6 (3.11)

6 ∆n+
√
n(1 + 1/∆) (3.12)

for all n.
By (3.12) and (3.8) we obtain that, with Pr-probability one:

lim sup
n→∞

∣∣∣∣∣ 1n
n∑
i=1

I(p̃i)(ωi − p̃i)

∣∣∣∣∣ 6 ∆. (3.13)

We formulate the main result of this section in the following the-
orem.

Theorem 3.1. For any ∆ > 0, a randomized forecasting system f
can be constructed such that for any infinite sequence of outcomes
ω = ω1, ω2, . . . , with Pr-probability one:

lim sup
n→∞

∣∣∣∣∣ 1n
n∑
i=1

I(p̃i)(ωi − p̃i)

∣∣∣∣∣ 6 ∆,
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where infinite trajectories of forecasts p̃1, p̃2, . . . are distributed by
the corresponding to f overall probability distribution Pr, I(p) is the
characteristic function of any subinterval of [0, 1]. We call such a
function the checking rule.

Using variable precision of rounding ∆ = ∆s, where ∆s → 0 as
s→∞, we can obtain asymptotic result:

Theorem 3.2. A randomized forecasting system can be constructed
such that for any infinite sequence ω = ω1, ω2, . . . , with Pr-probability
one,

lim
n→∞

1

n

n∑
i=1

I(p̃i)(ωi − p̃i) = 0,

where I(p) is the characteristic function of any subinterval of [0, 1].

The proof of this theorem is similar to the proof of Theorem 3.5
of Section 3.5.

3.4. Defensive forecasting

We consider two approaches to universal prediction:
– universal prediction, in which a probability distribution in the

set of all possible predictions is issued as a forecast; in this case
arbitrary subintervals I of the unit interval are used as checking rules
I(p);

– universal prediction, in which forecasts are deterministic but
continuous functions (in particular, continuous approximations of
characteristic functions of subintervals) serve as analogs of checking
rules.

In the first case, for any sequences of outcomes given online we
have constructed in the previous section a sequence of forecasts sat-
isfying the condition of calibration with probability one.

In the second case, we will construct in this section a sequence
of deterministic forecasts satisfying the condition of calibration, were
characteristic functions of subintervals are replaced by continuous
weights.
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. 2.1. Example of a sequence of outcomes ω1, ω2, . . . and well-calibrated

forecasts p1, p2, . . .

In some sense both approaches are equivalent (see Kakade and
Foster [17]).

In this section we consider the second approach. Vovk in [41] and [44]
generalized the method of universal forecasting discovered by Foster
and Vohra [13] and Kakade and Foster [17] to arbitrary RKHS. We
present an idea of this generalization.

We formulate the problem of prediction as a game between play-
ers: Nature, Forecaster and Skeptic.

In this game, forecasts will be deterministic like forecasts pi com-
puted as roots of equations (3.6) in Section 3.3. We consider a more
general setting, namely, we add a side information named signals.

Let X ⊆ Rm be the set of all m-dimensional vectors x̄ =
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(x1, . . . , xm) and

‖x̄‖ =

√√√√ m∑
i=1

x2
i

be the Euclidian norm. We call these vectors signals.
Define K0 = 1.
The game is regulated by the following perfect-information pro-

tocol:
FOR n = 1, 2, . . .
Nature announces a signal x̄n ∈ X.
Skeptic announces a continuous function Sn : [0, 1]→ R.
Forecaster announces a forecast pn ∈ [0, 1].
Nature announces an outcome yn ∈ {0, 1}.
Skeptic updates his capital:
Kn = Kn−1 + Sn(pn)(yn − pn).
ENDFOR

The next theorem shows that Forecaster has a strategy such that
Skeptic’s gain non-increases in the process of the game.

Theorem 3.3. (Vovk et al. [42]) Forecaster has a strategy such that
K0 > K1 > . . .Kn > . . .

Proof. Forecaster computes a forecast pn at any step n as follows.
If Sn(p) > 0 for all p ∈ [0, 1] then define pn = 1. If Sn(p) < 0

for all p ∈ [0, 1] then define pn = 0. Otherwise, by the intermediate
value theorem equation

Sn(p) = 0, (3.14)

has a root p; in this case let pn be some root of (3.14).
Evidently, in this case the Skeptic’s gain non-increases for any

choice of continuous function Sn(p), ie,

K0 > K1 > . . .Kn > . . .

holds for all n. 4
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We use a kernel K((p, x̄), (p′, x̄′)) which is a continuous real func-
tion on ([0, 1]×X)2. Example of a kernel is the Gaussian kernel:

K((p, x̄), (p′, x̄′)) =

= exp

(
−(p− pi)2

σ2
1

− ‖x̄− x̄
′‖2

σ2
2

)
, (3.15)

where σ1, σ2 are parameters.
Consider a Skeptic’s strategy which forces Forecaster to make

“well calibrated” forecasts at any step n independently of how Nature
outputs her outcomes. Let the forecasts p1, . . . , pn−1 be given at the
beginning of step n. Define the function

Sn(p) =

n−1∑
i=1

K((p, x̄n), (pi, x̄i))(yi − pi).

Let Forecaster uses the strategy defined in Theorem 3.3. Then Skep-
tic’s gain for N steps satisfies:

KN −K0 =
N∑
n=1

Sn(pn)(yn − pn) =

=
N∑
n=1

n−1∑
i=1

K((pn, x̄n), (pi, x̄i))(yi − pi)(yn − pn) =

=
1

2

N∑
n=1

N∑
i=1

K((pn, x̄n), (pi, x̄i))(yi − pi)(yn − pn)−

−1

2

N∑
n=1

K((pn, x̄n), (pn, x̄n))(yn − pn)2. (3.16)

By the theory presented in Section 2.5 a Hilbert feature space H and
a mapping Φ : [0, 1]×X → H exist such that

K(a, b) = (Φ̄(a) · Φ̄(b))

for a, b ∈ [0, 1]×X, where “·” is the dot product in the space H (in
what follows ‖ · ‖H is the corresponding norm).
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The quantity cH = sup
a
‖Φ(a)‖H is called the embedding constant.

Assume that the Hilbert space H has a finite embedding constant:
cH <∞. Rewrite (3.16) in the form:

KN −K0 =
1

2

∥∥∥∥∥
N∑
n=1

Φ̄(pn, x̄n)(yn − pn)

∥∥∥∥∥
2

H

−

−1

2

N∑
n=1

‖Φ̄((pn, x̄n)(yn − pn)‖2H. (3.17)

By the assumption

cH = sup
p,x̄
‖Φ̄(p, x̄)‖H <∞.

By Theorem 3.3 the inequality KN −K0 6 0 holds for all n. Then by
(3.17):

1

2

∥∥∥∥∥
N∑
n=1

Φ̄(pn, x̄n)(yn − pn)

∥∥∥∥∥
2

H

6
1

2
NC2. (3.18)

Rewrite the inequality (3.18) in the form:∥∥∥∥∥
N∑
n=1

Φ̄(pn, x̄n)(yn − pn)

∥∥∥∥∥
H

6
√
NC. (3.19)

In other words, the mean error of the forecasting algorithm is bounded:

1

N

∥∥∥∥∥
N∑
n=1

Φ̄(pn, x̄n)(yn − pn)

∥∥∥∥∥
H

6
C√
N
.

Using this bound, we can obtain a condition of calibration similar to
the condition from Section 3.3. To do this, consider some family of
smooth approximation for the characteristic functions of singletons
{(p∗, x̄∗)}, where (p∗, x̄∗) ∈ [0, 1]×X, ie, functions of the form:

K((p∗, x̄∗), (p, x̄)) = I(p∗,x̄∗)(p, x̄). (3.20)

We assume that this function is a kernel. An example of such family
Ip∗(p) is the family of Gaussian kernels (3.15).

The forecasts pi satisfy the following inequality:
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Corollary 3.1.∣∣∣∣∣ 1

N

N∑
n=1

I(p∗,x̄∗)(pn, x̄n)(yn − pn)

∣∣∣∣∣ 6 C2

√
N

(3.21)

for each point (p∗, x̄∗) ∈ [0, 1]×X.

Proof. For any kernel a function Φ(p, x̄) exists which has a range
in a Hilbert feature space H such that

K((p∗, x̄∗), (p, x̄)) = I(p∗,x̄∗)(p, x̄) = (Φ̄(p∗, x̄∗) · Φ̄(p, x̄)).

Applying Cauchy–Schwarz inequality for (3.19), we obtain:∣∣∣∣∣
N∑
n=1

I(p∗,x̄∗)(pn, x̄n)(yn − pn)

∣∣∣∣∣ =

=

∣∣∣∣∣
((

N∑
n=1

Φ̄(pn, x̄n)(yn − pn)

)
· Φ̄(p∗, x̄∗)

)∣∣∣∣∣ 6
6

∥∥∥∥∥
N∑
n=1

Φ̄(pn, x̄n)(yn − pn)

∥∥∥∥∥
H

‖Φ̄(p∗, x̄∗)‖H 6 C2
√
N.

From this we obtain (3.21). 4
The quantity:

N∑
n=1

I(p∗,x̄∗)(pn, x̄n)

is a smooth analogue of the total number of pairs (pn, xn) locating in
in the “soft” neighborhood of the pair (p∗, x̄∗).

The inequality (3.21) can be rewritten in the form:∣∣∣∣∣∣∣∣∣
N∑
n=1

I(p∗,x̄∗)(pn, x̄n)(yn − pn)

N∑
n=1

I(p∗,x̄∗)(pn, x̄n)

∣∣∣∣∣∣∣∣∣ 6
C2
√
N

N∑
n=1

I(p∗,x̄∗)(pn, x̄n)

. (3.22)

157



The bound (3.22) is valid for

N∑
n=1

I(p∗,x̄∗)(pn, x̄n)�
√
N,

ie, the convergence of frequencies to predictions take place only for
subsequences of “statistically significant” length.

The universal forecasting algorithm presented in this section can
easily implemented as a computer program.

3.5. Universal algorithmic trading

In this section, we consider financial applications of the method of
calibration. 2 The method of universal forecasting will be applied to
the problem of universal sequential investment in Stock Market. We
consider the method of trading called in financial industrial appli-
cations algorithmic trading or systematic quantitative trading, which
means rule-based automatic trading strategies, usually implemented
with computer based trading systems.

A non-traditional objective (in computational finance) is to de-
velop algorithmic trading strategies that are, in some sense, always
guaranteed to perform well. In competitive analysis, the performance
of an algorithm is measured to any trading algorithm from a broad
class. We only ask than an algorithm performs well, relative to the
difficulty in classifying of the input data. Given a particular perfor-
mance measure, an adaptive algorithm is strongly competitive with a
class of trading algorithms if it achieves the maximum possible regret
over all input sequences. Unlike the statistical theory, no stochastic
assumptions are made about the stock prices.

This line of research in finance was pioneered by Cover [9] who
designed universal portfolio selection algorithms that are proven to
perform well (in terms of their total return) with respect to some
adaptive online or offline benchmark algorithms. Such algorithms
are called universal. We present this algorithm in Section 5.8 below.

2This section is technical and can be passed on the first reading.
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In this framework, we consider a universal trading for one stock.
We construct “a universal” strategy for algorithmic trading in Stock
Market which is performed at least as well as any trading strategy
that is not excessively complex. By “performance” we mean return
per unit of currency on an investment.

Trading in Stock Market.
The process of trading proceeds as follows: observing a sequence

of past prices of a stock and the side information, a forecaster assigns
an estimate to a future price. Then, using this forecast, a trader
makes a decision to buy or sell shares of the stock. He chooses a
strategy: going long or going short, or skip the step. In finance, a long
position in a security, such as a stock or a bond, or equivalently to be
long in a security, means the holder of the position owns the security
and will profit if the price of the security goes up. Short selling (also
known as shorting or going short) is the practice of selling securities
or other financial instruments, with the intention of subsequently
repurchasing them (“covering”) at a lower price.

The forecasting method is defined as a combination of the ran-
domized forecasting defined in Section 3.3 and defensive forecasting
defined in Section 3.4. We use also Dawid’s notion of calibration
considered in Section 3.2 with more general checking rules.

Theorem 3.4, says that this trading strategy is universal – it per-
forms asymptotically at least as well as any trading strategy presented
by any continuous function from a piece of side information. This
method and the corresponding numerical experiments are presented
in V’yugin and Trunov [45].

Suppose that real numbers S1, S2, . . . , that are interpreted as
prices of a stock, are given online. We assume that they are bounded
and scaled such that 0 6 Si 6 1 for all i. We present the process of
trading in a stock market in the form of the protocol of a game with
two players called traders. Trader M uses the randomized strategy
that is a random variable M̃i. Trader D uses an arbitrary stationary
trading strategy D that is a real function defined on [0, 1].

In general, under the strategy we mean an algorithm (possibly
randomized), which at each step i of the game outputs the number
of units of the financial instrument you want to buy (if the number
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is positive or equal to zero) or sell (if it is negative). 3 For Trader M,
this number is a value of the random variable M̃i and for Trader D,
this number equals D(xi).

At the beginning of each step i, traders are given some data xi
that is relevant to predicting a future price Si of the stock. We call xi
a signal or a piece of side information. The real number xi belongs
to [0, 1] and can encode any information. For example, it can even
be the future price Si.

Trader D uses at any step i only information xi – he buys (or
sells) D(xi) units of shares. The strategy of this type will be called
stationary.

For Trader M, this game is a game with perfect information.
Trader M, for defining the random variable M̃i, may use all values of
Sj , xj for j 6 i, as well as their randomized values.

Past stock prices, signals, and predictions can be encoded in the
signal xi, so the Trader D can also use this information. There is
a restriction – a method of encoding must be defined in advance at
the beginning of the game. Another limitation for Trader D – the
function D must be continuous.

Method of randomization revisited.
We will use the method of randomization defined in Section 3.3.

Some special kernel corresponds to the method of randomization de-
fined below.

A random variable ỹ is called randomization of a real number y ∈
[0, 1] if E(ỹ) = y, where E is the symbol of mathematical expectation
with respect to the probability distribution corresponding to ỹ.

We use a specific method of randomization of real numbers from
the unit interval defined in Section 3.3. Given positive integer number
K divide the interval [0, 1] on subintervals of length ∆ = 1/K with
rational endpoints vi = i∆, where i = 0, 1, . . . ,K. Let V denotes
the set of these points. Any number p ∈ [0, 1] can be represented
as a linear combination of two neighboring endpoints of V defining

3We believe that the number of units of a financial instrument purchased by
traders may take any real value.
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subinterval containing p :

p =
∑
v∈V

wv(p)v = wvi−1(p)vi−1 + wvi(p)vi, (3.23)

where p ∈ [vi−1, vi], i = bp1/∆ + 1c, wvi−1(p) = 1− (p− vi−1)/∆, and
wvi(p) = 1− (vi−p)/∆. Define wv(p) = 0 for all other v ∈ V . Define
a random variable:

p̃ =

{
vi−1 with probability wvi−1(p)
vi with probability wvi(p)

Let w̄(p) = (wv(p) : v ∈ V ) be a vector of probabilities of rounding.
For z, z′ ∈ [0, 1], define the dot product K(z, z′) = (w̄(z) · w̄(z′))
which is a kernel function. 4

In what follows we will consider a variable parameter ∆. More
correctly, we will define a sequence of parameters ∆1 > ∆2 > · · · → 0.
At each step i of the construction, we will round off real numbers up
to ∆i. This method of random rounding will be called sequential
randomization.

Universal trading strategy.
Define a universal trading strategy as a sequence of random vari-

ables M̃i, i = 1, 2, . . . as follows. Using algorithm presented in Sec-
tion 3.5.1, at each step i, we compute a forecast pi of a future price
Si and randomize it to p̃i. We also randomize the past price Si−1 of
the stock to S̃i−1. Define the random variable:

M̃i =

{
1 if p̃i > S̃i−1,
−1 otherwise.

Trading game.
In case M̃i > 0 Trader M going long, and going short, otherwise.

The same holds for Trader D. We suppose that traders can borrow
money for buying shares and can incur debt. The core of universal
strategy is the algorithm for computing the well-calibrated forecasts
p̃i. This algorithm is presented in Section 3.5.1.

4Many other methods of randomization also work.
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FOR i = 1, 2 . . .
Stock Market announces a signal xi ∈ [0, 1].
Trader M bets by buying (or selling) the random number M̃i of shares
of the stock by Si−1 each.
Trader D bets by buying (or selling) a number D(xi) of shares of the
stock by Si−1 each.
Stock Market reveals a price Si of the stock.
Trader M updates his total gain (loss):
KMi = KMi−1 + M̃i(Si − Si−1). We get KM0 = 0.
Trader D updates his total gain (loss):
KDi = KDi−1 +D(xi)(Si − Si−1). We get KD0 = 0.
ENDFOR

Figure 3.1: Protocol of the trading game

Trader M can buy or sell only one share of the stock. Therefore, in
order to compare the performance of the traders we have to standard-
ize the strategy of Trader D. Recall the norm ‖D‖∞ = sup

06x61
|D(x)|,

where D is a continuous function. We will use ‖D‖−1
∞ as a normal-

ization factor.
Assume that S1, S2, · · · ∈ [0, 1] and x1, x2, · · · ∈ [0, 1] be given

sequentially according to the protocol presented on Fig 3.1.
Main result of this section is presented in the following theorem.

It says that, with probability one, the average gain of the universal
trading strategy is asymptotically not less than the average gain of
any stationary trading strategy from one share of the stock:

Theorem 3.4. An algorithm for computing forecasts and a sequen-
tial method of randomization can be constructed such that for any
continuous nonzero function D:

lim inf
n→∞

1

n

(
KMn − ‖D‖−1

∞ KDn
)
> 0 (3.24)

holds almost surely with respect to a probability distribution generated
by the corresponding sequential randomization.

The proof of this theorem is given in Section 3.5.2, where we
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construct the corresponding optimal trading strategy based on the
well-calibrated forecasts defined in Section 3.5.1.

Reproducing Kernel Hilbert Spaces revisited.
First, we will prove in Section 3.5.2 that the trading strategy M̃i

is universal with respect to all stationary trading strategies from any
benchmark class called RKHS (Reproducing Kernel Hilbert Space).
After that, using a universal RKHS (that will be defined below),
we extend the universality property to the class of all continuous
stationary trading strategies.

Recall that a Hilbert space F of real-valued functions on a com-
pact set X is called RKHS on X if the evaluation functional f → f(x)
is continuous for each x ∈ X. Let ‖ · ‖F be a norm on F and
cF (x) = sup

‖f‖F61
|f(x)|. The embedding constant of F is defined:

cF = sup
x
cF (x).

We consider RKHS F on X = [0, 1] with cF < ∞. An example
of such RKHS is the Sobolev space F = H1([0, 1]), which consists of
absolutely continuous functions f : [0, 1]→ R with ‖f‖F <∞, where

‖f‖F =
√∫ 1

0 (f(t))2dt+
∫ 1

0 (f ′(t))2dt. For this space, cF =
√

coth 1

(see [41]).
Let F be an RKHS on X with the dot product (f ·g) for f, g ∈ F .

By Riesz–Fisher theorem, for each x ∈ X there exists kx ∈ F such
that f(x) = (kx · f). The reproduced kernel is defined K(x, y) =
(kx · ky).

Conversely, any kernel K(x, y) defines some canonical RKHS F
and a mapping Φ : X → F such that K(x, y) = (Φ(x) · Φ(y)).

3.5.1. Well-calibrated forecasting with side information

In this section, we define an algorithm for computing the well-
calibrated forecasts, which is a core of the investment strategy M̃i.

We consider checking rules of a more general type than those used
in Sections 3.2 and 3.3. For any subset S ⊆ [0, 1]× [0, 1] define

IS(p, x) =

{
1, if (p, x) ∈ S,
0, otherwise,
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where p, x ∈ [0, 1]. In Section 3.5.2 we get S = {(p, x) : p > x}.
The following theorem is the main tool for analysis presented in

Section 3.5.2.
Let F be an RKHS on [0, 1] with a finite embedding constant cF ,

‖ · ‖F be the norm, and M(x, x′) be the kernel on [0, 1].
Suppose that S1, S2, · · · ∈ [0, 1] be a sequence of real numbers and

x1, x2, · · · ∈ [0, 1] be a sequence of signals given sequentially according
to the protocol presented on Fig 3.1.

Theorem 3.5. Given ε > 0, an algorithm for computing forecasts
p1, p2, . . . and a sequential method of randomization can be con-
structed such that two conditions hold:

• for any δ > 0, for any S ⊆ [0.1]2 and for any n, with Pr-
probability at least 1− δ:∣∣∣∣∣

n∑
i=1

IS(p̃i, z̃i)(Si − p̃i)

∣∣∣∣∣ 6
6 18n3/4+ε(c2

F + 1)1/4 +

√
n

2
ln

2

δ
, (3.25)

where p̃1, p̃2, . . . are the corresponding randomizations of p1, p2, . . .
and z̃1, z̃2, . . . are randomizations of reals z1, z2, . . . and zi =
Si−1, i = 1, 2, . . . ;

• for any D ∈ F :∣∣∣∣∣
n∑
i=1

D(xi)(Si − pi)

∣∣∣∣∣ 6 ‖D‖F√(c2
F + 1)n (3.26)

for all n.

Proof. At first, given ∆ > 0, we modify a randomized rounding
algorithm from previous section to construct some forecasting algo-
rithm calibrated up to a precision ∆, and combine it with defensive
forecasting algorithm. After that, we apply to this algorithm some
“doubling trick” argument such that (3.25) will hold.
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Proposition 3.1. Under the assumption of Theorem 3.5, an algo-
rithm for computing forecasts and a method of randomization can be
constructed such that the inequality (3.26) holds for all D from RKHS
F and for all n. Also, for any δ > 0, S and n, with probability at
least 1− δ: ∣∣∣∣∣

n∑
i=1

I(p̃i, z̃i)(Si − p̃i)

∣∣∣∣∣ 6
∆n+ 2

√
n(c2
F + 1)

∆
+

√
n

2
ln

2

δ
.

Proof. Assume that the deterministic forecasts p1, . . . , pn−1 be
already defined (put p1 = 1/2). We define a deterministic forecast pn
and randomly round it to p̃n.

The partition V = {v0, . . . , vK} and probabilities of rounding
were defined above by (3.23). We round pn to vi−1 with probabil-
ity wvi−1(pn) and to vi with probability wvi(pn). We also randomly
round zn = Sn−1 to vs−1 with probability wvs−1(zn) and to vs with
probability wvs(zn), where zn ∈ [vs−1, vs].

Let Wv(pn, zn) = wv1(pn)wv2(zn), where v = (v1, v2) and v1, v2 ∈
V , and W (pn, zn) = (Wv(pn, zn) : v ∈ V 2) be a vector of probability
distribution in V 2. Define the corresponding kernel K(p, z, p′, z′) =
(W (p, z) ·W (p′, z′)).

By definition, the kernel M(x, x′) can be represented as a dot
product in some feature space: M(x, x′) = (Φ(x) · Φ(x′)). Consider
the function

Un(p) =
n−1∑
i=1

(K(p, zn, pi, zi) +M(xn, xi))(Si − pi). (3.27)

Recall Theorem 3.3 which gives a general method for computing
deterministic forecasts:

A sequence of forecasts p1, p2, . . . can be computed such that
Mn 6 Mn−1 for all n, where M0 = 1 and Mn = Mn−1 +
Un(pn)(Sn − pn) for all i.

Indeed, if Un(p) > 0 for all p ∈ [0, 1] then define pn = 1; if
Un(p) < 0 for all p ∈ [0, 1] then define pn = 0. Otherwise, define pn
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to be some root of the equation Ui(p) = 0 (some root exists by the
intermediate value theorem). Evidently, Mn 6Mn−1 for all n.

Now we continue the proof of Proposition 3.1.
We have for any N :

0 >MN −M0 =
N∑
n=1

Un(pn)(Sn − pn) =

=
N∑
n=1

n−1∑
i=1

(K(pn, zn, pi, zi) +M(xn, xi))×

×(Si − pi)(Sn − pn) =

=
1

2

N∑
n=1

N∑
i=1

K(pn, zn, pi, zi)(Si − pi)(Sn − pn)−

−1

2

N∑
n=1

(K(pn, zn, pn, zn)(Sn − pn))2 +

+
1

2

N∑
n=1

N∑
i=1

M(xn, xi)(Si − pi)(Sn − pn)−

−1

2

N∑
n=1

(M(xn, xn)(Sn − pn))2 = (3.28)

=
1

2

∥∥∥∥∥
N∑
n=1

W (pn, zn)(Sn − pn)

∥∥∥∥∥
2

−

−1

2

N∑
n=1

‖W (pn, zn)‖2(Sn − pn)2 + (3.29)

+
1

2

∥∥∥∥∥
N∑
n=1

Φ(xn)(Sn − pn)

∥∥∥∥∥
2

F

−

−1

2

N∑
n=1

‖Φ(xn)‖2F (Sn − pn)2. (3.30)

In (3.29), ‖ · ‖ is the Euclidian norm, and in (3.30), ‖ · ‖F is the norm
in RKHS F .

166



Since (Sn − pn)2 6 1 for all n and:

‖W (pn, zn)‖2 =
∑
v∈V 2

(Wv(pn, zn))2 6

6
∑
v∈V 2

Wv(pn, zn) = 1,

the subtracted sum of (3.29) is upper bounded by N .
Since ‖Φ(xn)‖F = cF (xn) and cF (x) 6 cF for all x, the subtracted

sum of (3.30) is upper bounded by c2
FN . As a result we obtain:∥∥∥∥∥

N∑
n=1

W (pn, zn)(Sn − pn)

∥∥∥∥∥ 6
√

(c2
F + 1)N (3.31)∥∥∥∥∥

N∑
n=1

Φ(xn)(Sn − pn)

∥∥∥∥∥
F

6
√

(c2
F + 1)N (3.32)

for all N . Let us denote: µ̄n =
n∑
i=1

W (pi, zi)(Si − pi). By (3.31),

‖µ̄n‖ 6
√

(c2
F + 1)n for all n.

Let µ̄n = (µn(v) : v ∈ V 2}. By definition for any v:

µn(v) =

n∑
i=1

Wv(pi, zi)(Si − pi). (3.33)

Insert the term I(v) in the sum (3.33), where I is the characteristic
function of an arbitrary set S ⊆ [0, 1] × [0, 1], sum by v ∈ V 2, and
exchange the order of summation. Using Cauchy–Schwarz inequality
for vectors Ī = (I(v) : v ∈ V 2), µ̄n = (µn(v) : v ∈ V 2) and Euclidian
norm, we obtain: ∣∣∣∣∣∣

n∑
i=1

∑
v∈V 2

Wv(pi, zi)I(v)(Si − pi)

∣∣∣∣∣∣ =

=

∣∣∣∣∣∣
∑
v∈V 2

I(v)
n∑
i=1

Wv(pi, zi)(Si − pi)

∣∣∣∣∣∣ =

= (Ī · µ̄n) 6 ‖Ī‖ · ‖µ̄n‖ 6
√
|V 2|(c2

F + 1)n (3.34)
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for all n, where |V 2| = (1/∆ + 1)2 6 4/∆2 is the cardinality of the
partition.

Let p̃i be a random variable taking values v ∈ V with probabilities
wv(pi). Recall that z̃i is a random variable taking values v ∈ V with
probabilities wv(zi).

Let S ⊆ [0, 1] × [0, 1] and I be its indicator function. For any i
the mathematical expectation of a random variable I(p̃i, z̃i)(Si − p̃i)
is equal to:

E(I(p̃i, z̃i)(Si − p̃i)) =

=
∑
v∈V 2

Wv(pi, zi)I(v)(Si − v1), (3.35)

where v = (v1, v2). Using Corollary 8.5 from the Azuma–Hoeffding
inequality (see Lemma 8.2 of Section 8.6 below), we obtain for any
δ > 0, S and n, with Pr-probability 1− δ:∣∣∣∣∣

n∑
i=1

IS(p̃i, z̃i)(Si − p̃i)−
n∑
i=1

E(IS(p̃i, z̃i)(Si − p̃i))

∣∣∣∣∣ 6
6

√
n

2
ln

2

δ
. (3.36)

By definition of the deterministic forecast, the sums:∑
v∈V 2

Wv(pi, zi)I(v)(Si − pi) and
∑
v∈V 2

Wv(pi, zi)I(v)(Si − v1)

differ at most by ∆ for all i, where v = (v1, v2). Summing (3.35) over
i = 1, . . . , n and using the inequality (3.34), we obtain:∣∣∣∣∣

n∑
i=1

E(I(p̃i, z̃i)(Si − p̃i))

∣∣∣∣∣ =

=

∣∣∣∣∣∣
n∑
i=1

∑
v∈V 2

Wv(pi, zi)I(v)(Si − v1)

∣∣∣∣∣∣ 6
6 ∆n+ 2

√
(c2
F + 1)n/∆2 (3.37)
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for all n.
By (3.36) and (3.37), for any S and n, with Pr-probability 1− δ:∣∣∣∣∣

n∑
i=1

I(p̃i, z̃i)(Si − p̃i)

∣∣∣∣∣ 6
6 ∆n+ 2

√
(c2
F + 1)n/∆2 +

√
n

2
ln

2

δ
. (3.38)

By Cauchy–Schwarz inequality:∣∣∣∣∣
N∑
n=1

D(xn)(Sn − pn)

∣∣∣∣∣ =

=

∣∣∣∣∣
N∑
n=1

(Sn − pn)(D · Φ(xn))

∣∣∣∣∣ =

=

∣∣∣∣∣
(

N∑
n=1

(Sn − pn)Φ(xn) ·D

)∣∣∣∣∣ 6
6

∥∥∥∥∥
N∑
n=1

(Sn − pn)Φ(xn)

∥∥∥∥∥
F

· ‖D‖F 6

6 ‖D‖F
√

(c2
F + 1)N.

The proposition is proved. 4
Now we finish the proof of Theorem 3.5.

The expression ∆n+
√

(c2
F + 1)n/∆2 from (3.37) and (3.38) takes

its minimal value for ∆ =
√

2(c2
F + 1)

1
4n−

1
4 . In this case, the right-

hand side of the inequality (3.37) is equal to:

∆n+ 2
√
n(c2
F + 1)/∆2 = 2∆n = 2

√
2(c2
F + 1)

1
4n

3
4 . (3.39)

In what follows we use the upper bound 2∆n in (3.37).
To prove the bound (3.25) choose a monotonic sequence of rational

numbers: ∆1 > ∆2 > . . . such that ∆s → 0 as s→∞. We also define
an increasing sequence of positive integer numbers: n1 < n2 < . . .
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For any s, we use for randomization on steps ns 6 n < ns+1 the
partition of [0, 1] on subintervals of length ∆s.

We start our sequences from n1 = 1 and ∆1 = 1. Also, define the
numbers n2, n3, . . . such that the inequality:∣∣∣∣∣

n∑
i=1

E(I(p̃i, x̃i)(yi − p̃i))

∣∣∣∣∣ 6 4(s+ 1)∆sn (3.40)

holds for all ns 6 n 6 ns+1 and for all s > 1.
We define this sequence by mathematical induction on s. Suppose

that ns (s > 1) is defined such that the inequality:∣∣∣∣∣
n∑
i=1

E(I(p̃i, x̃i)(yi − p̃i))

∣∣∣∣∣ 6 4s∆s−1n (3.41)

holds for all ns−1 6 n 6 ns, and the inequality:∣∣∣∣∣
ns∑
i=1

E(I(p̃i, x̃i)(yi − p̃i))

∣∣∣∣∣ 6 4s∆sns (3.42)

also holds.
Let us define ns+1. Consider all forecasts p̃i defined by the algo-

rithm given above for the discretization ∆ = ∆s+1. We do not use
first ns of these forecasts (more correctly we will use them only in
bounds (3.43) and (3.44); denote these forecasts p̂1, . . . , p̂ns). We
add the forecasts p̃i for i > ns to the forecasts defined before this
step of induction (for ns). Let ns+1 be such that the inequality:∣∣∣∣∣

ns+1∑
i=1

E(I(p̃i, x̃i)(yi − p̃i))

∣∣∣∣∣ 6
∣∣∣∣∣
ns∑
i=1

E(I(p̃i, x̃i)(yi − p̃i))

∣∣∣∣∣+

+

∣∣∣∣∣
ns+1∑
i=ns+1

E(I(p̃i, x̃i)(yi − p̃i)) +

ns∑
i=1

E(I(p̂i, x̃i)(yi − p̂i))

∣∣∣∣∣+

+

∣∣∣∣∣
ns∑
i=1

E(I(p̂i, x̃i)(yi − p̂i))

∣∣∣∣∣ 6 4(s+ 1)∆s+1ns+1 (3.43)

holds. Here the first sum of the right-hand side of the inequality (3.43)
is bounded by 4s∆sns – by the induction hypothesis (3.42). The
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second and third sums are bounded by 2∆s+1ns+1 and by 2∆s+1ns,
respectively, where ∆ = ∆s+1 is defined such that (3.39) holds. This
follows from (3.37) and by choice of ns.

The induction hypothesis (3.42) is valid for

ns+1 >
2s∆s + ∆s+1

∆s+1(2s+ 1)
ns.

Similarly,∣∣∣∣∣
n∑
i=1

E(I(p̃i, x̃i)(yi − p̃i))

∣∣∣∣∣ 6
∣∣∣∣∣
ns∑
i=1

E(I(p̃i, x̃i)(yi − p̃i))

∣∣∣∣∣+

+

∣∣∣∣∣
n∑

i=ns+1

E(I(p̃i, x̃i)(yi − p̃i)) +

ns∑
i=1

E(I(p̂i, x̃i)(yi − p̂i))

∣∣∣∣∣+

+

∣∣∣∣∣
ns∑
i=1

E(I(p̂i, x̃i)(yi − p̂i))

∣∣∣∣∣ 6 4(s+ 1)∆sn (3.44)

for ns < n 6 ns+1. Here the first sum of the right-hand inequality
(3.43) is also bounded: 4s∆sns 6 4s∆sn – by the induction hy-
pothesis (3.42). The second and the third sums are bounded by
2∆s+1n 6 2∆sn and by 2∆s+1ns 6 2∆sn, respectively. This follows
from (3.37) and from choice of ∆s. The induction hypothesis (3.41)
is valid.

By (3.40) for any s∣∣∣∣∣
n∑
i=1

E(I(p̃i, x̃i)(yi − p̃i))

∣∣∣∣∣ 6 4(s+ 1)∆sn (3.45)

for all n > ns if ∆s satisfies the condition ∆s+1 6 ∆s(1− 1
s+2) for all

s.
We show now that sequences ns and ∆s satisfying all the condi-

tions above exist.
Let ε > 0 and M = d2/εe, where dre is the least integer number

greater than or equal to r. Define ns = (s+M)M and ∆s =
√

2(c2
F +

1)
1
4n
− 1

4
s . Easy to verify that all requirements for ns and ∆s given

above are satisfied for all s > s0, where s0 is sufficiently large. We
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redefine ni = ns0 for all 1 6 i 6 s0. Note that these requirements
hold for such i trivially.

We have in (3.41) for all ns 6 n < ns+1:

4(s+ 1)∆sn 6 4(s+M)∆sns+1 =

= 4
√

2(c2
F + 1)

1
4 (s+M)(s+M + 1)M (s+M)−

M
4 6

6 18(c2
F + 1)

1
4n

3
4

+2/M
s 6

6 18(c2
F + 1)

1
4n

3
4

+ε.

Therefore, we obtain:∣∣∣∣∣
n∑
i=1

E(I(p̃i, z̃i)(Si − p̃i))

∣∣∣∣∣ 6 18(c2
F + 1)1/4n3/4+ε (3.46)

for all n.
Azuma–Hoeffding inequality says that for any γ > 0:

Pr

{∣∣∣∣∣ 1n
n∑
i=1

Vi

∣∣∣∣∣ > γ

}
6 2e−2nγ2

(3.47)

for all n, where Vi are martingale–differences (see Lemma 8.2 of Sec-
tion 8.6).

We get Vi = I(p̃i, z̃i)(Si − p̃i) − E(I(p̃i, z̃i)(Si − p̃i)) and γ =√
1

2n ln 2
δ , where δ > 0.

Combining (3.46) with (3.47), we obtain that for any δ > 0, S
and n, with probability 1− δ:∣∣∣∣∣

n∑
i=1

I(p̃i, z̃i)(Si − p̃i)

∣∣∣∣∣ 6 18(c2
F + 1)1/4n3/4+ε +

√
n

2
ln

2

δ
.

Theorem 3.5 is proved. 4

3.5.2. Proof of Theorem 3.4

At any step i we compute the deterministic forecast pi defined in
Section 3.5.1 and its randomization to p̃i using parameters ∆ = ∆s =
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√
2(cF+1)

1
4 (s+M)−

h
4 and ns = (s+M)M , where ns 6 i < ns+1. Let

also, S̃i−1 be a randomization of the past price Si−1. In Theorem 3.5,
zi = Si−1 and z̃i = S̃i−1.

The following upper bound directly follows from the method of
discretization: ∣∣∣∣∣

n∑
i=1

I(p̃i > S̃i−1)(S̃i−1 − Si−1)

∣∣∣∣∣ 6
6

s∑
t=0

(nt+1 − nt)∆t 6

6 4(c2
F + 1)

1
4n

3
4

+ε
s 6

6 4(c2
F + 1)

1
4n

3
4

+ε, (3.48)

where ns 6 n < ns+1.
Let D(x) be an arbitrary trading strategy from RKHS F . Clearly,

the bound (3.48) holds if we replace I(p̃i > S̃i−1) on ‖D‖−1
∞ D(xi).

For simplicity, we give the proof for the case of going long, where
D(x) > 0 for all x and

M̃i =

{
1 if p̃i > S̃i−1,
0 otherwise.

We use abbreviations:

ν1(n) = 4(c2
F + 1)

1
4n

3
4

+ε, (3.49)

ν2(n) = 18n
3
4

+ε(c2
F + 1)

1
4 +

√
n

2
ln

2

δ
. (3.50)

ν3(n) =
√

(c2
F + 1)n (3.51)

All sums below are for i = 1, . . . n. We use below the Azuma–
Hoeffding inequality (3.47).

For any δ > 0, with probability 1− δ the following chain of equal-
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ities and inequalities is valid:

n∑
i=1

M̃i(Si − Si−1) =
∑

p̃i>S̃i−1

(Si − Si−1) =

=
∑

p̃i>S̃i−1

(Si − p̃i) +
∑

p̃i>S̃i−1

(p̃i − S̃i−1) +
∑

p̃i>S̃i−1

(S̃i−1 − Si−1) >(3.52)

>
∑

p̃i>S̃i−1

(p̃i − S̃i−1)− ν1(n)− ν2(n) >(3.53)

> ‖D‖−1
∞

n∑
i=1

D(xi)(p̃i − S̃i−1)−

−ν1(n)− ν2(n) =

= ‖D‖−1
∞

n∑
i=1

D(xi)(pi − Si−1) +

+‖D‖−1
∞

n∑
i=1

D(xi)(p̃i − pi)−

−‖D‖−1
∞

n∑
i=1

D(xi)(S̃i−1 − Si−1)−

−ν1(n)− ν2(n) >(3.54)

> ‖D‖−1
∞

n∑
i=1

D(xi)(pi − Si−1)−

−3ν1(n)− ν2(n) >(3.55)

= ‖D‖−1
∞

n∑
i=1

D(xi)(Si − Si−1)−

−‖D‖−1
∞

n∑
i=1

D(xi)(Si − pi)−

−3ν1(n)− ν2(n) =(3.56)

= ‖D‖−1
∞

n∑
i=1

D(xi)(Si − Si−1)−

−3ν1(n)− ν2(n)− ‖D‖−1
∞ ‖D‖Fν3(n).
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In transition from (3.52) to (3.53) the inequality (3.25) of Theorem 3.5
and the bound (3.48) were used, and so, terms (3.49) and (3.50) were
subtracted. In transition from (3.54) to (3.55) the bound (3.48) was
applied twice to intermediate terms, and so, the term (3.48) was sub-
tracted twice. In transition from (3.55) to (3.56) the inequality (3.26)
of Theorem 3.5 has used, and so, the term (3.51) was subtracted.

Therefore, a constant c > 0 exists such that for any n and D,
with probability 1− δ,

KMn > ‖D‖−1KDn − c
(
n

3
4

+ε + (n ln(1/δ))
1
2

)
. (3.57)

The inequality (3.24) will follow from (3.57). For the proof we use
the Borel–Cantelli lemma (see Section 8.6). This lemma states that

if, for some sequence of events An the series
∞∑
n=1

P (An) converges,

then the probability that the event An holds for infinitely many n is
0.

In order to apply this lemma, we will return to the initial form

of Hoeffding inequality. Denote γ =
√

1
2n ln 2

δ . Then δ = 2e−nγ
2
.

Rewrite (3.57) in the form:

1

n
KMn − ‖D‖−1 1

n
KDn > −c

(
n−

1
4

+ε + γ
)

(3.58)

According to (3.57), for any n and γ > 0, the inequality (3.58) violates

with probability 2e−nγ
2
. Since the series

∞∑
n=1

e−nγ
2

converges, given γ

the inequality (3.58) can be violated no more than for finite number
of different n. By Borel–Cantelli lemma (see Section 8.6) the event:

lim inf
n→∞

1

n

(
KMn − ‖f‖−1

∞ KDn
)
> 0

holds almost surely.
Theorem 3.4 is proved for any D ∈ F .
Using a universal kernel and the corresponding canonical univer-

sal RKHS, we can extend our asymptotic results for all continuous
stationary trading strategies D.
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An RKHS F on X is universal if X is a compact metric space
and every continuous function f on X can be arbitrarily well approx-
imated in the metric ‖ · ‖∞ by a function from F : for any ε > 0 there
exists D ∈ F such that

sup
x∈X
|f(x)−D(x)| 6 ε

(see Steinwart [31], Definition 4).
We use X = [0, 1]. The Sobolev space F = H1([0, 1]) is the

universal RKHS (see [31], [41]).
The existence of the universal RKHS on [0, 1] implies the full

version of Theorem 3.4:
An algorithm for computing forecasts pi and a sequential method

of randomization can be constructed such that the randomized trad-
ing strategy M̃i performs at least as good as any nontrivial continuous
trading strategy f :

lim inf
n→∞

1

n

(
KMn − ‖f‖−1

∞ Kfn
)
> 0 (3.59)

holds almost surely with respect to a probability distribution gener-
ated by the corresponding sequential randomization.

This result directly follows from the inequality (3.57) and the
possibility to approximate arbitrarily close any continuous function
f on [0, 1] by a function D from the universal RKHS F .

Any trading strategy M̃i satisfying (3.59) is called universally
consistent.

The property of universal consistency (3.59) is strictly asymptotic
and does not tell us anything about finite data sequences. We have
obtained the convergence bound (3.57) for more narrow classes of
functions like RKHS.

3.6. Problems

1. Prove that when using the method of Krichevsky and Trofimov
the conditional probability of ωn+1 = 1 given n binary observations

176



ωn = ω1, . . . , ωn equals

P (1|ωn) =
n1 + 1/2

n+ 1
.

2. Prove that the following bound is valid:

1∫
0

pn1(1− p)n2

π
√
p(1− p)

dp >
1

2
√
n

(n1

n

)n1
(n2

n

)n2

.

3. For some sequences it is easy to construct calibrated predic-
tions. A binary sequence ω1, ω2, . . . is called stationary if the limit

lim
t→∞

1

t

t∑
i=1

ωi

exists. Prove that the sequence of forecasts p1, p2, . . . defined by
p1 = 0 and

pi =
1

i− 1

i−1∑
j=1

ωj

for i > 1 calibrates on a stationary sequence ω1, ω2, . . . .
4. Prove that no randomizing algorithm exists such that for any

sequence of binary outcomes ω1, ω2, . . . a modified condition of cali-
bration holds:

lim
t→∞

1

t

t∑
i=1

|ωi − p̃i| = 0

with probability one, where p̃i are the corresponding random fore-
casts.

3.7. Laboratory work

The algorithm described in Section 3.3, can be easily implemented as
a computer program. In this case, to calculate a root of the equation
(3.6) is better to use a smooth approximation to the kernel (3.5) the
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Gaussian kernel K(p, p′) = e−γ(p−p′)2
for some γ > 0. 5 You can

also use the kernel of the form K(p, p′) = cos(γ(p− p′)) A root of the
equations (3.6) or (3.14) can be found by the method of sequential
bisection of the unit interval.

Different time series can be downloaded from the site FINAM:
http://old.finam.ru/analysis/export/default.asp

For example, you can download per-minute data of stock prices
of some companies:

S0, S1, S2, . . . , Sn

and normalize them so that Si ∈ [0, 1] for all i.

Laboratory work 1
Implement the algorithm Section 3.3. Write a program to com-

pute well-calibrated forecasts p1, p2, . . . , pn for a binary sequence
ω1, ω2, . . . , ωn, where ωi ∈ {0, 1}. Compare these predictions with
the predictions computed using the Laplace rule.

Laboratory work 2
Download the time series of prices of a stock. Normalize the stock

price S0, S1, . . . , Sn−1 so that Si ∈ [0, 1].
Write a program to compute the well-calibrated forecasts p1, p2, . . . , pn

for the sequence of real numbers S0, S1, . . . , Sn−1. Visualize the re-
sults.

Propose and implement the computer programs for trading with
stock prices, using well-calibrated forecasts. Select sequences of prices
using rules of the type pi > ωi−1 + δ for δ > 0. Visualize the results.

5In this case signals are absent. To use signals, you can use the kernel (3.15).
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Chapter 4

Prediction with Expert
Advice

The problem of making the right rational decisions is central in sci-
ence and practice. A decision is made on basis of some observations.
As in the previous chapter, we consider the problem of predicting
parameters of a process. Only now, we evaluate validity of our pre-
dictions guided by different principles. We also will not use any as-
sumptions about the nature of mechanisms generating the observed
data.

The correct forecast or the right decision leads to a smaller loss
than a wrong decision. In the traditional statistical approach, we
compare the loss suffered from our forecasts with some ideal model
of decision-making, which is usually based on a statistical model de-
scribing the observed data. In the traditional approach, at first, we
estimate parameters of our model, and, after that, we compute a
forecast using this model.

At the competitive approach, instead of a single ideal model, a
variety of possible models are considered. They are called expert
strategies or simply experts. A set of such expert strategies can be
finite or infinite and even uncountable. Using the outcomes received
online, such an expert strategy produces predictions of the future
outcomes. The learning algorithm observes the forecasts of these
competing strategies and evaluate their performance in the past. The
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learning algorithm makes its forecast using this evaluation.
The performance of our algorithm is compared with the perfor-

mance of the experts. Usually, we compare the loss suffered by our
algorithm over period of prediction with the loss suffered by the best
expert algorithm.

A comparison can be made as in the worst case, as well as on the
average when our forecasting algorithm uses randomization. Note
that the internal probability distribution using by the randomized
algorithm has no relation to a source generating outcomes. As we
say, our algorithm uses a random number generator.

Let us discuss the types of processes generating data that will
be predicted by our forecasting methods. The behavior of some pro-
cesses is independent on the predictions issued by the forecaster. Such
processes are often considered in classical mechanics and physics. For
example, the weather is independent on the predictions of a weather
forecaster.

The methods presented below work in same way in the case, when
the parameters of the process depend on the predictions made by the
forecaster. This is the so-called case of adaptive adversatively nature.
For example, this assumption is natural for forecasting in financial
games and social processes.

4.1. Weighted Majority Algorithm

In this section we consider the simplest algorithms for precise pre-
diction of future outcomes. There are two possible outcomes 0 and
1. There are N experts (strategies) that at every step output the
predictions pit ∈ {0, 1}, i = 1, . . . , N .

The algorithm’s goal is to predict a future outcome of an infinite
binary sequence ω1, . . . , ωt−1 whose bits are revealed one at a time.
A prediction pt is correct if pt = ωt, the algorithm make a mistake at
step t otherwise.

Just before the tth bit is revealed, a set of N experts make pre-
dictions p1

t , . . . , p
N
t . The algorithm is allowed to observe all of these

predictions, then it makes a guess pt ∈ {0, 1}, and then the truth, ωt,
is revealed. We are given a promise that there is at least one expert

180



whose predictions are always accurate, ie, we are promised that an i
exists such that pti = ωt for all t.

Consider the following algorithm, which is called the “Majority
algorithm”. At each time t, it consults the predictions of all experts
who did not make a mistake during one of the t steps. In other words,
it considers the set of experts

Bt = {i : pij = ωj for all 1 6 j 6 t− 1}

The majority algorithm outputs a forecast pt = 1 if if at least half of
experts predict 1, and outputs pt = 0 otherwise:

pt =

{
1 if |{i : i ∈ Bt, pit = 1}| > |Bt|/2,
0 otherwise.

Theorem 4.1. Assume that an expert i exists such that pit = ωt for
all t. Then the “majority algorithm” makes no more than dlog2Ne
mistakes, where N is the number of experts.

Proof. If the “majority algorithm” makes a mistake at step t
than at least half of the experts in Bt made a mistake at that time,
so the number of previously never mistaken experts reduced by at
least half: |Bt+1| 6 d|Bt|/2e. By the assumption |Bt| > 1 for all t.
Hence decrease in the value the number |Bt| twice is at most dlog2Ne.
4

Now consider the case where an expert, just guesses the future
outcomes, does not exist. In this case, consider the “Weighted Ma-
jority Algorithm”, which was discovered by Littlestone and War-
muth [22].

Let ε be a parameter such that 0 < ε < 1. Define wi1 = 1 for all
1 6 i 6 N .

Algorithm WMA(ε)
Define wi1 = 1 for i = 1, . . . , N .

FOR t = 1, 2, . . . , T
Expert i announces a forecast pit ∈ {0, 1}, i = 1, . . . , N
Learner announces a forecast pt of the algorithm WMA(ε):
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IF
∑

i:pit=0

wit >
∑

i:pit=1

wit

THEN pt = 0
ELSE pt = 1
ENDIF

Nature announces an outcome ωt ∈ {0, 1}
Learner updates the expert weights:

Let Et = {i : pit 6= ωt} be the set of experts i, who made a mistake
at step t
Reduce the weights of such experts:

wit+1 =

{
(1− ε)wit if i ∈ Et,
wit otherwise

ENDFOR

Let LiT =
T∑
t=1
|pit−ωt| be a number of all mistakes of Expert i and

LT =
T∑
t=1
|pt − ωt| be a number of all mistakes of Learner, ie, of the

algorithm WMA(ε) on the first T steps.

Theorem 4.2. The number of mistakes of the WMA(ε) algorithm
has a bound

LT 6

(
2

1− ε

)
min

16i6N
LiT +

(
2

ε

)
lnN

for all T .

Proof. Define Wt =
N∑
i=1

wit. Let m = min
16i6N

LiT be the number of

mistakes of the best expert for T steps. Assume the best expert is
i. Then the weight of the ith expert has updated at most m times.
Then

Wt > wit > (1− ε)m (4.1)

for all t such that 1 6 t 6 T .
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On the other hand, if the algorithm makes a mistake at step t
then ∑

i∈Et

wit >Wt/2.

Hence,

Wt+1 =
∑
i∈Et

(1− ε)wit +
∑
i 6∈Et

wit =

=
N∑
i=1

wit − ε
∑
i∈Et

wit 6

6Wt

(
1− ε

2

)
.

By definition Wt+1 6Wt for all t. Then for any T > 0,

WT

W1
=

T−1∏
t=1

Wt+1

Wt
6
(

1− ε

2

)M
, (4.2)

where M = LT is the total number of mistakes of the algorithm
WMA(ε) for the first T steps.

By definition W1 =
N∑
i=1

wi1 = N . From (4.1) and (4.2), we have

(1− ε)m

N
<
WT

W1
6
(

1− ε

2

)M
.

Now we take the natural logarithm of both sides of this inequality
and make the following transformations:

m ln(1− ε)− lnN < M ln
(

1− ε

2

)
m ln(1− ε)− lnN < − ε

2
M

m ln

(
1

1− ε

)
+ lnN >

ε

2
M

m

(
2

ε

)
ln

(
1

1− ε

)
+

(
2

ε

)
lnN > M(

2

1− ε

)
m+

(
2

ε

)
lnN > M, (4.3)
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The second line of (4.3) was derived from the first one using in-
equality ln(1 + x) 6 x that holds for all x > −1.

The last line of (4.3) was derived from the previous line using
inequality

1

y
ln

(
1

1− y

)
6

1

1− y
.

This inequality can be derived from the inequality ln(1 + x) 6 x
substituting x = y/(1− y). 4

Theorem 4.2 shows that the weighted majority algorithm errs no
more than about two times greater than the best expert.

Historically, it was the first algorithm of this kind. It was pro-
posed by Littlestone and Varmuth in 1989 and was called “Weighted
Majority Algorithm” [22]. Later, in 1990, Vovk [35] proposed a
more general algorithm “Aggregating Algorithm” and the concept of
mixability that work for a more general type of games.

4.2. Algorithm for solving the dynamic alloca-
tion problem

In this section, we describe a simple algorithm for solving a dynamic
allocation problem in case where only experts losses are known. This
algorithm was proposed by Freund and Shapire [14].

Let us explain the idea of this algorithm by the following example.
A gambler decides to allow a group of his fellow gamblers to make bets
on his behalf. He decides he will wager a fixed sum of money in every
race, but that he will apportion his money among his friends based
on how well they are doing. Certainly, if he knew psychically ahead of
time which of his friends would win the most, he would naturally have
that friend handle all his wagers. Lacking such clairvoyance, however,
he attempts to allocate each race’s wager in such a way that his total
winnings for the season will be reasonably close to what he would
have won had he bet everything with the luckiest of his friends.

We formalize the online allocation model as follows. The forecast-
ing process is presented in the form of a perfect-information game.
Players are: strategies or Experts i, i = 1, 2, . . . , N , and Allocator.
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The goal of Allocator is to minimize its cumulative loss relative to
the loss suffered by the best strategy.

At each step t = 1, 2, . . . , T , Allocator decides on a distribution
p̄t = (p1

t , . . . , p
N
t ) over the strategies, where p1

t + · · · + pNt = 1 and
pit > 0 for i = 1, 2, . . . , N .

Each strategy i then suffers some loss lit at step t, where i =
1, 2, . . . , N , which is determined by the (possibly adversarial) “en-
vironment.”

The loss suffered at step t by Allocator is then the average loss of
the strategies with respect to chosen allocation rule:

(p̄t · l̄t) =

N∑
i=1

pitl
i
t,

where l̄t = (l1t , . . . , l
N
t ) is the vector of losses suffered by all strategies

on step t. We call this loss function the mixture loss.
We assume that the loss suffered by any strategy is bounded so

that, without loss of generality, lit ∈ [0, 1] for all i and t.
Besides this condition, we make no assumptions about the form

of the loss vectors lit, or about the manner in which they are gener-
ated; indeed, the adversary’s choice for lit may even depend on the
allocator’s chosen mixture p̄t.

In the case of limited losses at each step there is no fundamental
difference between the algorithms that achieve the minimum loss,
and algorithms, that achieve the maximum payoff. We can move
from losses lt at each step t to gain 1− lt, and vise wersa.

The cumulative loss of Expert i for steps t = 1, 2, . . . , T equals

LiT =
T∑
t=1

lit.

Accordingly, the cumulative loss of Allocator for steps t = 1, 2, . . . , T
equals

LT =

T∑
t=1

(p̄t · l̄t).
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The goal of Allocator is to develop a strategy p̄t, t = 1, 2, . . . , T ,
which minimizes its cumulative loss relative to the loss suffered by
the best strategy. That is, Allocator attempts to minimize its net loss

RT = LT −min
i
LiT .

We show that Littlestone and Warmuth’s “weighted majority” al-
gorithm can be generalized to handle this problem, and we prove a
number of bounds on the net loss. The problem can be solved by the
algorithm Hedge(β) proposed by Freund and Shapire [14].

Parameters of this algorithm are a real number β ∈ (0, 1) and a
vector of initial weights w̄1 = (w1

1, . . . , w
N
1 ).

Assume that the initial weights of all experts satisfies the equality
N∑
i=1

wi1 = 1.

The online allocation algorithm Hedge(β)
FOR t = 1, 2, . . . , T
Allocator computes distribution of the expert strategies:

p̄t =
w̄t
N∑
i=1

wit

. (4.4)

Expert i suffers its loss lit, where i = 1, 2, . . . , N . Denote l̄t =
(l1t , . . . , l

N
t ) the vector of the expert losses at step t.

Allocator suffers its loss: lt = (p̄t · l̄t).
Allocator updates weights of the experts:

wit+1 = witβ
lit (4.5)

for i = 1, . . . , N .
ENDFOR

Lemma 4.1. For any sequence of vectors l̄1, . . . , l̄T of the experts
losses, the following inequality holds:

ln

(
N∑
i=1

wiT+1

)
6 −(1− β)LT , (4.6)
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where LT is a loss of Allocator for the first T steps.

Proof. By a convexity argument βr 6 1− (1−β)r for all r ∈ [0, 1]
and 0 < β < 1. Combining this inequality with (4.4) and (4.5), we
obtain:

N∑
i=1

wit+1 =
N∑
i=1

witβ
lit 6

6
N∑
i=1

wit(1− (1− β)lit) =

=

(
N∑
i=1

wit

)
(1− (1− β)(p̄t · l̄t)). (4.7)

Applying repeatedly (4.7) for t = 1, ..., T , we obtain

N∑
i=1

wiT+1 6

6
T∏
t=1

(1− (1− β)(p̄t · l̄t)) 6

6 exp

(
−(1− β)

T∑
t=1

(p̄t · l̄t)

)
.

We have used here the inequality 1 + x 6 exp(x) for all x and the

equality
N∑
i=1

wi1 = 1. Lemma is proved. 4

By (4.6) we have:

LT 6

− ln

(
N∑
i=1

wiT+1

)
1− β

. (4.8)

By definition of weights (4.5)

wiT+1 = wi1

T∏
t=1

βl
i
t = wi1β

LiT . (4.9)

Hence we obtain the following theorem.
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Theorem 4.3. For any sequence of vectors l̄1, . . . , l̄T of the experts
losses and for any i:

LT 6
− ln(wi1)− LiT lnβ

1− β
. (4.10)

In the case of a finite number of experts it is natural to set the
initial weights of expert strategies equal to wi1 = 1

N for all i. Then
(4.10) can be written in the form:

LT 6
ln(1/β)

1− β
min
i
LiT +

lnN

1− β
. (4.11)

Inequality (4.11) can be interpreted as the fact that the cumulative
loss of allocation algorithm Hedge(β) does not exceed the loss of the

best expert, multiplied by the constant ln(1/β)
1−β plus “the regret” lnN

1−β .
Since the regret depends only logarithmical on N , this bound is

reasonable even for a very large number of strategies.
Vovk [36] analyzed prediction algorithms that have performance

bounds of this form, and proved the tight upper and lower bounds
for the achievable values of c and a. Using Vovk’s results, one can
show that the constants a and c achieved by Hedge(β) are optimal.

Theorem 4.4. Let B be an arbitrary allocation algorithm working
with any finite number of experts.

Assume that positive real numbers a and c exist such that for each
N strategies and for each sequence of expert losses l̄1, . . . , l̄T , where
l̄t = (lt1, . . . , l

t
N ) for t = 1, . . . , T , the following inequality holds:

LT (B) 6 cmin
i
LiT + a lnN.

Then for all β ∈ (0, 1) will be one of the inequalities:

c >
ln(1/β)

1− β
or a >

1

1− β
.

In practice, we will often want to choose β so as to maximally
exploit any prior knowledge we may have about the specific problem
at hand.
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By choosing the parameter β, it is possible to achieve the redis-
tribution of the constants so that a multiplicative factor in (4.11)
became equal to one due to increase the additive term.

The following lemma will be helpful for choosing β using the
bounds derived above.

Lemma 4.2. Assume that 0 6 L 6 L̃ and 0 6 R 6 R̃. Let also,
β = g(L̃/R̃), where

β =
1

1 +
√

2R̃
L̃

.

Then

− lnβ

1− β
L+

1

1− β
R 6 L+

√
2L̃R̃+R. (4.12)

Proof. We use the following well known inequality: − lnβ 6 1−β2

2β
for β ∈ (0, 1]. The following chain of transformations leads to the
desired result:

L
− lnβ

1− β
+

1

1− β
R 6 L

1 + β

2β
+

1

1− β
R =

=
1

2
L

(
1 +

1

β

)
+

1

1− β
R =

= L+
1

2
L

√
2R̃

L̃
+

1

1− 1

1+
√

2R̃
L̃

R 6

6 L+

√
1

2
L̃R̃+R+R

√
L̃

2R̃
6

6 L+
√

2L̃R̃+R.

Since we assumed that 0 6 lit 6 1 for all i and t, the cumulative
losses of all experts are bounded: LiT 6 T for all i and T . There-
fore, we can take L̃ = T in (4.12). Take also R̃ = lnN . Then by
Lemma 4.2:

LT 6 min
i
LiT +

√
2T lnN + lnN, (4.13)
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where LT is the cumulative loss of the algorithm Hedge(β) over first
T steps.

The drawback of this estimate is that the parameter β depends
on the horizon T . See also the comment at the end of Section 4.4.

The bound given in (4.13) can be improved in special cases in
which the loss is a function of a prediction and an outcome and this
function is of a special form However, it possible to prove that for the
general case, one cannot improve the square-root term

√
2T lnN by

more than a constant factor.

4.3. Follow the perturbed leader

In this section we consider a different general approach— “Follow
the Perturbed Leader – FPL” algorithm, now called Hannan’s al-
gorithm, see Hannan [15], Kalai and Vempala [19] and Lugosi and
Cesa-Bianchi [23]. Hutter and Poland [16] presented a further de-
velopments of the FPL algorithm for a countable class of experts,
arbitrary weights and adaptive learning rate.

Under this approach we only choose the decision that has fared
the best in the past—the leader. In order to cope with adversary
some randomization is implemented by adding a perturbation to the
total loss prior to selecting the leader. The goal of the learner’s
algorithm is to perform almost as well as the best expert in hindsight
in the long run. The resulting FPL algorithm has almost the same
performance guarantees as WM-type algorithms for fixed learning
rate and bounded one-step losses.

Prediction with Expert Advice considered in this section proceeds
as follows. We are asked to perform sequential actions at times t =
1, 2, . . . , T . At each time step t, experts i = 1, . . . N receive results of
their actions in form of their losses sit—arbitrary real numbers.

At the beginning of the step t Learner, observing cumulating
losses si1:t−1 = si1 + · · · + sit−1 of all experts i = 1, . . . N , makes a
decision to follow one of these experts, say Expert i. At the end of
step t Learner receives the same loss sit as Expert i at step t and
suffers Learner’s cumulative loss s1:t = s1:t−1 + sit.

We suppose that one-step losses of all experts are bounded, for
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example, 0 6 sit 6 1 for all i and t.
Well known simple example of a game with two experts shows

that Learner can perform much worse than each expert: let the cur-
rent losses of two experts on steps t = 0, 1, . . . , 6 be s1

0,1,2,3,4,5,6 =

(1
2 , 0, 1, 0, 1, 0, 1) and s2

0.1,2,3,4,5,6 = (0, 1, 0, 1, 0, 1, 0). Evidently, “Fol-
low the Leader” algorithm always chooses the wrong prediction.

When the experts one-step losses are bounded, this problem has
been solved using randomization of the experts cumulative losses and
only then we choose the best expert.

The FPL algorithm outputs prediction of an expert i which min-
imizes

si1:t−1 −
1

ε
ξi,

where ε is a learning rate, and ξi, i = 1, . . . N , t = 1, 2, . . . , is a
sequence of i.i.d. nonnegative random variables distributed according
to the exponential distribution with the density p(x) = exp{−x},
x > 0.

We use the properties of this distribution: P{ξ > a} = e−a and
P{ξ > a+ b} = e−bP{ξ > a} for all nonnegative a and b. We refer a
reader for problems in Section 4.8 for a proof.

At each step t of the game, all N experts receive one-step losses
sit ∈ [0, 1], i = 1, . . . N , and the cumulative loss of the ith expert after
step t is equal to

si1:t = si1:t−1 + sit.

Assume that εt = a/
√
t for all t, where a constant a will be

specified below. We suppose without loss of generality that si0 =
v0 = 0 for all i and ε0 =∞.

The FPL algorithm is defined on Figure 4.1.

Let s1:T =
T∑
t=1

sItt be the cumulative loss of the FPL algorithm for

first T steps.
The following theorem presents an upper bound for the regret of

the FPL algorithm.
We suppose that the experts are oblivious, that is, they do not

use in their work random actions of the learning algorithm.
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FPL algorithm.

FOR t = 1, . . . T
Learner chooses an expert with the minimal perturbed cumulated
loss on past steps < t:

It = argmini=1,2,...N

{
si1:t−1 −

1

εt
ξi
}
.

Expert i suffers a loss sit for i = 1, . . . , N .
Learner suffers the loss st = sItt .
ENDFOR

Figure 4.1: FPL algorithm

Theorem 4.5. The expected cumulated loss of the FPL algorithm

with the variable learning rate εt =
√

2 lnN
t has the bound:

E(s1:T ) 6 min
i
si1:T + 2

√
2T lnN (4.14)

The algorithm FPL is asymptotically consistent:

lim sup
T→∞

1

T
(s1:T − min

i=1,...N
si1:T ) 6 0 (4.15)

with probability one.

Proof. The analysis of optimality of the FPL algorithm is based
on an intermediate predictor IFPL (Infeasible FPL) (see Figure 4.2).

The IFPL algorithm predicts under the knowledge of si1:t, i =
1, . . . N , which may not be available at beginning of step t.

The expected one-step and cumulated losses of the FPL and IFPL
algorithms at steps t and T are denoted:

lt = E(sItt ) and rt = E(sJtt ),

l1:T =

T∑
t=1

lt and r1:T =

T∑
t=1

rt,
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IFPL algorithm.

FOR t = 1, . . . T
Learner chooses an expert with the minimal perturbed cumulated
loss on steps 6 t:

Jt = argmini=1,2,...N

{
si1:t −

1

εt
ξi
}
.

Expert i suffers a loss sit for i = 1, . . . , N .
Learner suffers the loss sJtt .
ENDFOR

Figure 4.2: IFPL algorithm

respectively, where sItt is the one-step loss of the FPL algorithm at
step t and sJtt is the one-step loss of the IFPL algorithm, and E de-
notes the mathematical expectation. Recall that It = argmini{si1:t−1−
1
εt
ξi} and Jt = argmini{si1:t − 1

ε′t
ξi}.

Lemma 4.3. The expected cumulated losses of the FPL and IFPL
algorithms satisfy the inequality:

l1:T 6 r1:T +
T∑
t=1

εt (4.16)

for all T .

Proof. Let c1, . . . cN be arbitrary nonnegative real numbers. For
any 1 6 j 6 N , define the numbers mj and m′j :

mj = min
i 6=j
{si1:t−1 −

1

εt
ci} 6

6 min
i 6=j
{si1:t−1 + sit −

1

εt
ci} =

= min
i 6=j
{si1:t −

1

εt
ci} = m′j .

Comparing conditional probabilities:

P{It = j|ξi = ci, i 6= j} and P{Jt = j|ξi = ci, i 6= j}
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is the core of the proof of the lemma. It holds:

P{It = j|ξi = ci, i 6= j} =

= P{sj1:t−1 −
1

εt
ξj 6 mj |ξi = ci, i 6= j} =

= P{ξj > εt(s
j
1:t−1 −mj)|ξi = ci, i 6= j} 6

6 eεtP{ξj > εt(s
j
1:t−1 −mj + 1)|ξi = ci, i 6= j} 6

6 eεtP{ξj > εt(s
j
1:t−1 + sit −mj)|ξi = ci, i 6= j} 6

6 eεtP{ξj > εt(s
j
1:t −m

′
j)|ξi = ci, i 6= j} =

= eεtP{sj1:t −
1

εt
ξj 6 m′j |ξi = ci, i 6= j} =

= eεtP{Jt = j|ξi = ci, i 6= j}. (4.17)

We have used in transition from the 3th row to the 4th row the
inequality P{ξ > a + b} 6 e−bP{ξ > a} for any random variable
ξ distributed according to the exponential law, where a and b are
arbitrary nonnegative real numbers.

Since this bound holds under any conditions ci, it also holds un-
conditionally:

P{It = j} 6 eεtP{Jt = j}. (4.18)

for all t = 1, 2, . . . and j = 1, . . . N .
Summing (4.18) over t = 1 , . . . , T , we obtain the inequality for

expectation of one-step losses:

lt = E(sItt ) =
T∑
j=1

sjtP{It = j} 6 eεt
T∑
j=1

sjtP{Jt = j} = eεtrt.

Finally, lt − rt 6 εtlt follows from rt > e−rlt > (1 − r)lt for r 6 1.
Summing over t = 1 , . . . , T and taking into account that 0 6 lt 6 1
for all t, we obtain:

l1:T 6 r1:T +

T∑
t=1

εt 6 r1:T + 2a
√
T .
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Lemma is proved. 4
The following lemma gives a bound for the expected cumulative

loss of the IFPL algorithm.

Lemma 4.4. The expected cumulative loss of the IFPL algorithm has
the bound:

r1:T 6 min
i
si1:T +

lnN

εT
(4.19)

for all T .

Proof. Let in this proof, st = (s1
t , . . . s

N
t ) be a vector of one-step

losses and s1:t = (s1
1:t, . . . s

N
1:t) be a vector of cumulative losses of

the experts algorithms. Also, let ξ = (ξ1, . . . ξN ) be a vector whose
coordinates are exponentially distributed random variables.

Consider the auxiliary vectors of modified losses:

s̃t = st − ξ
(

1

εt
− 1

εt−1

)
(4.20)

s̃1:t = s1:t −
1

εt
ξ (4.21)

for t = 1, 2, . . . for the moment.
For any vector s = (s1, . . . , sN ) and a unit vector d = (0, . . . , 1, . . . , 0),

denote

M(s) = argmind∈D{d · s},

where D = {(0, . . . , 1), . . . , (1, . . . , 0)} is the set of N unit vectors
of dimension N and “·” is the dot product of two vectors in the N
dimensional Euclidian space.

By definition M(s) is a unit vector whose ith coordinate is 1,
where si = min

16j6N
sj . If there are more than one such i put M(s) to

be equal to the minimal of them. By definition (M(s) ·s) = min
16j6N

sj .

By definition of the IFPL choice of a leader:

r1:T = E

(
T∑
t=1

M(s̃1:t)st

)
.
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So, we must estimate the sum under the expectation.
We first show that:

T∑
t=1

M (̃s1:t) · s̃t 6M (̃s1:T ) · s̃1:T . (4.22)

A formal proof is by induction by T . For T = 1 this is obvious.
For the induction step from T − 1 to T , we use the following two
observations.

We have s̃1:T = s̃1:T−1 + s̃T by definition and

M (̃s1:T ) · s̃1:T−1 >M (̃s1:T−1) · s̃1:T−1,

since the right-hand side of this inequality is equal to the minimal
coordinate of the vector s̃1:T−1, whereas the left-hand side is equal
to a coordinate chosen by a different criterion. Combining these
observations and the induction hypothesis for step T − 1, we obtain
the induction hypothesis (4.22) for the step T :

M (̃s1:T ) · s̃1:T = M (̃s1:T ) · s̃1:T−1 +M (̃s1:T ) · s̃T >

>M (̃s1:T−1) · s̃1:T−1 +M (̃s1:T−1) · s̃T >

>
T∑
t=1

M (̃s1:t) · s̃t.

Recalling the definition (4.20) of s̃t, we rewrite (4.22) as follows:

T∑
t=1

M (̃s1:t) · st 6M (̃s1:T ) · s̃1:T +
T∑
t=1

M (̃s1:t) · ξ
(

1

εt
− 1

εt−1

)
.(4.23)

Similarly, using the definition (4.21) of s̃1:t and a change of criterion
for coordinate selection, we obtain

M (̃s1:T ) · s̃1:T 6M(s1:T ) ·
(

s1:T −
ξ

εT

)
=

= min
d∈D
{d · s1:T } −

M(s1:T ) · ξ
εT

. (4.24)

By definition (M(s1:T ) · ξ) = ξk for some k.
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Since E(ξ) = 1 for any exponentially distributed variable ξ, the
expectation of the subtracted term in (4.24) is equal to

E

(
M(s1:T ) · ξ

εT

)
=

1

εT
E(ξk) =

1

εT
. (4.25)

The second term of (4.23) satisfies

T∑
t=1

(M (̃s1:t) · ξ)
(

1

εt
− 1

εt−1

)
6

6
T∑
t=1

max
16i6N

ξi
(

1

εt
− 1

εt−1

)
=

1

εT
max

16i6N
ξi. (4.26)

Here we have used the property εt < εt−1 for all t.
We will use the bound for the mathematical expectation E of the

maximum of the exponentially distributed variables:

0 6 E( max
16i6N

ξi) 6 1 + lnN. (4.27)

Indeed, for the exponentially distributed random variables ξi, i =
1, . . . N ,

P{max
i
ξi > a} = P{∃i(ξi > a)} 6

6
N∑
i=1

P{ξi > a} = N exp{−a}. (4.28)

The following equality holds for any non-negative random variable η:

E(η) =

∞∫
0

P{η > y}dy. (4.29)

For the proof see the problem in Section 4.8.
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Then by (4.28) we have

E(max
i
ξi − lnN) =

=

∞∫
0

P{max
i
ξi − lnN > y}dy 6

6

∞∫
0

N exp{−y − lnN}dy = 1.

Therefore, E(maxi ξ
i) 6 1+lnN . By (4.27) the expectation of (4.26)

has the upper bound 1
εT

(1 + lnN).
Combining the bounds (4.23)–(4.26) and (4.25), we obtain

r1:T = E

(
T∑
t=1

M (̃s1:t) · st

)
6

6 min
i
si1:T +

lnN

εT
. (4.30)

Lemma is proved. 4.
We finish now the proof of the theorem.
The inequality (4.16) of Lemma 4.3 and the inequality (4.19) of

Lemma 4.4 imply the inequality

E(s1:T ) 6 min
i
si1:T + a

T∑
t=1

1√
t

+
1

a
lnN
√
T 6

6 min
i
si1:T + 2a

√
T +

1

a
lnN
√
T . (4.31)

for all T . Optimizing the sum in (4.31) by a, we obtain a =
√

2 lnN .
Hence, we obtain the bound (4.14)

E(s1:T ) 6 min
i
si1:T + 2

√
2T lnN.

The inequality (4.15) directly follows from (4.14). Theorem is proved.
4
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We also obtain some important corollary of this theorem. In
this corollary, using some variants of Hoeffding inequality, we will
transfer the bound for the expectation of cumulative loss to bound
of the cumulative loss itself that holds with probability close to 1.

To do this, we need to complicate the randomization used in the
FPL algorithm.

Recall that we have used at each step one and the same se-
quence of independent and identically distributed random variables
ξ1
t , . . . , ξNt . We modify randomization in the FPL and IFPL al-

gorithms as follows. Consider an infinite sequence of series of in-
dependent identically distributed (according to the exponential law)
random variables ξt1, . . . , ξ

t
N , t = 1, 2, . . . , such that all these vari-

ables be taken together are independent.
In the algorithm FPL (see Fig. 4.1), we randomize each expert

at step t using the series of random variables ξ1
t , . . . , ξNt . Learner

selects the expert which has the minimal perturbed cumulative loss
after t− 1 steps:

It = argmini=1,2,...N

{
si1:t−1 −

1

εt
ξit

}
.

A similar modification is made in the algorithm IFPL.
In this case, the one-step losses st, t = 1, 2, . . . , of the FPL

algorithm are independent random variables. Proof of Lemma 4.3
remains the same, the proof of Lemma 4.4 changes insignificantly –
you just apply the expectation to both parts of inequalities (4.23),
(4.24) and (4.26) and use the facts that E(ξit) = 1 and E(maxi ξ

i
t) 6

1 + lnN for all i and t.

Corollary 4.1. Given N and T , for any δ > 0, with probability 1−δ,

s1:T 6 min
i
si1:T + 2

√
2T lnN +

√
T

2
ln

1

δ
. (4.32)

The FPL algorithm is asymptotically consistent:

lim sup
T→∞

1

T
(s1:T − min

i=1,...N
si1:T ) 6 0 (4.33)

with probability 1.
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Proof. To prove the first assertion we use a version of Chernoff
inequality given in Corollary 8.3:

Let X1, X2, . . . be a sequence of independent identically dis-
tributed random variables such that 0 6 Xi 6 1 for all i = 1, 2, . . .
Then for any ε > 0

P

{
T∑
i=1

Xi − E
T∑
i=1

Xi > ε

}
6 exp

(
−2ε2

T

)
. (4.34)

Put δ = exp
(
−2ε2

T

)
. Then ε =

√
T
2 ln 1

δ . For Xt = st and by (4.34)

we have, with probability 1− δ,

T∑
t=1

st 6 E(s1:T ) +

√
T

2
ln

1

δ

From this inequality and from the bound (4.14) of Theorem 4.5, we
obtain the inequality (4.32).

For the proof of (4.33) we use the Borel–Cantelli lemma and a
version of Chernoff inequality (see Section 8.6):

P

{∣∣∣∣∣ 1

T

T∑
i=1

(Xi − E(Xi))

∣∣∣∣∣ > ε

}
6 2 exp

(
−2Tε2

)
. (4.35)

Here we get Xt = st. Since for any ε > 0 the series of exponents from
the right hand-part of this inequality converges, by Borel–Cantelli
lemma:

lim sup
T→∞

1

T
(s1:T − E(s1:T )) 6 0

with probability 1. From this limit and from the bound (4.14) of
Theorem 4.5, we obtain the needed inequality (4.15).

Corollary 4.1 is also valid in a more general case of “adversatively
adaptive” experts whose losses depend of past values of random vari-
ables st′ for t′ < t. In this case, random variablesXt = st are not inde-
pendent, butXt−E(Xt) = st−E(st) form martingale-differences, and
we can apply the corresponding Azuma–Hoeffding inequality (8.34)
and the strong martingale law of large numbers (8.35).
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4.4. Exponentially weighted average forecaster

Let Ω be an outcome set, Γ be a decision set (a prediction set), and
Θ be a set experts (experts strategies). Assume that Θ is a finite set,
and Γ ⊆ Rn. In this section, Ω is an arbitrary set.

Loss from a prediction γ ∈ Γ at an outcome ω ∈ Ω is measured
by a loss function λ(ω, γ) taking non-negative real values. In what
follows, we assume that the values of the loss function are in [0, 1].

Consider the perfect-information protocol of the game with play-
ers: Learner, Experts, and Nature.
FOR t = 1, 2, . . .
Experts θ announce predictions: ξθt for θ ∈ Θ.
Learner announces his prediction: γt ∈ Γ.
Nature announces an outcome: ωt.
Experts θ update their cumulative losses at step t:

Lt(θ) = Lt−1(θ) + λ(ωt, ξ
θ
t )

for θ ∈ Θ.
Learner updates his cumulative loss at step t:

Lt = Lt−1 + λ(ωt, γt).

Assume L0(θ) = L0 = 0 for all θ.
ENDFOR

This protocol defines the ordering of the players moves. Each
player is allowed to determine its action to use all the information
known to the beginning of its move.

The Learner’s goal is to choose a sequence of forecasts γ1, γ2, . . .
such that for each t its cumulative loss Lt would be with some degree
of accuracy no more than the cumulative loss of the most efficient
expert, ie, no more than inf

θ
Lt(θ).

Nature can be adversarial for Learner: her outcomes ωt can de-
pend on Learner forecasts γt.

The cumulative regret is defined as

Rθ,T = sup
θ

T∑
t=1

(λ(ωt, γt)− λ(ωt, ξ
θ
t )) = LT − inf

θ
LT (θ). (4.36)
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We call the Learner’s method of forecasting asymptotically consistent
if

lim sup
T→∞

1

T
(LT − inf

θ
LT (θ)) 6 0 (4.37)

regardless of the actions of Nature and Experts i.
Note that Learner can predict better even than the expert with

the smallest loss.
Assume that forecasts are vectors from n-dimensional Euclidian

space Rn. Thus, they can be added and multiplied by real numbers.
A subset Z of the Euclidian space Rn) is called convex if for

each vectors z, z′ ∈ Z and any real number 0 6 p 6 1 it holds
pz + (1− p)z′ ∈ Z.

A function h(z) defined on a convex subset Z is called convex if
the set {(x, y) : y > h(x)} is convex. Equivalently, for each z, z′ ∈ Z
and for any 0 6 p 6 1,

h(pz + (1− p)z′) 6 ph(z) + (1− p)h(z′). (4.38)

Assume that the decision set Γ is a convex subset of Rn, and the
loss function λ(ω, γ) is convex by forecast γ.

Assume also, that the set of experts if finite: Θ = {1, . . . , N}.
The exponential weighted average forecaster outputs a forecast

γt =

N∑
i=1

wi,t−1ξ
i
t

N∑
j=1

wj,t−1

=
N∑
i=1

w∗i,t−1ξ
i
t, (4.39)

where ξit ∈ Rn is the forecast of the Expert i at step t, wi,t−1, i =
1, . . . , N , are experts weights at step t,

w∗i,t−1 =
wi,t−1

N∑
j=1

wj,t−1

(4.40)

are normalized weights. Since Γ is convex, γt ∈ Γ for all t.
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The weight of experts are defined as

wi,t−1 = e−ηLt−1(i), (4.41)

i = 1, . . . , N , where Lt−1(i) is the Expert i cumulative loss at steps
6 t− 1, η > 0 is a parameter or learning rate.

Hence, the Learner forecast is as follows:

γt =

N∑
i=1

ξite
−ηLt−1(i)

N∑
j=1

e−ηLt−1(j)

=

N∑
i=1

w∗i,t−1ξ
i
t, (4.42)

where

w∗i,t−1 =
e−ηLt−1(i)

N∑
j=1

e−ηLt−1(j)

(4.43)

is the weight of Expert i, i = 1, . . . , N .
A performance bound of exponentially weighted average fore-

caster is given in the following theorem.

Theorem 4.6. Let λ(ω, γ) be a loss function convex in γ with range
in [0, 1]. Then for any η > 0, T , and for any sequence of outcomes
ω1, . . . , ωT ∈ Ω, the ciumulative regret of the exponentially weighted
average forecaster satisfies the inequality:

LT − min
i=1,..., N

LiT 6
lnN

η
+
Tη

8
. (4.44)

For η =
√

8 lnN/T the upper bound is
√

1
2T lnN .

Proof. Define an auxiliary quantity

Wt =
N∑
i=1

wi,t =
N∑
i=1

e−ηL
i
t , (4.45)

where W0 = N .
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We use in this proof the Hoeffding inequality that will be proved
in Section 8.6 (see Lemma 8.1 below). This lemma says that for any
random variable X such that a 6 X 6 b and for any real number
s > 0,

lnE(esX) 6 sE(X) +
s2(b− a)2

8
,

where E is a synbol of the mathematical expectation.
The proof is based on a comparison of the lower and upper bounds

of the quantity ln WT
W0

.
The lower bound is obtained as follows. Since wi,0 = 1 for all

i = 1, . . . , N ,

ln
WT

W0
= ln

(
N∑
i=1

e−ηL
i
T

)
− lnN >

> ln

(
max

i=1, ..., N
e−ηL

i
T

)
− lnN =

= −η min
i=1, ..., N

LiT − lnN. (4.46)

The upper bound of the quantity ln WT
W0

is obtained as follows.
We have for any t,

ln
Wt

Wt−1
= ln

N∑
i=1

e−ηλ(ωt,ξit)e−ηLt−1(i)

N∑
i=1

e−ηLt−1(i)

=

= ln

N∑
i=1

wi,t−1e
−ηλ(ωt,ξit)

N∑
j=1

wj,t−1

= lnE(e−ηλ(ωt,ξit)), (4.47)

where E is a mathematical expectation with respect to a probability
distribution:

w∗i,t−1 =
wi,t−1

N∑
j=1

wj,t−1
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for i = 1, . . . , N .
We use the Hoeffding inequality (8.30), where a = 0, b = 1, and

the corresponding random variable X takes the value λ(ωt, ξ
i
t) with

probability w∗i,t−1. We use also the convexity property of the loss
function λ(ω, γ) in the second argument γ. Therefore, by (4.47) we
obtain: the following inequalities:

ln
Wt

Wt−1
6 −η

N∑
i=1

wi,t−1λ(ωt, ξ
i
t)

N∑
j=1

wj,t−1

+
η2

8
6

6 −ηλ

ωt,
N∑
i=1

wi,t−1ξ
i
t

N∑
j=1

wj,t−1

+
η2

8
=

= −ηλ(ωt, γt) +
η2

8
, (4.48)

where γt is a forecast of the exponentially weighted average forecaster
(4.42).

Summing (4.48) over t = 1, . . . , T , we obtain:

ln
WT

W0
=

T∑
i=1

ln
Wt

Wt−1
6 −ηLT +

η2

8
T. (4.49)

Using the lower (4.46) and the upper (4.49) bounds, we obtain

LT 6 min
i=1,..., N

LiT +
lnN

η
+
η

8
T. (4.50)

theorem is proved. 4
Note that for η =

√
8 lnN/T , the cumulative regret is bounded

by
√

1
2T lnN .

The obvious drawback of this bound is that the prediction horizon
T is used for defining the parameter η.

A uniform bound, based on the use of variable learning rate, is
given in the next section.
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4.5. Exponentially weighted average forecaster
with variable learning rate

In this section we consider a technically more complicated algorithm
of the exponentially weighted average forecaster with a variable learn-
ing rate. This construction was proposed by Alexey Chernov [8].

Recall that LiT is the cumulative loss of the ith expert at the first
T steps, LT is the cumulative loss of Learner, Θ = {1, . . . , N} – the
set of all experts, Γ is a convex prediction set that is a subset of Rn,
λ(ω, γ) is a loss function convex on γ.

We modify the exponentially weighted average forecaster. Now,
weights are defined as

wi,t−1 = e−ηtL
i
t−1 ,

i = 1, . . . , N , where Lit−1 is the cumulative loss of the ith expert at
steps 6 t− 1, ηt > 0 is a variable learning rate.

In this case we can obtain a uniform upper bound of the regret.

Theorem 4.7. For any T anf for any sequence of positive real
numbers η1 > η2 > . . . , ηT , and for any sequence of outcomes
ω1, . . . , ωT ∈ Ω, the regret of the exponentially weighted average fore-
caster with variable learning rate ηt satisfies

LT − min
i=1,...,N

LiT 6
lnN

ηT
+

1

8

T∑
t=1

ηt . (4.51)

In particular, for ηt =
√

4 lnN
t , t = 1, . . . , T , it holds

LT − min
i=1,...,N

LiT 6
√
T lnN .

Proof. At any step t Learner outputs a forecast p̂t =
∑N

i=1 ξ
i
twi,t−1/Wt−1,

where wi,t−1 = e−ηtLt−1(i) and Wt−1 =
∑N

j=1wj,t−1. By convexity of
λ(ω, γ) in the second argument, we obtain

λ(ωt, p̂t) 6
N∑
i=1

wi,t−1

Wt−1
λ(ωt, ξ

i
t) .
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By the Hoeffding inequality, we obtain

e
−ηt

∑N
i=1

wi,t−1
Wt−1

λ(ωt,ξit) >
N∑
i=1

wi,t−1

Wt−1
e−ηtλ(ωt,ξit)−η2

t /8

Rewrite this inequality as follows

e−ηtλ(ωt,p̂t) >
N∑
i=1

wi,t−1

Wt−1
e−ηtλ(ωt,ξit)−η2

t /8 . (4.52)

Define the auxiliary quantities:

si,t−1 = e−ηt−1Lt−1(i)+ηt−1(L̂t−1− 1
8

∑t−1
k=1 ηk)

and note that

wi,t−1

Wt−1
=

1
N (si,t−1)

ηt
ηt−1∑N

j=1
1
N (sj,t−1)

ηt
ηt−1

. (4.53)

Let us show that
∑N

j=1
1
N sj,t 6 1 by mathematical induction over

t. For t = 0 this is trivial, since si,0 = 1 for all i. Assume that∑N
j=1

1
N sj,t−1 6 1. Then

N∑
j=1

1

N
(sj,t−1)

ηt
ηt−1 6

 N∑
j=1

1

N
sj,t−1


ηt
ηt−1

6 1 , (4.54)

since the function x 7→ xα is concave and monotone for x > 0 and α ∈
[0, 1] and since 0 6 ηt 6 ηt−1. Using (4.54) to bound the right-hand

side of (4.53), we get wi,t−1/Wt−1 > (si,t−1)
ηt
ηt−1 /N ; and combining

with (4.52), we get

e−ηt`(p̂t,yt) >
N∑
i=1

1

N
(si,t−1)

ηt
ηt−1 e−ηt`(fi,t,yt)−η

2
t /8 .

It remains to note that

si,t = (si,t−1)
ηt
ηt−1 e−ηt`(fi,t,yt)+ηt`(p̂t,yt)−η

2
t /8
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and we get
∑N

j=1
1
N sj,t 6 1.

For any i we have 1
N si,n 6

∑N
j=1

1
N sj,n 6 1, thus

−ηTLi,T + ηT

(
L̂T −

1

8

T∑
t=1

ηt

)
6 lnN

and (4.51) follows. 4
A problem from Section 4.8 asserts that the bound LT−mini=1,...,N L

i
T 6√

T lnN of Theorem 4.7 is also valid for the allocation algorithm
Hedge(βt) with a variable learning rate βt = e−ηt , where ηt =√

4 lnN
t .

4.6. Randomized forecasting

Assume that an outcome set Ω and a loss function λ(ω, γ) be given.
The results of this section can be applied to loss functions not convex
by the forecast.

Assume that there are N experts. Recall the deterministic fore-
casting protocol of prediction with expert advice.
Let L0 = 0, L0(i) = 0, i = 1, . . . , N .
FOR t = 1, 2, . . .
Expert i announces a forecast ξit ∈ Γ, i = 1, . . . , N .
Learner announces a forecast γt ∈ Γ.
Nature announces an outcome ωt ∈ Ω.
Expert i updates its cumulative loss at step t:

Lt(i) = Lt−1(i) + λ(ωt, ξ
i
t),

where i = 1, . . . , N .
Learner updates its cumulative loss at step t:

Lt = Lt−1 + λ(ωt, γt).

ENDFOR
This is a perfect information protocol: each player can use all the

information known at the beginning of his move.
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The Learner cumulative loss at steps t = 1, . . . , T is equal to

LT =
T∑
t=1

λ(ωt, γt).

The Expert i cumulative loss at steps t = 1, . . . , T is equal to

LT (i) =
T∑
t=1

λ(ωt, ξ
i
t).

Example. We give an example which shows that for some games
with non-convex loss functions λ(ω, γ) each method of deterministic
forecasting has an unacceptably high cumulative regret which grows
linearly with the length of the period of prediction.

Consider a simple game with two experts 1 and 2. Outcomes and
prediction spaces are the same: Ω = Γ = {1, 2}. The loss fuunction
is λ(ω, γ) = 1{ω 6=γ} – the characteristic function of the set {(ω, γ) :
γ 6= ω}. Clearly, this loss function is trivially not convex.

Note that for any deterministic strategy of Learner γ1, γ2, . . . a
sequence of outcomes ω1, ω2, . . . exists such that Learner suffers the
maximal possible loss: LT = T for all T . Indeed, Nature can define

ωt =

{
2 if γt = 1,
1 otherwise

for all t = 1, 2, . . . .
Consider two experts, one of which - Expert 1, always predicts

ξ1
t = 1 and the other - Expert 2, always predicts ξ2

t = 2, t = 1, 2, . . . .
Let Lt(i) be the total loss of the ith expert, i = 1, 2.
Note that Learner just follows the decision of the Expert 1, when

γt = 1, and follows the decision of Expert 2 if γt = 2.
It is easy to see that for any sequence of outcomes ω1, ω2, . . . , ωt

number of ones or number of twos will be more than t/2. Then
one of these two experts suffers loss no more than t/2, and so,
mini=1,2 Lt(i) 6 t/2 for all t.

Therefore, for any sequence of forecasts issued by Learner the
“adversatively adaptive” Nature can output a sequence of outcomes
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ω1, ω2, . . . such that

LT − min
i=1,2

Lt(i) > T/2

for all T .
This example shows that for some non-convex loss functions Na-

ture can produce a sequence of outcomes such that for any sequence
of deterministic predictions the regret is > T/2 for any period T .

This drawback can be overcome by randomization of the Learner
forecasts. More precisely, the forecasts will be mixed strategies –
probability distributions on the set of all deterministic forecasts. We
replace the loss function on its expectation and apply results of Sec-
tion 4.2.

Now suppose that at each step t of the game the Learner’s forecast
is a mixed strategy – a probability distribution p̄t = {p1,t, . . . , pN,t}
on the set {1, . . . , N} of experts.

We introduce one more player – Random Number Generator that
will generate the elements of the set {1, . . . , N} according to a given
probability distribution.

Protocol of the randomized game is as follows.
Define L0 = 0, L0(i) = 0, i = 1, . . . , N .
FOR t = 1, 2, . . .
Expert i announces a forecast ξit ∈ Γ, i = 1, . . . , N .
Learner announces a probability distribution p̄t = {p1,t, . . . , pN,t}
on the set of all experts {1, . . . , N}.
Nature announces an outcome ωt ∈ Ω.
Random Number Generator announces an expert it ∈ {1, . . . , N}
with probability pi,t.
Expert i updates its cumulative loss at step t:

Lt(i) = Lt−1(i) + λ(ωt, ξ
i
t),

for i = 1, . . . , N .
Learner updates its cumulative loss at step t:

Lt = Lt−1 + λ(ωt, ξ
it
t ).

ENDFOR
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We can define a random number generator with a given prob-
ability distribution using the random number generator producing
uniformly distributed real numbers from the unit interval [0, 1] as
follows.

Define the random variables It such that It = i if and only if

Ut ∈

 i−1∑
j=1

pj,t,
i∑

j=1

pj,t

 ,
where U1, U2, . . . are independent uniformly distributed in [0, 1] ran-
dom variables. By definition P{It = i} = pi,t for all t.

In such a game the Learner’s loss λ(ωt, ξ
It
t ) is a random variable.

In this case, the Learner’s performance is evaluated by a random
variable – random regret, as follows:

LT − min
i=1,...,N

LT (i) =

T∑
t=1

λ(ωt, ξ
It
t )− min

i=1,...,N

T∑
t=1

λ(ωt, ξ
i
t). (4.55)

Consider the setting in which Learner minimizes the mathemati-
cal expectation of the regret (4.55):

E(LT − min
i=1,...,N

LT (i)) =

= E(LT )− min
i=1,...,N

LT (i) =

=

T∑
t=1

E(λ(ωt, ξ
It
t ))− min

i=1,...,N

T∑
t=1

λ(ωt, ξ
i
t) =

=

T∑
t=1

N∑
i=1

λ(ωt, ξ
i
t)pi,t − min

i=1,...,N

T∑
t=1

λ(ωt, ξ
i
t). (4.56)

We shall calculate the probability distribution on the set of experts
with the help of the definition (4.4) from Section 4.2. At step t, define

pi,t =
β

t−1∑
s=1

lis

N∑
j=1

β

t−1∑
s=1

ljs

, (4.57)
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where lis = λ(ωs, ξ
i
s) for i = 1, . . . , N , 0 < β < 1.

The algorithm (4.57) is called randomized exponentially weighted
average forecaster From Lemma 4.2, we obtain:

Theorem 4.8. Let LT be a random variable representing the cumu-
lative loss of the randomized version of the algorithm Hedge(β) at T
steps, where β = g(T/ lnN) for

g(x) =
1

1 +
√

2
x

.

Then the mathematical expectation of the cumulative loss of the ran-
domized exponentially weighted average forecaster is bounded by

E(LT ) 6 min
i
LT (i) +

√
2T lnN + lnN. (4.58)

The drawback of this bound is that the parameter β depends on
the horizon T . See also the comment at the end of Section 4.4.

Note that for each t the probability vector p̄t = {p1,t, . . . , pN,t}
depends on the sequence of previous outcomes ω1, . . . , ωt−1 issued
by Nature, and the sequence ω1, . . . , ωt, in turn, may depend on the
sequence of distributions p̄s = {p1,s, . . . , pN,s}, s = 1, . . . t issued by
Learner.

By Ionesco–Tulcea theorem (see [29]) there is an overall proba-
bility distribution P defined on infinite paths of experts i1, i2, . . . ,
where it ∈ {1, . . . N} for all t = 1, 2, . . . , generated by probability
distributions p̄t = {p1,t, . . . , pN,t}, t = 1, 2, . . . .

Using Corollary 8.5 from the Azuma–Hoeffding inequality (see
Lemma 8.2 below) and the inequality (4.58) we can obtain the fol-
lowing corollary.

Corollary 4.2. For any 0 < δ < 1 and T , with probability 1 − δ,
the regret of the randomized exponentially weighted average forecaster
satifies the inequality:

T∑
t=1

λ(ωt, ξ
It
t )− min

i=1,..., N

T∑
t=1

λ(ωt, ξ
i
t) 6

6
√

2T lnN + lnN +

√
1

2
T ln

1

δ
.
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Proof. By definition the sequence of random variables

Xt = λ(ωt, ξ
It
t )− E(λ(ωt, ξ

It
t )) =

= λ(ωt, ξ
It
t )−

N∑
i=1

λ(ωt, ξ
i
t)pi,t

is a sequence of the bounded martingale-differences. By Corollary 8.5
their sums

ST =
T∑
t=1

Xt

satisfy the inequality

P{ST > c} 6 e−
2c2

T (4.59)

for all T , where c is a positive real number (see (8.33)). Then for any
δ > 0 the following inequality holds:

P

{
ST >

√
1

2
T ln

1

δ

}
6 δ.

The corollary now follows directly from this inequality and the in-
equalities (4.56) and (4.58). 4

Let in some game of prediction with experts Expert i, i =
1, . . . , N , outputs the forecasts ξi1, ξ

i
2, . . . , and Learner outputs the

forecasts ξ1, ξ2, . . . .
A randomized forecasting algorithm is called Hannan consistent

if, with P-probability one:

lim sup
T→∞

1

T

(
T∑
t=1

λ(ωt, ξt)− min
i=1,..., N

T∑
t=1

λ(ωt, ξ
i
t)

)
6 0. (4.60)

The following corollary is proved just as well as the statement (4.15),
where a version of the algorithm Hedge(βt) with a variable learning
rate is used (see a problem in Section 4.8).

Corollary 4.3. The randomized exponentially weighted average fore-
caster with a variable learning rate is Hannan consistent.
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Let us explain the relation between the example given at the
beginning of this section and Corollary 4.3.

In the example, if γt = 1 then Learner simply follows the ex-
pert it = 1 prediction, and if γt = 2 then Learner follows the expert
it = 2 prediction. Therefore, we obtain an infinite trajectory of cho-
sen experts: i1, i2, . . . . When experts are chosen at random, the
P-probability to choose this trajectory, as well as any other, which
violates the condition (4.60) is 0.

A comparison with Theorem 4.2 shows that the randomized al-
gorithm when be applied to a simple loss function, has about twice
smaller upper bound of regret than the deterministic weighted ma-
jority algorithm WMA (see problems in Section 4.8).

4.7. Boosting

This section describes method of reinforcement of simple classifiers,
called boosting. This method is based on combining primitive weak
classifiers into a single strong classifier. Under the strength of a
classifier we mean the average number of classification errors made
on a training set.

We combine weak classifiers using the method of prediction with
expert advice.

A weak learner is defined to be a classifier which is only slightly
correlated with the true classification (it can label examples better
than random guessing). In contrast, a strong learner is a classifier
that is arbitrarily well-correlated with the true classification.

We will study the algorithm AdaBoost proposed by Freund and
Shapire [14]. It is a meta-algorithm, and can be used in conjunction
with many other learning algorithms to improve their performance.
The classifiers it uses can be weak (ie, display a substantial error
rate), but as long as their performance is not random (resulting in an
error rate of 0.5 for binary classification), they will improve the final
model.

AdaBoost is adaptive in the sense that subsequent classifiers built
are tweaked in favor of those instances misclassified by previous clas-
sifiers. AdaBoost generates and calls a new weak classifier in each of
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a series of rounds. For each call, a distribution of weights is updated
that indicates the importance of examples in the data set for the clas-
sification. On each round, the weights of each incorrectly classified
example are increased, and the weights of each correctly classified
example are decreased, so the new classifier focuses on the examples
which have so far eluded correct classification.

This method for amplification of simple classifiers used in many
applications, and is still the subject of many both applied and theo-
retical research.

4.7.1. AdaBoost

In this section, we present and analyze a boosting algorithm inspired
by the methods we used in Section 4.2 for solving the online allocation
problem.

Formally, boosting proceeds as follows. The booster is provided
with a set of labeled training examples S = ((x1, y1), . . . , (xl, yl)),
where xi ∈ X and yi ∈ Y . We suppose that Y = {0, 1}, and a
structure of probability space is defined on the set X × Y . We also
suppose that the pairs (xi, yi) are i.i.d. according to some fixed but
unknown to us probability distribution P . As usual, the goal is to
learn to predict the label y given an instance x.

A strong learning algorithm is an algorithm that, given ε, δ > 0
and access to random sample S, outputs with probability 1 − δ a
classification hypothesis hS with error at most ε. Further, the running
time must be polynomial in 1/ε, 1/δ and sample size l.

A weak learning algorithm satisfies the same conditions but only
for ε 6 1

2 − γ where γ > 0 is either a constant, or decreases as
1/p where p is a polynomial in the relevant parameters. We use
WeakLearn to denote a generic weak learning algorithm.

Here we consider only the problem of constructing a classification
hypothesis hS by the training set S. The problem of evaluation of its
predictive performance will not be discussed in this section. We refer
reader to Freund and Shapire [14], where some bounds of predictive
performance of the boosting algorithm in terms of VC-dimension are
given.

Let D(i) be a probability distribution over the training examples
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(more correctly, it is a distribution over their indices). By definition
D(i) > 0 for all 1 6 i 6 l and

l∑
i=1

D(i) = 1.

Ordinarily, this distribution will be set to be uniform so that D(i) =
1/N for all i.

The empirical error of a classifier h on a training sample S with
respect to a distribution D is defined as

ε = D{i : h(xi) 6= yi} =
∑

i:h(xi)6=yi

D(i).

In particular, for the uniform distribution D(i) = 1/l this empirical
error is equal to the portion of mistakes:

ε = |{i : h(xi) 6= yi}|/l.

Some learning algorithms can be generalized to use a given distribu-
tion D directly. For instance, gradient based algorithms and some
implementations of support vector machines can use the probabil-
ity associated with each example to scale the update step size which
is based on the example. If the algorithm cannot be generalized in
this way, the training sample can be resampled to generate a new
set of training examples that are distributed according to the given
probability distribution.

The boosting algorithm AdaBoost is described below. The goal of
this algorithm is to find a final hypothesis with low error relative to a
given distribution D over the training examples. Unlike the distribu-
tion P, which is over X × Y and is set by “nature”, the distribution
D is only over the instances in the training set and is controlled by
the learner.
Input: a sample S = ((x1, y1), . . . , (xl, yl)), a distribution D over
{1, . . . , l}, weak learning algorithm WeakLearn, integer T specifying
number of iterations.
Initialize: the weight vector: wi1 = D(i) i = 1, . . . , l.
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FOR t = 1, . . . , T
1) Set for i = 1, . . . , l

pit =
wit
l∑

j=1
wjt

.

2) Call the algorithm WeakLearn providing it with the distribution
D(i) = pit for 1 6 i 6 l, get back a classification hypothesis ht.
3) Calculate the empirical error of ht :

εt =

l∑
i=1

pit|ht(xi)− yi|.

4) Set βt = εt/(1− εt).
5) Set the new weights vector to be

wit+1 = witβ
1−|ht(xi)−yi|
t

for i = 1, . . . , l :
ENDFOR

Output the hypothesis:

h(x) =

{
1 if f(x) > 1

2 ,
0 otherwise,

where the threshold function f is defined as a linear combination of
the outputs of the T weak hypotheses using a weighted majority vote

f(x) =

T∑
t=1

qtht(x),

with weights

qt =
ln(1/βt)
T∑
t=1

ln(1/βt)

,

for t = 1, . . . , T .
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This algorithm is a version of the optimal online allocation al-
gorithm Hedge(β) defined in Section 4.2 with a dynamical changing
parameter β. There is “a dual” relationship between the online allo-
cation algorithm and the boosting algorithm. Put another way, there
is a direct mapping or reduction of the boosting problem to the online
allocation problem. In such a reduction, one might naturally expect
a correspondence relating the strategies to the weak hypotheses and
the trials (and associated loss vectors) to the examples in the training
set. However, this reduction is reversed: the “strategies” correspond
to the examples, and the trials are associated with the weak hypothe-
ses. Another reversal is in the definition of the loss: in Hedge(β) the
loss lit is small if the ith strategy suggests a good action on the tth
trial while in AdaBoost the “loss” lit = 1 − |ht(xi) − yi| appearing
in the weight-update rule is small if the tth hypothesis suggests a
bad prediction on the ith example. The reason is that in Hedge(β)
the weight associated with a strategy is increased if the strategy is
successful while in AdaBoost the weight associated with an example
is increased if the example is “hard.”

Thus, the algorithm AdaBoost detects examples on which the
algorithm WeakLearn gives wrong classification, and forces it to learn
from these examples.

In the analysis, the following property weak algorithm WeakLearn
will be used - for any distribution on the training examples the em-
pirical error is less than 1/2 up to some positive value γ.

The algorithm AdaBoost is analyzed in the following theorem.

Theorem 4.9. Suppose the weak learning algorithm WeakLearn,
when called by AdaBoost on steps t = 1, . . . , T , generates hypothe-
ses with errors ε1, . . . , εT with respect to corresponding distributions
p̄1 = D̄, p̄2, . . . , p̄T . Then the empirical error

ε = D{h(xi) 6= yi} =
∑

h(xi)6=yi

D(i)

of the final hypothesis h output by AdaBoost is bounded above by

ε 6 2T
T∏
t=1

√
εt(1− εt). (4.61)
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Proof. Just as in the proof of Lemmas 4.1 and 4.2 from Section 4.2

we estimate above and below the value of
l∑

i=1
wiT+1. We have an upper

bound:

l∑
i=1

wit+1 =

l∑
i=1

witβ
1−|ht(xi)−yi|
t 6

6
l∑

i=1

wit(1− (1− βt)(1− |ht(xi)− yi|)) =

=

(
l∑

i=1

wit

)
(1− (1− βt)(1− εt)). (4.62)

Using (4.62) T times, we obtain

l∑
i=1

wiT+1 6
T∏
t=1

(1− (1− βt)(1− εt)). (4.63)

Here we have used the definition of the empirical error εt of the algo-
rithm WeakLearn at step t:

εt =
l∑

i=1

pit|ht(xi)− yi| =
l∑

i=1

 wit
l∑

j=1
wjt

 |ht(xi)− yi|.
Lemma 4.5. The resulting classifier h makes a mistake at an object
xi if and only if

T∏
t=1

β
−|ht(xi)−yi|
t >

(
T∏
t=1

βt

)−1/2

. (4.64)

Proof. Indeed, this statement follows directly from the definition

of the classifier h when yi = 0, since in this case β
−|ht(xi)−yi|
t =

β
−ht(xi)
t for all t.
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By definition, the equality h(xi) = 1 is valid if and only if

T∑
t=1

ln(1/βt)ht(xi) >
1

2

T∑
t=1

ln(1/βt). (4.65)

The inequality (4.65) is equivalent to the inequality (4.64).

Now let yi = 1. Then ht(xi) 6 yi for all t. Thus, β
−|ht(xi)−yi|
t =

β
−(1−ht(xi))
t for all t. In this case

β
−|ht(xi)−yi|
t = β

−1+ht(xi)
t . (4.66)

for all 1 6 t 6 T .
By definition the equality h(xi) = 0 can only be valid if

T∏
t=1

β
−ht(xi)
t <

(
T∏
t=1

βt

)−1/2

. (4.67)

The inequality (4.67) is equivalent to the inequality

T∏
t=1

β
ht(xi)
t >

(
T∏
t=1

βt

)1/2

. (4.68)

The equality (4.66) and the inequality (4.68) imply the inequality
(4.64). Lemma is proved. 4

Returning to the proof of the theorem, we note that by definition

wiT+1 = D(i)
T∏
t=1

β
1−|ht(xi)−yi|
t . (4.69)

By Lemma 4.5, (4.64), and (4.69) we obtain

l∑
i=1

wiT+1 >
∑

i:h(xi)6=yi

wiT+1 >

>

 ∑
i:h(xi)6=yi

D(i)

( T∏
t=1

βt

)1/2

=

= ε

(
T∏
t=1

βt

)1/2

, (4.70)

220



where ε is the empirical error of final classification hypothesis h with
respect to D.

Combining (4.63) with (4.70), we obtain

ε 6
T∏
t=1

1− (1− βt)(1− εt)√
βt

. (4.71)

Since all factors of the product (4.71) are non-negative, we can mini-
mize by βt each factor separately. Equate to zero the first derivative
by βt :

d

dβt

(
1− (1− βt)(1− εt)√

βt

)
= 0.

Solving equation with respect to βt, we obtain: βt = εt/(1 − εt).
Putting this expression into (4.71), we obtain (4.61). Theorem is
proved. 4

Corollary 4.4. The empirical error of the resulting classifier h sat-
isfies the inequality

ε 6 exp

(
−2

T∑
t=1

γ2
t

)
, (4.72)

where εt = 1
2 − γt, γt > 0 for t = 1, . . . , T .

In the case, where γt = γ for all t, the inequality (4.72) reduces
to

ε 6 exp(−2Tγ2). (4.73)

Proof. Indeed, the bound (4.61) from Theorem 4.9 at εt = 1
2 − γt

becomes

2
√
εt(1− εt) =

√
1− 4γ2

t .
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Then

ε 6
T∏
t=1

√
1− 4γ2

t =

= exp

(
T∑
t=1

1

2
ln(1− 4γ2

t )

)
6

6 exp

(
−2

T∑
t=1

γ2
t

)
. (4.74)

The inequality (4.72) is proved.
To prove (4.73) note that the inequality (4.72) for γt = γ becomes

ε 6 (1− 4γ2)T/2 = exp((T/2) ln(1− 4γ2)) 6 exp(−2Tγ2).

The exponential upper bound (4.73) allows us to estimate the
number of iterations of the algorithm AdaBoost required to achieve
the learning error 6 ε of the resulting classifier h:

T >
1

2γ2
ln

1

ε
.

4.7.2. Laboratory work

Write a computer program realizing the algorithm AdaBoost using
the shelf software for SVM described in Section 2.13 as the weak learn-
ing algorithm. Apply it to strengthen the algorithm of recognition of
handwritten digits from the website: http://www.cs.toronto.edu

4.8. Problems

1. Construct a variant of the weighted majority algorithm for the
case when an expert exists in the pool which makes no more than k
mistakes. Compute a performance bound for this algorithm.

2. Consider the protocol of the game of prediction with expert
advice, where Nature outputs a sequence 0T (01)T 1T . There are three
constant experts. Expert 1 outputs ξ1

t = 0 for all t = 1, . . . , 4T ,
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Expert 2 outputs ξ2
t = 1 for all t = 1, . . . , 4T , Expert 3 outputs

ξ3
t = 1/2 for all t = 1, . . . , 4T . The loss function is λ(ω, γ) = |ω−γ|.

Compute at each time points t = 1, . . . , 4T :
(i) the weights of experts and their losses;
(ii) the loss Allocator and the prediction and cumulative loss of

the exponentially weighted forecaster.
3. Compute the forecasts of the exponential weighted forecaster

for the case of quadratic and absolute loss functions, where Ω = {0, 1}
is the set of outcomes and Γ = [0, 1] is the prediction set.

4. Check the simplest properties of the exponential distribution
with density p(x) = e−x: P{ξ > a} = e−a and P{ξ > a + b} =
e−bP{ξ > a} for all nonnegative a and b.

5. Prove that for any non-negative random variable η with a
density p(t) the following equality is valid:

E(η) =

∞∫
0

P{η > y}dy.

Note. Use p(y) = F ′(y), where F (y) =
∫ y

0 p(t)dt = 1 − P{η > y}.
After that, apply the integration by parts of E(η) =

∫∞
0 tp(t)dt.

6. Prove Lemma 4.4 for the case where an infinite sequence
ξ1
t , . . . , ξ

N
t , t = 1, 2, . . . is used for randomization in the algorithms

FPL and IFPL.
7. Formulate and study the randomized versions of the weighted

majority algorithm WMA. In particular:
a) use a randomized version of the online allocation algorithm

Hedge(β) from Section 4.2 and apply it to the simple loss function;
b) use follow the perturbed leader algorithm and apply it to the

simple loss function.
Formulate and prove the corresponding versions of Theorem 4.2.

Compare the performance of the randomized algorithms with the
performance of the deterministic weighted majority algorithm WMA
(Hint: Compute the expected cumulative losses of randomized algo-
rithms and apply Hoeffding inequality).

8. Show that the online allocation algorithm from Section 4.2
is a special case of the exponential weighted forecaster defined in
Section 4.4.
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(Hint: Consider the outcome set Ω = [0, 1]N consisting of the
vectors l̄ = (l1, . . . , lN ) of expert losses, where N – is the numbes
of experts. The prediction set is the simplex Γ of all probability
distributions p̄ = (p1, . . . , pN ), and the loss function is λ(l̄, p̄) = (l̄ · p̄)
that is the dot product of the vectors l̄ ∈ [0, 1]N and p̄ ∈ Γ.

A forecast of the ith expert is an N -dimensional unit vector
ξ̄i = (0, . . . , 1, . . . , 0). Then the forecast of of the exponential
weighted forecaster at any step t, that was defined in Section 4.4,
can be represented in the form:

ξ̄t =
N∑
i=1

ξ̄itw
∗
i,t = p̄t,

where p̄t = (w∗1,t, . . . , w
∗
N,t) is a vector of normalized weights of ex-

perts at the step t defined by (4.42) ).
9. Using the previous problem and Theorem 4.7 show that the

bound LT − mini=1,...,N L
i
T 6

√
T lnN is valid for the optimal allo-

cation algorithm Hedge(βt) with a variable learning rate βt = e−ηt ,

where ηt =
√

4 lnN
t .

10. Prove that for any finite set of N experts which make their
forecasts ξit ∈ [0, 1] at steps t = 1, 2, . . . and calculate their losses
using a loss function: absolute, quadratic or logarithmic, there is a
sequence of outcomes for which the cumulative loss of each expert for
the first T steps is of the order of O(T −O(

√
T lnN).

11. Develop a pseudocode of the resampling algorithm which
given a sample and a probability distribution generates a new sample
whose elements are taken from the given sample and are distributed
according to this probability distribution.
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Chapter 5

Aggregating algorithm

Machine learning algorithms discussed in Section 4 have regret (train-
ing error) O(

√
T lnN), where T is the length of a learning period, N

is the number of experts. In this section we show that for some spe-
cial loss functions, including square loss and logarithmic loss, this
error can be reduced significantly to O(lnN). In this section the
general requirements for such loss functions will be formulated and
the corresponding aggregating algorithm with regret O(lnN) will be
presented.

In addition to these properties, aggregating algorithm is an algo-
rithm of a very general nature. In a sense, it performed as well as
any other known expert algorithm. Most of the problems that can
be solved by such algorithms can also be solved by the aggregating
algorithm.

5.1. Mixable loss functions

Consider the simplest case, where the set of outcomes is binary:
Ω = {0, 1}, and the set of predictions is the unit interval Γ = [0, 1].
Similarly, we will consider the case of Ω = {−1, 1} and Γ = [−1, 1].

We assume that the loss function λ(ω, γ) is nonnegative and sat-
isfies the following conditions:

• For any ω, the function λ(ω, γ) is continuous by γ;
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• A real number γ ∈ [0, 1] exists such that both values λ(0, γ)
and λ(1, γ) are finite;

• There is no γ ∈ [0, 1] such that both values λ(0, γ) and λ(1, γ)
are infinite.

For any loss function λ(ω, γ), define the prediction set:

Πλ = {(x, y) : ∃ p (λ(0, p) = x, λ(1, p) = y)} (5.1)

and the superprediction set

Σλ = {(x, y) : ∃ p (λ(0, p) 6 x, λ(1, p) 6 y)}. (5.2)

We call the corresponding half-plane [0,+∞)2 containing the predic-
tion and superprediction sets the prediction space.

The first property of loss function and compactness property of
the interval [0, 1] imply that the superprediction set is compact.

For functions considered below, the prediction set (5.1) is a
boundary of the set (5.2) of superpredictions.

For any η > 0, let Eη : [0,+∞)2 → (0, 1]2 be a homomorphism
from the prediction space to the exponential space

Eη(x, y) = (e−ηx, e−ηy) (5.3)

for all x, y ∈ [0,+∞).
This homomorphism transforms the prediction set (5.1) to a set

Eη(Πλ) = {(e−ηλ(0,p), e−ηλ(1,p)) : p ∈ Γ},

and the superprediction set (5.2) to a set

Eη(Σλ) = {(x, y) : ∃ p (0 6 x 6 e−ηλ(0,p), 0 6 y 6 e−ηλ(1,p))}. (5.4)

A loss function λ(ω, γ) is called η-mixable, if the set Eη(Σλ) is
convex. A loss function is called mixable, if it is η-mixable for some
η > 0.

Clearly, for any mixable loss function, the superprediction set
is convex. We will see that not every loss function with a convex
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superprediction set is mixable. Thus, mixability is a more stronger
requirement than just the convexity of the superprediction set.

We will consider logarithmic, square, absolute and simple loss
functions. The first two of them are mixable.

Let Ω be a finite set, Γ be a set of all probability distributions on
the set Ω. The logarithmic loss function is defined

λ(ω, γ) = − ln γ{ω},

where ω ∈ Ω, γ ∈ Γ is a probability distribution, and γ(ω) is the
probability of an element ω ∈ Ω.

In the case Ω = {0, 1} we identify γ with the probability of 1,
then 1 − γ is the probability of 0. In this case Γ = [0, 1] and the
logarithmic loss function is presented in the form

λ(ω, γ) = − ln(ωγ + (1− ω)(1− γ)),

or, in more detail,

λ(ω, γ) =

{
− ln γ if ω = 1,
− ln(1− γ) if ω = 0.

A generalized loss function is defined as

λ(ω, γ) = −1

η
ln(ωγ + (1− ω)(1− γ)), (5.5)

where η > 0 is a parameter.
The square loss function is defined as

λ(ω, γ) = c(ω − γ)2,

where c is a positive constant.
We will consider Ω = {0, 1} and Γ = [0, 1] or Ω = [−1, 1] and

Γ = [−1, 1].
The absolute loss function is

λ(ω, γ) = c|ω − γ|,

where c is a positive constant. The outcomes and prediction sets are
the same as for the square loss function.
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Figure 6.1. The prediction and superprediction sets for the logarithmic loss

function

A simple prediction game and the simple loss function are con-
sidered in the case where Ω = Γ = {0, 1}. The simple loss function
coincides with the absolute loss function where c = 1:

λ(ω, γ) =

{
0 if ω = γ,
1 otherwise.

Let us discuss the geometric properties of the mixable loss func-
tions. Here generalized logarithmic loss function plays a special role.

It is easy to see that the prediction set (5.1) of the generalized
logarithmic loss function (5.5) is a curve:

{(x, y) : e−ηx + e−ηy = 1}. (5.6)

We will consider parallel shifts of the curve (5.6) in the prediction
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Figure 6.2. The images of the prediction and superprediction set in the

exponential space for the logarithmic loss function

half-plane, i.e, all curves of the form

{(x, y) : e−η(x−α) + e−η(y−β) = 1} (5.7)

for any vector (α, β).
We say that a point (x1, y1) is located Northeast of a point (x2, y2)

if x1 > x2 and y1 > y2.
A set A ⊆ R2 is located Northeast of some parallel shift of the

curve (5.6) if every its point is located Northeast of some point located
on the shift (5.7).

Note that all parallel shifts of the curve e−ηx + e−ηy = 1 in the
exponential space coincide with preimages of all straight lines ax +
by = c considered in the prediction space, where a > 0 and b >
0. Indeed, it is easy to verify that a preimage of the straight line
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Figure 6.3. The prediction and superprediction sets for the square loss

function

ax+ by = c under homomorphism Eη is a curve

ae−ηx + be−ηy = c,

that is a parallel shift of the curve e−ηx + e−ηy = 1 defined by the
vector (

−1

η
ln
a

c
,−1

η
ln
b

c

)
.

Thus, there is a one-to-one correspondence between all such straight
lines ax+ by = c considered in the exponential space and all parallel
shifts of the curve e−ηx+e−ηy = 1 considered in the prediction space.

It is easy to see that the image Eη(Σλ) of the superprediction set
in the exponential space is convex if and only if for every point of its
boundary there is a straight line passing through this point so that
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Figure 6.4. The images of the prediction and superprediction sets in the

exponential space for the square loss function

the whole image of superprediction set is located at one side of this
line.

Transferring this property from the the exponential space to he
prediction space, we obtain the following characteristic property of
mixability of the loss function.

Proposition 5.1. A loss function is η-mixable if and only if for any
point (a, b) locating at the boundary of the superprediction set a par-
allel shift e−η(x−α) + e−η(y−β) = 1 of the curve e−ηx + e−ηy = 1 exists
passing through the point (a, b) and such that the whole superpredic-
tion set lies Northeast of this shift.

In the following sections we will consider the mixable loss func-
tions. It turns out that at certain intervals of values η logarithmic
and square loss functions are η-mixable; the absolute loss function
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has not this property. Highly effective in this case is the so-called
aggregating algorithm, which was discovered by Vovk [35] in 1990.
Hystorically, it is one of the first of averaging algorithms of this kind.
This algorithm is a generalization of a more simple weighted major-
ity algorithm which was proposed in 1989 by Littlestone and Var-
muth [22].

Aggregating algorithm has prediction error, which depends only
on the number of experts and does not depend on the length of the
outcome sequence.

5.2. Finite set of experts

The prediction algorithms constructing in Sections 4.4 and 4.6 have
regret of order O(

√
T lnN), where T is the length of prediction period

and N is the number of experts. Algorithms and results of that
sections refer to loss function of arbitrary form with an exception that
in Section 4.4 we require convexity of a loss function by a forecast.

In this section, we present a weighting algorithm, which has an
optimal regret for any loss function, and for a mixable loss function
this algorithm has regret O(lnN) independent of the length T of the
prediction period, where N is the number of experts.

In general, the bound of the loss of aggregating algorithm has the
form

LT 6 c(η) inf
θ
LT (θ) + a(η) lnN

for all T . For a mixable loss function, c(η) = 1 for some values of the
learning rate η.

We first consider a scheme of the algorithm in the case where the
set of outcomes is Ω = {0, 1} and a set of experts Θ = {1, 2, . . . , N}
is finite. The prediction set is Γ. Let a loss function λ(ω, γ) be given,
where ω ∈ Ω and γ ∈ Γ.

We consider in the next sections infinite (and even uncountable)
sets of expert Θ. In this case, the results did not significantly change.
We only introduce measures on experts and replace sum of experts
on the integrals over θ and γ ∈ Γ.

Recall the protocol of a game of prediction with expert advice.
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Let L0 = 0, L0(i) = 0, i = 1, . . . , N .
FOR t = 1, 2, . . .
Expert i announces a forecast ξit ∈ Γ, i = 1, . . . , N .
Learner announces a forecast γt ∈ Γ.
Nature announces an outcome ωt ∈ Ω.
Expert i updates its cumulative loss at step t:

Lt(i) = Lt−1(i) + λ(ωt, ξ
i
t).

Learner updates its cumulative loss at step t:

Lt = Lt−1 + λ(ωt, γt).

ENDFOR
Fix the learner rate η > 0 and define β = e−η. We introduce

a priori distribution P0(i) on the set of experts Θ. It is natural to
take the uniform a priori probability distribution on set of experts
P0(i) = 1/N for all i ∈ Θ, where N is the number of experts.

Learner updates the experts weights on steps t = 1, 2, . . . by a
rule:

Pt(i) = βλ(ωt,ξit)Pt−1(i), (5.8)

where i = 1, . . . , N . Therefore, the weight of an expert suffering
large loss is reduced.

The experts weights are normalized:

P ∗t (i) =
Pt(i)
N∑
j=1

Pt(j)

(5.9)

such that their sum becomes equal to 1.
Consider an auxiliary function which is called “pseudoprediction”:

gt(ω) = logβ

N∑
i=1

βλ(ω,ξit)P ∗t−1(i). (5.10)

We call the formulae (5.10) Aggregating Pseudo Algorithm and denote
it APA. Define the cumulative loss of the APA algorithm at first T
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steps on a sequence ω1, . . . , ωT of outcomes

LT (APA) =

T∑
t=1

gt(ωt). (5.11)

The following lemma represents the cumulative loss of the APA al-
gorithm in a more convenient way.

Lemma 5.1. The cumulative loss of the APA algorithm at first T
steps is equal to

LT (APA) = logβ

N∑
i=1

βLT (i)P0(i).

Proof. By (5.8) we obtain

PT (i) = β

T∑
t=1

λ(ωt,ξit)
P0(i) = βLT (i)P0(i).

By definition we have

logβ

N∑
i=1

βLT (i)P0(i)− logβ

N∑
i=1

βLT−1(i)P0(i) =

= logβ

N∑
i=1

βLT (i)P0(i)

N∑
i=1

βLT−1(i)P0(i)

=

= logβ

N∑
i=1

βLT−1(i)+λ(ωT ,ξ
i
T )P0(i)

N∑
i=1

βLT−1(i)P0(i)

=

= logβ

N∑
i=1

βλ(ωT ,ξ
i
T )PT−1(i)

N∑
i=1

PT−1(i)

=

= logβ

N∑
j=1

βλ(ωT ,ξ
j
T )P ∗T−1(j) = gT (ωT ). (5.12)
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. 6.5. The calculation of the prediction γ∗. The straight line passing

through the point M marks a point on the curve which is used to calculate

the prediction γ∗.

The last equality followws from (5.10). Since the equality (5.12)
holds for all T , we obtain the assertion of the lemma: LT (APA) =
T∑
t=1

gt(ωt) = logβ
N∑
i=1

βLT (i)P0(i). 4

The pseudoprediction gt(ω) represents some average loss and does
not give the prediction γ ∈ Γ itself for which this loss is evaluated.

In some cases, a superprediction can be transformed into a pre-
diction. A substitution function is a function γt = Σ(gt) such that
λ(ω,Σ(gt)) 6 gt(ω) for all ω.

We will show that a substitution function exists if a loss function
λ(ω, γt) is mixable.

Proposition 5.2. If a loss function is mixable then a substitution
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function exists.

Proof. Assume that a loss function λ(ω, γ) is η-mixable and β =
e−η. Since the image

Eη(Σλ) = {(x, y) : ∃ p (0 6 x 6 βλ(0,p)0 6 y 6 βλ(1,p))}

of the superprediction set of the loss function λ(ω, γ) is convex, an
γ∗ ∈ Γ exists such that

βλ(ωT ,γ
∗) >

N∑
j=1

βλ(ωT ,ξ
j
T )P ∗T−1(j) (5.13)

for all ωT ∈ {0, 1}.
The inequality (5.13) means that the abscissa and the ordinate of

the point (
βλ(0,γ∗), βλ(1,γ∗)

)
are more than or equal to the abscissa and the ordinate of the point N∑

j=1

βλ(0,ξjT )P ∗T−1(j),

N∑
j=1

βλ(1,ξjT )P ∗T−1(j)

 ,

correspondently. Define Σ(gt) = γ∗. The condition λ(ω,Σ(gt)) 6
gt(ω) holds for all ω.

Given an algorithm computing loss function λ(ω, γ), an algorithm
computing the prediction γt = Σ(gt) can be easily constructed. Such
an algorithm is called Aggregating Algorithm or AA algorithm.

In case, where a function Σ(gt) exists, by Lemma 5.1, the inequal-
ity

LT (AA) =

T∑
t=1

λ(ωt,Σ(gt)) 6

6 LT (APA) = logβ

N∑
i=1

βLT (i)P0(i) (5.14)

holds.
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Assign the equal weights to all experts: P0(i) = 1/N . Then by
(5.14) we have for any i ∈ Θ

LT (AA) 6 logβ

(
1

N

N∑
i=1

βLT (i)

)
6

6 logβ

(
1

N
βLT (i)

)
= LT (i) +

lnN

η
(5.15)

for all T .
The bound (5.15) means that the cumulative loss of the aggre-

gating algorithm AA does not exceed the total loss of any expert,
including the best expert that has the lowest total loss among all ex-
perts up to some regret. It is important that this regret depends only
on the number of experts and does not depend on the length of the
prediction period as it did for the exponential weighting algorithms.

5.3. Infinite set of experts

We reproduce the scheme of the algorithm AA for the case of an
infinite number of experts Θ. We assume that the set Θ is endowed
with the structure of probability space – a sigma algebra of Borel sets
and a probability measure on it. In this case the sums of experts are
replaced on integrals by these measures.

As usual, Ω = {0, 1}, Γ = [0, 1]. A loss function λ(ω, γ) be given,
where ω ∈ Ω and γ ∈ Γ. Let η > 0 be a learning rate and β = e−η.
Let also, some a priory probability distribution P0(dθ) on the set of
all experts Θ be given.

Learner updates the experts weights on step t by the rule

Pt(dθ) = βλ(ωt,ξθt )Pt−1(dθ). (5.16)

Therefore, the weight of any expert which suffer greater cumulative
loss decreases.

By definition the rule (5.16) is equivalent to the rule

Pt(E) =

∫
E
βλ(ωt,ξθt )Pt−1(dθ),
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where E is an arbitrary event.
We normilize the weights (5.16) of experts:

P ∗t (dθ) =
Pt(dθ)

Pt(Θ)
. (5.17)

These normalized weights define a probability distribution for that
P ∗t (Θ) = 1.

Similarly, define the pseudoprediction

gt(ω) = logβ

∫
Θ
βλ(ω,ξθt )P ∗t−1(dθ). (5.18)

The algorithm computing the pseudoprediction is also denoted APA.
Its cumulative loss for T steps is equal to

LT (APA) =
T∑
t=1

gt(ωt). (5.19)

By (5.16),

PT (dθ) = β

T∑
t=1

λ(ωt,ξθt )
P0(dθ) = βLT (θ)P0(dθ),

P ∗T (dθ) =
βLT (θ)∫

Θ β
LT (θ)P0(dθ)

P0(dθ).

We rewrite the equality (5.18) in the form

gT (ω) = logβ

∫
Θ

βλ(ω,ξθT )+LT−1(θ)∫
Θ β

LT−1(θ)P0(dθ)
P0(dθ). (5.20)

An analogue of Lemma 5.1 holds:

Lemma 5.2. The cumulative loss of the APA algorithm for T steps
can be represented in the form

LT (APA) = logβ

∫
Θ
βLT (θ)P0(dθ). (5.21)
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Proof. The proof of this lemma is similar to the proof of Lemma 5.1.
By (5.8), we obtain

Pt(dθ) = β

T∑
t=1

λ(ωt,ξθt )
P0(dθ) = βLT (θ)P0(dθ). (5.22)

Also, by definition we have

logβ

∫
Θ
βLT (θ)P0(dθ)− logβ

∫
Θ
βLT−1(θ)P0(dθ) =

= logβ

∫
Θ β

LT (θ)P0(dθ)∫
Θ β

LT−1(θ)P0(dθ)
=

= logβ

∫
Θ β

LT−1(θ)+λ(ωT ,ξ
θ
T )P0(dθ)∫

Θ β
LT−1(θ)P0(dθ)

=

= logβ

∫
Θ β

λ(ωT ,ξ
θ
T )PT−1(dθ)∫

Θ PT−1(dθ)
=

= logβ

∫
Θ
βλ(ωT ,ξ

θ
T )P ∗T−1(dθ) = gT (ωT ). (5.23)

The last inequality follows from the definition (5.18).
Since (5.23) holds for all T , we obtain the assertion of the lemma.

4
It is easy to show that in the case of infinite experts space Θ

and mixable loss function the substitution function Σ(gt) also exists.
Indeed, the integrals over dθ can be approximated by finite sums,
which correspond to finite sets of experts. Since the set of predictions
is compact, the predictions computed using the AA algorithm for
these finite sets of experts, have a limit point γ∗. Since the loss
function λ(ω, γ) is continuous by γ, this limit point satisfies

λ(ω, γ∗) 6 gt(ω)

for all ω, where gt(ω) is defined by (5.18). Put Σ(gt) = γ∗.
Then by Lemma 5.2,

LT (AA) =
T∑
t=1

λ(ωt,Σ(gt)) 6 logβ

∫
Θ
βLT (θ)P0(dθ). (5.24)
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5.4. Arbitrary loss function

We will show in the following sections that the logarithmic and square
loss functions are mixable.

In general case, for a non-mixable loss function, a mixability curve
c(η) is defined:

c(η) = inf

{
c : ∀ P ∃ δ ∈ Γ ∀ ω

(
λ(ω, δ) 6 c logβ

∫
Γ
βλ(ω,γ)P (dγ)

)}
.

Under some natural assumptions on the initial sets the function c(η)
is continuous and non-increasing.

The substitution function is defined as a function satisfying the
condition

∀ ω : λ(ω,Ση(g)) 6 c(η)g(ω) (5.25)

for each pseudoprediction function

g(ω) = logβ

∫
Γ
βλ(ω,γ)P (dγ)

and probability distribution P on Γ.
A minimax substitution function can be defined:

Ση(g) ∈ arg min
γ∈Γ

sup
ω∈Ω

λ(ω, γ)

g(ω)
. (5.26)

By definition any minimax substitution function Ση(g) defined by
(5.26) also satisfies (5.25).

Note that there could be other - not minimax substitution func-
tions such that the condition (5.25) holds. Often they are easier to
calculate.

In general case, for any loss function not necessary mixable, we
have

LT (AA) =

T∑
t=1

λ(ωt,Ση(gt)) 6 c(η) logβ

∫
Θ
βLT (θ)P0(dθ) (5.27)

instead of (5.24). The similar inequalities hold if we introduce the
factor c(η).
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In the case of a finite experts set the inequality (5.15) becomes

LT (AA) 6 c(η) logβ

(
1

N

N∑
i=1

βLT (i)

)
6

6 c(η) logβ

(
1

N
βLT (i)

)
= c(η)LT (k) + c(η)

lnN

η

for all T and all k = 1, . . . , N .

5.5. Logarithmic loss function

Assume that a set Ω of outcomes and a set Θ of experts are finite and
a prediction set Γ = P(Ω) be the set of all probability distributions
on Ω. For any γ ∈ Γ, let γ(ω) = γ({ω}) be the probability of ω ∈ Ω.
The logarithmic loss function is defined λ(ω, γ) = − ln γ(ω).

Put η = 1 and β = e−1. In this case

βλ(ω,γ) = γ(ω)

is equal to the probability that an expert or Learner assigns to an
outcome ω. In this case, aggregating algorithm coincides with the
algorithm the exponential weighting.

An Expert i prediction at step t is a probability distribution ξit =
ξit(·) ∈ Γ on the set of outcomes Ω.

At any step t, we assign with an expert i ∈ Θ a probability
distribution Qi on the set Ω∞ defined by the conditional probabilities:

Qi(ω|ω1, . . . , ωt−1) = ξit(ω) ∈ Γ. (5.28)

We can interpreted this probability distribution as a subjective con-
ditional distribution of Expert i at step t. More correctly, the value
(5.28) is equal to the conditional probability which Expert i assigns
to an a future outcome ω after observing past outcomes ω1, . . . , ωt−1.
Accordingly, a subjective probability assigned at a step t by Expert i
to the whole sequence of outcomes ω1, . . . , ωt is equal to the product
of these conditional probabilities

Qi(ω1, . . . , ωt) = ξi1(ω1)ξi2(ω2) · . . . · ξit(ωt). (5.29)
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The experts weights are updated according to the rule (5.8). For
logarithmic loss function, the weight of Expert i is updated at step t:

Pt(i) = βλ(ωt,ξit)Pt−1(i) =

= ξi1(ω1)ξi2(ω2) · . . . · ξit(ωt)P0(i) =

= Qi(ω1, . . . , ωt)P0(i). (5.30)

The weights (5.30) of experts are normalized by the formulae

P ∗t (i) =
Pt(i)
N∑
j=1

Pt(j)

=
Qi(ω1, . . . , ωt)P0(i)

N∑
j=1

Qj(ω1, . . . , ωt)P0(j)

. (5.31)

The probability P ∗t (i) is called a posterior probability of the expert i
after observing the outcomes ω1, . . . , ωt.

Since βλ(ωt,ξit) = ξit(ωt), the pseudoprediction (5.10) is equal to
the logarithm of the Bayesian mixture of the probability distributions
presented by experts at step t:

gt(ω) = logβ

N∑
i=1

ξit(ω)P ∗t−1(i). (5.32)

In this case, the prediction Σ(gt) of the aggregating algorithm is equal
to the Bayesian mixture of probability distributions presented by ex-
perts at step t. This probability distribution is defined by the rule

γt(ω) = Σ(gt) =

N∑
i=1

ξit(ω)P ∗t−1(i).

The value of the logarithmic loss function on an outcome ωt and on
a Learner’s forecast γt is equal to the pseudoprediction

λ(ωt, γt) = − ln γt(ωt) = logβ

N∑
i=1

ξit(ωt)P
∗
t−1(i) = gt(ωt).

We explain this method and its relationship with the Bayesian
rule in more details on example of the first two steps: t = 1, 2.
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At step 1, each expert i outputs its forecast ξi1 = ξi1(·) ∈ Γ that is
a probability distribution on Ω. Then the forecast of the algorithm
AA is computed as a Bayesian mixture of probability distributions of
the experts with respect to the a priory distribution P0 on the set of
experts:

γ1(ω) =

N∑
i=1

ξi1(ω)P0(i).

Once a first outcome ω1 is revealed by Nature, Learner updates the
prior distribution on the set of experts as follows. At first, Learner
defines the expert weights:

P1(i) = βλ(ω1,ξi1)P0(i) = ξi1(ω1)P0(i).

After that, Learner normalizes these weights and obtains the poste-
rior probabilities of experts after observing the outcome ω1:

P ∗1 (i) =
ξi1(ω1)P0(i)
N∑
j=1

ξj1(ω1)P0(j)

.

It is easy to see that this formula is the well known Bayesian rule
for computing the posterior probability P ∗1 (i) of any expert i after
observing the outcome ω1.

The same is true at step t = 2. At step t = 2, each expert
i outputs a forecast – a probability distribution ξi2(·) on Ω. The
forecast of the aggregating algorithm AA is computed by the rule

γ2(ω) =
N∑
i=1

ξi2(ω)P ∗1 (i)

that is a Bayesian mixture of the experts probability distributions
with respect to the posterior probability P ∗1 on the set of experts
computed at the step t = 1.

After receiving the second outcome ω2, Learner updates the pos-
terior probability on the set of experts as follows. At first, he updates
the experts weights

P2(i) = βλ(ω2,ξi2)P1(i) = ξi2(ω2)P1(i) = ξi1(ω1)ξi2(ω2)P0(i)
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and, after that, he computes the new posterior probabilities of the
experts normalizing their weights:

P ∗2 (i) =
ξi1(ω2)P ∗1 (i)
N∑
j=1

ξj2(ω2)P ∗1 (j)

.

We can see again that this formula is the Bayesian rule for computing
the posterior probability P ∗2 (i) of any expert i after observing the
outcomes ω1, ω2.

Thus, in the case of the logarithmic loss function the aggregating
algorithm AA can be represented as the online Bayesian method.

The loss of the ith expert over T steps is equal to

LT (i) =
T∑
i=1

λ(ωt, ξ
i
t) =

= − ln(ξi1(ω1) · . . . · ξiT (ωT )) =

= − lnQi(ω1, . . . , ωT ). (5.33)

This equality is a subjective probability (5.28) assigned by Statisti-
cian to the expert i at step t.

The cumulative loss of Learner over the first T steps is equal to

LT (AA) =

T∑
t=1

λ(ωt,Σ(gt)) =

= logβ

N∑
i=1

βLT (i)P0(i) =

= logβ

N∑
i=1

Qi(ω1, . . . , ωT )P0(i). (5.34)

Thus, the cumulative loss of Learner at first T steps is equal to the
minus logarithm of the Bayesian mixture of probabilities assigned by
the experts to the sequence of outcomes ω1, . . . , ωT of length T .
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The inequality (5.15) is transformed to the inequality

LT (AA) = logβ

N∑
i=1

Qi(ω1, . . . , ωT )P0(i) 6

6 − lnQk(ω1, . . . , ωT )− lnP0(k) (5.35)

for all T and k = 1, . . . , N .

5.6. Simple prediction game

Recall that the simple prediction game is valid for binary outcome
and prediction spaces: Ω = Γ = {0, 1}. The prediction task for this
game is precisely to predict the future outcome. The loss function is
defined

λ(ω, γ) =

{
0 if ω = γ,
1 otherwise.

Therefore, the cumulative loss of an expert or the learner is equal to
the total numbers of prediction errors.

Assume that there are N experts. An expert i outputs a forecast
ξit ∈ {0, 1} at any step t.

We present any pseudoprediction

g(ω) = logβ

N∑
i=1

βλ(ω,ξit)P ∗t−1(i) (5.36)

as a point (g(0), g(1)) at the positive half-plane. This point can be
written in the form

(logβ(βp+ (1− p)), logβ(p+ β(1− p))), (5.37)

where 0 < β < 1 is a learning rate, p =
∑
ξit=1

P ∗t−1(i) is the total weight

of all experts i predicting ξit = 1 t, and 1 − p =
∑
ξit=0

P ∗t−1(i) is the

total weight of all experts i predicting ξit = 0 t
The points (5.37) form a convex curve connecting the points (1, 0)

and (0, 1) corresponding to p = 0 and p = 1.
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By definition 1/c(β) is equal to the abscissa (ordinate) of the point
that is an intersection of the line y = x and the curve.

By (5.37) we obtain for p = 1
2

1

c(β)
= logβ

(
1 + β

2

)
,

or

c(β) =
ln 1

β

ln 2
1+β

. (5.38)

We apply the aggregating algorithm AA for this game. Define
the substitution function γ = Σ(g) as follows: Σ(g) = 0 if the point
(g(0), g(1)) computed by (5.37) lies higher than the stright line y = x,
define γ = Σ(g) = 1 if the point (g(0), g(1)) lies below or on the
stright line y = x.

This substitution function satisfies the condition (5.25), since for
γ = 0 it holds for the abscissa g(0) > λ(0, 0) = 0 and for the ordinate
g(1) > 1

c(β) of the intersection point of the bisector of the coordi-

nate angle and the curve (5.37). Then g(1) > 1
c(β) = 1

c(β)λ(1, 0).

Therefore, λ(ω, 0) 6 c(β)g(ω) for all ω ∈ {0, 1}.
Similarly, we obtain the inequality λ(ω, 1) 6 c(β)g(ω) for all ω ∈

{0, 1}.
Note that if the point (g(0), g(1)) lies higher than the line y = x

then the abscissa is less than ordinates, ie, g(0) < g(1) or

logβ(βp+ (1− p)) < logβ(p+ β(1− p))

that is equivalent to p < 1
2 . In this case the algorithm predicts γ = 0.

Otherwise, if the point (g(0), g(1)) lies below or on the stright line
y = x then

logβ(βp+ (1− p)) > logβ(p+ β(1− p)),

that is equivalent to p > 1
2 . In this case the algorithm predicts γ = 1.

This means that the aggregating algorithm predicts γ = 1 if the
total weight of all experts predicting 1 is more than the total weight
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of all experts predicting 0; the algorithm AA predicts γ = 0 other-
wise. Thus, the aggregating algorithm AA predicts as the weighted
majority algorithm defined in Section (4.1).

In this case for any expert θ ∈ Θ the following inequality holds:

LT (AA) 6

(
ln 1

β

ln 2
1+β

)
LT (θ) + ln

(
1

ln 2
1+β

)
lnN (5.39)

5.7. Square loss function

In this section we study the application of the aggregating algorithm
for square loss function in the simplest case, where the outcome set is
binary Ω = {−1, 1} and the prediction set is the interval Γ = [−1, 1].
The square loss function is λ(ω, γ) = (ω − γ)2. All results presented
below also hold for Ω = [−1, 1].

Lemma 5.3. In case Ω = {−1, 1} and Γ = [−1, 1] the square loss
function is η-mixable if and only if η 6 1

2 .

Proof. We present the pseudoprediction (g(−1), g(1)) as a point

(e−ηg(−1), e−ηg(1))

in the exponential space.
The set of all predictions γ ∈ [−1, 1] defines the paremetric curve

in the exponential space

(x(γ), y(γ)) = (e−η(−1−γ)2
, e−η(1−γ)2

).

A loss function is η-mixable if the image of the superprediction set
in the exponential space a convex set, ie, if and only if its bounding
curve turns to the left with an increase in γ (in this case the abscissa
decreases). This will happens if the following concavity condition of

a curve holds: d2y
d2x

6 0.
Let us compute the second derivative of a parametrically defined

curve:

d2y

d2x
=
dγ

dx

x′(γ)y′′(γ)− x′′(γ)y′(γ)

(x′(γ))2
. (5.40)
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With an increase in the parameter γ the value x(γ) is decreasing, so
dγ
dx < 0.

The game is η-mixable if and only if d2y
d2x

6 0 that is equivalent to
the condition

x′(γ)y′′(γ)− x′′(γ)y′(γ) > 0.

Compute the following derivatives by the parameter γ:

x′(γ) = −2η(1 + γ)e−η(1+γ)2
,

x′′(γ) = 2η(−1 + 2η(1 + γ)2)e−η(1+γ)2
,

y′(γ) = 2η(1− γ)e−η(1−γ)2
,

y′′(γ) = 2η(−1 + 2η(1− γ)2)e−η(1−γ)2
. (5.41)

The condition of η-mixability requires that for all values of γ ∈ [−1, 1]
the following equivalent inequalities hold

−(1 + γ)(−1 + 2η(1− γ)2)−
−(1− γ)(−1 + 2η(1 + γ)2) > 0,

η(1− γ2) 6
1

2
,

η 6
1

2
. (5.42)

Lemma is proved. 4
We now find some form of the substitution function Σ(g) in the

case Ω = {−1, 1} and a finite number of experts Θ = {1, . . . , N}.
Let η = 1

2 and β = e−
1
2 . A pseudoprediction

gt(ω) = logβ

N∑
i=1

βλ(ω,ξit)P ∗t−1(i) (5.43)

is defined by the point

(e−
1
2
g(−1), e−

1
2
g(1)) =

=

(
N∑
i=1

βλ(−1,ξit)P ∗t−1(i),

N∑
i=1

βλ(1,ξit)P ∗t−1(i)

)
, (5.44)
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which is located under the concave curve(
βλ(−1,γ), βλ(1,γ)

)
, (5.45)

for γ ∈ [−1.1].
Draw a straight line passing through origin of coordinates and the

point (5.44). The slope of this line is equal to

k =
βg(1)

βgt(−1)
= e

1
2
gt(−1)− 1

2
gt(1). (5.46)

The intersection point
(
βλ(−1,γ∗), βλ(1,γ∗)

)
of this line and the curve

(5.45) has the abscissa and ordinate not less than the abscissa and
ordinate of the point (5.44) :

βλ(−1,γ∗) > βgt(−1),

βλ(1,γ∗) > βgt(1). (5.47)

An equivalent form of (5.47) is

λ(−1, γ∗) 6 gt(−1),

λ(1, γ∗) 6 gt(1). (5.48)

Let us compute a forecast γ∗. We find γ∗ from the equation

βgt(1)

βgt(−1)
= βgt(1)−gt(−1) =

βλ(1,γ∗)

βλ(−1,γ∗)
= βλ(1,γ∗)−λ(−1,γ∗). (5.49)

It remains to find the root of this equation

λ(1, γ∗)− λ(−1, γ∗) = (1− γ∗)2 − (−1− γ∗)2 = gt(1)− gt(−1),

which is equal to

γ∗ =
1

4
(gt(−1)− gt(1)). (5.50)

In more detail, at any step t, we compute the forecast

γ∗t =
1

4

(
logβ

N∑
i=1

βλ(−1,ξit)P ∗t−1(i)− logβ

N∑
i=1

βλ(1,ξit)P ∗t−1(i)

)
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or

γ∗t = −1

2
ln


N∑
i=1

e−
1
2

(1−ξit)2
P ∗t−1(i)

N∑
i=1

e−
1
2

(1+ξit)
2
P ∗t−1(i)

 .

Similar properties and assertions hold for the case where Ω = [−1, 1]
(see Vovk [38]).

For infinite sets of outcomes Ω, the geometric definition of the
mixable loss function has no meaning. In this case, we can introduce
a general (direct) definition of mixability. The loss function is called
η-mixable if there is a substitution function Σ(gt) such that

λ(ω,Σ(gt)) 6 gy(ω)

for all ω ∈ Ω, where gt is defined by (5.18).

5.8. Universal portfolio selection

In this section we study the Cover’s [9] game. Assume that there are
N financial instruments (stocks) in Stock Market. The behavior of
the market is specified by an arbitrary sequence of non-negative price
relative stock vectors ω̄1, ω̄2, . . . ,

ω̄t = (ω1,t, . . . , ωN,t), (5.51)

The ith entry of tth price relative vector

ωi,t =
Si,t+1

Si,t

denotes the ratio of closing Si,t+1 to opening price Si,t of the ith stock
for the tth trading day. By definition ωi,t ∈ [0,∞). We assume that
Si,t > 0 not all ωi,t are zero.

The set of all allowable investments actions of algorithms we con-
sider at round t is comprised of the state constant rebalanced portfolio
that is a vector γ̄t ∈ [0, 1]N , where

γ̄t = (γ1,t, . . . , γN,t) (5.52)
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and γ1,t + · · ·+ γN,t = 1.
The ith entry γi,t of the portfolio is the proportion of wealth

invested in the ith stock. An investment using a portfolio γ̄ increases
one’s wealth by a factor of

(γ̄ · ω̄) =

N∑
i=1

γiωi

where the market performance is specified by the stock vector ω̄.
Further, for a sequence of T investments rounds, investing accord-

ing to portfolios γ1, . . . , γT , increase the initial wealth by a factor
of

ST =
T∏
t=1

(γ̄t · ω̄t) =
T∏
t=1

N∑
i=1

γi,tωi,t,

where a vector ω̄t = (ω1,t, . . . , ωN,t), characterizes the market per-
formance at step t.

A sequence of portfolio choices γ̄t constitutes an investment strat-
egy of an algorithm.

We consider the problem of optimal investments in the prediction
of expert advice framework. Define the corresponding loss function

λ(ω̄, γ̄) = − ln(γ̄ · ω̄). (5.53)

Here the set of outcomes Ω consists of all vectors ω̄ of the form (5.51)
and the prediction set Γ is the simplex consisting of all vectors γ̄ of
the form (5.52) such that γ1,t + · · ·+ γN,t = 1.

A constant expert outputs a constant forecast – a portfolio γ̄ ∈ Γ.
Conversely, any such constant portfolio defines an expert.

We apply the aggregating algorithm AA to this loss function fol-
lowing Vovk [37].

Assume that some a priory probability distribution P0(dγ̄) on the
simplex Γ be given.

By (5.20) the pseudoprediction of APA is equal to

gT (ω) = logβ

∫
Γ

βλ(ω̄,γ̄)+LT−1(γ̄)∫
Γ β

LT−1(γ̄)P0(dγ̄)
P0(dγ̄), (5.54)

where β = e−η, 0 < η 6 1.
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Theorem 5.1. The Cover’s game (the loss function (5.53)) is η-
mixable for any 0 < η 6 1. The corresponding substitution function
is defined by the rule

Σ(gT ) =

∫
Γ
γ̄PT−1(dγ̄) =

=

∫
Θ
γ̄

βLT−1(γ̄)∫
Γ β

LT−1(γ)P0(dγ̄)
P0(dγ̄). (5.55)

Proof. We have to prove that for all ω̄

λ

(
ω̄,

∫
Γ
γ̄P (dγ̄)

)
6 logβ

∫
Γ
βλ(ω̄,γ̄)P (dγ̄).

This inequality is equivalent to the inequality

f

(∫
Γ
γ̄P (dγ̄)

)
>
∫

Γ
f(γ̄)P (dγ̄), (5.56)

where f(γ̄) = βλ(ω̄,γ̄) = (γ̄ · ω̄)η. The inequality (5.56) follows from
concavity of the function f(γ̄) for 0 < η 6 1. 4

We can write the portfolio (5.55) in more detail using the rep-
resentation (5.21) of the cumulative loss for T rounds of the APA
algorithm from Lemma 5.2:

LT (APA) = logβ

∫
Γ
βLT (γ̄)P0(dγ̄).

Put η = 1. Since the cumulative loss of any expert γ̄ at first T steps
is equal to

LT (γ̄) = − ln
T∏
t=1

(γ̄ · ω̄t),

we can compute the forecast of the aggregating algorithm by the rule:

γ̄T =

∫
Γ γ̄
∏T−1
t=1 (γ̄ · ω̄t)P0(dγ̄)∫

Γ

∏T−1
t=1 (γ̄ · ω̄t)P0(dγ̄)

.
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In general case it is convenient to consider the Dirichlet distribution
with parameters (1/2, . . . , 1/2) on the simplex Γ:

P0(dγ̄) =
Γ(N/2)

[Γ(1/2)]N

N∏
j=1

γ
−1/2
j dγ̄,

where

Γ(a) =

∞∫
0

xa−1e−xdx.

Note that Γ(N + 1) = N !.
We give without proof the main result of Cover’s [9] which also was

obtained by Vovk [36] as an application of the aggregating algorithm.

Theorem 5.2. Let η = 1. Then the cumulative loss of the aggregat-
ing algorithm AA satisfies the inequality

LT (AA) 6 inf
γ̄
LT (γ̄) +

N − 1

2
lnT + c (5.57)

for all T , where c is a positive constant.

Since the total increase of the initial wealth under investment
strategy presented by the aggregating algorithm is

KT (AA) = e−LT (AA),

we can rewrite the inequality (5.57) in the form

KT (AA) > T−
N−1

2 KT (γ̄),

where KT (γ̄) is the total increase of the initial wealth using a constant
rebalanced portfolio γ̄.

From a theoretical perspective this is surprising as this perfor-
mance ratio is bounded by a polynomial in T (for fixed N) whereas
we suppose that the best portfolio in the growing market is capable
of exponential returns. From a practical perspective, this bound is
not very useful because the empirical returns of observed portfolios
is often not exponential in the number of trading days.
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5.9. Multidimensional online regression

In this section we consider the application of the aggregating algo-
rithm AA to the problem of online regression. In contrast to con-
ventional multidimensional regression which uses the training set to
determine the parameters of regression once and for all, the AA-
algorithm learns online.

Consider the problem of the online multidimensional linear re-
gression in more detail.

Nature outputs pairs (xt, yt), where xt ∈ Rn and yt ∈ R for
t = 1, 2, . . . . 1 The regression problem consists in calculating at
each step t > 1 a forecast for a future value yt given the previously
observed paits (x1, y1), . . . , (xt−1, yt−1) and the input value xt.

In the prediction with expert advice framework we introduce ex-
perts – linear functions f(x) = (θ ·x), where θ, x ∈ Rn. The values of
these functions on inputs x = xt are interpreted as a forecast made
by expert θ at step t. Denote by ξθt = (θ · xt) this forecast.

The online regression problem with expert advice consists in com-
putation at any step t a forecast γt of a future value yt, using input
xt, past information, and predictions ξθt made by the linear experts
at step t.

The general scheme of linear regression is regulated by the follow-
ing perfect-information protocol of a game with players:. Expert θ,
Learner and Nature.

FOR t = 1, 2, . . .
Nature announces an input xt ∈ Rn.
Expert θ announces a forecast ξθt = (θ · xt), θ ∈ Rn.
Learner announces a forecast γt ∈ R.
announces an outcome yt ∈ [−Y, Y ].
ENDFOR

A difference between the forecast and true value of the regression
is measured by the square loss function. At any step t, the Expert θ
loss is (yt − (θ · xt))2, and the Learner loss is (yt − γt)2.

We apply the aggregating algorithm AA with a learning rate η =

1In this section we do not overbar vector variables.
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1/2Y 2 to solve the problem of online regression.
The following a priory distribution on the set of experts will be

used:

P0(dθ) = (aη/π)n/2e−aη‖θ‖
2
dθ, (5.58)

where a is a parameter (similar to a parameter used in the problem
of ridge regression) and constants are chosen from the requirement of
normalization. The Euclidian norm ‖θ‖ =

√
θ2

1 + · · ·+ θ2
n is used for

the vector θ = (θ1, . . . , θn).
Also, recall that we identify the dot product (θ·x) and one-element

matrix x′θ, where x′ is a row vector and θ is a column vector.
The loss of an expert θ ∈ Rn at step t is equal to

λ(yt, x
′
tθ) = (yt − x′tθ)2 = θ′(xtx

′
t)θ − 2(ytx

′
t)θ + y2

t . (5.59)

Recall that x′t = (x1,t, . . . , xn,t), θ
′ = (θ1, . . . , θn) are row vectors

and xt, θ are column vectors. Here we also used the equality x′tθx
′
tθ =

θ′(xtx
′
t)θ that can be checked using the following transformations:

x′tθx
′
tθ =

(
n∑
i=1

xt,iθi

) n∑
j=1

xt,jθj

 =

=
n∑

i,j=1

θixt,ixt,jθj = θ′(xtx
′
t)θ.

The cumulative loss of the expert θ ∈ Rn at first T steps is equal
to

LT (θ) =

T∑
t=1

(yt − x′tθ)2 =

= θ′

(
T∑
t=1

xtx
′
t

)
θ − 2

(
T∑
t=1

ytx
′
t

)
θ +

T∑
t=1

y2
t . (5.60)

By (5.8) and (5.22) we obtain

Pt−1(dθ) = βLt−1(θ)P0(dθ).
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The pseudoprediction of the algorithm APA on step t is

gt(y) = logβ

∫
βλ(y,x′tθ)P ∗t−1(dθ) =

= logβ

∫
βλ(y,x′tθ)

Pt−1(dθ)

Pt−1(Θ)
=

= logβ

∫
βλ(y,x′tθ)+Lt−1(θ) 1

Pt−1(Θ)
P0(dθ). (5.61)

Then, taking into account the representations (5.58) for the a priory
distribution and (5.59) for the loss function, we obtain

gT (−Y ) = logβ

∫
βλ(−Y,x′T θ)+LT−1(θ) 1

PT−1(Θ)
P0(dθ) = (5.62)

=

∫
Rn

e
−ηθ′(aI+

T∑
t=1

xtx′t)θ+2η(
T−1∑
t=1

ytx′t−Y x′T )θ−η(
T−1∑
t=1

y2
t+Y 2) dθ

PT−1(Θ)
.

A similar representation can be obtained for gT (Y ).
We have proved in Section 5.7 that a substitution function exists

for square loss function for the case of binary outcomes Ω = {−1, 1}
and the prediction set Γ = [−1, 1] .

Similarly, it can be proved that the same substitution function is
valid for the case where Ω = Γ = [−Y, Y ] (see Vovk [38]).

Using the rule (5.62) for gT (−Y ) and a similar rule for gT (Y ), we
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obtain

γT =
1

4Y
(gT (−Y )− gT (Y )) =

1

4Y
×

× logβ

∫
Rn e

−ηθ′(aI+
T∑
t=1

xtx′t)θ+2η(
T−1∑
t=1

ytx′t−Y x′T )θ−η(
T−1∑
t=1

y2
t+Y 2)

dθ∫
Rn e

−ηθ′(aI+
T∑
t=1

xtx′T )θ+2η(
T−1∑
t=1

ytx′t+Y x
′
t)θ−η(

T−1∑
t=1

y2
t+Y 2)

dθ

=

=
1

4Y
logβ

∫
Rn e

−ηθ′(aI+
T∑
t=1

xtx′t)θ+2η(
T−1∑
t=1

ytx′t−Y x′T )θ
dθ∫

Rn e
−ηθ′(aI+

T∑
t=1

xtx′t)θ+2η(
T−1∑
t=1

ytx′t+Y x
′
T )θ
dθ

=

=
1

4Y
logβ e

−ηF
(
aI+

T∑
t=1

xtx′t,−2
T−1∑
t=1

ytx′t,2Y x
′
T

)
=

=
1

4Y
F

(
aI +

T∑
t=1

xtx
′
t,−2

T−1∑
t=1

ytx
′
t, 2Y x

′
T

)
=

=

(
T−1∑
t=1

ytx
′
t

)(
aI +

T∑
t=1

xtx
′
t

)−1

· xT . (5.63)

Here we at once reduced the common factor 1
PT−1(Θ) in the numerator

and denominator of the 2th row. In transition from 2th row to the

3th, the factor e
−η(

T−1∑
t=1

y2
t+Y 2)

was taken out from the integral in the
numerator and denominator and reduced. In transition from 3th to
4th we have used Lemma 5.4 given below which says that the integral
in the numerator of the 3th row is equal to

πn/2√
detA

e
−η inf

θ∈Rn
(θ′Aθ+c′θ+x′θ)

,

and the integral in the denominator of the 3th row is equal to

πn/2√
detA

e
−η inf

θ∈Rn
(θ′Aθ+c′θ−x′θ)

,
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where

A = aI +

T∑
t=1

xtx
′
t,

c = −2

T−1∑
t=1

ytx
′
t,

x = 2Y x′T .

In the 4th row we have used notation

F (A, c, x) = inf
θ∈Rn

(θ′Aθ + c′θ + x′θ)−

− inf
θ∈Rn

(θ′Aθ + c′θ − x′θ), (5.64)

and in transition from the 5th row to the 6th row we have used
Lemma 5.5 which says that F (A, c, x) = −c′A−1x.

Now we give a formulation and proofs of Lemmas 5.4 and 5.5.

Lemma 5.4. Let Q(θ) = θ′Aθ+ c′θ+ d, where θ, c ∈ Rn, d ∈ R and
A be symmetric positive definite matrix of type (n× n). Then∫

Rn

e−Q(θ)dθ = e−Q0
πn/2√
detA

, (5.65)

where Q0 = minθ∈Rn Q(θ).

Proof. Assume that a minimum of the quadratic form

Q(θ) = θ′Aθ + c′θ + d

is attained at θ = θ0. Denote ξ = θ − θ0 and Q̃(ξ) = Q(ξ + θ0). It is
easy to see that the quadratic part of the form Q̃ is ξ′Aξ. since the
minimum of the quadratic form Q̃ is attained at θ = 0̄, where 0̄ =
(0, . . . , 0), this form cannot have a linear part. Indeed, otherwise,
this linear part should dominate under the quadratic part of this form
in a small neighborhood of 0̄, and then the form Q̃ could not attain
a minimum at 0̄.
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Since the minimum of the form Q̃(ξ) is equal to Q0, the constant
of this form is Q0. Therefore, Q̃(ξ) = ξ′Aξ +Q0.

It remains to prove that∫
Rn

e−ξ
′Aξdξ = πn/2/

√
detA.

This follows from Theorem 3 (Section 2.7) of Bellman [5]. 4
Lemma 5.5 below shows that F (A, c, x) = −c′A−1x.

Lemma 5.5. Let A be a symmetric positive definite matrix of type
(n× n) and b, x ∈ Rn. Then

F (A, c, x) = min
θ∈Rn

(θ′Aθ + c′θ + x′θ)−

− min
θ∈Rn

(θ′Aθ + c′θ − x′θ) = −c′A−1x. (5.66)

Proof. To find the first minimum equate to zero the partial
derivatives of the quadratic form θ′Aθ + c′θ + x′θ by θi. Here
θ = (θ1, . . . , θn). As a result we obtain a system of equations
2Aθ + c′ + x′ = 0̄. It is easy to see that the minimum is attained
at θ1 = −1

2A
−1(c + x). Similarly, the minimum of the second part

θ1 = −1
2A
−1(c − x). After that, the assertion of the lemma is ob-

tained by substituting these values into the difference of these terms.
4

Therefore, according to the expression (5.63) for γT , at step T ,
we have

A = aI +

T∑
t=1

xtx
′
t,

b =

T−1∑
t=1

ytx
′
t,

γT = b′A−1xT =

=

(
T−1∑
t=1

ytx
′
t

)(
aI +

T∑
t=1

xtx
′
t

)−1

· xT .
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Now we can rewrite the regression algorithm AAR in the form:

A = aI; b′ = 0̄.
FOR t = 1, 2, . . .
Algorithm receives an input xt ∈ Rn.
Compute A = A+ xtx

′
t.

Output a forecast γt = b′A−1xt.
Algorithm receives yt ∈ [−Y, Y ].
Compute b′ = b′ + ytx

′
t.

ENDFOR
Comparing the cumulative loss of the algorithm AAR and the

cumulative loss of the best expert, we obtain the following result.

Theorem 5.3. For any T ,

LT (AAR) 6 inf
θ

(LT (θ) + a‖θ‖22) + Y 2 ln det

(
I +

1

a

T∑
t=1

xtx
′
t

)
6

6 inf
θ

(LT (θ) + a‖θ‖22) + Y 2
n∑
i=1

ln

(
1 +

1

a

T∑
t=1

x2
t,i

)
.

If in addition |xt,i| 6 X for all t and i then

LT (AAR) 6 inf
θ

(LT (θ) + a‖θ‖22) + nY 2 ln

(
TX2

a
+ 1

)
.

Proof. Let η = 1
2Y 2 . By Lemma 5.2 the cumulative loss of the

algorithm APA is represented in the form (5.21). In this case we can
rewrite this expression as

LT (APA) = logβ

∫
Rn

e−ηLT (θ)P0(dθ) =

= logβ

∫
Rn

(aη/π)n/2e
−ηθ′(aI+

T∑
t=1

xtx′t)θ+2η(
T∑
t=1

ytx′t)θ−η
T∑
t=1

y2
t
dθ. (5.67)

The exponent in (5.67) has a form e−ηF (θ), where

F (θ) = θ′

(
aI +

T∑
t=1

xtx
′
t

)
θ − 2

(
T∑
t=1

ytx
′
t

)
θ +

T∑
t=1

y2
t .
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Assume that the minimum of F (θ) is attained at θ = θ0.
Then by Lemma 5.4 the expression (5.67) representing the cumu-

lative loss of the algorithm APA is equal to

LT (APA) =

= logβ

((aη/π)n/2)
πn/2e−ηF (θ0)√

det

(
aηI + η

T∑
t=1

xtx′t)

)
 =

= F (θ0)− 1

2
logβ det

(
I +

1

a

T∑
t=1

xtx
′
t

)
=

= F (θ0) +
1

2η
ln det

(
I +

1

a

T∑
t=1

xtx
′
t

)
=

= F (θ0) + Y 2 ln det

(
I +

1

a

T∑
t=1

xtx
′
t

)
.

By definition (5.60) of cumulative loss of an expert θ

F (θ0) = θ′0

(
aI +

T∑
t=1

xtx
′
t

)
− 2

(
T∑
t=1

ytx
′
t

)
θ0 +

T∑
t=1

y2
t =

= a‖θ0‖2 +

T∑
t=1

(yt − x′tθ0)2 =

= a‖θ0‖2 + LT (θ0).

Since LT (AAR) 6 LT (APA), we have the assertion ot the theorem.
4

5.10. Multidimensional kernel regression

To move from linear to kernel regression we have to translate all
algorithms in a form where they depend only from the inner products
of the input variables. We assume that a regression hyperplane was
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carried out in the feature space. After that, all inner products will
be represented by the kernel values.

Recall the algorithm of linear regression:

A = aI +
T∑
t=1

xtx
′
t,

b =
T−1∑
t=1

ytx
′
t,

γT = b′A−1xT =

=

(
T−1∑
t=1

ytx
′
t

)(
aI +

T∑
t=1

xtx
′
t

)−1

· xT . (5.68)

LetK(x, x′) be a kernel, where x, x′ ∈ Rn, and S = ((x̄1, y1), (x̄2, y2), . . . )
be an unput sample.

Denote:
KT = (K(xi, xj))

T
i,j=1 – kernel values matrix;

kT = (k(xi, xT ))Ti=1 – the last column of the matrix KT ;
YT – a column-vector of outcomes;
(YT−1, 0) = (y1, . . . , yT−1, 0) – an incomplete column vector com-

plemented by zero.
Let us present the linear regression algorithm (5.68) in the appro-

priate form to obtain its kernel version.
Consider the matrix of type T × n:

XT =


x′1
x′2
. . .
x′T

 =


x11, x12, . . . , x1T

x21, x22, . . . , x2T

. . .
xn1, xn2, . . . , xnT

 ,

in which the rows are row-vectors x′1, . . . , x
′
T .

It is easy to verify that

T∑
t=1

xtx
′
t = X ′TXT ,
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and also,

T−1∑
t=1

ytxt = (YT−1, 0)′XT .

The following lemma holds:

Lemma 5.6. For any matrix B of type n × m and any matrix C
of type m × n such that the matrixes aIn + CB and aIm + BC are
invertible,

B(aIn + CB)−1 = (aIm +BC)−1B, (5.69)

where a is a real number and In is the unit matrix of size n. 2

Proof. The equality (5.69) is equivalent to the equality

(aIn +BC)B = B(aIm + CB),

that is evident, since the matrix product is distributive. 4
Using this lemma, we present the prediction of the linear regres-

sion as follows:

γT = b′A−1xT =

=

(
T−1∑
t=1

ytx
′
t

)(
aI +

T∑
t=1

xtx
′
t

)−1

· xT =

= (YT−1, 0)′XT

(
aI +X ′TXT

)−1
xT =

(YT−1, 0)′
(
aI +XTX

′
T

)−1
XTxT =

= (YT−1, 0)′
(
aI + K̃T

)−1
k̃T , (5.70)

where K̃T = XTX
′
T and k̃T = XTxT . Note also, that

XTX
′
T = (xt · xt′)Tt,t′=1 ,

k̃T = (xt · xT )Tt=1 ,

2In what follows the index n is omitted.
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ie, the coordinates of the matrix and of the vector are dot product of
vectors x1, . . . , xT .

We obtain the adaptive algorithm of the kernel version by replac-
ing the dot products from the matrix K̃T = XTX

′
T and the vector

k̃T = XTxT of the linear version by the corresponding kernel values
KT = (K(xi, xj))

T
i,j=1 and kT = (k(xi, xT ))Ti=1. As a result, we obtain

a forecast of the kernel version

γT = (YT−1, 0)′ (aI +KT )−1 kT .

A bound for the learning error of the kernel regression has a form

Theorem 5.4. For all T

LT (AAR) 6 inf
θ

(LT (θ) + a|θ|22) + Y 2 ln det

(
K̃T

a
+ I

)
for all T .

Dual form of the kernel regression
We now give a definition of the dual form of any prediction al-

gorithm. Assume that a forecasting algorithm A uses input vectors
x1, x2, . . . xT only in the form of dot products and a kernel function
K(x, y), where x, y ∈ Rn, be given.

Using Lemma 5.6, we transform the forecast

γT+1 = w′x = ((aI +X ′TXT )−1X ′TYT )′ · xT+1

of the ridge regression to the form

γT+1 = w′x = ((aI +X ′TXT )−1X ′TYT )′ · xT+1 =

= Y ′TXT (aI +X ′TXT )−1 · xT+1 =

= Y ′T (aI +XTX
′
T )−1XT · xT+1 =

= Y ′T (aI +XTX
′
T )−1XT · kT+1.

Note that in the same notation, the expression (5.70) for adaptive
kernel regression has a slightly different form:

γT+1 = (YT , 0)′ (aI +KT+1)−1 · kT+1.
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5.11. Laboratory work

Use the data from the following websites for solving problems of re-
gression:

http : //www.csie.ntu.edu.tw

Database UCI Machine Learning Repository is located on the website

http : //archive.ics.uci.edu

Laboratory work 1
Construct a simple linear, ridge regression, and regression with

standard SVM software for data from UCI repository. Provide a
comparative analysis of the accuracy of regression for all methods
used.

Laboratory work 2
Conduct also experiments with kernel versions of these methods.

Provide a comparative analysis of the accuracy of regression for all
methods used.

Laboratory work 3
Conduct a linear online regression using aggregating algorithm

from Section 5.9. Compare the accuracy of the regression with other
methods.

5.12. Problems

1. Draw the graphs of the prediction and superprediction sets and
of their images in the exponential space for the square, logarithmic,
absolute and simple loss functions for different values of η. Give
examples of η where the corresponding images of the prediction and
superprediction sets for the logarithmic and square loss functions are
convex and non-convex.

2. Prove that the absolute loss function λ(ω, γ) = |ω − γ| is not
mixable. Calculate the multiplicative constants c(β) and a(β) from
the bound (5.27) for an arbitrary β = e−η, η > 0, in the case of
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absolute loss function and ω ∈ {0, 1}, γ ∈ [0, 1]. (Hint:

c(η) =
1
2η

ln
(

2
1+e−η

) =

1
2 ln 1

β

ln
(

2
1+β

) ,
where β = e−η.

This expression can be obtained by minimizing the term c(η) in
the exponent:

e−ηλ(ω,γ >

(
N∑
i=1

e−ηλ(ω,ξi)

)c(η)

for all ω, γ and ξi. It is convenient to use the geometric representation
– the curve: (

e−ηγ , e−η(1−γ)
)

where 0 6 γ 6 1. Find c(η) for which the distance from the point on
the curve to the chord of maximal length is maximal for all ω, γ and
ξi).

Find an expression for the prediction of the aggregating algorithm
in this case.

3. Show that the curve (5.37) is convex.
4. Draw the graph of the curve c(β) defined by the equality (5.38).
5. Proof the inequality (5.39). Study the dependence of the factor

in the inequality of (5.39) from the parameter β.
Rebuild this estimate in an estimate with the unit factor and

regretom of order O(
√
T lnN) in the same way as has been done in

the the allocation algorithm Hedge(β) Section 4.2.
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Part III

Games of Prediction
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Chapter 6

Elements of the game
theory

In this chapter, we first consider the classical problems of the game
theory, namely, two-person zero-sum games. We will prove the von
Neumann minimax theorem and consider methods of solving such
games. Further, in Chapter 8, we apply the minimax theorem to
solve infinitely repeatable games of prediction.

6.1. Two players zero-sum games

Let X and Y be arbitrary sets. Let us consider two-person zero-sum
game. The first player chooses an action (or a strategy) x ∈ X;
simultaneously with this the second player chooses an action y ∈ Y .

When a game is presented in normal form, it is presumed that
each player acts simultaneously or, at least, without knowing the ac-
tions of the other player. As a result of their actions players receive
payoff or suffer loss. More generally, this payoff or loss can be repre-
sented by any function that associates a payoff for each player with
every possible combination of actions.

A function f(x, y) represents the payoff for first player, which is
also a function of the loss of the second player. The function f(x, y)
is defined on the Cartesian product X × Y .
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If f(x, y) < 0, the payoff for the first player is negative, ie, this
player suffers a loss.

Each player is supposed to behave rationally. This means that
each player tries to maximize his payoff irrespective to what other
player is doing.

In zero sum game, sum of payoffs of all the players for each round
of the game is zero. Which means if one player is able to improve his
payoff by using some good strategy the payoff of others is going to
decrease. In zero-sum game, the goal of the first player is to maximize
his payoff and the goal of the second player is to minimize his loss.

If the first player chooses a strategy x, then its payoff is not less
than than infy∈Y f(x, y) independently of the choice of the second
player. This value is called the guaranteed result for the first player.
The best guaranteed result for the first player

v = sup
x∈X

inf
y∈Y

f(x, y)

is called the lower value of the game.
A strategy of x0 of the first player is called maxmin if

inf
y∈Y

f(x0, y) = v.

In terms of the second player, the choice of strategy y guarantees him
a loss no more than supx∈X f(x, y) – his a guaranteed result. The best
guaranteed result of the second player

v = inf
y∈Y

sup
x∈X

f(x, y)

is called the upper value of the game.
A strategy y0 of the second player is called minimax strategy if

sup
x∈X

f(x, y0) = v.

Lemma 6.1. In any zero-sum game v 6 v, ie,

sup
x∈X

inf
y∈Y

f(x, y) 6 inf
y∈Y

sup
x∈X

f(x, y).
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Proof. For any x ∈ X and y ∈ Y ,

inf
y∈Y

f(x, y) 6 f(x, y) 6 sup
x∈X

f(x, y).

Then
inf
y∈Y

f(x, y) 6 sup
x∈X

f(x, y).

The left-hand side of this inequality depends on x, and the right-hand
side does not depend of x. Then

sup
x∈X

inf
y∈Y

f(x, y) 6 sup
x∈X

f(x, y)

for all y. Hence,

v = sup
x∈X

inf
y∈Y

f(x, y) 6 inf
y∈Y

sup
x∈X

f(x, y) = v.

Lemma is proved. 4
A point (x0, y0) ∈ X × Y is called saddle point of f if

f(x, y0) 6 f(x0, y0) 6 f(x0, y) (6.1)

for all x ∈ X and y ∈ Y .
The condition (6.1) is equivalent to

max
x∈X

f(x, y0) = f(x0, y0) = min
y∈Y

f(x0, y). (6.2)

Note that, when we write min instead of inf or max instead of sup,
then we have in mind that these extreme values are attained at some
points.

We say that a zero-sum game has a solution if the function f(x, y)
has a saddle point (x0, y0). The number v = f(x0, y0) is called the
value or price of the game, x0, y0 are optimal strategies of the players.
The number v = f(x0, y0) is called solution of the game. These titles
are justified by the following theorem.

Theorem 6.1. 1. A function f(x, y) has a saddle point if and
only if

max
x∈X

inf
y∈Y

f(x, y) = min
y∈Y

sup
x∈X

f(x, y). (6.3)
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2. Let (6.3) holds. Then a pair (x0, y0) is a saddle point if and
only if x0 is the maxmin strategy and y0 is the minimax strategy.

Proof of necessity of 1) and 2). Let (x0, y0) be a saddle point of
the function f(x, y). Then

v 6 sup
x∈X

f(x, y0) = f(x0, y0) = v = inf
y∈Y

f(x0, y) 6 v. (6.4)

From this v 6 v. By Lemma 6.1, the equality v = v holds. Then
(6.4) is also the equality, and then x0 is the maxmin strategy and y0

is the minimax strategy.
Proof of sufficiency. Assume that (6.3) is valid. Let x0 be a

maxmin and y0 be a minimax strategy. We show that (x0, y0) is a
saddle point. Indeed,

f(x0, y0) > inf
y∈Y

f(x0, y) = v = v = sup
x∈X

f(x, y0) > f(x0, y0).

This implies that all these inequalities are equalities. Therefore,
(x0, y0) is a saddle point. 4

Example. Game of matching pennies is played between two play-
ers, player A and player B. Each player has a penny and must secretly
turn the penny to heads or tails. The players then reveal their choices
simultaneously. If the pennies match (both heads or both tails) player
A keeps both pennies, so wins one from player B (+1 for A and −1
for B). If the pennies do not match (one heads and one tails) player
B keeps both pennies, so receives one from player A (−1 for A and
+1 for B). The game can be written in a payoff matrix(

−1 1
1 −1

)
Evidently, this game has not a saddle point. The best guaranteed
result for the first player is v = maxi minj ai,j = −1, and the best
guaranteed result for the second player is v = minj maxi ai,j = 1.
This game does not have a solution.
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6.2. Sufficient condition for the existence of a
saddle point

We give a sufficient condition for the existence of a saddle point,
which implies the minimax theorem.

At first recall that a subset Z ⊆ Rn of the Euclidian space Rn is
called convex if for any two points z, z′ ∈ Z and for any real number
0 6 p 6 1 the point pz + (1− p)z′ ∈ Z.

A function h(z) defined on a convex set Z is called convex if for
any z, z′ ∈ Z and for any real number 0 6 p 6 1 the following
inequality

h(pz + (1− p)z′) 6 ph(z) + (1− p)h(z′) (6.5)

holds.
The function h(z) is called concave if the inequality (6.5) holds,

where the symbol 6 is replaced by >.

Theorem 6.2. Let X and Y be convex subsets of Rn and Rm re-
spectively, where n and m be arbitrary positive integer numbers, Y be
a compact set. Let also,

• the real function f(x, y) be defined on X × Y and bounded in
absolute value,

• the function f(x, ·) be convex and continuous by y for each value
of x ∈ X,

• f(·, y) be concave for each value of y ∈ Y .

Then

sup
x∈X

inf
y∈Y

f(x, y) = inf
y∈Y

sup
x∈X

f(x, y).

Proof. By Lemma 6.1 we have to prove that

inf
y∈Y

sup
x∈X

f(x, y) 6 sup
x∈X

inf
y∈Y

f(x, y).

Assume without loss of generality that f(x, y) ∈ [0, 1].
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Fix a sufficiently small real number ε > 0 and a sufficiently
large positive integer number n. By compactness of Y an ε-net
{y1, . . . , yN} exists such that any point y ∈ Y is located in the
ε-neighborhood of some point yi.

Define a sequence of points y1, y2, . . . , yn ∈ Y and a sequence
of points x1, x2, . . . , xn ∈ X recursively. Let x0 be any point of X.
Define for t = 1, . . . , n :

yt =

N∑
i=1

yie−η
∑t−1
s=0 f(xs,yi)

N∑
j=1

e−η
∑t−1
s=0 f(xs,yj)

, (6.6)

where η =
√

(8 lnN)/n and a point xt is defined such that

f(xt, yt) > sup
x∈X

f(x, yt)−
1

n
.

Since the function f is convex by the second argument, we can use
Theorem 4.6, where the loss function is λ(x, y) = f(x, y).

Let in the exponentially weighted forecaster (6.6) yi be the expert
forecasts, i = 1, . . . , N , xt be outcomes, t = 1, . . . , n, and yt be
Learner forecast. By (4.44) we have

n∑
t=1

f(xt, yt) 6 min
i=1,...,N

n∑
t=1

f(xt, y
i) +

√
1

2
n lnN.

We divide this inequality by n :

1

n

n∑
t=1

f(xt, yt) 6 min
i=1,...,N

1

n

n∑
t=1

f(xt, y
i) +

√
lnN

2n
. (6.7)

Since the function f is convex by the second argument and is concave

273



by the first argument and (6.7) holds, we have

inf
y∈Y

sup
x∈X

f(x, y) 6

6 sup
x∈X

f

(
x,

1

n

n∑
t=1

yt

)
6

6 sup
x∈X

1

n

n∑
t=1

f(x, yt) 6

6
1

n

n∑
t=1

sup
x∈X

f(x, yt) 6

6
1

n

n∑
t=1

f(xt, yt) +
1

n
6

6 min
i=1, ..., N

1

n

n∑
t=1

f(xt, y
i) +

√
lnN

2n
+

1

n
6

6 min
i=1, ..., N

f

(
1

n

n∑
t=1

xt, y
i

)
+

√
lnN

2n
+

1

n
6

6 sup
x∈X

min
i=1, ..., N

f(x, yi) +

√
lnN

2n
+

1

n
. (6.8)

The transition from the 1st line to the 2nd is by definition; the tran-
sition from 2nd to 3rd line is by convexity of f(x, ·); the transition
from 3rd 4th line is made because the supremum of the sum does
not exceed the sum of suprema; the transition from the 4th to the
5th line is by definition of xt; the transition from 5th to 6th line is
by (6.7); the transition from 6th to 7th line is by concavity of the
function f(·, y); the transition from 7th to 8th line is by by definition
of the supremum.

Therefore, we have proved that for all n

inf
y∈Y

sup
x∈X

f(x, y) 6 sup
x∈X

min
i=1, ..., N

f(x, yi) +

√
lnN

2n
+

1

n
.

Tending n to infinity, we obtain

inf
y∈Y

sup
x∈X

f(x, y) 6 sup
x∈X

min
i=1,...,N

f(x, yi).
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Tending ε→ 0, we obtain

inf
y∈Y

sup
x∈X

f(x, y) 6 sup
x∈X

inf
y∈Y

f(x, y).

Theorem is proved. 4
The proof of Theorem 6.2 contains a method for calculating the

value of the game, since from the 1st, 5th and 8th lines of inequality

(6.8) follows that the value of 1
n

n∑
t=1

f(xt, yt) is arbitrarily close ap-

proximation to the value of the game for a sufficiently small ε and
sufficiently large n.

6.3. Mixed extension of matrix games

6.3.1. Minimax theorem

Assume that X = {1, . . . , N} and Y = {1, . . . , M} be sets of
strategies of the first and the second player. The corresponding game
is called matrix game, since the payoff function f(i, j) = ai,j can be
represented as a matrix. The first player chooses a row, the second
player chooses a number. The element ai,j located in their intersec-
tion determines the gain of the first player that is the loss the second
player.

Now let players make their choices at random. A mixed strategy
of a player is a probability distribution on set of of his moves. Mixed
extension of the matrix game (X,Y, f(x, y)) is defined as a game
(X ,Y, f̄(p̄, q̄)), where X is the set of all mixed strategies of the first
player and Y is the set of all mixed strategies of the second player,
f̄(p̄, q̄) is the mathematical expectation of the payoff function f(i, j)
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with respect to the probability distribution p× q :

X = {p̄ = (p1, . . . , pN ) :
N∑
i=1

pi = 1, pi > 0};

Y = {q̄ = (q1, . . . , qM ) :

M∑
i=1

qi = 1, qi > 0};

f̄(p̄, q̄) =
N∑
i=1

M∑
j=1

f(i, j)piqj .

Takes place minimax theorem of von Neumann.

Theorem 6.3. Any matrix game has a solution in mixed strategies:

max
p̄∈X

min
q̄∈Y

f̄(p̄, q̄) = min
q̄∈Y

max
p̄∈X

f̄(p̄, q̄).

Proof. It suffices to prove that the function f̄(p̄, q̄) has a saddle
point. We shall apply Theorem 6.2. The sets X and Y are simplexes
in Euclidean space, and so, they are convex. The function f̄(p̄, q̄)
is bilinear and therefore continuous by both arguments, concave and
convex by them. 4

6.3.2. Pure strategies

Consider a matrix game with sets of strategies X = {1, . . . , N},
Y = {1, . . . , M} and with a payoff function f(i, j) = ai,j . We give
three simple statements that describe in more detail the structure of
the optimal solution in terms of pure strategies.

Denote by 1i = (0, . . . , 1, . . . , 0) the pure strategy that is a
probability distribution concentrated in i ∈ X. This is the unit vector
of length N whose ith coordinate is 1. Similarly, we define pure
strategies on the set Y . Notice that f̄(1i, 1j) = f(i, j) = ai,j .

Theorem 6.4. The pair of mixed strategies (p̄∗, q̄∗) is a solution or a
saddle point of the mixed extension of the matrix game (X ,Y, f̄(p̄, q̄))
if and only if the inequality

f̄(1i, q̄
∗) 6 f̄(p̄∗, q̄∗) 6 f̄(p̄∗, 1j) (6.9)
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holds for all i ∈ X and j ∈ Y .

Proof. The necessity follows from Theorem 6.1. To prove the
sufficient condition note that every mixed strategy p̄ = (p1, . . . , pN )
of the matrix game is a linear combination of the pure strategies:

p̄ =
N∑
i=1

pi1i. Similarly, q̄ =
M∑
j=1

qj1j . Therefore, we can consider the

double linear combination of the inequality (6.9). Then

f̄(p̄, q̄∗) =
N∑
i=1

pif̄(1i, q̄
∗) 6

N∑
i=1

pif̄(p̄∗, q̄∗) = f̄(p̄∗, q̄∗),

f̄(p̄∗, q̄∗) =
M∑
j=1

qj f̄(p̄∗, q̄∗) 6
M∑
j=1

qj f̄(p̄∗, 1j) = f̄(p̄∗, q̄)

for all p̄ and q̄. Hence we obtain the saddle point condition:

f̄(p̄, q̄∗) 6 f̄(p̄∗, q̄∗) 6 f̄(p̄∗, q̄)

for all p̄ and q̄. 4

Theorem 6.5. For the mixed extension of any matrix game the fol-
lowing relations hold:

min
q̄
f̄(p̄, q̄) = min

j
f̄(p̄, 1j),

max
p̄
f̄(p̄, q̄) = max

i
f̄(1i, q̄).

Proof. Evidently,

min
q̄
f̄(p̄, q̄) 6 min

j
f̄(p̄, 1j),

max
p̄
f̄(p̄, q̄) > max

i
f̄(1i, q̄).
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The coverse inequality follows from the inequality

f̄(p̄, q̄) =

N∑
i=1

M∑
j=1

ai,jpiqj =

=
M∑
j=1

(
N∑
i=1

ai,jpi

)
qj >

>

(
min
j

N∑
i=1

piai,j

) M∑
j=1

qj

 =

= min
j

N∑
i=1

piai,j = min
j
f̄(p̄, 1j)

that holds for each q̄. This inequality means that the minimum of
the weighted linear combination is achieved when all of the weight is
concentrated on the smallest element. Hence,

min
q̄
f̄(p̄, q̄) > min

j
f̄(p̄, 1j).

The second inequality is proved similarly. 4
This theorem implies

Corollary 6.1. For the mixed extension of an arbitrary matrix game
the following equality holds:

v = max
p̄

min
j
f̄(p̄, 1j) = min

q̄
max
i
f̄(1i, q̄),

where v is the value of the game.

Let us find a solution of matching pennies game in mixed strate-
gies. The matrix of this game is(

−1 1
1 −1

)
.

The mixed strategies of this game are p̄ = (p, 1−p) and q̄ = (q, 1−q),
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and the mathematical expectation of the payoff function is

f̄(p̄, q̄) =
2∑

i,j=1

ai,jpiqj =

= q(−p+ 1− p) + (1− q)(p− (1− p)) =

= −4

(
p− 1

2

)(
q − 1

2

)
.

This expectation

f̄(p̄, q̄) = −4

(
p− 1

2

)(
q − 1

2

)
(6.10)

is the equation of a one-sheet hyperboloid.
Let

v(p) = min
j
f̄(p̄, 1j) = min{1− 2p, 2p− 1}.

By Corollary 6.1 the value of this game is equal to the maximum of
v(p) that is attained for p∗ = 1

2 .
Similar arguments show that q∗ = 1

2 . the value of the game is
v∗ = f̄(p̄∗, q̄∗) = 0. The point (p∗, q∗) is a saddle point of the one-
sheet hyperboloid (6.10).

6.3.3. Solution of the matrix game of type (2×M)

To find a solution in the mixed extension of a matrix game of type
(2 ×M) we will use a geometric representation of its strategies. By
Corollary 6.1 the value of this game is equal to

v = max
p

min
16j6M

(a1,jp+ a2,j(1− p)).

Here, the first player chooses a mixed strategy – the probability dis-
tribution p̄ = (p, 1 − p) on the rows of the matrix, and the second
player chooses a pure strategy – jth column of the matrix.

So, to find the value of the game, the first player must simply find
the maximum point p = p∗ of the function

v(p) = min
16j6M

(a1,jp+ a2,j(1− p))
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on the unit interval [0, 1].
To find the solution of the game consider all M stright lines

Lj(p) = a1,jp+ a2,j(1− p),

where j = 1, . . . , M .
For each p ∈ [0, 1] conduct a vertical line to the intersection with

the line with the lowest value of the ordinate. The points of intersec-
tion form the broken line y = v(p) – lower envelope for all these lines.
The upper point of the lower envelope determines optimal strategy for
the first player (its abscissa is p∗) and the value of the game (ordinate
of v(p∗)).

Problem. Find the solution of the mixed extension of the matrix
game: (

7 3 3 1 −1 0
−1 −1 1 0 5 3

)
.

We build all the lines of the form Lj(p) = a1,jp + a2,j(1 − p) for
j = 1, . . . , 6 :

L1(p) = 7p− (1− p),
L2(p) = 3p− (1− p),
L3(p) = 3p+ (1− p),

L4(p) = p,

L5(p) = −p+ 5(1− p),
L6(p) = 3(1− p).

We build the lower envelope of these lines. Point p∗ is the point of
intersection of lines 4 and 5, ie, we solve the equation p = −p+5(1−p).
We obtain: p∗ = 5/7 and v(p∗) = 5/7.

To find the optimal strategy of the second player use the following
theorem.

Theorem 6.6. Let (p̄∗, q̄∗) be a solution of a matrix game in mixed
strategies, v∗ be the value of this game. Then

• f̄(1i, q̄
∗) = v∗ follows from p∗i > 0,

• f̄(p̄∗, 1j) = v∗ follows from q∗j > 0.
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Proof. Let us prove the first statement. By definition f̄(1i, q̄
∗) 6

v∗, i = 1, . . . , N .
Assume that a number i0 exists such that p∗i0 > 0 and f̄(1i0 , q̄

∗) <
v∗. Consider the linear combination of inequalities f̄(1i, q̄

∗) 6 v∗

with coefficients p∗i , i = 1, . . . , N , and, since one of the summed
inequalities is strict, we get

v∗ = f̄(p̄∗, q̄∗) =
N∑
i=1

f̄(1i, q̄
∗)p∗i < v∗ = f̄(p̄∗, q̄∗).

This proves the first assertion. 4

Corollary 6.2. Let (p̄∗, q̄∗) be a solution of the matrix game in mixed
strategies and v∗ be a value of the game. Then

• p∗i = 0 follows from f̄(1i, q̄
∗) < v∗,

• q∗j = 0 follows from f̄(p̄∗, 1j) > v∗.

Condition f̄(p̄∗, 1j) = pa1,j + (1 − p)a2,j > v∗ means that the
corresponding line at point p∗ is above the point of intersection of
(two) lines on which the value of the game is attained.

Now complete the solution of the problem - we find the optimal
strategy of the second player.

For the 1st, 2nd, 3rd, and 6th pure strategies of the second player
(the corresponding lines) we have

f̄(p̄∗, 1j) = Lj(p
∗) > v∗

for j = 1, 2, 3, 6.
By Corollary 6.2, for optimal strategy

q̄∗ = (q∗1, q
∗
2, q
∗
3, q
∗
4, q
∗
5, q
∗
6)

we have q∗1 = 0, q∗2 = 0, q∗3 = 0, q∗6 = 0, q∗4 = q, q∗5 = 1− q.
Now suppose that the first player chooses a pure strategy on the

rows – one of the row i = 1, 2. The second player chooses a mixed
strategy q̄∗ = (0, 0, 0, q∗4, 1− q∗4, 0) on the columns. Then

v∗ = min
q

max
16i62

(ai,4q + ai,5(1− q)) = max
16i62

(ai,4q
∗
4 + ai,5(1− q∗4)).
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For j = 4, 5, we have q∗4 − (1− q∗4) = 5/7 and 5(1− q∗4) = 5/7. Then
q∗4 = 6/7, q∗5 = 1/7.

The complete solution of the game is given by

p̄∗ =

(
5

7
,
2

7

)
,

q̄∗ = (0, 0, 0,
6

7
,
1

7
, 0),

v∗ =
5

7
.

6.3.4. Solution of the game of type (N ×M)

Consider a game in mixed strategies with a matrix A = (ai,j), where
i = 1, . . . , N , j = 1, . . . , M . Without loss of generality, suppose
that all elements of the matrix A are strictly positive, so the value v
of this game are also strictly positive. 1

By Corollary 6.1 the following equality holds for the mixed ex-
tension of matrix game.

v = max
p

min
j
f̄(p̄, 1j) = min

q̄
max
i
f̄(1i, q̄), (6.11)

where v is the value of the game. From this follows, that there exists
a mixed strategy p̄ = (p1, . . . , pN ) of the first player such that
f̄(p̄, 1j) > v for each pure strategy 1j of the second player. In other
words,

N∑
i=1

ai,jpi > v j = 1, . . . , M,

N∑
i=1

pi = 1,

pi > 0 i = 1, . . . , N.

1In order to achieve this, you can add some sufficiently large positive constant
to each element of the payoff matrix.
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Denote xi = pi/v, i = 1, . . . , M . Then these conditions can be
rewritten as

N∑
i=1

ai,jxi > 1 j = 1, . . . , M,

N∑
i=1

xi = 1/v,

xi > 0 i = 1, . . . , N.

Therefore, the problem of finding solutions of the matrix game is
reduced to a linear programming problem: find x1, . . . , xN such
that

N∑
i=1

xi → min

subject to

N∑
i=1

ai,jxi > 1 for j = 1, . . . , M,

xi > 0 for i = 1, . . . , N.

By (6.11) there is a mixed strategy q̄ = (q1, . . . , qN ) of the first
player such that f̄(1i, q̄) 6 v for any pure strategy 1i the first player.
In other words, the following conditions are valid:

M∑
j=1

ai,jqj 6 v for i = 1, . . . , N,

M∑
j=1

qj = 1,

qj > 0 for j = 1, . . . , M.

We introduce the notation: x′j = qj/v, j = 1, . . . , M . Then these
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conditions are transformed into relations

M∑
j=1

ai,jx
′
j 6 1 for i = 1, . . . , N,

M∑
j=1

x′j = 1/v,

x′j > 0 for j = 1, . . . , M.

The problem of searching solutions in the matrix game is reduced to
a linear programming problem: find x′1, . . . , x

′
M such that

M∑
j=1

x′j → max

subject to

M∑
j=1

ai,jx
′
j 6 1 for i = 1, . . . , N,

x′j > 0 for j = 1, . . . , M.

This is a linear programming problem dual to the direct problem for
the variables xi, i = 1, . . . , N .

6.3.5. Finite game between K players

In general, a finite game between K players in normal form is defined
as follows. Player k ∈ {1, . . . , K} has Nk possible strategies (moves
or pure strategies). Let ī = (i1, . . . , iK) be a set of strategies of K
players, where ij ∈ {1, . . . , Nj}, j = 1, . . . , K.

Then the gain of the kth player is denoted fk (̄i) = fk(i1, . . . , iK)
(in other setting fk (̄i) is his loss).

A mixed strategy of kth player is a probability distribution p̄k =
(pk1, . . . , pkNk) in the set of its strategies {1, . . . , Nk}. Here pkj is
the probability of a pure strategy j ∈ {1, . . . , Nk}.

Let Ik be a random variable taking any value i ∈ {1, . . . , Nk}
with probability pki .
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Let Ī = (I1, . . . , IK) be a vector-valued random variable
representing strategies of all players. Its values are vectors ī =
(i1, . . . , iK), where ij ∈ {1, . . . , Nj}, j = 1, . . . , K.

It is usually assumed that the random variables I1, . . . , IK are
independent. Also, a probability measure π = p̄1 × · · · × p̄K is con-
sidered on the set of vectors Ī which determines the probability of
elementary event ī = (i1, . . . , iK) equal to the product of the prob-
abilities of outcomes:

π(̄i) = π(Ī = ī) = p1
i1 · . . . · p

K
iK
.

The expected payoff of the kth player is equal to

Eπ(fk(Ī)) =
∑
ī

π(̄i)fk (̄i) =

=

N1∑
i1=1

· · ·
NK∑
iK=1

p1
i1 · . . . · p

K
iK
fk(i1, . . . , iK).

Nash equilibrium
The set of mixed strategies of all K players

π = (p̄1, . . . , p̄k, . . . , p̄K)

is called Nash equilibrium if for any k = 1, . . . , K and for any mixd
strategy p̄′k

Eπ(fk) > Eπ′(f
k),

where the strategy

π′ = (p̄1, . . . , p̄′k, . . . , p̄K)

is obtained from the strategy π by replacing the probability distribu-
tion p̄k on the probability distribution p̄′k.

We can say that if π is a Nash equilibrium, then there is no
advantage to any player to change its strategy if the other players do
not change their strategies.

Minimax theorem is a special case of assertion of the existence of
the Nash equilibrium for the case of zero-sum games for two players.
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In this case, the payoff function of players are f1(i, j) = f(i, j) and
f2(i, j) = −f(i, j), where f(i, j) is the payoff function of two-person
zero-sum game.

In particular, the saddle point (p̄0, q̄0) in the two-person zer-sum
game in mixed strategies is a Nash equilibrium, since for all mixed
strategies p̄ and q̄

f̄(p̄, q̄0) 6 f̄(p̄0, q̄0) 6 f̄(p̄0, q̄),

where f̄(p̄, q̄) is the mathematical expectation of the gain of the first
player and −f̄(p̄, q̄) is the mathematical expectation of the gain of
the second player.

In the case of two-person zero-sum game the set of all Nash equi-
libria is described in the following proposition.

Proposition 6.1. A pair if mixed strategies (p̄∗, q̄∗) is a Nash equi-
librium in two-person zero-sum game if and only if

q̄∗ ∈ {q̄ : min
p̄
f̄(p̄, q̄)→ max},

p̄∗ ∈ {p̄ : max
q̄
f̄(p̄, q̄)→ min}.

For any such pair (p̄∗, q̄∗), the equality f̄(p̄∗, q̄∗) = v holds, where v
is a value of the game.

Proof of Proposition 6.1 is left to the reader as a problem.
In general, for finite game of K players the following theorem

holds.

Theorem 6.7. Any finite game has at least one Nash equilibrium.

The proof of this theorem is based on Brouwer’s fixed point the-
orem.

We give examples of games and Nash equilibria. Consider the
games of two players, each of which has two strategies.

Example 1. The first game - previously considered matching
pennies game, in which the first player thinks of a number 0 or 1,
and the second guesses, with the payoff matrix(

−1 1
1 −1

)
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This zero-sum game has no saddle point, but it has a solution in
mixed strategies: the corresponding mixed strategies for the first and
second players are p̄∗ = (1

2 ,
1
2) and q̄∗ = (1

2 ,
1
2). This solution and is

the unique Nash equilibrium in this game.
We rewrite the payoff matrix of this game in more general form:

action 0 1

0 (-1,1) (1,-1)

1 (1,-1) (-1,1)

Example 2. The two players decide to go to a concert to listen
to Bach or go to a concert to listen to Penderecki. One prefers to
listen to Bach, and another to Penderecki. At the same time, they
both prefer to go together for one show, than each in his own show.
Table of preferences is:

action Bach Penderecki

Bach (2,1) (0,0)

Penderecki (0,0) (1,2)

There are two Nash equilibrium in pure strategies in this game (B,B)
and (P,P).

Example 3. Two people live in the neighboring rooms. Everyone
can to listen to loud or soft music. Each of them prefers to listen to
loud music, and that his neighbor was listening to soft music. Table
preferences degree of loudness is:

action soft loud

soft (3,3) (1,4)

loud (4,1) (2,2)

There is only one Nash equilibrium in this game. This is a pure
strategy (s, s) (proof is left to a reader as the problem).

Correlated equilibrium
The correlated equilibrium of Aumann is a generalization of the

Nash equilibrium. The probability distribution P on the set

K∏
k=1

{1, . . . , Nk}
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of all possible tuples ī = (i1, . . . , iK), composed of various strategies
of all K players is called correlated equilibrium if for all k = 1, . . . , K
and for any function h : {1, . . . , Nk} → {1, . . . , Nk},

EP (fk (̄i)) > EP (fk (̄i−k, h(ik))), (6.12)

where the vector ī = (i1, . . . , iK) is distributed according tothe
probability distribution P , and

ī−k = (i1, . . . , ik−1, ik+1, . . . , iK)

(̄i−k, h(ik)) = (i1, . . . , ik−1, h(ik), ik+1, . . . , iK).

Unlike the Nash equilibrium values ik are no longer assumed to be
independent, and the probability measure P is not a product measure
of mixed strategies of the players.

The following lemma gives an equivalent description of the corre-
lated equilibrium in geometric terms.

Lemma 6.2. A probability distribution P on the set

K∏
k=1

{1, . . . , Nk}

of sequences of strategies ī = (i1, . . . , iK) is a correlated equilibrium
if and only if for any player k ∈ {1, . . . , K} and for any strategies
j, j′ ∈ {1, . . . , Nk}∑

ī:ik=j

P (̄i)(fk (̄i)− fk (̄i−k, j′) > 0, (6.13)

where (̄i−k, j
′) = (i1, . . . , ik−1, j

′, ik, . . . , iK).
The condition (6.13) can be written also as

E(fk (̄i)|ik = j) > E(fk (̄i−k, j
′)|ik = j), (6.14)

where E is the conditional mathematical expectation with respect to
the probability distribution P . 2

2Often it is convenient to take this condition as a definition of the correlated
equilibrium.
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Proof. The condition (6.12) the correlated equilibrium is equiva-
lent to a set of conditions:∑

ī

P (̄i)(fk (̄i)− fk (̄i−k, h(ik))) > 0, (6.15)

where k ∈ {1, . . . , K} and h is any function of the form

h : {1, . . . , Nk} → {1, . . . , Nk}.

For any j, j′ ∈ {1, . . . , Nk}, consider a function h such that h(j) = j′

and h(ik) = ik for all ik 6= j.
Then in the sum (6.15) will be only the terms corresponding to

sets ī, where ik = j, and in the remaining terms of the corresponding
differences will be reduced. Thus, the sum (6.15) becomes the sum
(6.13).

The converse statement is trivial. 4
Let P be a probability distribution on the set

∏K
k=1{1, . . . , Nk}

and a ∈ Ak for some 1 6 k 6 K. We denote by P−i(·|ik = a)
the corresponding conditional probability distribution on the set∏K
s=1,s 6=k{1, . . . , Ns} of tuples ī−k given ik = a. We also intro-

duce the notation

fk(j, P̄−k(·|ik = a))) = EP̄−k(·|ik=a))(f
k(j, ī−k))

that is the mathematical expectation of the payoff function, in which
ik = a, with respect to this conditional distribution.

We also write more compactly:

fk(j, P̄−k) = EP̄−k(fk(j, ī−k)),

having in mind that P̄−k is a probability distribution on ī−k generated
by the distribution P , provided ik = a.

We can now write the condition (6.13) of the correlated equilib-
rium in the equivalent form:

Corollary 6.3. A probability distribution P on the set
∏K
k=1{1, . . . , Nk}

of sequences of strategies of type ī = (i1, . . . , iK) is correlated equi-
librium if and only if for each player k ∈ {1, . . . , K} and for each
strategy j, j′ ∈ {1, . . . , Nk}

fk(j, P̄−k(·|ik = j)) = max
j′∈Ai

fk(j′, P̄−k(·|ik = j)). (6.16)
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Each condition of the type (6.13) defines a closed half-plane, so
that the set of correlated equilibria is a closed convex polyhedron in
the space of measures on the set

∏K
k=1{1, . . . , Nk}.

The existence of a Nash equilibrium in any finite game means
that a correlated equilibrium exists in any finite game. The set of
correlated equilibria is a broader and has a simpler description than
the set of all Nash equilibria.

6.4. Problems

1. Prove that in the mixed extension of any arbitrary matrix game
maximin (minimax) strategy of one player achieved with pure strat-
egy of another player:

min
q̄
f̄(p̄∗, q̄) = min

j
f̄(p̄∗, 1j),

max
p̄
f̄(p̄, q̄∗) = max

i
f̄(1i, q̄

∗), (6.17)

where (p̄∗, q̄∗) is solution of the game (saddle point).
2. Prove Proposition 6.1.
3. Prove that in the game of Example 2 (Section 6.3.5), there is

also a Nash equilibrium in mixed strategies: the first player chooses
B with probability 2

3 and P with probability 1
3 , and the second player

chooses B with probability 1
3 and P - with probability 2

3 .
Are there any other Nash equilibrium in this game?
4. Prove that in the game of Example 3 (Section 6.3.5), there is

only one Nash equilibrium. This is a pure strategy (T, T ).
5. Show that an arbitrary convex combination of Nash equilibria

is a correlated equilibrium.
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Chapter 7

Game-theoretic approach
to probability theory

In this chapter we consider a new game-theoretic approach to prob-
ability theory, proposed by Vovk and Shafer [26].

Within this approach we formulate games in which, under certain
conditions, various laws of probability theory hold. Examples of such
laws – the law of large numbers, the law of iterated logarithm, central
limit theorem, etc.

Game theory interpretation of probability proposed in Vovk and
Shafer’s book [26] will be demonstrated in Section 7.1 for the law of
large numbers.

Within this approach in the most natural way the problem of
universal prediction discussed in Chapter 3 is formulated. Games for
universal predictions will be considered in Section 7.3.

7.1. Game-theoretic law of large numbers

Game interpretation of the theory of probability is based on ideas
and concepts from finance. In the game-theoretic setting, Vovk and
Shafer [26] formulate for every law of probability theory (for example,
for the strong law of large numbers and the law of the iterated log-
arithm) a repeated game with perfect information, in which at each
round (step) of the game one participant – Forecaster, gives the esti-
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mated value of a future outcome and, after that, another participant
– Nature, issues a new outcome. 1 The third party of the game –
Skeptic defines the goal of the game. Knowing the forecast, Skeptic
bets on on its deviation from a future outcome and receives a gain or
suffers loss when the outcomes occurs.

Before the game starts Skeptic has some initial capital and through-
out the game, he can not go to the debt – its strategy should be de-
fended. The game is designed so that if the law of probability theory
is violated for some sequence of forecasts and outcomes, then, us-
ing some specific strategy, Skeptic can increase his capital to infinity
regardless of the other player moves. This is equivalent to that for
the sequence of forecasts and outcomes, for what the law is valid,
Skeptic’s capital will always be bounded.

Consider an infinitely repeated bounded game of prediction be-
tween three players: Forecaster, Skeptic and Nature.

The players are regulated the following perfect-information pro-
tocol:

Initialize the Skeptic’s capital: K0 = 1.
FOR n = 1, 2, . . .
Forecaster announces a forecast pn ∈ [0, 1].
Skeptic announces a number Mn ∈ R.
announces an outcome ωn ∈ [0, 1].
updates his capital: Kn = Kn−1 +Mn(ωn − pn).
ENDFOR

This game can be considered as financial process. In this game,
at each step n, Skeptic buys Mn units of a financial instrument by
pn per unit. At the end of the step n, �Nature announces a new price
ωn and Skeptic’s capital increases or decreases by the corresponding
value. Note that it can be Mn < 0. In this case, Skeptic sells the
number Mn of units of the instrument at the beginning of step n.

Skeptic wins in this game if Kn > 0 for all n and supKn = ∞
regardless of the other player moves, otherwise Nature and Predictor
win.

1In the case of binary outcomes 0 and 1, the average value is equal to the
probability of 1.
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A trajectory is a sequence of moves of Forecaster and Nature:
p1, ω1, p2, ω2, . . . . We do not assume that there are laws defining
the moves of participants. If such a law exists, call it the strategy.
Example of Skeptic’s strategy: at each step n the value Mn can be
determined by the sequence of functions from the preceding part of
trajectory:

Mn = Mn(p1, ω1, p2, ω2, . . . , pn−1, ωn−1, pn).

Game-theoretic law of large numbers is formulated in the following
theorem.

Theorem 7.1. A defensive strategy for Skeptic exists such that for
any trajectory of the game the following holds: if the strong law of
large numbers

lim
n→∞

1

n

n∑
i=1

(ωi − pi) = 0, (7.1)

fails then Skeptic wins in the bounded forecasting game; in more de-
tail, Skeptic can choose his moves Mn such that Kn > 0 for all n and
lim sup
n→∞

lnKn
n > 0.

Proof. Assume that the strong law of large numbers (7.1) fails.
This means that for some ε > 0

1

n

n∑
i=1

(ωi − pi) > 2ε (7.2)

holds for infinitely many n or for some ε > 0

1

n

n∑
i=1

(ωi − pi) < −2ε (7.3)

holds for infinitely many n.
Consider the first case. Since |ωi − pi| 6 1,

ε
n∑
i=1

(ωi − pi)− ε2
n∑
i=1

(ωi − pi)2 > ε2n
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holds for infinitely many n. Using the inequality t − t2 6 ln(1 + t),
which holds for all t > 1/2, we obtain

n∑
i=1

ln(1 + ε(ωi − pi)) > ε2n

for infinitely many n.
Define the Skeptic’s strategy:

Mn = εKn−1,

for each n, where Kn−1 is its current capital.
Then the Skeptic’s capital at any step n is equal to

Kn =

n∏
i=1

(1 + ε(ωi − pi)), (7.4)

and its logarithm is

lnKn =
n∑
i=1

ln(1 + ε(ωi − pi)) > ε2n,

From this, we obtain

lim sup
n→∞

lnKn
n

> ε2, (7.5)

ie, supKn =∞.
Note also, that by definition (7.4), Kn > 0 for all n regardless of

the values of ωi and pi be announced by Nature and Forecaster in the
process of the game.

Similarly, if (7.3) holds for infinitely many n, we can use Skeptic’s
strategy

Mn = −εKn−1,

for all n, where Kn−1 is its current capital.
The drawback of this argument is that the Skeptic has no infor-

mation about which of the conditions (7.2) or (7.3) holds for infinitely
many n, and for which ε they hold.
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In order to overcome this difficulty, we complicate the Skeptic’s
strategy so that it takes into account both cases and all possible values
of ε > 0. We put εk = 2−k for k = 1, 2, . . . . We define K1,k

0 = 1 and

K2,k
0 = 1 for all k.

Consider the sequence of strategies and the corresponding auxil-
iary games: k = 1, 2, . . . ,

M1,k
n = εkK1,k

n−1,

M2,k
n = −εkK2,k

n−1,

M+
n =

∞∑
k=1

2−kM1,k
n ,

M−n =
∞∑
k=1

2−kM2,k
n ,

Mn =
1

2
(M+

n +M−n ),

where n = 1, 2, . . . . Combine these auxiliary games and strategies
in one game and one strategy Mn with one common gain Kn:

K+
n =

∞∑
k=1

2−kK1,k
n ,

K−n =
∞∑
k=1

2−kK2,k
n ,

Kn =
1

2
(K+

n +K−n ),

for n = 1, 2, . . . .
These series are convergent, since for any fixed n it hold K1,k

n 6 2n

for all k. From this and by definition, |M2,k
n | 6 2n−1 for all n.

Note that each of capitals satisfies the inequalities K1,k
n > 0 and

K2,k
n > 0 for all n and k.

If the strong law of large numbers, if condition (7.1) fails then,
for some ε = εk, the condition (7.2) or the condition (7.3) holds for
infinitely many n.
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By (7.5), where Kn = Ks,kn ,

lim sup
n→∞

lnKs,kn
n

> 0

for s = 0 or 1. From this follows that

lim sup
n→∞

lnKn
n

> 0.

Theorem is proved. 4
Game-theoretic form of the law of large numbers are obtained by

conversion and some weakening of Theorem 7.1.

Corollary 7.1. A defensive strategy of Skeptic exists such that for
any trajectory of the bounded forecasting game the following implica-
tion is valid:

sup
n
Kn <∞⇒ lim

n→∞

1

n

n∑
i=1

(ωi − pi) = 0,

where Kn is Skeptic capital at step n.

We say that Skeptic forces Forecaster and Nature to satisfy the
strong law of large numbers.

7.2. Game-theoretic probability

In the Shafer and Vovk’s [26] game-theoretic approach to probability
theory, the main concept is that of the game of prediction. The notion
of probability of an event is a derivative concept and is defined in the
game-theoretic terms.

We consider a game of a very general form. At first, we give
an informal explanation. In this game we distinguish two players:
Skeptic and Nature. In the financial interpretation, the second player
can be called Market. Skeptic makes moves changing his capital K.
At any round n of the game, a move of Skeptic is defined by a price to
be paid immediately and a payoff that depends on Nature’s following
move. The gambles among which Skeptic may choose may depend on
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the situation, but we always allow him to combine allowable gambles
and to take any fraction or multiple of any available gamble. We also
allow him to borrow money freely without paying interest.

All moves of Nature form a trajectory of the game. A strategy for
Skeptic is a plan for how to gamble in each nonterminal round of the
game. This strategy can be represented by a function of an initial part
of the trajectory available for Skeptic at the corresponding round of
the game. The Skeptic’s strategy M together with his initial capital
determine his capital KM(ξ) for every trajectory ξ of the game.

The formal definitions are as follows. At each round (step) n of
a game Nature and Skeptic make their moves: Nature announces an
element wn, Skeptic announces an element pn. A trajectory of Nature
is a sequence of its moves over first n− 1 rounds of the game:

ξn−1 = w1, w2, . . . , wn−1.

In general case, we assume that wn is an element of some set Wξn−1

depending from the initial fragment ξn−1 of the trajectory.
Let Ω be a set of all (finite) trajectories of the game.
By a strategy of Skeptic we mean any function pn = M(ξn−1)

from initial fragment of the trajectory. In general, pn is an element
of some set: pn ∈ Sξn−1 .

Let a gain function λ : Wξn−1 × Sξn−1 → R be given. At each
round of the game the Skeptic’s capital changes:

KM(ξn) = KM(ξn−1) + λ(wn, pn),

where KM(ξ0) = KM0 is its ititial capital.
Any Skeptic’s strategyM and a trajectory ξ of Nature define the

Skeptc’s capital KM(ξ).
We suppose that all strategies of Skeptic form a linear space: α1p+

α2p
′ ∈ Sξ for all p, p′ ∈ Sξ and for all real numbers α1, α2, where ξ is

an arbitrary initial fragment of the trajectory. We suppose also that
the function λ is linear by the second argument:

λ(w,α1p+ α2p
′) = α1λ(w, p) + α2λ(w, p′)

for all p, p′ and for all real numbers α1, α2. In particular, for any
two strategiesM1 andM2 and for any real numbers α1 and α2, any
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linear combination M = α1M1 + α2M2 is also a strategy and the
corresponding Skeptic capitals satisfy:

KM(ξ) = α1KM1(ξ) + α2KM2(ξ)

for all trajectories ξ of Nature.
The example of such game is the simple forecasting game consid-

ered in Section 7.1. In the financial interpretation, we can join Fore-
caster and Nature in one player Nature or Market. In the notation of
this game pi is the price of one unit of a financial instrument and ωi is
a payoff for this unit at the end of round i. The Nature move at round
n is a pair (pn, ωn) and the gain function is λ(w,Mn) = Mn(ωn−pn).

The set Ω of all trajectories overN rounds consists of all sequences

ξN = p1, ω1, p2, ω2, . . . , pN , ωN .

The corresponding Skeptic’s capital is:

K(ξN ) = K0 +
N∑
i=1

Mn(ωn − pn),

where K0 is some initial capital. This initial capital can be zero.
Let x = x(ξ) be a function of a trajectory ξ ∈ Ω of the game. This

function will be called variable, by analogy with a random variable
in the theory of probabilities.

In the financial interpretation, the variable x is an obligation (con-
tract) to pay x(ξ) units of the currency if the game ended at the
trajectory ξ.

Buying obligation α for x means that the buyer pays the seller
the value of α when the game starts, and the seller must return to
the buyer the value x(ξ) at the end of the game for any trajectory ξ.

Consider the question, at what minimum price α the seller can
sell (and the purchaser to buy) a variable x.

The buyer can pay the seller a value α smaller than the possible
payoff x(ξ) at the end of the game. In this case, the seller must
compensate for this difference through the game, that is, use the
amount of α as the initial capital for the game with some strategy
M and get in the end of the game the enough capital (or even more)
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to pay x(ξ) by the obligation: K0 = 0 and KM(ξ) +α > x(ξ) for any
trajectory ξ of the game.

In what follows, for any variable y, the inequality KM > y means
that KM(ξ) > y(ξ) for all trajectories ξ. In this case the seller is Skep-
tic, which should implement obligations x by hedging in the game.

The upper price of a variable x is the lowest price α, at which
Skeptic can sell the variable x such that he could implement the
obligation to pay x(ξ) for any trajectory of the game using some
strategy M:

Ex = inf{α : ∃M(KM > x− α)}

Let us now consider the question at which maximum price α the
buyer can buy (and the seller can sell) the variable x. The seller
receives from the buyer a value α at the beginning of the game and is
obliged to pay x(ξ) at the end of the game if the trajectory ξ would
realizable. Now buyer is Skeptic, which should compensate for the
difference α− x(ξ) by hedging.

The lower price of a variable x is the maximal price α, such that
Skeptic’s strategy N exists satisfying KN > α− x:

Ex = sup{α : ∃N (KN > α− x)}

Selling x for α is the same as buying −x for −α. Then Ex =
−E(−x). Formally, this means that

E(−x) = sup{α : ∃N (KN > α+ x)} =

= − inf{α : ∃M(KM > x− α)} = −Ex

The protocol is called coherent if for every Skeptic’s strategyM a
trajectory ξ exists where he cannot win anything more than its initial
capital: KM(ξ) 6 K0.

Proposition 7.1. If the protocol of the game is coherent then Ex 6
Ex and Ea = Ea = a, where a is a variable such that a(ξ) = a for
all ξ.

Proof. If Ex > Ex then the constants α1 < α2 exist such that

Ex < α1 < α2 < Ex.
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Also, two strategies M1 and M2 exist such that KM1 > x− α1 and
KM2 > α2 − x. Then for the strategy M = M1 +M2 and for the
zero initial capital K0 = 0, the following inequality holds

KM = KM1 +KM2geα2 − α1 > 0.

This contradicts the assumption of coherence.
The proof of the second statement to the proposition is left to the

reader as a problem. 4
Note that the upper price is determined by the interests of the

seller of the variable, and the lower price is determined by the interests
of the buyer of the variable.

If the lower and upper prices of a variable x are equal: Ex = Ex,
we call this common value Ex the price of the variable x. In this case
define V x = E(x− Ex)2 and V x = E(x− Ex)2.

An upper and a lower probability of an event S ⊆ Ω can be defined
for any game-theoretic protocol. Consider the indicator function of
the event E:

1S(ξ) =

{
1 if ξ ∈ S,
0 otherwise.

This function is also a variable defined on the trajectories of the game.
So it has an upper and a lower price.

The upper probability of an event S is defined:

P (S) = E(1S).

By definition P (S) 6 1 for any event S, and:

P (S) = inf{α : K0 = α and ∃M∀ξ(KM(ξ) > 1 if ξ ∈ S,

KM(ξ) > 0 if ξ 6∈ S)}.

The lower probability of an event S is defined

P (S) = E(1S).

By definition:

P (S) = sup{α : K0 = 0 and ∃N∀ξ(KN (ξ) > α− 1 if ξ ∈ S,

KN (ξ) > α if ξ 6∈ S)}.
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If the protocol is coherent then

0 6 P (S) 6 P (S) 6 1

and
P (S) = 1− P (Ω \ S).

As an example, consider the game-theoretic version of the Bernoulli
theorem.

We consider the following perfect-information protocol – Bernoulli
protocol.

The players are: Skeptic and Nature.
Let 0 < ε 6 1 and α > 0 be the initial Skeptic’s capital: K0 = α.

FOR n = 1, 2, . . .
Skeptic announces a number Mn ∈ R.
Nature announces an outcome xn ∈ [−1, 1].
Skeptic updates his capital: Kn = Kn−1 +Mnxn.
ENDFOR

Let us denote SN =
N∑
n=1

xn. Skeptic wins in this game if Kn > 0

for n = 1, . . . , N and Kn > 1 or
∣∣∣SNN ∣∣∣ < ε.

Note that this protocol is coherent, since, in response to any Skep-
tic’s move Mn, Nature can produce an outcome:

xn =

{
1 if Mn < 0,
−1 otherwise.

It holds Kn 6 K0 for all n.

Theorem 7.2. Skeptic has a winning strategy for N > 1
αε2

. In ad-
dition,

P

{∣∣∣∣SNN
∣∣∣∣ > ε

}
6 P

{∣∣∣∣SNN
∣∣∣∣ > ε

}
6

1

Nε2
.

Proof. Firstly note that

S2
n = S2

n−1 + 2xnSn−1 + x2
n =

= S2
n−1 + 2xnSn−1 + 1,

where S0 = 0.
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Assume that Skeptic choose his move using the rule:

Mn =
2αSn−1

N

at each round n of the game. Then

KN −K0 =
α

N

N∑
n=1

2Sn−1xn =

=
α

N
(S2
N −N) = α

(
S2
N

N
− 1

)
.

Hence, KN =
αS2

N
N . Then∣∣∣∣SNN

∣∣∣∣ 6
√
KN
αN

. (7.6)

By definition, Skeptic wins if KN > 1. If KN < 1 and N > 1
αε2

then
by (7.6) ∣∣∣∣SNN

∣∣∣∣ < ε.

Therefore, Skeptic wins again.
The sum SN depends on a trajectory of the game: SN = SN (ξ).

Let us estimate the upper probability of the event that the average
value of this sum deviates from zero by more than a number ε:

E =

{
ξ :

∣∣∣∣SN (ξ)

N

∣∣∣∣ > ε

}
,

consisting of all the trajectories of the game for which the above
inequality holds. Its upper probability is:

P (E) = inf{α : K0 = α and ∃M∀ξ(KMN (ξ) > 1 if

∣∣∣∣SN (ξ)

N

∣∣∣∣ > ε,

KMN > 0 if

∣∣∣∣SNN
∣∣∣∣ 6 ε)}.

As we have just proved, such a strategy M exists for α = 1
Nε2

.
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Hence,

P

{∣∣∣∣SNN
∣∣∣∣ > ε

}
6 P

{∣∣∣∣SNN
∣∣∣∣ > ε

}
6

1

Nε2
.

Theorem is proved. 4

7.3. Game of universal forecasting

In this section, we show that in some modification of the game de-
fined in Section 7.1, Skeptic, using a defensive strategy, can force
Forecaster to issue forecasts that are well-calibrated at arbitrary in-
finite sequence of outcomes issued by Nature.

Consider some infinitely repeated deterministic game between
three players: Forecaster, Skeptic and Nature.

The players actions are regulated by the following protocol:

Initialize K0 = 1.
FOR n = 1, 2, . . .
Skeptic announces a function Sn : [0, 1]→ R.
Forecaster announces a forecast pn ∈ [0, 1].
Nature announces an outcome ωn ∈ {0, 1}.
Skeptic updates his capital: Kn = Kn−1 + Sn(pn)(ωn − pn).
ENDFOR

Winners in the infinite deterministic game:
Forecaster wins if Skeptic’s capital Kn is bounded at all round of

the game; otherwise, Skeptic and Nature win.

Theorem 7.3. Skeptic and Nature have winning strategies in the
deterministic forecasting game.

Proof. Indeed, Skeptic can define

Sn(p) =

{
1 if p < 0.5,
−1 otherwise.

Nature can define

ωn =

{
1, pn < 0.5,
0
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at each round n of the game.
In this game, for each round n > 0, if ωn = 0 then pn > 1

2 and,
thus, ωn − pn 6 −1

2 and Sn(pn) = −1; if ωn = 1 then pn <
1
2 and,

thus, ωn − pn > 1
2 and Sn(pn) = 1. From this follows

Kn > Kn−1 +
1

2

for all n, and Skeptic’s capital is unbounded. 4
In this game, “adversarial” Nature uses the Forecaster’s prediction

for defining her outcome.
It turns out that in a randomized version of this game Forecaster

wins. In the randomized version of the game Nature does not know
the precise forecast, she knows only the probability distribution ac-
cording to which this forecast is generated.

Consider an infinitely repeated game between four players: Fore-
caster, Skeptic, Nature and Random numbers generator. Let {0, 1}
be the set of outcomes, P{0, 1} be the set of all probability measures
on {0, 1}. 2

The game is regulated by the following perfect-information pro-
tocol.

Initialize K0 = 1 and F0 = 1.
FOR n = 1, 2, . . .
Skeptic announces a function Sn : [0, 1]→ R.
Forecaster announces a probability distribution on the set of all fore-
casts: Pn ∈ P[0, 1].
Nature announces an outcome ωn ∈ {0, 1}.
Forecaster announces a test of randomness fn : [0, 1] → R, which is
correct with respect to the measure Pn, ie, such that

∫
fn(p)Pn(dp) 6

0.
Random numbers generator announces a number pn ∈ [0, 1].
Skeptic updates his capital: Kn = Kn−1 + Sn(pn)(ωn − pn).
Forecaster updates his capital: Fn = Fn−1 + fn(pn).
ENDFOR

2Each measure Q ∈ P{0, 1} is defined by two numbers (q, 1 − q), where q =
Q{1} is the probability of 1.
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Protocol defines that information is available for the players in
the process of the game. Each player, when choosing its strategy,
can use all information that appeared before his move – outcomes,
forecasts and strategies.

Restrictions for Skeptic: Skeptic have to choose Sn such that his
capital satisfies Kn > 0 for all n regardless of the moves of all other
players.

Restrictions for Forecaster: Forecaster have to choose his moves
Pn and fn such that his capital satisfies Fn > 0 for all n regardless
of the moves of all other players. 3

Winners in randomized forecasting game:
We assume that the strategies of the players are such that these

constraints are satisfied. If a player at least once violate the con-
straint, then it can not be a winner in the game.

Forecaster wins in this game if (i) his capital Fn is unbounded or
if (ii) the Skeptic’s capital Kn is bounded; in all other cases, Skeptic
and Nature win.

The next theorem shows that Forecaster has a winning strategy.

Theorem 7.4. Forecaster has a winning strategy in the randomized
forecasting game.

Proof. At each step n of our game, consider an auxiliary zero-sum
game with players Nature and Forecaster defined as follows.

Forecaster chooses a number pn ∈ [0, 1] and Nature chooses a
number ωn ∈ {0, 1}. The Forecaster’s loss (the Nature gain) is equal
to

F (ωn, pn) = S(pn)(ωn − pn).

3Capital Fn corresponds to the concept of bounded from below supermartin-
gale from probability theory, and fn(p) corresponds to the supermartingale-
difference Fn −Fn−1. Rules of the game require that the F0 = 1 and Fn > 0 for
all n in the process of the game. Condition

∫
fn(p)Pn(dp) 6 0 for all n implies∫

FnPn(dp) 6 Fn−1 for all n.
These properties define the concept of supermartingale in probability theory.

In our case, these properties should be carried out only for the trajectory of the
game.
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For any mixed strategy of Nature Qn ∈ P{0, 1}, Forecaster presents
a pure strategy pn = Q{1}. 4

Then mathematical expectation of Nature’s gain with respect to
the mixed strategy Q and the pure strategy pn is equal to

F (Qn, Pn) = Q{0}F (0, pn) +Q{1}F (1, pn) =

= Q{0}S(pn)(−pn) +Q{1}S(pn)(1− pn) =

= (1−Q{1})S(pn)(−Q{1}) +Q{1}S(pn)(1−Q{1}) = 0.

Thus, ∀ Q ∃ P F (Q,P ) 6 0 or

sup
Q

inf
P
F (Q,P ) 6 0. (7.7)

In order to apply the minimax theorem, it is necessary to trans-
form this game into a matrix game.

Consider an approximation to the auxiliary game, in which the
set of columns corresponding to Forecaster moves is finite. For any
∆ > 0, choose a finite ε-network Nε in the set [0, 1] consisting of
rational points, such that each point of [0, 1] is located at a distance
no more than ε of one of the points of this set, and such that the
lower value of the game does not exceed ∆/2, when Forecaster chooses
pn ∈ Nε.

Such ε-net can be chosen, since |Sn(p)| 6 Kn−1 6 2n−1 is bounded
for all p 5 The the inequality (7.7) will be transformed into the in-
equality

sup
Q

inf
P
F (Q,P ) 6 ∆/2.

By the minimax theorem,

inf
P

sup
Q
F (Q,P ) = sup

Q
inf
P
F (Q,P ) 6 ∆/2.

4This pure strategy pn corresponds to the mixed strategy Pn(pn) = 1 and
Pn(r) = 0 for r ∈ [0, 1] \ {pn}.

5Skeptic has to choose Sn(p) such that Kn > 0 for all n regardless of actions
of other players.
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Therefore, Forecaster has a mixed strategy P ∈ P[0, 1] concentrated
in the set Nε, such that

sup
Q
F (Q,P ) 6 ∆.

This implies that ∫
Sn(p)(ωn − p)P (dp) 6 ∆ (7.8)

for both values ωn = 0 and ωn = 1.
Let E∆ be a subset of the set P[0, 1] consisting of probability

distributions P satisfying the condition (7.8) for ωn = 0 and ωn = 1
simultaneously.

The set of measures P[0, 1] can be supplied by the topology of
weak convergence. It is well known in the measure theory, that the
space P[0, 1] is compact in this topology. Besides, E∆ is closed in
this topology.

Choose a monotonically decreasing to 0 sequence of rational num-
bers ∆i, i = 1, 2, . . . . The intersection of an infinite sequence
of closed nested subsets of a compact set is non-empty. Hence,
∩E∆i 6= ∅.

hen a probability measure Pn ∈ ∩E∆i ⊆ P[0, 1] exists such what∫
Sn(p)(ωn − p)Pn(dp) 6 0 (7.9)

for ωn = 0 and ωn = 1.
We now return to our main game. Strategy of Forecaster will be

to choose at step n the probability distribution Pn, which has been
defined in the auxiliary game. Forecaster’s second move is to choose
the test fn:

fn(p) = Sn(p)(ωn − p).
Then Fn = Kn for all n.

The mean value of the test fn by the measure Pn does not exceed
0 by (7.9), ie, the test fn is correct with respect to the measure Pn.

By Fn = Kn, there will always be one of two things: the Skeptic’s
gain is bounded or the Forecaster’s gain is unbounded. In both cases,
Forecaster wins. 4
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We say that Random number generator produces random numbers
perfectly if supnFn <∞.

7.4. Randomized well-calibrated forecasting

In this section, we show that Skeptic, choosing in a special way their
moves Sn(p), can force Forecaster to choose their forecasts so that
they were well-calibrated for any sequence of outcomes how would
Nature choose them.

We first consider a simple case, where Forecaster presents its pre-
dictions such that the some game-theoretic version of the strong law
of large numbers holds. The idea of the construction is the same as
in Section 7.1.

Let ε be an arbitrary positive real number suc that 0 < ε < 1.
Put K1

0 = 1. Get
S1
n(p) = εK1

n−1

in the randomized forecasting game defined in Section 7.1. This Skep-
tic’s strategy does not depend on Forecaster’s predictions but depends
on Skeptic’s gain received on steps < n.

In this case Skeptic’s gain at step n is equal to

K1
n =

n∏
i=1

(1 + ε(ωi − pi)), (7.10)

where ω1, . . . , ωn is a sequence of outcomes announced by Nature,
and p1, . . . , pn is a sequence of forecasts announced by Forecaster
on steps 1, . . . , n.

Since |ωi−pi| 6 1 for all i, K1
n > 0 for all n regardless of the actions

of other players, ie, the basic requirement for Skeptic’s strategy is
fulfilled.

By Theorem 7.4 Forecaster has a winning strategy in the random-
ized forecasting game. This means that if Random number generator
announces random numbers perfectly, ie, supnFn <∞, then, regard-
less of how Nature announces her outcomes ω1, . . . , ωn, Forecaster
can produce the forecasts p1, . . . , pn such that the Skeptic’s gain K1

n
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is bounded by some number C > 0:

n∏
i=1

(1 + ε(ωi − pi)) 6 C

n. This inequality can be rewritten in the form

n∑
i=1

ln(1 + ε(ωi − pi)) 6 lnC,

ε

n∑
i=1

(ωi − pi)− ε2
n∑
i=1

(ωi − pi)2 6 lnC,

ε

n∑
i=1

(ωi − pi) 6 lnC + ε2n,

1

n

n∑
i=1

(ωi − pi) 6
lnC

εn
+ ε (7.11)

for all n. Here we have used the inequality ln(1 + t) > t − t2 for
|t| 6 0.5.

From this we obtain

lim sup
n→∞

1

n

n∑
i=1

(ωi − pi) 6 ε. (7.12)

Similarly, getting K2
0 = 1 and choosing the strategy

S2
n(p) = −εK2

n−1,

Skeptic can force Forecaster to output his predictions such that the
following inequality will hold:

lim inf
n→∞

1

n

n∑
i=1

(ωi − pi) > −ε. (7.13)

Both of these strategies can be joined into a single strategy,
which provides simultaneous execution of both inequalities (7.12)
and (7.13). In this case, the strategies S1

n(p) and S2
n(p), and the
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corresponding capitals K1
n(p), K2

n(p) can be considered by Skeptic as
auxiliary in his calculations.

Skeptic chooses the strategy

Sn(p) =
1

2
(S1
n(p) + S2

n(p)).

Skeptic’s gain at step n is equal to

Kn =
1

2
(K1

n +K2
n).

Note that each gain satisfies K1
n > 0 and K2

n > 0 for all n. At first
step S1(p) = 0, since S1

1(p) = −S2
1(p), then S1

n(p) and S2
n(p) diverge,

as they determined on the basis their winnings K1
n(p) and K2

n(p).
Assume that Random number generator announces random num-

bers perfectly, ie, supnFn <∞.
Since the cumulative gain Kn is bounded, both cumulative gains

K1
n and K2

n are also bounded. As it was proven above these implies
the inequalities (7.12) and (7.13).

The next step is to construct Skeptic’s strategy, which provides
simultaneous validity of inequalities (7.12) and (7.13) for all ε > 0.

To do this, we introduce a sequence εk = 2−k for all k. Define
K1,k

0 = 1 and K2,k
0 = 1 for all k. Consider the sequence of strategies:

S1,k
n (p) = εkK1,k

n−1,

S2,k
n (p) = −εkK2,k

n−1,

S+
n (p) =

∞∑
k=1

2−kS1,k
n (p),

S−n (p) =

∞∑
k=1

2−kS2,k
n (p),

Sn(p) =
1

2
(S+
n (p) + S−n (p)).
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The corresponding gains satisfy conditions:

K+
n =

∞∑
k=1

2−kK1,k
n ,

K−n =
∞∑
k=1

2−kK2,k
n ,

Kn =
1

2
(K+

n +K−n ).

These series are convergent, since for any fixed n, by (7.10), the

inequality K1,k
n 6 2n holds for all k. Thus, |S2,k

n (p)| 6 2n−1 for all n.

Note that each of the gains satisfies K1,k
n > 0 and K2,k

n > 0 for all
n and k.

Therefore, the uniform boundedness of total gain Kn implies that
the gains K1,k

n and K2,k
n are bounded.

As was shown above, the limitations of each of these gains implies
the simultaneous fulfillment of limit inequalities (7.12) and (7.13) for
all εk, k = 1, 2, . . .

From this, we obtain that the mixed Skeptic’s strategy forces
Forecaster to choose the winning strategy – the randomized forecasts
– defined by Theorem 7.4 such that

lim
n→∞

1

n

n∑
i=1

(ωi − pi) = 0. (7.14)

The definition (7.14) of calibration has an obvious drawback. For
example, the sequence of forecasts p1, p2, . . . = 1

2 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 is well-

calibrated for the sequence ω1, ω2, . . . = 0, 1, 0, 1, 0, 1, 0, 1, . . . of
outcomes.

However, if select only members of the sequence of outcomes that
have even (or odd) indices, such forecasts will not be well-calibrated
for the corresponding subsequence. Therefore necessary to consider
additional checking rules for the selection of subsequences.

Let Nature announces a sequence of outcomes ω1, ω2 . . . and Fore-
caster announces predictions p1, p2, . . . . Checking rule is a binary
fuction

F (p1, ω1, p2, ω2, . . . , pn−1, ωn−1, pn),
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defined on sequences of type

p1, ω1, p2, ω2, . . . , pn−1, ωn−1, pn,

where pn is a Forecaster prediction at step n, n = 1, 2, . . . , taking
values: 0 1.

A sequence of forecasts p1, p2, . . . is called well-calibrated for a
sequence of outcomes ω1, ω2, . . . with respect to a checking rule
F (p1, ω1, p2, ω2, . . . , pn−1, ωn−1, pn) if

sup
n

n∑
i=1

F (p1, ω1, p2, ω2, . . . , pi−1, ωi−1, pi) <∞

or

lim
n→∞

n∑
i=1

F (p1, ω1, p2, ω2, . . . , pi−1, ωi−1, pi)(ωi − pi)
n∑
i=1

F (p1, ω1, p2, ω2, . . . , pi−1, ωi−1, pi)

= 0. (7.15)

Note that Nature announces her outcome ωn using the history

p1, ω1, p2, ω2, . . . , pn−1, ωn−1, pn.

The main result of the theory of universal prediction claims:

Theorem 7.5. For every countable sequence Fk, k = 1, 2, . . . of
checking rules, a Forecaster’s strategy: an algorithm computing pre-
dictions Pn given past outcomes and forecasts

p1, ω1, p2, ω2, . . . , pn−1, ωn−1

, exists such that, for any sequence of outcomes ω1, ω2, . . . announced
by Nature, the sequence of predictions p1, p2, . . . issued by Random
number generator perfectly is well-calibrated for this sequence of out-
comes with respect to any checking rule Fk.

Proof. The proof is the next step of complication of the con-
struction defined above. In the construction of strategies S1,k

n (p) and

S1,k
n (p), replace the number εk on εkFs, where k, s = 1, 2, . . .
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Consider an infinite sequence of auxilliary strategies of Skeptic:

S1,k,s
n (p) = εkFs(p1, ω1, p2, ω2, . . . , pn−1, ωn−1, p)K1,k,s

n−1 ,

S2,k,s
n (p) = −εkFs(p1, ω1, p2, ω2, . . . , pn−1, ωn−1, p)K2,k,s

n−1 .

Consider some effective one to one enumeration of all pairs of positive
integer numbers (k, s). Let for ith such pair p(i) = and q(i) = s. Such
enumeration and the corresponding functions p(i) and q(i) can be
defined in many different ways. We omit details of such enumeration.

Define

S+
n (p) =

∞∑
j=1

2−jS1,p(j),q(j)
n (p),

S−n (p) =
∞∑
j=1

2−jS2,p(j),q(j)
n (p),

Sn(p) =
1

2
(S+
n (p) + S−n (p)).

The rest part of the proof is similar to the case where Skeptic’s strate-
gies were mixed with weights εk.

Note that the summation in the modified version of (7.11) should
only be performed by those i, for which

F (p1, ω1, p2, ω2, . . . , pi−1, ωi−1, pi) = 1.

In the modified version of (7.11) and in (7.14), to obtain (7.15), we
should replace n in the denominator by

n∑
i=1

F (p1, ω1, p2, ω2, . . . , pi−1, ωi−1, pi).

7.5. Problems

1. Prove that in Theorem 7.1 the condition lim sup
n→∞

Kn = ∞ can be

replaced by condition lim
n→∞

Kn = ∞ (Hint: To prove this, instead
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of a single strategy Mn = εKn−1, consider an infinite number of of
strategies of the form

MC
n =

{
Mn if Kn−1 6 2C ,
0 otherwise,

where C is an arbitrary positive integer number.
Thereafter, we consider a mixture of these strategies

M̃n =
∞∑
C=1

2−CMC
n .

Denote the corresponding Skeptic’s capital KCn .
We must show that for an arbitrary step n the capital of Skeptic,

which adheres to the strategy M̃n, is

K̃n =

∞∑
C=1

2−CKCn .

From this it is easy to see that lim sup
n→∞

Kn = ∞ if and only if

lim
n→∞

K̃n =∞).

2. Prove the following inequalities for the upper prices of any
variables x, x1, x2 in a game with the coherent protocol:

a) Ex 6 sup
ξ∈Ω

x(ξ).

b) Ea = Ea = a, where a is a constant.
c) E(x1 + x2) 6 Ex1 + Ex2.
d) E(x+ α) = Ex+ α, where α is a constant.
e) E(αx) = αEx for α > 0.
f) if x1 6 x2 then Ex1 6 Ex2.
3. State and prove the similar inequalities for lower price Ex of

any variable x.
4. Prove that 0 6 P (S) 6 1 and 6 P (S) 6 1 in any forecasting

game.
5. Prove the following inequalities for the upper probability of

any events E, E1 and E2 in a game with the coherent protocol:
a) 0 6 P (E) 6 P (E) 6 1.
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b) P (Ω) = P (Ω) = 1.
c) P (E) = 1− P (Ω \ E).
d) P (E1 ∪ E2) 6 P (E1) + P (E2).
e) P (E1 ∩ E2) > P (E1) + P (E2)− 1.
f) if E1 ⊆ E2 then P (E1) 6 P (E2).
6. Consider a game from Section 7.2 (Bernoulli protocol) with

the outcomes from the set {−1, 1}. Let this game is performed over
N rounds.

a) Prove that the upper and lower probabilities of any fixed tra-
jectory ξ of length N is equal to 2−N and the upper and lower prob-
abilities of any finite set S is equal to 2−N |S|.

(Hint. Let K0 = 0. To obtain an upper bound for the upper
probability of the trajectory ξ, consider the Skeptic’s strategy: M1 =
2−N and Mt = Kt−1 for t > 2 along the given trajectory, define
Mt = 0 after the trajectory of the game diverges from the desired
trajectory ξ. In this case Skeptic’s capital will double at each step,
until the trajectory of the game coincides with the given trajectory.
Capital becomes zero, as soon as the trajectory of the game diverged
with a given trajectory.

To obtain a lower bound for the lower probability, get α = 2−N

and define the Skeptic’s strategy: M1 = −α and Mt = Kt−1 for t > 2
along the given trajectory ξ. Also, K0 = 0. define Mt = 0 after the
trajectory of the game diverged from the desired trajectory ξ.

While the trajectory of the game coincides with the given trajec-
tory ξ Skeptic’s debt at the end of step s is equal to −

∑s−1
i=0 2iα =

−(2s − 1)α. If the trajectory of the game diverges from ξ at step s
then Skeptic wins α2s and after paying the debt his capital is α. If
the trajectory of the game coincides with ξ the Skeptic’s debt at the
end of the game is −(2N − 1)α, ie, the Skeptic’s capital at the end of
the game is is α− 1).

b) Provide examples of events for which you can calculate exactly
the upper and lower probabilities.

7. Let in the simple forecasting game from Section 7.2 the out-
comes xi are in the set {1, 2}. Let also the game is performed over
N rounds.

a) Provide examples of events for which you can calculate exactly

315



these probabilities. Consider S = {1N}, S = {2N}, S = {1N , 2N},
where kN – is a sequence consisting of N numbers k.

8. Complete the proof of Theorems 7.1 and 7.5.
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Chapter 8

Infinitely repeated games

In Chapter 6 we have considered onetime realizations of different
games and evaluate their performance. The calculation of the equi-
librium points in these games is computationally time consuming
procedures. In particular, we have to solve a linear programming
problem to find the points of equilibrium.

In this chapter, using the theory of the well-calibrated forecast-
ing, we show that it is possible to approximate the points of the
Nash equilibrium or points of the correlated equilibrium in infinitely
repeated games by means of the frequency distributions of players’
moves.

In Section 8.1, we consider the asymptotic characteristics of in-
finitely repeated zero-sum game, and show that the previously con-
structed machine learning algorithms approximate points of the Nash
equilibrium of these games.

In Section 8.2, we prove the Blackwell approachability theorem,
which is a generalization of the minimax theorem for the case of
vector-valued payoff functions.

In Section 8.3, we apply this theorem to construct well-calibrated
predictions for the case of arbitrary finite number of outcomes.

In Section 8.4 we show that if, in some infinitely repeated game,
each player uses predictions that are well-calibrated for the sequence
of strategies chosen by his opponents, and chooses “the optimal re-
sponse” for these predictions, then the joint frequency distribution of
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the players’ strategy converges to the set of correlated equilibria of
this game.

8.1. Infinitely repeated two players zero-sum
games

In this section we consider game repeatable over time.
Assume that at each step t = 1, 2, . . . the first player chooses

a move It ∈ {1, . . . , N} according to the probability distribution
p̄t = (p1,t, . . . , pN,t) (mixed strategy) and the second player chooses
a move Jt ∈ {1, . . . , M} according to the probability distribution of
q̄t = (q1,t, . . . , qN,t). The mixed strategies of the players p̄t and q̄t
may depend on the preceding moves of these players and their results.

The gain of the first player at step t is f̄(p̄t, q̄t) and the gain of
the second player is −f̄(p̄t, q̄t).

We will compare the cumulative gain of each player over n steps
with the cumulative gain of its best constant strategy:

max
i=1,..., N

n∑
t=1

f(i, Jt)−
n∑
t=1

f(It, Jt)

for the first player and

n∑
t=1

f(It, Jt)− min
j=1,..., M

n∑
t=1

f(It, j)

for the second player.
We apply the theory predictions with expert advice to approxi-

mate the equilibrium in such games.
When analyzing the actions of the first player, the set of his strate-

gies {1, . . . , N} will be considered as a set of auxiliary experts. Each
expert i produces the constant prediction i ∈ {1, . . . , N} at all steps.

The first player is considered as Forecaster, which announces at
each step t a prediction It. Any strategy Jt ∈ {1, . . . , M} of the
second expert is interpreted as an outcome announced by Nature at
step t.
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Similarly, when analyzing the actions of the second player, the
set of his strategies {1, . . . , M} will be considered as a set of
auxiliary experts. Each expert j produces the constant prediction
j ∈ {1, . . . , M} at all steps.

The second player is considered as Forecaster, which announces
at each step t a prediction Jt. Any move It ∈ {1, . . . , N} of the first
player is interpreted as an outcome announced by Nature at step t.

Now explain what the loss function used in this analysis. The
loss of the first player is equal λ1(Jt, It) = −f(It, Jt), where Jt is
an outcome announced by Nature, and It is a forecast announced
by the first player at step t. The loss of the second player is equal
λ2(It, Jt) = f(It, Jt), where It is an outcome announced by Nature,
and Jt is a forecast announced by the second player at step t.

The first (or second) player can choose his moves (mixed strate-
gies) according to some rule or algorithm that at each step t outputs
a probability distribution p̄t (or q̄t). Any algorithm of this kind will
be called online strategy of the first (or second) player in the infinitely
repeated game.

Assume that both players choose their moves according to Hannan
consistent online strategies (see (4.60)). For example, we can use the
exponentially weighted forecaster defined in Sections 4.6.

According to this algorithm, at any step t, the first player chooses
his mixed strategy p̄t = (p1,t, . . . , pN,t) by the rule:

pi,t =
exp

(
−ηt

∑t−1
s=1 λ

1(i, Js)
)

∑N
k=1 exp

(
−ηt

∑t−1
s=1 λ

1(k, Js)
) , (8.1)

where i = 1, . . . , N , ηt is a variable learning rate.
At the same time, the strategy Js of the second player is consid-

ered as an outcome announced by Nature.
By Corollary 4.3 the first player is Hannan consistent, ie, with

probability one,

lim sup
n→∞

(
1

n

n∑
t=1

λ1(Jt, It)− min
i=1,..., N

1

n

n∑
t=1

λ1(Jt, i)

)
6 0 (8.2)
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for a suitable choice of the parameters ηt, where the trajectory
I1, I2, . . . is distributed according to the probability distribution gen-
erated by the sequence of mixed strategies (8.1).

Note that (8.2) holds regardless of the second player moves. We
suppose here that the second player is oblivious, ie, the trajectory
J1, J2, . . . is given in advance and does not depend on the first player
moves.

The second player can also can apply a similar online strategy. In
this case he also is Hannan consistent, ie, with probability one,

lim sup
n→∞

(
1

n

n∑
t=1

λ2(It, Jt)− min
j=1,..., M

1

n

n∑
t=1

λ2(It, j)

)
6 0, (8.3)

where the trajectory J1, J2, . . . is distributed according to the prob-
ability distribution generated by the sequence of mixed strategies
similar to (8.1). Here we use the similar assumptions on the first
player.

In terms of payoff functions (8.2) has a form: with probability
one,

lim inf
n→∞

(
1

n

n∑
t=1

f(It, Jt)− max
i=1,..., N

1

n

n∑
t=1

f(i, Jt)

)
> 0, (8.4)

where the trajectory I1, I2, . . . is distributed by the measure p̄1× p̄2×
. . . that is the product of the first player’s mixed strategies.

The inequality (8.3) can be rewritten: with probability one:

lim sup
n→∞

(
1

n

n∑
t=1

f(It, Jt)− min
j=1,..., M

1

n

n∑
t=1

f(It, j)

)
6 0, (8.5)

where the trajectory J1, J2, . . . is distributed by the measure q̄1× q̄2×
. . . that is the product of the second player’s mixed strategies.

The following theorem asserts that if the first player chooses his
move according to a Hannan consistent online strategy then, regard-
less on what strategy the second player uses, the average gain of the
first player can not be much less than the value the game.
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A similar assertion holds for the second player – if the second
player chooses his move according to a Hannan consistent online strat-
egy then, regardless on what the first player chooses his moves, the
average gain of the second player can not be much more than the
value the game.

Theorem 8.1. Assume that in a two-person zero-sum game the first
player chooses his moves according to a Hannan consistent online
strategy. Then

lim inf
n→∞

1

n

n∑
t=1

f(Ii, Jt) > v, (8.6)

alsost surely, regardless of the second player’s moves, where v is the
value of the game.

If each player uses a Hannan consistent online strategy then, with
probability 1,

lim
n→∞

1

n

n∑
t=1

f(Ii, Jt) = v, (8.7)

where the sequence I1, J1, I2, J2, . . . is distributed according to proba-
bility distribution p̄1 × q̄1 × p̄2 × q̄2 × . . . .

Proof. By the minimax theorem the value of the game is equal

v = max
p̄

min
q̄
f̄(p̄, q̄) = min

q̄
max
p̄
f̄(p̄, q̄).

Also, define

f̄(p̄, q̄) =
N∑
i=1

M∑
j=1

piqjf(i, j),

f̄(p̄, j) =
N∑
i=1

pif(i, j),

f̄(i, q̄) =
M∑
j=1

qjf(i, j).
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By (8.4) to prove the first statement (8.6) it is sufficient to show that
for any sequence J1, J2, . . . ,

max
i=1,..., N

1

n

n∑
t=1

f(i, Jt) > v (8.8)

for all n. For the proof note that

max
i=1,..., N

1

n

n∑
t=1

f(i, Jt) = max
p̄

1

n

n∑
t=1

f̄(p̄, Jt),

since
n∑
t=1

f̄(p̄, Jt) is linear form by p̄, and the maximum of a lin-

ear function defined on the simplex of probability distributions on
{1, . . . , N} is attained at some its vertex.

Let

q̂j,n =
1

n

n∑
t=1

1{Jt=j}

be a frequency of rounds where the second player chooses the strategy
j. Let also q̂n = (q̂1,n, . . . , qM,n). Then

max
p̄

1

n

n∑
t=1

f̄(p̄, Jt) = max
p̄

M∑
j=1

q̂j,nf̄(p̄, j) =

= max
p̄
f̄(p̄, q̂n) > min

q̄
max
p̄
f̄(p̄, q̄) = v

for any sequence J1, J2, . . . .
To prove the second assertion (8.7) of the theorem we use condi-

tion (8.5) of the Hannan consistency, and show that

min
j=1,..., M

1

n

n∑
t=1

f(It, j) 6 v = max
p̄

min
q̄
f̄(p̄, q̄)

for any sequence I1, I2, . . . . This proof is similar to the proof of the
inequality (8.8).

From this we obtain

lim sup
n→∞

1

n

n∑
t=1

f(Ii, Jt) 6 v, (8.9)
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almost surely, where v is the value of the game.
Combining (8.9) and (8.6), we obtain (8.7). Theorem is proved.

4

8.2. Blackwell approachability theorem

Theorem 8.1 of the previous section states that the first player using
a Hannan consistent online strategy at a sufficiently large number of
steps, can do the mean value of his gain asymptotically less than the
value of the game, no matter what strategy the second player uses.

In this section we consider a generalization of this result for the
case of a vector-valued payoff function and an arbitrary closed convex
set S instead of the value of the game. We will prove the famous
Blackwell approachability theorem. In 1956, Blackwell [6] proposed
a generalization of the minimax theorem for the case of a vector-
payoff function. Later it was observed that this theorem can be used
to construct the well-calibrated forecasts.

This theorem provides the necessary and sufficient conditions un-
der which there exists a randomized online strategy of the first player
such that, with probability 1, for an unlimited continuation of the
game, he can approximate the mean value of the payoff vector to a
given set S, regardless of the second player moves.

As well as before we consider a two persons game. Only now the
payoff function f(i, j) takes values in the d-dimensional space Rd.

Recall that the strategies of the first player belong to a finite
set I = {1, . . . , N}, and the strategies of the second player belong
to a finite set J = {1, . . . , M}. Mixed strategies of the players
are probability distribution in the sets I and J . The sets of these
mixed strategies are denoted P(I) and P(J ), correspondingly. Recall
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notations:

f(p̄, j) =

N∑
i=1

pif(i, j),

f(i, q̄) =
M∑
j=1

qjf(i, j),

f(p̄, q̄) =

N∑
i=1

M∑
j=1

piqjf(i, j)

for p̄ = (p1, . . . , pN ) ∈ P(I) and q̄ = (q1, . . . , qM ) ∈ P(J ).
We consider the Euclidean distance

‖x̄− ȳ‖ =

√√√√ d∑
i=1

(xi − yi)2

between two vectors x̄, ȳ ∈ Rd. For any subset S ⊆ Rd and any
vector x̄ ∈ Rd, the distance from x̄ to S is defined

dist(x̄, S) = inf
ȳ∈S
‖x̄− ȳ‖.

For any closed set S, let dS(x̄) denotes an element ȳ ∈ S such that
the distance dist(x̄, ȳ) is minimal. If the set S is convex, then this
element is unique.

A set S ⊆ Rd is called approachable if a randomized online strat-
egy p̄1, p̄2, . . . of the first player exists such that for any sequence
J1, J2, . . . of the second player moves

lim
T→∞

dist

(
1

T

T∑
t=1

f(It, Jt), S

)
= 0

holds for P -almost all sequences I1, I2, . . . of the first player moves,
where P =

∏
p̄t is the overall probability distribution on trajectories

I1, I2, . . . of the first player moves generated by its mixed strategies
p̄1, p̄2, . . . .

324



The following theorem gives a sufficient condition for the ap-
proachability of a closed convex subset of Rd.

Assume that the set S and the values of f(i, j) are located in the
unit ball of the space Rd.

Theorem 8.2. Let a closed subset S ⊆ Rd be given. For each vec-
tor x̄ 6∈ S, consider the hyperplane Πx̄ passing through dS(x̄) and
orthogonal to the line passing through x̄ and dS(x̄).

Assume that for every vector x̄ 6∈ S there is a probability distribu-
tion p̄ ∈ P(I) such that the points f(p̄, 1), . . . , f(p̄,M) and the point
x̄ lie on different sides of the hyperplane Πx̄.

Then the set S is approachable.

Proof. Let I1, I2, . . . and J1, J2, . . . be some strategies of the first
and the second players. Let

m̄t =
1

t

t∑
i=1

f(Ii, Ji)

be the average gain of the first player over first t steps.
Assume that m̄t 6∈ S and, at steps < t of the game, the players

performed the moves I1, . . . , It−1 and J1, . . . , Jt−1. Equation of the
hyperplane Πx̄ passing through the point dS(m̄t−1) and orthogonal
to the line connecting points m̄t−1 and dS(m̄t−1) has the form:

(w̄t−1 · x̄)− bt−1 = 0,

where

w̄t−1 =
m̄t−1 − dS(m̄t−1)

‖m̄t−1 − dS(m̄t−1)‖
and

bt−1 = (w̄t−1 · dS(m̄t−1)).

Suppose that m̄0 = 0̄.
Note that the point m̄t−1 is above of the hyperplane (since it is

the end of the direction vector of the hyperplane).
By assumption of the theorem for the point x̄ = m̄t−1 a mixed

strategy p̄t of the first player exists such that all the points

f(p̄t, 1), . . . , f(p̄t,M)
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are below of this hyperplane:

(w̄t−1 · f(p̄t, j))− bt−1 6 0

for all j = 1, . . . , M . We rewrite this condition in the form:

max
16j6M

(w̄t−1 · (f(p̄t, j)− dS(m̄t−1))) 6 0. (8.10)

A mixed strategy p̄t is a solution of the linear programming problem
(8.10).

We verify that the point m̄t is “approaching” to the set S. By
definition

dist(m̄t, S) = ‖m̄t − dS(m̄t)‖ 6 ‖m̄t − dS(m̄t−1)‖. (8.11)

It is easy to verify that

m̄t =
t− 1

t
m̄t−1 +

1

t
f(It, Jt). (8.12)

Square the inequality (8.11), and perform the calculations using the
equality (8.12):

dist(m̄t, S)2 6

∥∥∥∥ t− 1

t
m̄t−1 +

1

t
f(It, Jt)− dS(m̄t−1)

∥∥∥∥2

=

=

∥∥∥∥ t− 1

t
(m̄t−1 − dS(m̄t−1)) +

1

t
(f(It, Jt)− dS(m̄t−1))

∥∥∥∥2

=

=

(
t− 1

t

)2

‖m̄t−1 − dS(m̄t−1)‖2 +

+2
t− 1

t2
((m̄t−1 − dS(m̄t−1)) · (f(It, Jt)− dS(m̄t−1))) +

+
1

t2
‖m̄t−1 − dS(m̄t−1)‖2. (8.13)

Since the set S and all values f(i, j) are located in the unit ball of
the space Rd, the following inequality holds:

‖f(It, Jt)− dS(m̄t−1)‖ 6 2.
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Using this inequality, transform the inequalities (8.12) and (8.13) into
the inequality

t2‖m̄t − dS(m̄t)‖2 − (t− 1)2‖m̄t−1 − dS(m̄t−1)‖2 6

6 4 + 2(t− 1)((m̄t−1 − dS(m̄t−1)) · (f(It, Jt)− dS(m̄t−1))). (8.14)

Denote

Kt−1 =
t− 1

T
‖m̄t−1 − dS(m̄t−1)‖.

We have 0 6 Kt−1 6 2 for t 6 T . Summing the left and the right
parts of the inequality (8.14) over t = 1, . . . , T and dividing it by
T 2, we obtain:

‖m̄T − dS(m̄T )‖2 6

6
4

T
+

2

T

T∑
t=1

Kt−1(w̄t−1 · (f(It, Jt)− dS(m̄t−1))) 6

6
4

T
+

2

T

T∑
t=1

Kt−1(w̄t−1 · (f(It, Jt)− f(p̄t, Jt))). (8.15)

To obtain the last inequality we have used the inequality (8.11).
The second term of the last member of (8.15) is a martingale-

difference. 1 Therefore, by Corollary 8.7 (Azuma–Hoeffding inequal-
ity), it tends to 0 almost surely as T →∞. Then

dist(m̄T , S) = ‖m̄T − dS(m̄T )‖ → 0 as T →∞

with probability 1. Theorem is proved. 4
The following theorem gives the necessary and sufficient condi-

tions under which an arbitrary closed convex set is approachable by
the first player.

Theorem 8.3. A closed convex subset S ⊆ Rd is approachable by
the first player if and only if for every mixed strategy q̄ ∈ P(J ) a
mixed strategy p̄ ∈ P(I) exists such that f(p̄, q̄) ∈ S.

1Indeed, Ep̄t(f(It, Jt)) = f(p̄t, Jt), where E is the symbol of mathematical
expectation.
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Proof. Assume that for every q̄ ∈ P(J ) an p̄ ∈ P(I) exists such
that f(p̄, q̄) ∈ S. Let also x̄0 6∈ S and dS(x̄0) be the point of S closest
to the point x̄0.

Consider the auxiliary matrix game with the payoff function
a(i, j) = ((dS(x̄0)− x̄0) · f(i, j)). By the minimax theorem

max
p̄

min
j
a(p̄, j) = min

q̄
max
i
a(i, q̄). (8.16)

By assumption of the theorem 8.3 for every q̄ ∈ P(J ) a number i
exists such that f(i, q̄) ∈ S. From this and by (8.16) we obtain

max
p̄

min
j

((dS(x̄0)− x̄0) · f(p̄, j)) =

= min
q̄

max
p̄

((d̄S(x̄0)− x̄0) · f(i, q̄)) >

> min
s̄∈S

((dS(x̄0)− x̄0) · s̄) =

= ((dS(x̄0)− x̄0) · dS(x̄0)). (8.17)

The last inequality of (8.17) follows from the definition of S(x̄0).
Consider the hyperplane

L(x̄) = ((dS(x̄0)− x̄0) · x̄)− ((dS(x̄0)− x̄0) · dS(x0)) = 0

passing through dS(x̄0) and orthogonal to the vector dS(x̄0)− x̄0. It
is easy to verify that

((dS(x̄0)− x̄0) · x0) < ((dS(x̄0)− x̄0) · dS(x̄0)).

Then L(x̄0) < 0, ie, he point x̄0 is below the hyperplane L(x̄) = 0.
By the inequality between the first and the last terms of (8.17) a

mixed strategy p̄ ∈ P(I) exists such that for all j = 1, . . . , M :

((dS(x̄0)− x̄0) · f(p̄, j)) > ((dS(x̄0)− x̄0) · dS(x̄0)).

In other words, L(f(p̄, j)) > 0 for all j = 1, . . . , M , ie, the hyperplane
L(x̄) = 0 separates these points and the point x̄0. Hence, the set S
is approachable by Theorem 8.2.

To prove the converse statement, assume that an q̄0 ∈ P(J ) exists
such that f(p̄, q̄0) 6∈ S for all p̄ ∈ P(I).
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We apply Theorem 8.2 for the game with the transposed payoff
matrix (payoff function) f ′(i, j) = f(j, i) and a closed convex set
T (q̄0) = {f(p̄, q̄0) : p̄ ∈ P(I)}.

By definition f ′(q̄0, 0), . . . , f ′(q̄0, N) ∈ T (q̄0). By convexity of the
set T (q̄0) for every x̄ 6∈ T (q̄0) the points x̄ and f ′(q̄0, 0), . . . , f ′(q̄0, N)
are on the opposite sides of the hyperplane Πx̄. Then by Theorem 8.2
the set T (q̄0) is approachable for the second player using a constant
strategy q̄0 and the transposed matrix f ′(i, j).

We have supposed that T (q̄0) ∩ S = ∅. By the assumption the
sets S and T (q0) are closed. It is easy to see that the set S cannot
be aproachable by the first player (see a problem in Section 8.5).
Theorem is proved. 4

As a first application of Theorem 8.2 we construct a Hannan con-
sistent forecasting (online) strategy.

Let I = {1, . . . , N} be a set of all strategies of the first player
and J = {1, . . . , M} be a set of all strategies moves of the second
player, P(I) and P(J ) be sets of their mixed strategies.

Note that it is not important in the Blackwell approachability
theorem that type of function: payoff or loss, is used. In this appli-
cation we consider a loss function l(i, j), where 0 6 l(i, j) 6 1 for all
i, j.

Our goal is to define at each step t a mixed strategy p̄t of the first
player such that for any sequence of moves J1, J2, . . . of the second
player

lim sup
T→∞

(
1

T

T∑
t=1

l(It, Jt)− min
16i6N

1

T

T∑
t=1

l(i, Jt)

)
6 0, (8.18)

with probability 1, where moves I1, I2, . . . of the first player are dis-
tributed according to the product distribution

∏
t p̄t.

In order to apply Theorem 8.2, we consider a closed convex set

S = {(u1, . . . , uN ) : ui 6 0, i = 1, . . . , N},
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and a vector-valued payoff function

f̄(i, j) =


l(i, j)− l(1, j)

. . .
l(i, j)− l(k, j)

. . .
l(i, j)− l(N, j)

 .

The values of f(i, j) are located in an N -dimensional ball of radius√
N centered in the origin. Multiplying this function by a constant

1/
√
N we can ensure that the values of f(i, j) lie in the unit ball.

Let x̄0 6∈ S. Is sufficient to consider the case where dS(x0) = 0̄ and
the equation of the hyperplane Πx̄0 has the form (w̄ · x̄) = 0, where
all the components of wi of the normal vector w̄ of the hyperplane
are nonnegative.

To prove the existence of a strategy such that (8.18) holds, it
suffices to prove that there is a mixed strategy p̄ ∈ P(I) such that
all vectors f(p̄, 1), . . . , f(p̄,M) lie below the hyperplane (w̄ · x̄) = 0,
ie, the following inequality

N∑
k=1

wk(l(p̄, j)− l(k, j)) 6 0

holds for all j = 1, . . .M . It is easy to verify that this condition holds
for

p̄ =
w̄

N∑
i=1

wi

.

By Theorem 8.2 a sequence of mixed strategies p̄1, . . . , p̄t, . . . exists
such that condition (8.18) holds with probability 1.

8.3. Calibrated forecasting

In this section, we present a method for constructing calibrated fore-
casts on the basis of Theorem 8.3 for the case of arbitrary finite set
of outcomes. This method was proposed by Mannor and Stoltz [24].
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In Section 3.2 we have considered the problem of universal predic-
tion of the mean value pi of a future outcome ωi and the corresponding
concept of calibration. In this section we consider a problem of uni-
versal prediction of the probability distribution of future outcomes.
In the case of binary set of outcomes {0, 1} these two problems are
equivalent, since the probability pi of ωn = 1 is the mean value of a
future outcome ωi ∈ {0, 1}.

We assume that the outcomes are elements of a finite set A =
{a1, . . . , am}. Denote by P(A) the set of all probability distributions
in the set A. Any such distribution (mixed strategy) is a vector
p̄ = (p1, . . . , pm), where the sum of all its coordinates is equal 1. We
consider a norm ‖p̄‖1 = max16i6m |pi| on the set of all such vectors.
The Euclidian norm ‖p̄‖2 in Rm is also suitable. It is known that
these norms are equivalent in Rm. In what follows ‖p̄‖ denotes any
such norm.

Let δ̄[ai] = (0, . . . , 1, . . . , 0) be a probability distribution concen-
trated on element ai of the set A. In this vector, the ith coordinate
is 1, all other coordinates are 0.

We consider a perfect information game between two players:
Forecaster and Nature. At each step t Forecaster announces a prob-
ability distribution p̄t ∈ P(A), after that, Nature announces an out-
come at ∈ A.

In terms of the game theory, p̄t is a mixed strategy of Forecaster
and δ̄[at] is a pure strategy of Nature.

We also consider probability distributions in the set of all mixed
strategies that are probability distributions in the set of probability
distributions P(A). This set is denoted P(P(A)).

For selecting strategies p̄1, p̄2, . . . , Forecaster will use randomiza-
tion, more precisely, Forecaster will issue at each step t a random
vector p̄t ∈ P(A) distributed according to some probability distribu-
tion P̄t ∈ P(P(A)).

By the Ionescu-Tulcea [29] theorem the probability measures Pt,
t = 1, 2, . . . , can be regarded as conditional distributions with respect
to a overall distribution P =

∏
Pt defined on trajectories p̄1, p̄2, . . . .

Each player can use all the information known to each his action.
There are no restrictions for the strategy of Nature.
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Let a real number ε > 0 be given. Forecaster’s goal is to output
randomized forecasts p̄t ditributed by the measure P such that for any
p̄ ∈ P(A) and for any sequence of Nature moves a1, a2, . . . , P -almost
surely the condition of ε-calibration holds:

lim sup
T→∞

∥∥∥∥∥ 1

T

T∑
t=1

I‖p̄t−p̄‖6ε(p̄t − δ̄[at])

∥∥∥∥∥ 6 ε, (8.19)

where vectors p̄1, p̄2, . . . are distributed by the measure P and

I‖p̄t−p̄‖6ε =

{
1 if ‖p̄t − p̄‖ 6 ε,
0 otherwise.

Forecaster will choose the forecasts p̄t from a fixed finite set of mixed
strategies

Pε = {s̄1, . . . , s̄N} ⊂ P(A).

To specify this set we construct some ε-net in the set P(A) of all
mixed strategies, which are m-dimensional vectors. Thus, for any
vector p̄ ∈ P(A) an element s̄i ∈ Pε exists such that ‖p̄− s̄i‖ < ε.

We will define the probability distributions Pt ∈ P(P(A)) con-
centrated in a finite set Pε of mixed strategies.

For simplicity, we identify the finite set Pε = {s̄1, . . . , s̄N} and
the set of indexes of its elements I = {1, 2, . . . , N}. We will also
consider at each step t probability distributions Pt in I.

The overall probability distribution on trajectories i1, i2, . . . of
these indices is defined P =

∏
Pt. Then the condition (8.19) follows

from the condition: P -almost surely,

lim sup
T→∞

N∑
k=1

∥∥∥∥∥ 1

T

T∑
t=1

I{it=k}(s̄k − δ̄[at])

∥∥∥∥∥ 6 ε, (8.20)

where the trajectories i1, i2, . . . are distributed by the measure P .
The existence of ε-calibrated strategy in general form is asserted

in the following theorem.

Theorem 8.4. For any ε > 0, a probability distribution P can be
constructed such that P -almost surely the condition of ε-calibration

332



(8.19) holds for each p̄ ∈ P(A), where the vectors p̄1, p̄2, . . . are dis-
tributed by P . 2

Proof. We apply Theorem 8.3, in which the first player is consid-
ered as Forecaster using strategies from a set 3 I = {1, 2, . . . , N},
and the second player is considered as Nature using the set of strate-
gies J = A. The values of payoff function are vectors of dimension
N |A| :

f(k, a) =



0̄
. . .
0̄

s̄k − δ̄[a]
0̄
. . .
0̄


.

where k ∈ I and a ∈ J , 0̄ is the m-dimensional zero vector, m = |A|,
and s̄k − δ̄[a] are difference of two m-dimensional column vectors,
which is kth component of the complex vector f(k, a).

We now define a convex set in the space RmN . We consider
vectors in RmN as complex vectors of dimension N with the vector
components from Rm: X̄ = (x̄1, . . . , x̄N ), where x̄i ∈ Rm.

We define the closed convex set of such complex vectors:

C =

{
X̄ :

N∑
k=1

‖x̄k‖ 6 ε

}
.

By Theorem 8.3 the closed convex set C is approachable if and
only if for each q̄ ∈ P(J ) an p̄ ∈ P(I) exists such that f(p̄, q̄) ∈ C.

The assumption of Theorem 8.3 is satisfied for the set C, since for
any mixed strategy q̄ ∈ P(J ) = P(A) of the second player a mixed
strategy s̄k ∈ Pε exists such that ‖s̄i − q̄‖ 6 ε, ie, f(k, q̄) ∈ C. This
probability distribution s̄k is the mixed strategy of the first player.

2The condition (8.19) is equivalent to (8.20).
3We identify the set Pε = {s̄1, . . . , s̄N} with the set of indices I =

{1, 2, . . . , N} of its elements.
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In Theorem 8.2, we take p̄ be equal to the pure strategy δ̄[k]
on I = {1, . . . N} which is concentrated in the number k, where
1 6 k 6 N .

By Theorem 8.2 a randomized strategy P =
∏
Pt of Forecaster

exists, where Pt ∈ P(I), such that, regardless of the Nature moves
a1, a2, . . . , the sequence of vector valued gains

1

T

T∑
t=1

f(it, at) =


1
T

T∑
t=1

I{it=1}(s̄1 − δ̄[at])

. . .

1
T

T∑
t=1

I{it=N}(s̄N − δ̄[at])

 .

P -almost surely approaches to the set C, where the trajectory i1, i2, . . .
is distributed by the measure P .

Hence, the condition (8.20) of calibration holds almost surely.
Theorem is proved. 4
The sequence of forecasts is said to be well-calibrated for a se-

quence of outcomes if it is ε-calibrated for each ε > 0.
Predictions, which are chosen from a finite set Pε = {s̄1, . . . , s̄Nε}

and satisfy the condition (8.20), are called ε-calibrated predictions.
We can strengthen Theorem 8.4 and obtain well-calibrated pre-

dictions.

Theorem 8.5. A randomized strategy P of Forecaster can be con-
structed such that for each p̄ ∈ P(A), the condition of calibration

lim
T→∞

∥∥∥∥∥ 1

T

T∑
t=1

I‖p̄t−p̄‖6ε(p̄t − δ̄[at])

∥∥∥∥∥ = 0 (8.21)

holds P -almost surely, where the sequence p̄1, p̄2, . . . is distributed by
the measure P .

Scetch of the proof. Let εi be a sequence of rational numbers
such that εi → 0 as i → ∞. To construct the required sequence of
predictions it is necessary to divide all rounds of the construction on
sessions of sufficiently large size. For each such session, for each i, we
define forecasts which are εi-calibrated at the right end-point of the
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series of the session, and are εi−1-calibrated at the left end-point of
this session. We omit details of this construction.

Using the same construction, we can strengthen (8.20) to

Theorem 8.6. A randomized strategy of Forecaster can be con-
structed such that

lim
T→∞

∑
p̄∈P(A)

∥∥∥∥∥ 1

T

T∑
t=1

I{p̄t=p̄}(δ̄[at]− p̄)

∥∥∥∥∥ = 0 (8.22)

holds almost surely.

Note that in the first sum (8.22) only a finite number od addends
are nonzero: the summing is only by p̄ ∈ {p̄t : 1 6 t 6 T}.

We pass details of the proof.

8.4. Calibrated forecasting and correlated equi-
librium

In this section we show that if in some infinitely repeated game each
player uses the predictions of future moves of opponents which are
well-calibrated on a sequence of strategies chosen by these opponents,
and chooses “the best reply” to these predictions, the joint frequency
distribution of the players’ strategies converges to the set of correlated
equilibria of the game.

Any probability distribution in a finite set of cardinality N is
an N -dimensional vector p̄. We use a norm ‖p̄‖ on RN and the
corresponding distance dist(p̄, q̄) = ‖p̄− q̄‖. Since all such norms are
equivalent, it is not important which norm we use.

A distance from any element p̄ ∈ RN to a set S ⊆ RN is defined:

dist(p̄, S) = inf
q̄∈S

dist(p̄, q̄).

An infinite sequence p̄1, p̄2, . . . converges to a set S if

lim
t→∞

dist(p̄t, S) = 0.
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Consider a game with k players, where Ai = {1, . . . , Ni} is a set of all
strategies of a player i, i = 1, . . . , k. Also, for any i, let f i(i1, . . . , ik)
be a payoff function of player i, where is ∈ As, s = 1, . . . k are moves
of all players.

A mixed strategy of a player s is a probability distribution in the
set As of his strategies. We also consider joint mixed strategies of
ordered sets s1, . . . , sl of players that are joint probability distribu-
tions in the sets As1 × · · · ×Asl of ordered sets of their strategies.

Let A =
∏k
j=1Aj and A−i =

∏
j 6=iAj . Let also, p̄t−i be an arbi-

trary probability distribution in the set of strategies of all players ex-
cluding i. Here the lower index “− i′′ emphasizes that p̄−i ∈ P(A−i).

We alse use notations:

f i(a, p̄−i) = Ep̄−i(f
i(a, ·)) =

∑
ā−i∈A−i

f i(a, ā−i)p̄−i(ā−i),

ā−i = (a1, . . . , ai−1, ai+1, . . . , ak),

(a, ā−i) = (a1, . . . , ai−1, a, ai+1, . . . , ak),

where a ∈ Ai, ā−i ∈ A−i, Ep̄−i is a symbol of the mathematical
expectation with respect to the measure p̄−i.

Now let players repeat the game at steps t = 1, 2, . . . according
to the following protocol.

FOR t = 1, 2, . . .
For any i = 1, . . . , k, the player i outputs a forecast of a set of pre-
diction of future moves of its opponents j 6= i that is a probability
distribution p̄t−i (the joint mixed strategy of all players j 6= i) and
chooses the strategy ati ∈ Ai such that the payoff of player i is maxi-
mal provided that his opponents will choose the joint mixed strategy
p̄t−i:

ati ∈ argmaxa∈Aif
i(a, p̄t−i). (8.23)

ENDFOR

We call a strategy a of the player i the best response for the forecast
p̄t−i of moves of players j 6= i if the value f̄ i(a, p̄t−i) is maximal:

f̄ i(a, p̄t−i) = max
x

f̄ i(x, p̄t−i).
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If there are several of these strategies, we choose one of such a = ati
using any pre-fixed rule.

Let āt = (at1, . . . , a
t
k) be an ordered set of moves of all players at

step t. Let

p̄T =
1

T

T∑
t=1

δ̄[āt] (8.24)

be the empirical frequency distribution of all strategies choosen over
first T rounds of the game. Here δ̄[ā] is a vector of dimension∏k
i=1 |Ai|, where a coordinate corresponding to a vector ā is 1, and

all other coordinates are 0.
The coordinates of the vectors p̄T are frequencies of occuring of

each ordered set of strategies ā = (a1, . . . , ak) in the sequence of
all ordered sets āt = (at1, . . . , a

t
k) chosen by players on steps t =

1, . . . , T .
The dimension of the vector p̄T , and of the vector δ̄[āt], is equal

to the number of all ordered sets (at1, . . . , a
t
k), ie, to the number∏k

i=1 |Ai|.
Any ordered set of strategies ā = (a1, . . . , ak) defines a number

p̄T (ā) =
1

T
|{t : 1 6 t 6 T, āt = ā}| (8.25)

that is a frequency of occurring the vector ā in the sequence of ordered
sets of strategies ā1, . . . , āT .

The following theorem shows that if each player

• uses the predictions of moves of all other players, which are
well-calibrated in sense of (8.22) on a sequence of ordered sets
of strategies choosen by his opponents, and

• chooses the best response (8.23) for these predictions,

then the joint frequency distribution of the players’ strategies con-
verges to the set C of correlated equilibria of the game.

Theorem 8.7. Let for each i the sequence of forecasts p̄1
−i, p̄

2
−i, . . .

of the player i is well-calibrated for a sequence ā1
−i, ā

2
−i, . . . of moves
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of all his opponents. Then the sequence of empirical frequency dis-
tributions p̄T defined by (8.24) converges to a set C of the correlated
equilibria.

Proof. To prove this theorem we have to show that

dist(p̄T , C)→ 0

as T → ∞, where C is the set of correlated equilibria. We also will
prove that C 6= ∅.

The simplex of all probability distributions in a polyhedron A =∏k
i=1Ai (vectors of dimension |A|) is a compact set. Therefore, the

sequence of frequency distributions {p̄T : T = 1, 2, . . . } defined by
(8.24) contains an infinite convergent subsequence p̄Tj .

Let p̄∗ be a limit point of this subsequence. We prove that p̄∗ is
a correlated equilibrium.

Fix an i and a strategy a ∈ Ai of the player i such that

p̄∗(a) =
∑
ā:ai=a

p̄∗(ā) > 0,

where ā = (a1, . . . , ak), aj ∈ Aj , j = 1, . . . , k. 4

We write f = f i, and define two subsets B, B̃ ⊆ P(A−i) (depend-
ing on i and a):

B = {q̄−i : f̄(a, q̄−i) = max
a′∈Ai

f̄(a′, q̄−i)}

be a set of all mixed strategies of all opponents of the player i, for
which its pure strategy a is the best response. It is easy to see that
B is a closed convex set. We also define

B̃ =

{
q̄−i : ∃t

(
q̄−i = q̄t−i)&f̄(a, q̄−i) = max

a′∈Ai
f̄(a′, q̄−i)

)}
be a set of all mixed strategies chosen by the opponents of the player
i at steps t = 1, 2, . . . , where he chooses the move a as the best
response. By definition B̃ ⊆ B.

4If p̄∗(a) = 0 then the strategy a can be ignored when calculating the frequency
distribution. This is equivalent to the case where the ith player does not use a.
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By definition the set B̃ is no more than countable, since at each
step no more than one element can be added to it.

Let us consider the conditional probability of an arbitrary vector
of moves ā−i of all players, except i, given ai = a (where a has been
chosen above) with respect to the limit distribution p̄∗:

p̄∗(a−i|ai = a) = p̄∗((a, ā−i)|ai = a) =
p̄∗(a, ā−i)

p̄∗(ai = a)
. (8.26)

By Corollary 6.3 a probability distribution p̄ in the set
∏K
k=1Ak of

sequences of moves ā = (a1, . . . , aK) is a correlated equilibrium if
and only if for each player i ∈ {1, . . . , K} and for each strategy
a ∈ Ai = {1, . . . , Ni}

f i(a, p̄(·|ai = a)) = max
a′∈Ai

f i(a′, p̄(·|ai = a)).

Then the probability distribution p̄∗ is correlated equilibrium if and
only if the conditional distribution p̄∗(·|ai = a) ∈ B for all i and
a ∈ Ai.

We prove that p̄∗(·|ai = a) ∈ B by approximating it using the
corresponding frequency distribution. Let for any a ∈ Ai,

NT (a) = |{t : 1 6 t 6 T, ati = a}|

be the number of steps 6 T , on which the player i chooses the strategy
a, and

NT (p̄−i) = |{t : 1 6 t 6 T, p̄t−i = p̄−i}|

be the number of steps 6 T , on which the opponents of the player i
choose an ordered set of mixed strategies p̄−i ∈ P(A−i).

Consider the conditional frequency distribution p̄T (·|ai = a) of
ā−i given ai = a. This distribution is defined:

p̄T (a−i|ai = a) =
p̄T (a, ā−i)

p̄T (ai = a)
. (8.27)

By (8.26), p̄Tj (a−i|ai = a)→ p∗(a−i|ai = a) as j →∞.

339



By definition of the set B̃, an element a ∈ Ai appears in the set
of strategies āt as the ith coordinate only if p̄t−i ∈ B̃. It follows that
the frequency of occurrence of any set (a, ā−i) in the sequence

{āt : 1 6 t 6 T}

equal to the frequency of occurrence of an ordered set ā−i in the
sequence

{āt−i : p̄t−i ∈ B̃, 1 6 t 6 T}.

Then by (8.25) we obtain:

p̄T (a, ā−i) = p̄T (ā) =
1

T
|{t : 1 6 t 6 T, p̄t−i ∈ B̃, āt−i = ā−i}|.

By definition

p̄T (ai = a) =
NT (a)

T
.

Hence, we obtain an expression for the conditional frequency distri-
bution defined by a sequence āt, where ati = a, t = 1, . . . , T :

p̄T (·|ai = a) =
1

NT (a)

∑
16t6T, p̄t−i∈B̃

δ̄[āt−i] =

=

(
T

NT (a)

)
1

T

∑
16t6T, p̄t−i∈B̃

(δ̄[āt−i]− p̄t−i) + (8.28)

+
∑

16t6T, p̄−i∈B̃

(
NT (p̄−i)

NT (a)

)
p̄−i. (8.29)

Since p̄∗(ai = a) > 0 and p̄∗ is the limit of probability distributions

p̄Tj as j →∞, then the factor

(
Tj

NTj (a)

)
is bounded from above.

Since p̄Tj → p̄∗ as j →∞, then for any vector ā−i,

p̄Tj (ā−i|ai = a)→ p̄∗(a−i|ai = a)

as Tj →∞. Then, since the set B is closed, we obtain that p̄∗(·|ai =
a) ∈ B for all i and all a ∈ Ai. Therefore, we have proved that the
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probability distribution p̄∗ is a correlated equilibrium. From this the
theorem follows. 4

Combining Theorems 8.4 and 8.7, we obtain the following corol-
lary:

Corollary 8.1. One can construct a randomized algorithm which,
for each 1 6 i 6 N computes a sequence of predictions p̄1

−i, p̄
2
−i, . . .

of the player’s i opponents moves such that the following holds:

• Let each player chooses his move as the best response to a pre-
diction of this algorithm.

• Then the empirical frequencies p̄T of all players moves converge
to a set C of correlated equilibria as T →∞ with probability 1.

8.5. Problems

1. Prove the inequality (8.9).
2. Prove that the minimax theorem is the corollary of the Black-

well approachability theorem.
3. Prove that if a closed set S is approachable in a game with

a matrix f(i, j) then any closed subset of its complement cannot be
approachable in the game with the matrix f ′(i, j) = f(j, i).
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Part IV

Appendix
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8.6. Some remarkable inequalities

In this section we give some large deviation inequalities that are re-
peatedly used in proofs of theorems. The most important is that the
Hoeffding inequality.

Lemma 8.1. Let X be a random variable such that a 6 X 6 b, where
a and b are some real numbers, a < b. Then for any real number s,

lnE(esX) 6 sE(X) +
s2(b− a)2

8
, (8.30)

where E is a symbol of the mathematical expectation.

Proof. Since

lnE(esX) = sE(X) + lnE(es(X−E(X))),

it is sufficient to prove that for any random variable X such that
E(X) = 0 and a 6 X 6 b

E(esX) 6 es
2(b−a)2/8.

By convexity of the exponent

esx 6
x− a
b− a

esb +
b− x
b− a

esa

for a 6 x 6 b.
Denote p = − a

b−a . Applying the mathematical expectation to
both sides of this inequality and taking into account that E(X) = 0,
we obtain for x = X:

E(esX) 6 − a

b− a
esb +

b

b− a
esa =

= (1− p+ pes(b−a))e−ps(b−a) = eϕ(u),

where u = s(b− a) and ϕ(u) = −pu+ ln(1− p+ peu).
The first derivative of ϕ(u) by u is represented as

ϕ′(u) = −p+
p

p+ (1− p)e−u
.
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It holds ϕ(0) = ϕ′(0) = 0. Besides,

ϕ′′(u) =
p(1− p)e−u

(p+ (1− p)e−u)2
6

1

4
.

Indeed, denote q = (1 − p)e−u. We need to prove the inequality
pq

(p+q)2 6 1
4 , which follows from (p− q)2 > 0.

By Taylor’s formula, for some θ ∈ [0, u],

ϕ(u) = ϕ(0) + uϕ′(0) +
u2

2
ϕ′′(θ) 6

u2

8
=
s2(b− a)2

8
,

since u = s(b− a). Lemma is proved. 4
Let us consider several corollaries, explaining the importance of

this inequality.

Corollary 8.2. Let X be a random variable such that P{a 6 X 6
b} = 1. Then

P{|X − E(X)| > c} 6 2e
− 2c2

(b−a)2 . (8.31)

Proof. First recall the Markov inequality. Let X be a random
variable, X > 0. It follows from

E(X) =

∫
XdP >

∫
{X>c}

XdP > cP{X > c}

that P{X > c} 6 E(X)/c.
Using Markov inequality and the inequality (8.30), we obtain

P{X − E(X) > c} = P{es(X−E(X)) > ecs} 6 e−cs+
s2(b−a)2

8

for all s > 0. The minimum of the right-hand side of this inequality
by s is attained for s = 4c/(b− a)2. From this we obtain

P{X − E(X) > c} 6 e
− 2c2

(b−a)2 .

Similarly, we get

P{X − E(X) < −c} 6 e
− 2c2

(b−a)2 .
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Finally, we obtain

P{|X − E(X)| > c} 6 2e
− 2c2

(b−a)2 .

4
The best known is following corollary from this lemma – Chernoff

inequality. 5

Corollary 8.3. Let X1, X2, . . . be a sequence of independent random
variables such that P{ai 6 X 6 bi} = 1 for all i = 1, 2, . . . . Then
for any c > 0,

P

{
n∑
i=1

Xi − E
n∑
i=1

Xi > c

}
6 exp

− 2c2

n∑
i=1

(bi − ai)2

 ,

and also,

P

{
n∑
i=1

Xi − E
n∑
i=1

Xi < −c

}
6 exp

− 2c2

n∑
i=1

(bi − ai)2

 .

Proof. The proof is similar to the proof of Corollary 8.2. By

5We use also notation exp(x) = ex.
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Markov inequality and by the inequality (8.30) we obtain

P

{
n∑
i=1

(Xi − E(Xi)) > c

}
6

6

E

(
exp(s

n∑
i=1

(Xi − E(Xi)))

)
exp(cs)

=

=

n∏
i=1

E(exp(s(Xi − E(Xi))))

exp(cs)
6

6

n∏
i=1

exp
(
s2(bi−ai)2

8

)
exp(cs)

6

6 exp

−cs+

s2
n∑
i=1

(bi − ai)2

8

 6

6 exp

− 2c2

n∑
i=1

(bi − ai)2

 .

In transition from the second line to the third line we have used the
independence of the random variables X1, X2, . . . . In the transition
from the penultimate line to the last line we have used the minimiza-
tion by s. The second inequality is obtained similarly. 4

Using this corollary, it is possible to obtain a bound for the rate
of convergence for the law of of large numbers.

Corollary 8.4. Let X1, X2, . . . be a sequence of independent random
variables such that P{ai 6 X 6 bi} = 1 for all i = 1, 2, . . . . Then
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for any ε > 0,

P

{∣∣∣∣∣ 1n
n∑
i=1

(Xi − E(Xi))

∣∣∣∣∣ > ε

}
6 2 exp

− 2n2ε2

n∑
i=1

(bi − ai)2

 .

If ai = 0 and bi = 1 for all i then

P

{∣∣∣∣∣ 1n
n∑
i=1

(Xi − E(Xi))

∣∣∣∣∣ > ε

}
6 2 exp

(
−2nε2

)
.

A sequence of random variables V1, V2, . . . is called a martingale-
difference relative to the sequence of random variables X1, X2, . . .
if for each i > 1 the variable Vi is a function of random variables
X1, . . . , Xi and

E(Vi+1|X1, . . . , Xi) = 0

with probability one. The following inequality is called Azuma–
Hoeffding inequality.

Lemma 8.2. Let V1, V2, . . . be a martingale-difference relative a se-
quence X1, X2, . . . of random variables, besides, Vi ∈ [Ai, Ai+ci] for
some random variable Ai measurable with respect to X1, . . . , Xi−1

and for some sequence of positive constants c1, c2, . . . .

For Sn =
n∑
i=1

Vi, it holds

E(esSn) 6 e
(s2/8)

n∑
i=1

c2i

for all s > 0.

Proof. We have

E(esSn) = E(esSn−1E(esVn |X1, . . . , Xn−1)) 6

6 E(esSn−1es
2c2n/8) =

= es
2c2n/8E(esSn−1). (8.32)
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Here in transition from the first line to the second line Lemma 8.1
was used. The result of the lemma can be obtained by iteration of
the inequality (8.32). 4

The following corollary is proved similarly to Corollary 8.2.

Corollary 8.5. Let V1, V2, . . . be a martingale-difference relative a
sequence X1, X2, . . . of random variables, besides, Vi ∈ [Ai, Ai + ci]
for some random variable Ai measurable with respect to X1, . . . , Xi−1

and for some sequence of positive constants c1, c2, . . . .

Denote Sn =
n∑
i=1

Vi. Then for any n > 0,

P{|Sn| > c} 6 2 exp

− 2c2

n∑
i=1

c2
i

 .

Proof. Using Markov inequality

P{X > c} 6 E(X)/c

and the inequality (8.30), we obtain for any n,

P{Sn > c} = P{esSn > ecs} 6 exp

−cs+

s2
n∑
i=1

c2
i

8


for all s > 0. The minimum of the right-hand side by s is attained

for s = 4c/
n∑
i=1

c2
i . From this we obtain

P{Sn > c} 6 exp

− 2c2

n∑
i=1

c2
i

 . (8.33)

Similarly,

P{Sn < −c} 6 exp

− 2c2

n∑
i=1

c2
i

 .
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Finally, we obtain

P{|Sn| > c} 6 2 exp

− 2c2

n∑
i=1

c2
i

 .

Corollary 8.6. Under the conditions of Corollary 8.5, where ci = 1
for all i, we have

P

{
1

n
|Sn| > c

}
6 2e−2nc2 . (8.34)

Borel–Cantelli lemma states that if, for some sequence of events

An the series
∞∑
n=1

P (An) converges, then the probability that the event

An holds for infinitely many n is 0.
Since for any c > 0 the series of exponents in the right-hand side

of the inequality (8.34) is convergent, by Borel–Cantelli lemma we
obtain:

Corollary 8.7. Under the conditions of Corollary 8.5, where B1 <
ci < B2 for all i, for some positive constants B1 and B2, the martin-
gale strong law of large numbers holds:

P

{
lim
n→∞

Sn
n

= 0

}
= 1. (8.35)
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