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ABSTRACT. We construct the trajectory attractor 2y for the non-autonomous
dissipative 2d Euler systems with periodic boundary conditions that contain
time dependent dissipation terms —r(¢)u such that 0 < a < r(t) < 3, for t > 0.
External forces g(z,t),z € T2, > 0, also depend on time. The corresponding
non-autonomous dissipative 2d Navier—Stokes systems with the same terms
—r(t)u and g(z,t) and with viscosity v > 0 also have the trajectory attractor
A%, Such systems model large-scale geophysical processes in atmosphere and
ocean. We prove that A5, — %5 as viscosity ¥ — 0+ in the corresponding
metric space. Moreover, we establish the existence of the minimal limit Q[glin -
s of the trajectory attractors 215, as v — 0 + . Every set 2, is connected.
We prove that erzﬂi“ is a connected invariant subset of 2s:. The problem of the
connectedness of the trajectory attractor 2y, itself remains open.

Introduction. In the present paper, we construct the trajectory attractor 2y for
the non-autonomous dissipative 2d Euler systems

O+ (u, Vy)u + r(t)u + Vuep = g(x,t), divu =0,

that contain time dependent dissipative terms —r(¢)u, such that 0 < a < r(¢) < 3,
for ¢t > 0. External forces g(z,t) also depend on time and g(-) € LY(R; H'). The
equations are equipped with periodic boundary conditions. In the system, u =
(ut(z,t),u?(x,t)) denotes the unknown velocity vector field and p = p(z,t) is the
unknown pressure function. Such systems describe in geophysical hydrodynamics
two-dimensional fluids moving on a rough surfaces and model large-scale processes
in atmosphere and ocean. The term —r(t)u parameterizes the main dissipation that
occurs in the planetary boundary layer (see, for example, the book [21, Ch.4]).
The function o(t) = (r(t),g(x,t)),t > 0, is called the time symbol of the sys-
tem. We assume that o(t) is a translation compact function in the correspond-
ing topological space (see Sec. 1). In fact, 2y is the trajectory attractor of the
entire family of non-autonomous dissipative 2d Euler systems with time symbols
o € %, where ¥ = Hy(og) is the hull of a given translation compact symbol
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oo(t) = (ro(t),go(x,t)) that satisfies inequalities o < 7(t) < B for t > 0 and
go(+) € LY (Ry; HY) (see Sec. 1).

We also construct the trajectory attractor 205, for the 2d Navier-Stokes systems
with the same dissipation terms —r(¢)u and the external forces g(z,t) and with
viscosity coefficient v > 0 :

O+ (u, Vy)u+ r(t)u+ Vep = vAu + g(a,t), dive = 0.

In the mentioned above geophysical models, the viscosity term vAw is responsible
for small-scale dissipation (note that 0 < v < « in the physically relevant cases).

We prove that the Hausdorft deviation of the set 2% form the set 2y, (measured
in the corresponding metric p(-,-)) approaches zero as viscosity v vanishes:

dist, (A5, ™As) = 0as v — 0+.

We also study some important properties of the trajectory attractors (s, and 2%,
specifying below.

We note that autonomous 2d Euler and Navier—Stokes systems with dissipation
was considered in a number of papers (see, for example, [4], [22],[15] for dissipative
Euler systems and [16]-[18] for dissipative Navier—Stokes systems).

The methods of trajectory attractors for evolution partial differential equations
was developed in [6]-[10] (see also the review [25]). This approach is highly fruitful
in the study of the long time behaviour of solutions to evolution equations for which
the uniqueness theorem of the corresponding initial-value problem is not proved yet
(e.g., for the 3D Navier—Stokes system) or does not hold.

The trajectory attractors for autonomous 2d Euler system with dissipation (that
is, when r = a and g = g(x) € H! are independent of time) and for the correspond-
ing autonomous dissipative 2d Navier-Stokes systems with vanishing viscosity have
been studied in [11].

The paper is organized as follows. In Sec. 1, we study the non-autonomous
dissipative 2d Euler system with periodic boundary conditions. Using the Galerkin
method, we prove that the initial-value problem for this system has at least one
weak distribution solution u(z,t) such that u(z,t) € Loo(Ry; H') and dyu(zx,t) €
LY (R, ; H~'). Here H' denotes the space of periodic solenoidal vector fields with a
finite Sobolev H!'-norm and the space H~! = (Hl)* is dual for H'. Moreover, the
constructed solution u(x,t) satisfies the corresponding energy inequality (see the
next paragraph) that is important for the subsequent study. Note that the unique-
ness theorem for weak solutions to the 2d Euler system in the class Lo (R ; H') is
not proved.

In Sec. 2, we construct the trajectory attractor for the non-autonomous dissipa-
tive 2d Euler systems with symbols (r,g) = 0 € ¥ = H(d¢). We define spaces F
and Fio¢ (F2 C Fl°) that contain the weak solutions u(x,t) constructed in Sec.
1. Then, we define the space of trajectories (solutions) K& (N) C F? depending
on N > 0. The set Ky (V) consists of the weak solutions u(z,t) of the system that
satisfy the following energy inequality:

2 — _
lu@®)” < Ne™®" + 97 lgoll Ty z, a1y VE € Ry

where v = y(a) > 0 and ||| := ||||5: denotes the norm in H' and g is the
original external force in the dissipative Euler system. The space ]—'fc is equipped
with the local weak topology @l_f_’c generated by the weak convergence of sequences

{vn(, 1)} C F¢. We prove that the trajectory space K (N) is bounded in F? and
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closed in the topology @l_ﬁc. These assertions are very important for the subsequent
study. Consider the translation semigroup {T'(h),h > 0} acting on a trajectory
(solution) w(x,t) by the formula: T'(h)u(z,t) = u(z,h + t). It follows from the
definition of the trajectory space that K3 (V) is invariant with respect to {T'(h)} :
T(R)KE(N) € KE(N) for all A > 0. Using these facts and applying the theory
of trajectory attractors, we prove that the translation semigroup {7'(h)} acting on
K$(N) has the global attractor s (N) which we call the trajectory attractor of the
system. Recall that T'(h)2s(N) = Ax (V) for all A > 0. We then prove that the set
As(N) is independent of N : Asx(N) = Ax(0) =: Ay, for all N > 0.

In Sec. 3 and 4, we study the non-autonomous dissipative 2d Navier—Stokes
systems with periodic boundary conditions and with viscosity v > 0 that contains
the dissipative terms —r(¢)u and the external forces g(x,t) such that (r,g) = o €
Y. The corresponding initial-value problem is well-posed and we construct the
trajectory attractor 2%, for these equations. We prove that dist, (%, 2s) — 0 as
viscosity ¥ — 0 + . The trajectory attractor 2%, is a connected set in the topology
@lfc for all v > 0.

In Sec. 5, we prove the existence of the minimal limit 23" of the trajectory at-
tractors A% as v — 0-@ that is, AL C Ay, ngin is closed in @fc, dist,, (A%, L") —
0 as v — 0+, and 245" is the minimal set that satisfies these properties. We prove
that the set 212" is connected in the topology GIJSC and strictly invariant with re-
spect to the translation semigroup. The question of whether or not the trajectory
attractor 2y by itself is a connected subset of @lfc remains an open problem.

1. Non-autonomus 2d Euler systems with dissipation. We consider the fol-
lowing equations:

Ou+ B(u,u) +r(t)u = g(x,t), (V,u):= 0z, u1 + Op,us =0, (1.1)
u= (u'(z,t),u*(x,t), x=(x1,29) €T, >0,
where T? := [R mod 27]? is the two-dimensional torus, B(u,v) := P(u'0,,v +

u20,,v) and P is the orthogonal Leray operator, which projects the space [Lo(T?)]?
onto the subspace

H := [{’U(l‘) S [COO(TQ)]Z I (V,u) = 0][L2(']I'2)]2-

([X]g denotes the closure of the set X in the topological space E). We define
similarly the space

H' = [{v(z) € [C=(T")]* | (V,u) = Ol (722,

which is embedded into the standard scale of Sobolev spaces H®, s € R, where
H® = H, H=* = (H®)* is the dual space of H*, s > 0. The norms in H and H' are

denoted by | - | and || - ||, respectively. Note that H' € H.
Recall that for u satisfying (V,u) = 0 we formally have
B(u,v) = P(0y, (u*v) + 0y, (u?v)). (1.2)

In particular by the Gagliardo-Nirenberg inequality, B(u,v) € H for u,v € H?
(see, for example, [23]). Moreover, the trilinear form b(u,v,w) = (B(u,v)w) is
continuous on H'x H'x H' and therefore B(u,v) € H~! for u,v € H".

The unknown pressure function p(z,t) is eliminated form the first equation of
the system (1.1) by applying the operator P to both sides.



4 VLADIMIR. V. CHEPYZHOV

In (1.1), the time-dependent dissipation coefficient r(t) satisfies the inequalities
O<a<r{)<pB, t=0, (1.3)

and, for simplicity, we assume that r(t) € CP(Ry) where R, := {0 < t < +o0}.
We also assume that the external force

g(I,t) = (gl(l‘,t),gQ(x,t)) € LS(R—HHl)v (14)
that is,

t+1
||9('»')||ig(R+;H1) = sup/ lg(-, 8)|%ds < +oo. (1.5)
t>0 Jt

The autonomous dissipative 2D Euler system (1.1), with r(¢) = « and g(z,t) =
go(z) for t > 0, was considered in a number of papers (see, for example, [4], [22],
[15]). Equations (1.1) describe large-scale geophysical processes in atmosphere and
ocean when the main dissipation occurs in the planetary boundary layer and is
parameterized by the term —ru (see, for example, [21, Ch.4]).

We now consider the time dependent terms r(t) and g(x,t) in greater details.
We denote the pair of function

0(8) = (T’(S),g(~,$)), 520,
and we call this function the time symbol (or symbol) of the system (1.1). Here, it
is convenient to use the letter s as the time variable instead .

We set 24 := C1°¢(Ry) x LY°(R; H'). According to the assumptions made, the
symbol o(-) € E4. We endow the space Z; with the local convergence topology. By
the definition, a sequence {&,(-)} C 2 converges to an element £(-) € 2 iff for
every £ >0

¢
Iél[%}z] |rn(s) —7(s)] = 0 and / lgn (-, 8) — G(-, 8)||*ds — 0 as n — oo,
s€lo, 0

where (rn(5), gn(-,5)) = &.(s) and (7(s), §(-,s)) = £(s). It is clear, that 2 is a
complete metric space (see, for example, [10]).

We consider the translation operators T'(h), h > 0, acting in the space Z, by the
formula T'(h)&(s) := £(h+s),s > 0. It is clear that the set of operators {T'(h), h > 0}
forms a semigroup that maps Z to itself.

For an element £(-) € E,, we define the hull H () of £ in the space Z; by the
following formula:

Ho(€):= [ JTE|  =U{e(h+s) [ h>0}z, .
h>0 =

Bt

Thus, € € H.(€) iff there exists a real sequence {h,} C R, such that &(h, +s) —

&(s) in the above topology as n — oo.

Definition 1.1. A function £(-) € Z is said to be translation compact in 24 if its
hull H4(§) is compact in = .

We now come back to the system (1.1). Let we be given an original time symbol
oo(s) := (r0(s),g0(-,s)) € E4 that satisfies inequalities (1.3) and (1.5). Moreover,
we assume that the function oo(s) is translation compact in Z,. (For translation
compactness criteria see [10].) As examples of translation compact functions in =,
one can consider periodic, quasiperiodic or almost periodic functions o¢(s),s = 0,
with values in the space R x H! (for more examples, see [10]).
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We shall use for 4 (0¢) a short notation ¥ = H 4 (0p). We note that every time
symbol o(s) = (r(s),9(-,s)) € X has the following property. The function o(s)
is also translation compact in =4 and H (o) C X. Moreover, the function r(s)
satisfies inequalities (1.3) and the function g(s) := g(+, s) satisfies the inequality

||9(')‘|%12>(R+;H1) < HQO(')“ig(RJr;Hly
In what follows, we formulate several propositions concerning weak solutions of
system (1.1) with a fixed time symbol that satisfies (1.3) and (1.5). It is clear that
all these proposition hold for every symbol o € 3.
We consider the initial condition for (1.1) at t =0:

u|t:0 =wug, ug€ Hi. (16)

Recall that a function u = u(x,t),x € T?,¢ > 0, is said to be a weak distribution
solution of (1.1) if u € Lo (0, M; H') for every M > 0 and u = u(w, t) satisfies the
system in the distribution sense of the space D(0, M; H~1).

We prove the existence of a weak distribution solution of the problem (1.1), (1.6)
by the Galerkin method. Consider as a basis in H an orthogonal (in H) system of

eigenfunctions {e;(z) = (ejl (x),ef(m)) € H?, j=0,1,2,...} of the Stokes operator

—PAej(z) = Njej(z), (V,ej(x))=0, zeT? j=0,1,2,...

We point out that PA = A in the space H? with periodic boundary conditions
(see, for example, [24]). Recall that eg(z) = eg is a constant vector and 0 = Ag <
A1 < A2 <0 Aj = 400 as j — 0o. We seek a Galerkin approximation in the form
n
up(z,t) = cin(t)ej(z), n=1,...,
§=0

where the ¢;,,(t) are unknown scalar functions, and the function w, (x,t) satisfies
the equation

Opthy, + 1L, B (U, uy,) + 7(t)un, = Ig(-, t). (1.7)
Here, 1I,, denotes the orthogonal projector from H onto the finite-dimensional sub-
space [eg(x), ..., en(x)]. This equation is equivalent to the corresponding system of
ODE with respect to the functions ¢;j,(t), j =0,1,2,...,n. The initial condition

Up |t=0 = 1, (0) = I up (1.8)

is given at t = 0, where g is the same as in (1.6).

Clearly, the problem (1.7), (1.8) has a unique solution u,(z,t) € C1([0,7,); H')
for some 7, > 0. We take the inner product in H of each side of equation (1.7) with
U (t) := up (-, t) and use the classical identity

(B(u,u),u) =0, YuecH! (1.9)
(see [24], [13]). After elementary transformations, we get that
1d 2 2
3 gz [t +r@) [ua O = (9(t), un(t), ¥t € [0, 7). (1.10)
Here, recall, [u, ()|° = |[un ()||7; -
Taking the inner product in H of equation (1.7) with —PAu,(t) = —Au,(t)

and using the standard identities — (un, Aun) = [Vun | and —(g(t), Aun) = (Vg(t),
Vu,,), we obtain the equality
1d

5 g | Vtnl” = (Btn, wn), M) +7(8) [Vun|* = (Vg(t), Van), ¥t € [0,7). (1.11)
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As is well known, in the case of periodic boundary conditions (z € T?), we have the
identity

(B(u,u),Au) =0, Yue H? (1.12)
(see [24, Ch. VI, Lemma 3.1] and [15]), which plays a key role in our future reason-
ings. Equations (1.11) and (1.12) imply the equality

L L V() + (1) V(D) = (Vg(t), Vi (1)) (1.13)
We now sum equalities (1.10) and (1.13)
L O + 70 a0 = g0 un O, V€072, (114)

where ||un||2 = ‘un|2 + |Vun|2 and (g(t), un) g = (9(t); un) + (Vg(t), Vun).
Since 7(t) > a > 0, the differential equality (1.14) implies that

1d 2 2 1 2« 2
el < —
5 ln O + aun @I < 5 N + 5 fun (O =
d 2 2 1 2
n n < = . 1.1
 un(®) + o fun O <~ g0 (115)

Multiplying both sides of (1.15) by e and integrating in ¢ we obtain

e un @I = un (O)]I < 5/0 lg(s)* ds =
t

Lt
la ()1 < Jun (O)]I* ™" + E/ e |g(s)|* ds.  (1.16)
0

Estimating the last integral, we have

t t

[ lgeras<
0 t—1
1

t t—
< / lg(s)|2 ds + e~ / lg(s)|P ds + -
t—1 t—2

t—1
=) | g(s)|2 ds + / =) |l g(s)|2ds + -
t—2

<A+ e by, = (1= ) ol (1.17)
Using (1.16) and (1.17), we arrive at the main estimate
2 2 _ -
lun N < un ()7 €™ + 97 )9l 7y &, 1y V¢ E [0,70), (1.18)

where v(a) = a(1 — e~®). Notice that v(a) > o?/(1 + ).

It follows from the inequality (1.18) that the solution w,(t) of the problem (1.7),
(1.8) can be extended to the entire half-line R} (that is, 7, = 400 for every n),
un(t) € CL(Ry; H') and

s ()17

for all n € N. In particular,

2 _
<t O 477 gy iy 720,

lunl? o oy = esssup {un @I [¢> 0} < Jluol* +97 gy e, vy - (1:19)
Since ug € H*, the initial condition of the problem (1.7), (1.8) satisfies
U (0) = Iup — ug (n — 00)  strongly in H'. (1.20)
Inequality (1.19) implies the existence of a subsequence {n'} C {n} such that
Un (1) — u(-t) (0 — 00)  *-weakly in L°¢(R,; H') (1.21)
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for some function u(-,t) € Loo(Ry; HY).
We assert that u(x,t) is a weak solution of the problem (1.1), (1.6). Indeed, from
equations (1.7), the assumption (1.3), and the estimate (1.19), we find that

1Osun (D)l -1 < (1B (un(t), un () g-1 + Bllun @l -1 + g0 -1

<C (lun®)lF iz + Ol + 19O ) < 1 (Jua@I + lg@) +1)
< i (luoll® +77" glZy ey + 9@ + 1), ¢ 0. (1.22)
Here, we have used the inequalities
1Buns )l < lwnlZ,poye s Mulf g <clull®, VueH',  (1.23)

that follow from the identity (1.2) and the embedding H* C L,(T?)?2, respectively.
Therefore,

t+1
/ O ()31 ds < Cal) (Ilwol* + g Ly, oy +1)» £20. (1.24)
t

Relations (1.21) and (1.24) imply that
Oty (1) — Qyu(-,t) (n' — 00) weakly in LYS(R,; H™1). (1.25)

Using now (1.21), (1.25), and the Aubin compactness theorem (see [2, 14, 20]),
we obtain that

Up () — u(-,t) (' — o0) strongly in L°¢(R,; H). (1.26)
It follows from (1.26) (by using the routine reasoning similar to [23, 20, 19]) that
B(tns, Un') — Blu,u) (n' — 00) *-weakly in LI°°(R; H!). (1.27)

Now, with regard to relations (1.21), (1.25), and (1.27), we can pass to the limit as
n’ — oo in equation (1.7) in the space of distributions D’(Ry; H~!) (see [20]). We
obtain that the function u(zx,t) is a weak distribution solution of equation (1.1) in
the space D'(R,; H~') and dsu(-,t) belongs to LE(R,; H~1) while it follows from
(1.20) that u(x,t) satisfies the initial condition (1.8). Finally, from the inequality
(1.18) we conclude that the constructed weak solution u(x,t) satisfies the estimate

2 2 _a -
TP < ) e 47 @) 9 2ya iy VEERL  (128)
We have proved the following assertion.

Proposition 1.1. For any ug(x) € H', the problem (1.1), (1.6) has a weak solution
u(z,t) € Loo(Ry; HY) such that Oyu(z,t) € LY(Ry; H™1) and the inequality (1.28)
holds.

Remark 1.1. Any weak solution u(z,t) € Loo(Ry; H') of equation (1.1) satisfies
the energy identity

5= @) + (@) Ju)* = (g,u(t), V=0,

where the function |u(t)|* is absolutely continuous (cf. (1.10)). However, an anal-
ogous identity (see (1.13)) for the function |Vu(t)|?, ¢ > 0, does not hold since a
weak solution is no longer smooth enough.
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Remark 1.2. The uniqueness question for the problem (1.1), (1.6) in the weak
space Loo(Ry; H') remains open. The analogous obstacle is known for the classical
conservative 2d Euler system (1.1) with » = 0, for which existence and uniqueness
theorems have been proved in the class of functions u(x,?) with vortex V x u :=
Op,u? — Opyut € Loo(Ry; Loo(T?)) under the condition that V x ug and V x g
belong to Lo (T?) (see [26], [27], [5]). These results can be extended to equations
(1.1). However, it will be shown in the next section that no uniqueness theorem is
required in the study of trajectory attractors for non-autonomous 2d Euler system
with dissipation (1.1).

2. Trajectory attractor of non-autonomous 2d Euler equations with dis-
sipation . We introduce the spaces }]‘i and }'}fc :

FPi={v(z,s), s€e Ry |v € Loo(Ry; HY), v € LY(R; H )},
Feei={v(z,s), se Ry |ve LR, HY), dv e LY (Ry; H )}

Recall that 2(-) € LI%(Ry; E), where E is a Banach space, if and only if 2(-) €
Lo(0,M; E) for every M > 0. Obviously, > C F° and F® is a Banach space
with norm defined by

[0l 70 = vl @y + 10l Ly e, -1y

The space fﬂfc is equipped with the topology GL‘F’C generated by the following weak
convergence of sequences {v,(s)} C F°¢ : by definition, v,(-) — v() (n — o) in
the topology @l_ﬁc if for any £ > 0

1. vp(y8) — v(+,8) (n = 00) * -weakly in Lo (0,¢; H') and
2. Oyvn (-, 8) — Ov(-,8) (n — o0)  weakly in Lo(0,6; H™1).

The topology @ljr’c is metrizable on any ball
Bri={ve 7Y | lvlz, < B}

in the space ]—"R. The corresponding metric for Bg is denoted by p(-,-). Moreover,
any ball By is a compact set in the topology @5’20 and thus Bp is a compact metric
space (see, for example, [10], [1]).

We consider the non-autonomous dissipative 2d Euler system (1.1) with sym-
bols o(s) = (r(s),9(s)),s = 0, belonging to the hull ¥ := H,(0p) in =4 of
the initial symbol oo(-) := (ro(:),g0(:)) € Z4. Recall that ro(s) satisfies (1.3),
go(+,8) € LY(Ry; H'), and 0¢(s) is a translation compact function in =,

We now define the trajectory set I (N) of the system (1.1) with symbol o that

depend on a number N > 0.

Definition 2.1. A function u(s) € F? belongs to Kf (N) if

1. u(-) € Loo(Ry; HY) and u(-) is a weak solution of (1.1) with symbol o €
H.(00) in the space D'(Ry; H™1);
2. u(-) satisfies the inequality

2 ot | -
lu@®)” < Ne™®" + 97 ()llgoll g m, i) V€ Ry (2.1)
We note that the set KT (N) is non-empty for all ¢ € ¥ and for any N > 0.

Indeed, if up € H' and |jug|®> < N, then the solution u(-,¢) of (1.1), (1.6) with
specified initial data ug obtained by the Galerkin method (see Proposition 1.1) is a
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weak solution of (1.1) in D'(Ry; H~') and satisfies inequality (2.1) (see (1.28) for
|uol|* < N). Therefore, u(x,t) belongs to KF(N).

Consider the translation semigroup {T'(t)} := {T'(t),t > 0} acting in the spaces
F> and Fi°¢ by the formula T'(t)v(s) = v(t + s). The semigroup {T'(t)} is contin-
uous in the topology @l_f_)c. This semigroup also acts in K} (N) and the following
translation identity holds:

T(t)KH(N) € Kiyo(N) foralloes, t>0. (2.2)

Indeed, if u(-) € KF(N) is a weak solution of (1.1) with symbol o(s), then the
function T (h)u(s) = u(h + s) is a weak solution of (1.1) with the shifted symbol
o(h+s) =T(h)o(s). Moreover, since u(-) satisfies inequality (2.1), we see that, for
all b > 0,

T = fuh + 0] < Ne™ £y go2y 0

< Ne_at+7_1||90||2L‘2)(]R+;H1)’ VtERJ’_

Therefore, T(h)u(t) also satisfies (2.1), that is, T'(h)u(-) € IC;(h)U(N) for all u €
KE(N).
The set
KOV = | K (V) (23)
ocy

is called the trajectory space of the system (1.1). It is clear that K3 (N) C Fiee,

Proposition 2.1. For any fized N > 0, the space K& (N) is bounded in ]-"_k; and
closed in the topology @lfc.

Proof. The boundedness of K& (V) in F% follows from the inequality (2.1) and the
estimate similar to (1.22):

10cull Ly, -1y < I1B(w )l pymy -1y + Bllull py g1y + M9l y @y sm-1)

2
e ||u||Lw(R+;H1)+||g||Lb(R+,H1)+1) (2.4)
-

2
<G (N ool sl 1) CON 4R,
(2.5)

Recall that ||g|\i]2)(ﬂh;H1
and (2.5) for t = 0, we see that KJ;(N) is bounded in FP.

We claim that Kf (V) is closed in ©'¢¢. Let {u,(z,t)} C K& (N) be a sequence
that converges to a function w(-) € F? in ©!9¢, that is,

) < ||90||2LQ(R+;H1) for all ¢ = (r,g) € X. Combining (2.1)

Up (- t) — w(-,t) (n — 00)  *-weakly in Lo (0,4 H'), (2.6)
Oyt (-, 1) — dpw(-,t) (n — 00) weakly in Lo(0,6; H™1), V¢ >0. (2.7)

It is clear that u, € K} (N) for some o, € X. Since ¥ is compact in Z, there
exists a subsequence of {o,,} (for which we preserve the notation {0, }) such that

onp —0asn — oo in the space 24
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for some o € X. Let 0,(t) = (rn(t), gn(t)) and o(t) = (r(t), g(t)). Therefore,
rn(t) = o (t) (n = 00) in C([0,¢]) and (2.8)
gn(t) = g(t) (n — o0) in Ly(0,6; HY), V> 0. (2.9)
The sequence {u,(t)} is bounded in F? since K& (V) is a bounded set. We state
that w(-) € K (V). The functions u, (z,t) satisfy the equations
Optin, + B(tn, upn) + 1m0 ()un = gn(z,t), (V,u,) =0. (2.10)

First, we show that w(t) is a weak solution of the system (1.1) with symbol o(t) =
(r(t), g(t)). We fix an arbitrary £ > 0. Using (2.6), (2.7), and applying the Aubin
compactness theorem (see [2, 14, 20]), we obtain that, passing to a subsequence of
{u,(t)} (for which we preserve the notation {u,(t)}), we may assume that

un(t) = w(t) (n = o00) strongly in Ly (0,¢; H).

Then, using (2.8), we clearly have

rn(O)un(t) = r(t)w(t) (n — co) strongly in Lo (0, ¢; H). (2.11)
Recall that Ly(0,¢; H) C La(T? x [0, £])? and therefore we may assume that
Up(2,t) — w(z,t) (n — o0) for ae. (x,t) € T? x [0,4]. (2.12)

We now study the behavior of the nonlinear term B(uy,,u,) in (2.10). Identity
(1.2) implies that
B(un, un) = P [0y, (uhuy) + 0u, (uiun)] . (2.13)
It follows from (2.12) that, for j = 1,2,
ul (2, t)up (x,t) = w (z, t)w(z,t) (n — o00) for ae. (z,t) € T2 x[0,4]. (2.14)
Recall that {u, } is bounded in L., (0, M; H'). Hence, the second inequality in (1.23)
implies that
{uu,} is bounded in L. (0,¢; H) (2.15)
and in Lo(T? x [0, £])? as well. Applying the known lemma on the weak convergence
from [20], we conclude from (2.14) and (2.15) that
ul (H)un (1) — w? (H)w(t) (n — 00)
weakly in Lo(T? x [0, £])? and *weakly in Lo, (0,¢; H) since (2.15) holds. Therefore,
due to (2.13),
B(un(t),un(t)) — B(w(t), w(t)) (n = o) (2.16)
s-weakly in Lo (0,0; H™1).
We now observe that, using (2.7), (2.16), (2.11), and (2.9), we can pass to

the limit as n — oo in every term of equation (2.10) in the distribution space
D'(0,¢; H™') and find that the function w(z,t) satisfies the equation

Ow + B(w,w) +r(t)w = g(z,t), (V,w)=0.

Since the number ¢ was arbitrary, the function w(z,t) is a weak solution of (1.1) in
the space D'(Ry; H™1).

Second, let us prove that w(z,t) satisfies inequality (2.1). Recall that w,(x,t)
belongs to K} (N) and, thus, u,(z,t) satisfies the inequality:

lun(®)I? = Ne™ 47 gy, sy VE € Ry (2.17)
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It follows from (2.6) that, for all ¢t > 0,

lJw(t + ')HQLOQ(]RJr;Hl) < liminf [Jun(t + ')||2LOQ(R+;H1)
and hence (with regard to (2.17))

lw@®)lI* < Ne™* + 57 Mgl @, rys VE € R

We have established that w € K} (V) and, thereby, K3 (V) is closed in ©'¢¢. Propo-
sition 2.1 is proved. O

Consider the action of the translation semigroup {7'(¢)} in the trajectory space
K (N). We conclude from (2.2) that
T)KE(N) CKS(N), Ve o. (2.18)

Proposition 2.1 and formula (2.18) imply that the semigroup {T'(¢)} acts on the
compact metric space Ky (V) since Kf;(N) C Bg, where Bg is a ball in F? with
sufficiently large radius R. We denote by p(+, -) the corresponding metric in Bg (and
in its metric subspace K5;(V)). Recall that the semigroup {7'(t)} is continuous in
this metric space. These facts imply that the semigroup {T'(¢)}| KE(V) has a global

attractor 2Ax(N) C K& (N), called the trajectory attractor of equations (1.1) (see
[8, 10, 24, 3]). Recall that

(V) = ) |UTOREN | (2.19)
120 | 0>t Qloc
+
the set 2y (N) is strictly invariant with respect to {T'(¢)} :
T(t)As(N) =As(N), Vt =0,

and, for any trajectory set B C KJ(N),

dist, (T'(t)B,Ax(N)) = 0 (t = 400)
(see, for example, [10, 24, 3]). Here

dist, (X,Y) := sup dist,(x,Y) = sup inf p(z,y)
zeX zeX YEY

is the Hausdorff deviation of a set X from a set Y in a metric space M with metric
L.
Proposition 2.2. The trajectory attractor is independent of N: Ax(N) = Ax(0) =:
As, for all N = 0 and

dist,(T'(t)B,As) — 0 (t = +00), VB C KL (N). (2.20)
Moreover, s, C K{:(0) , that s,

||u(')||ioo(R+;H1) < 7_1(0‘)||90||2L;)(R+;H1)’ Vu € As. (2:21)

Proof. Tt follows from the definition of Cf: (), that K& (N) C K& (Ny) for Ny > N.
Therefore, formula (2.19) implies that As(N) C Asx(Ny) for Ny > N. Moreover, we
see from inequality (2.1) that T'(t)Ks (N1) € K& (N) for allt > o~ In(N; /N), Ny >
N > 0. Using (2.19) once again, we obtain that As(Ny) C Ax (V) for all Ny > N >
0. We conclude that 2Ax(Ny) = Ax(N) for all Ny > N > 0. In particular, owing to
(2.1),

2 _
||U(')HL°C(]R+;H1) <7 1Hgo||ig(R+;Hl)a Yu € QLE(N)z
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that is Ax(N) C K(0). Finally, since 25 (N) is strictly invariant with respect
to {S(t)}, we see that 2s(N) is the global attractor of {S(t)} acting on K (0).
Therefore, s (N) = 25 (0) C K (0) for all N > 0 and (2.21) is also established. [

Using (2.21) and (2.4), we have

Corollary 2.1. For all u € 2y, the following inequalities hold:
||atu(')||L‘2’(]R+;H*1) <Oy (7_1(a)||90||2L‘2“(R+;H1) + H90||L3(R+;H1) + 1) :

Recall that ¥ = H, (0¢) and oy (s) is a translation compact function in Z, that
is, the set H(09) = [{oo(h+s) | h >0}z, is compact in the metric space .
Consider the translation semigroup {7'(¢)} acting on ¥ = H(og) : T(t)o(s) =
o(t+s) for all 0 € 3, T(t) : ¥ — X. This semigroup is continuous and ¥ is a
compact metric space. Hence, the semigroup {T(¢)} possesses the global attractor
in ¥ which coincides with the w-limit set of the whole space X :

w®) = |JT0O)x

t>0 | o>t -

(see, for example, [24, 3]). Moreover,
THwX) =w(X), Vi=D0.

Together with the trajectory space Ky (V) of equations (1.1) with the symbol
space ¥ = H, (0p), we consider a smaller trajectory space /Cj(z)(N) of this equa-
tions which corresponds to strictly invariant subset w(X) C X. We clearly have
that

Ky (N) S KL (N), (2.22)

T(OKS 5y (N) € Kl 5y (N),  VE>0.

Moreover, ICI(E)(N) is bounded in ]{'ﬁ and closed in the topology @ljr’c. The proof
of this assertion is similar to the proof of Proposition 2.1. Thus, the semigroup
{T(t)}|K:<E)(N) also has the trajectory attractor 2, (s C IC:(E)(N), which is in-
dependent of N (see the proof of Proposition 2.2). Inclusion (2.22) implies that
2,(x) € As. What is more, we have the following result.

Theorem 2.1. The trajectory attractor As, of equations (1.1) with the symbol space
¥ =H(00) coincides with the trajectory attractor Ay, sy of these equation with the
symbol space w(X) :
Ay = Qlw(z).
We leave the proof for the reader. It is sufficient to establish that 2l sy is an
attracting set for the semigroup {T'(¢)}| K (V) More general theorem has been
proved in [10, Chapter XIV] (see also [8]).

Remark 2.1. The following embedding is continuous:
e C CY°(Ry; HY), V5 €01,

(see [20, 10]). The trajectory attractor 2s of equations (1.1) satisfies (2.20) and
hence, for any set B € K (N),

diste(p0,0;15)(T'(h) B, As) — 0 (h — +o00), V£> 0. (2.23)
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Remark 2.2. We note that we cannot put § = 1 in formula (2.23). We have

constructed the trajectory attractor s in the “weak” topology @i’loc of the space

Flo¢. It seems natural to consider also the “strong” topology @i’loc in Fl°°. However,

the attraction to the trajectory attractor 2y in the topology @jiloc could not be
proved without additional assumptions. Dealing with autonomous equations (1.1),
this fact has been proved in [12] under the assumption that the curl of the external
force V x g belongs to L, (T?). The proof is based on the technique of Yudovich (see
[26, 27]). In the more general case considered in this paper, where V x g € Ly(T?),
the question remains open.

3. Non-autonomous 2d Navier-Stokes systems with dissipation . Consider
the following non-autonomous 2d Navier—Stokes system with dissipation:

Owu+ B(u,u) — vAu +r(t)yu = g(z,t), (V,u) =0, z= (r1,22) €T t>0.
(3.1)
We use the same notations as in the Euler system (1.1) with dissipation. In equa-
tions (3.1), v > 0 denotes the kinematic viscosity. The pressure p(z,t) is eliminated
from the system by applying the Leray operator P to both sides.

The system (3.1) also has a geophysical interpretation (see [21]). The main
dissipation acts in the planetary boundary layer which is described by the time
dependent term —r(¢)u, while a viscosity term vAuw is responsible for small-scale
dissipation (note that in physically relevant cases 0 < v < «).

Remark 3.1. Studying the classical 2d Navier—Stokes system (r = 0) with periodic
boundary conditions, one usually assumes that the functions u(x,t) and g(z,t)
have zero means in x over the torus T2, in order to avoid the linear growth of the
solutions. When r > 0, this assumption can be dropped since the term —r(t)u
introduces additional dissipation.

The non-autonomous system (1.1) has the time symbol o(s) = (r(s),g(-, s)), s =
0. As before, we assume that o(-) € X := H(09) and o¢(s) = (ro(s), go(s)) is the
original symbol that generates the corresponding family of the 2d Euler systems
(1.1) with dissipation. Clearly, the functions r(t) and g(z,t) satisfy conditions
(1.3)—(1.5).

The Cauchy problem (3.1), (1.6) is uniquely solvable: for all ug € H!, the solution
u(z,t) belongs to the class Cp(Ry; HY)N LY (R, ; H?) and the time derivation d;u €
LY(Ry; H). Such solutions are called strong solution (see [16]-[18],[12], the case
r = 0 has been considered, for example, in [7, 8, 10, 24, 19, 3]). Notice that the
dissipative term —r(¢)u has no effect on this result. Any solution u(x,t) of the
problem (3.1), (1.6) satisfies the following identities:

1d
2dt
IVu(t)]® + v ]| Au(t)]® + r(t) [Vu(t)]* = (Vg(t), Vu(t)), (3.3)

u()* + v [Vau(t)|* +r(t) [u(t)* = (9(8), u(?)), (3.2)
1d
2.dt

that are analogous to the corresponding identities for strong solutions of the classical

2d Navier-Stokes system with r = 0 (see, e.g., [7, 10, 24, 3]). Identities (1.9) and

(1.12) are used in the proof of (3.2) and (3.3).

The identities (3.2) and (3.3) imply the following inequality:

T @)1 + e Ju()]* + 20 |Vu(t)* + 20 |Au()* < o™ g(0)]*. (3.4)
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Omitting the positive terms containing the coefficient v, we deduce from (3.4) the
inequality

2 2 _a _
lu)I” < lluoll” ™ + v~ ()llgl Ty g, ;1) (3.5)
that is similar to inequality (1.18). Recall that ||v]* = |Vv|* + [v]* = Hv||?{1 and

v(a) = a(l —e™).
Integrating (3.4) over [t,t 4 1] and using (3.5), we obtain

t+1
2V/t |Au(s)[* ds < [luol* e + (@ + 7 gl 7y e, i) (3.6)
Equation (3.1) implies that
10eull Ly v -1y < 1B W)l Ly, -1y T Blull g sm—) + v Il Ly @y smm

2
+ ||g||Lg(R+;H*1) <G (Hu||LOO(R+;H1) + ||g||Lg(]R+;H1) + 1) (3.7)

where the constant C; depends on « and is independent of v, 0 < v < 1. The proof
of (3.7) is similar to that of (1.22) and (2.4) and use the inequalities (1.23). Then
from (3.5), we conclude that

2 - 2
||8tu||Lg(R+;H*1) <G (HUOH e 4yt ||g||L‘2>(]R+;H1) + Hg||L§(R+;H1) + 1) :
(3.8)

Remark 3.2. Note that the constants in the right-hand sides of inequalities (3.5),
(3.6), and (3.8) are independent of v, 0 < v < 1. These estimates are similar to the
inequalities that were established in Sec. 1 and 2 for weak solutions of the 2d Euler
equation with dissipation.

We now study the behaviour of solutions of system (3.1) as v — 0+ .
Let {uy(z,t), 0 < v < 1} be a family of solutions to the system (3.1) with
symbols o, (-) € H4(00) such that

Loy iy < M5 00w Ol Ly m—y < M- (3.9)
Estimates (3.5) and (3.8) imply that property (3.9) holds if the initial data for
(3.1) satisfies the inequality
[[un (0)[] < m,
and M = M (m) is sufficiently large.
Theorem 3.1. Consider a sequence of solutions {u,, (x,t), 0 < v, < 1} of equa-
tions (3.1) with viscosities v, > 0 and with symbols o, (s) € Hy(op) that satisfy
(5.9). We assume that o, (s) — £(s) in 24 asn — oo for some &(-) € H(ag). We

also assume that v, — 04+ as n — oo. Then there exists a subsequence {vy} C {vn}
such that

uy (1) = w(-) asn’ — oo in OLF,

where w(x,t) is a weak solution of the dissipative 2d Euler equation (1.1) with the
symbol £(+) such that w(-) € /C;'(M)

Proof. The function w,, (z,t) satisfies the equation

Oy, + B(uy,,uy,) = vpAuy, + 10, (), = gu, (2,1), (3.10)
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where 0y, (£) = (7, (1), gun (+£))- Let £(5) = ((5), g(-,))- Since oy, (s) — £(s) in
=4 as n — oo we have that

. (1) = r(t) in C'°°(R;) and (3.11)
G, (1) = g(-,t) in LX°(R,; H') as n — oo, (3.12)

The sequence {u,, (-,t)} is weakly compact in ©'P° since it satisfies (3.9) and,
therefore, it contains a convergent subsequence {u,,,(-,t)} :

: loc
Uy, (1) = w(-,t) as n' — oo in OF
for some w(-) € F?, ie.,
uy,, (1) = w(,t) * -weakly in LRy ; HY), (3.13)
Ous,, (1) — Qpw(-,t)  weakly in LE(Ry; H™H). (3.14)

Following the reasoning in the proof of Proposition 2.1 (from formula (2.6) to
formula (2.16)), we obtain that

u, ,(t) = w(t) strongly in LY(Ry; H) and (3.15)
B(u, ,(t),u,,(t)) — B(w(t),w(t)) *-weakly in L'¢(R; H™1). (3.16)
Combining (3.11) and (3.15) we obtain
T, (), (t) = r(t)w(t) strongly in LY(Ry; H) as n' — occ. (3.17)
Consider the term v, Au,, of equation (3.10). Owing to estimate (3.9)
1t Ol < VnC i, (Vi) < vaCM =0,
since v, — 0+, that is,
VnAu,, (-) — 0 strongly in L'°°(R,; H™1). (3.18)

Relations (3.14), (3.16), (3.18), (3.17), and (3.12), yields that we can pass to the
limit in the equations (3.10) as n’ — oo in the distribution space D'(R,; H~!) and
obtain that the function w(z,t) satisfies the equation

Orw + B(w,w) + r(t)w = g(x,t)
in the distribution sense, that is, w is a weak solution to (1.1) with the symbol &.
It remains to show that w(z,t) € ICg'(M) Since u,, (-) € C*(Ry; H'), it follows
from (3.9) that
[, (O) ]| < M.
Each function u,,, (z,t) satisfies inequality (3.5), therefore,

2 —Q —
sup { s, (¢ + 5)[* | s > 0} < Me™ + 77 golly -

Recall ||g||i‘23(R+;H1) < ||90Hig(R+;H1), see also (3.9). Since

2 . . 2
ot + 17 e orrry < Honin g, (¢4 )15,
(see (3.13)) we have
lo@I” < sup {Jlo(t + )| 15> 0} < Me 497 golZym, )y VEE R

and therefore w € ICZ' (M). The theorem is proved. O
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4. Trajectory attractors of dissipative 2d Navier-Stokes systems with
vanishing viscosity . In this section, we study the convergence of the trajectory
attractors A%, of the non-autonomous dissipative 2d Navier—Stokes systems (3.1) to
the trajectory attractor 2y of the non-autonomous dissipative 2d Euler equations
(1.1) as viscosity v vanishes. The spaces }"}i,}"}fc, and @l_ﬁc were defined in Sec. 2.

Consider an arbitrary symbol o € ¥. Similarly to Sec. 2, we define the trajectory
set

Kf(v) c Ch(Ry; HY N LY (R H?) € F2

of the system (3.1) having the symbol o = (r, g) and with a fixed viscosity coefficient
v > 0. By definition, K} () consists of all strong solutions u(s) := u(-,s),s > 0, of
this system. Here, we denote the time variable s instead ¢. We have proved in Sec.
3 that, for any data ug = u(0) € H', there exists a unique function u(-) € K} (v)
such that u(0) = ug. We clearly have the translation identity

T(h)Kt(v) C IC;(h)U(V) forallo € ¥, h >0, (4.1)

that is similar to the identity (2.2). Analogously to (2.3), we define the trajectory
space of the system (3.1) with fixed viscosity v > 0 by the formula

K@) = | KFw) (4.2)
oED
It is clear that Kf:(v) C FP and it is easy to prove that the trajectory space K (v)
is closed in @L‘_’C.

The translation semigroup {7'(t)} acts on the trajectory space Ky (v) by the
formula T(t)u(s) = u(t + s). It is clear that T(t)K(v) € K (v) for all ¢ > 0.
We claim that the translation semigroup {7'(¢)} acting on Ky (v) has the trajectory
attractor A¥% C K (v) which attracts bounded (in F?) families of solutions to

system (3.1) in the topology ©'9°. (See the similar proof in [7, 10] for the case r = 0
and Sec. 2 for v = 0).
Recall that the set A% is strictly invariant with respect to {T'(¢)} :

T(t)Ay =45, Yt =0, (4.3)
and, for any bounded (in F?) set B, C K (), we have
dist, (T'(¢)B",2A5) — 0 (t — +00),

where p is the metric generating the topology @l_ﬁc on a ball in .7-'_? containing B”
(see Sec. 2).
Using inequalities (3.5), (3.6), and (3.8), we have

Proposition 4.1. The trajectory attractors A, are uniformly bounded for 0 < v <
1 in the space F_E and for all u, € A%,

—1 2
luw Ol smry <77 902, a1y
— 2
Hatul/(')HLg(RJr;H*l) <Gy (7 ! ||90||L12’(R+;H1) + H90||L5’(R+;H1) + 1) )
s 2 1 1 2
20 [ 18w o) ds < @7+ Dol e,
t

Comparing Corollary 2.1 and Proposition 4.1, we observe that the trajectory at-
tractor Ay, of the dissipative 2d Euler system (1.1) and the trajectory attractors 2%,
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of the 2d Navier-Stokes system (3.1) belong to the same ball Bg, in F? having the
radius Ry, R§ = max {WAHQOHQLIZ»(R%HW Cy (’771 ||gOHi12’(R+;H1) + HgOHLg(]R+;H1) + 1) }:
A, C BRO and ng C BRm Yv E]O, 1] (44)

We now study the Hausdorff deviation of 21§, from %5, as v approaches zero in
the topology @ljﬁc generated by the metric p in Br, described in Sec. 2.
The main result of this section is the following theorem.

Theorem 4.1. The trajectory attractors 2% of system (3.1) converge to the trajec-
tory attractor Us; of (1.1):

dist, (A5, As) >0+ asv — 0+. (4.5)
Let BY C Kf(v) be bounded (in FP ) sets of trajectories of the system (35.1):
1B < M (0<v<1). (4.6)
Then
dist,(T'(t)B",2As) =0 asv—0+ and t — +o0. (4.7)

Proof. 1t suffices to prove (4.7). Indeed, taking in (4.7) the set B = A%, and using
the invariance property (4.3), we obtain (4.5). Assume that the relation (4.7) fails
to hold. Then there is a neighbourhood O(2s) in ©'Y¢, two sequences v,, — 0+
and h,, — +o0 as n — oo such that

T(hn)B"™ & O(As)

for some sets B C K (v,) that satisfy (4.6). So, there are solutions of system
(3.1) wy, (-) € B¥" such that the functions

W, (t) :==T(hny)w,y, (t) = w,, (hy +t) (4.8)
do not belong to O(Us):
W, (t) ¢ ORs), VneN. (4.9)

Apparently for every n € N, the function w,,(-) € K} (v) for some o, € X.
Therefore, due to translation identity (4.1),

W, (t) = T(hp)w,, (t) € ’C?(hn)an (v),

where T'(hy,)o,(t) = op(hy +t). We denote &, (t) := 0y, (hy, +t). The function &, (t)
is defined for all t € [—h,,, +00).

We note that, for every fixed ¢ > 0, the sequence {&,(t)} is precompact in the
space =g oo 1= C1°([—4, +00)) x LY¢(—¢,+00; H') (we consider &, with indices
n such that h,, > ¢). This assertion follows from the fact that the sequence {o(¢)}
is precompact in Z; := C°¢([0, +00) x L¥°(0, +o00; H') because it belongs to a
compact (in Z;) set ¥ = H, (0g). Therefore, for every fixed £ > 0, we can find a
subsequence of indices {n'} C {n} such that &,/ () converges in Z_; ;o as n’ — co.
Applying now the standard Cantor diagonal procedure, we can construct a function
&(t),t € R, and a subsequence {n”} C {n} such that

Enr(t) = &(t) in E_p 400 for any £ > 0.

Moreover the function £(¢ + h),t > 0, belongs to ¥ = H, (o) for all h € R, since
the set H, (o) is closed in Z4. In particular, (1.3) and (1.5) imply the following
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inequalities:

a<rt)<p, VteR,

t+1
9y =50 [ laCos) P < ol
t

where £(t) = (r(t), g(x,t)),t € R. Thus, we have constructed the time symbol £(t) of
the non-autonomous 2d Euler system (1.1) defined on the entire time axis R.

We now observe that the function W, (t) (see (4.8)) is a solution of equation
(3.1) with viscosity v = v, and with the symbol &, (t) = o, (hy, + ) on the semiaxis
[—hp, +00), since w,, (t) is a solution of equation (3.1) with symbol o, (¢) on [0, +00).

It follows from (4.6) that

s+1 1/2
supllan, (9l + (sup [ 100, @) was) <
s=0 s20Js
Therefore,
s+1 1/2
sup |[|[W,. (s)||gr + ( sup / ||8tW,,n(9)||%{1d9> < M. (4.10)
s=>—hy s=2—hp Js

Besides, inequality (3.5) yields

sup  [|[Wy, ()5 = supllwy,, (5)[I72 < [Jws, (0)[7e™7
s=2—hp+7 S>T

3 g0l 2y ey < M2+ gl 2,y VT2 0. (4.11)

Inequality (4.10) implies that the sequence {W,, ()} is compact in the weak topol-
ogy of the space @E’E,Jroo =L, (0, +oo; HY)N{v | 0w € LS, (—, +oo; H™'} for
every fixed ¢ > 0, if we consider v,, with indices n such that h, > £. Therefore, for
every fixed £ > 0, we can choose a subsequence {v,'} C {v,,} such that {W, ,(-)}
converges weakly in ©_; ;. Using again the Cantor diagonal procedure, we can

construct a function W(t),t € R, and a subsequence {v,,»} C {v,,} such that
W, (-) = W(-) in the topology ©'% | _asn” — oo forany £>0.  (4.12)
For the limit function W (t),t € R, it follows from (4.10) and (4.11) that
W £ srrny + 10W )| Ly ;1) < M,
WO gy < M2e 497 ol Ry s Y720, (413)
Passing to the limit in (4.13) as 7 — oo, we obtain
”W(')H%OO(JR;Hl) < 7_1“90”2@(&;}11)- (4.14)

We now apply Theorem 3.1, where we can assume that all the time symbols o, (s)
and solutions u,, (x,t) are defined on the semiaxis [—¢, +00) instead of [0, +00).
Then, from (4.12), we conclude that W (z,t),t € R, is a weak solution of the 2d
Euler system (1.1) on the entire time axis R with the symbol £(¢),t € R, and, due
to (4.14), W(x,t) is bounded in the space

FP = {v(z,s), se R|veE Lo(R;HY), Qv € LY(R;H™Y)}.

Let II; be the operator of restriction to the semiaxis Ry of functions that are

defined on the entire R. Then by the construction of the functions W(-) and &(-),

we clearly have
LW () € Ky ((0), T EeX,
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and moreover
ML ThW(-) € ICH+T(h)£(O), ,Th)¢eX VheR (4.15)
We claim that II,. W € 2yx. Consider the following set
By :={II,W(h+s),s=20|heR}.

It follows from (4.15) that By CK:(0). Therefore, dist,(T(t)Bw,As) — 0 (t —

+00). However, By is strictly invariant, that is, T'(¢)Bw = Bw for all ¢ > 0. Hence,

dist,(Bw,2Asx) = 0 and By C As, since Ay, is a closed set. Therefore, I W € As.
At the same time, we have established that

W, — I W in @lfc as n — 00
(see (4.12) for £ = 0 and OF¢ ., = ©'9°). In particular for a large n”
W,,, € O W) C O(Us).
This contradicts (4.9). Therefore, (4.7) is true. Finally to prove (4.5), we apply
(4.7) for BY = AL, O

Remark 4.1. Recall that ©'¢¢ C C°°(Ry; H%),0 < § < 1, and the convergencies
(4.5) and (4.7) also hold in the strong metric of C([0, M]; H?) for every M > 0 (see
Remark 2.1):
diStc([O,I\/j];H5)(QlE,Q[2> —0 (V — 0+), (416)
diStc([O,M];Ha)(T(t)%u,le;) =0 (v = 0+,t = +00).
In conclusion, we formulate two assertions that follow from the well-posedness of

the Cauchy problem for the dissipative 2d Navier—-Stokes system (see, e.g., [24, 3]).
We shall use these facts in the next section.

Proposition 4.2. For any v > 0, the trajectory attractor A%, of equation (3.1) is
connected in the topological space 6)14‘_)‘3.

Proposition 4.3. The family of sets {A%,0 < v < 1} is upper semicontinuous
n GE?C, i.e., for every v,0 < v < 1, and for any neighborhood O(A%,) there is a
d=6(v,0) > 0 such that

A CORE), YW >0, |V —v|<é.

5. On minimal zero viscosity limit of trajectory attractors 2(§;. Let 25 be
the trajectory attractor of the non-autonomous Euler system (1.1) with dissipation
and 2¥, be the trajectory attractor of the dissipative 2d Navier—Stokes system (3.1)
for v > 0. We have proved in Sec. 4 that s, C B, and %, C Bg, for all v € (0, 1],
where B, is the ball in F? (see (4.4)) whose radius Ry is independent of v:

||ngHfi <Ry and HQl%Hfi <Ry, Vry,0<wv<l.
Recall that the ball By with topology @$C is a compact metric space with the metric
p(+,-). It was proved in Theorem 4.1 that
dist, (A5, ™Asx) = 0as v — 0 +. (5.1)

Note that, in fact, the limit relation (5.1) is stronger than that of (4.16).
Recall that the set As; C Bp, is closed in Bg,. Let 2" be the minimal closed
subset of 2y, which satisfies the attracting property (5.1), that is, by definition,

Jim dist, (23, AR =0



20 VLADIMIR. V. CHEPYZHOV

and 2[%1“ belongs to every closed subset 21’ C Ay, for which
. . v AN
Vlir(r)lJr dist, (As,,A") = 0.

We refer to the set 208" as the minimal limit of the trajectory attractors A% as
v—0+.
We state that the set 2% exists and is unique. We have just to prove that

ar= | U 2w - (5.2)

0<6<1 | 0<v<s
Br,

The set on the right-hand side of (5.2) is clearly nonempty. It is easy to prove that
a point w belongs to the right-hand side of (5.2) if and only if there are points
wy, €AY, n=12,..., v, = 0+ as n — oo such that p(w,,,w) — 0 as n — oco.
Due to (5.1), such a limit point w always belongs to s, and, moreover, it belongs
to every closed attracting set 2A'. The set (5.2) is attracting for A% as v — 0 +.
Indeed, assuming the converse, we see that there is a sequence w,,, € %", such that
v, — 0+ and

dist, (wy, , AR") > € (5.3)
for some € > 0. Recall that w,, € Bgr, and Bpg, is a compact metric space. Then,
passing to a subsequence {w,, ,} C {w,,}, we may assume that p(w, ,,w') — 0
as vy — 0 for some w’ € Bgr,. Thus, by the above property, w’ € 2[’2““‘, that
contradicts (5.3). We have proved that the set 2" defined in (5.2) is a minimal
closed attracting subset of s.

Proposition 5.1. The minimal limit A5 of trajectory attractors A% as v — 0+
is a connected subset of Us; in Br,.

Proof. Assume the converse. In this case, the set 2% is the union of two closed
disjoint subsets 2, and 2, that is,

ATWR =9 UA, and A NAy = 2.

Since the metric space Bg, is compact, there are two open sets O; and Oz in Bg,
such that 2; C 01, /s C Oz, and O1NO, = . Clearly, Ql‘gi“ C O1UQOs. Therefore,
by (5.1), there is a number vy > 0 for which

A5, C 01 U002, Vv, 0 <v <. (5.4)

Note that each set 2% is connected (see Proposition 4.2), that is, A% C O or
A5, C O, for all v < vy. At the same time, since A{H'™" is the minimal limit of A%,
we can find v; and v9 such that

52[;1 Cc O; and Q[;z C O. (55)

(otherwise, we can diminish ng‘i“). To be definite, assume that 0 < vo < 11 < 1.
Denote

0* =sup{d: A%, C O, va <V < vo+d}. (5.6)
Note that vs + §* < 11 < g, (see (5.5 )) and ng”‘s* C 01 U005 since vy + 0* < 1y
(see (5.4)).

We now claim that Ql;ﬁ‘;* cannot belong to Oy. Indeed, if Ql;ﬁé* C Oq then, by
Proposition 4.3, there is a small d5 > 0 such that Ql;”‘;“”;2 C Os. This contradicts
the definition of §* in (5.6). At the same time, QIEQH* cannot belong to O neither.
Indeed, if ngﬁé* C O then, by Proposition 4.3 again, there is a small §; > 0
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such that 2[;2”*_61 C 01, which contradicts the definition of 6*. However, all this
contradicts the inclusion Ql§2+5* C 01 U O,. This completes the proof. O

Recall that the set QUZ““‘ is compact. In conclusion, we prove the following asser-
tion.

Proposition 5.2. The minimal limit A2 of trajectory attractors A% as v — 0+
is strictly invariant with respect to the translation semigroup {T'(t)}, that is

T (AR = Qmin vt > (. (5.7)

Proof. Consider an arbitrary point w € %", By definition, there is a sequence
wy,, € A5 such that p(w,, ,w) — 0 as v, — 0+. The translation semigroup {7'(¢)}
is continuous in ©'¢°¢ and, therefore, p(T (t)w,, , T (t)w) — 0 as v, — 0+. Since every
set AY" is strictly invariant, we obtain that T'(h)w,, € A%, Thus, T(t)w € AL™
and we have proved that

T(H)AZn C Amin - YA > 0.
Let us check the inverse inclusion. For any ¢t > 0 and for an arbitrary point
w € AR with corresponding w,, € Ay such that p(w,,,w) = 0 (v, = 04), we
must find a point W € 2™ such that T'(t)W = w. Since Ay is strictly invariant,
there is a point W, € AY" such that T'(¢)W,, = w,, . The sequence {W,, } belongs
to the compact set Bg,. Passing to a subsequence {v,}, we see that W, , —
W (n' — oo) for some W € Bg,. Then W € A", Since {T'(t)} is continuous, we
obtain T'(t)W,, , — T(t)W (n’ — oo). However, T'(t)W, , = w,,,, and thus we have
wy,, = T(t)W (n' — 00). Recall that w,, — w (n — o0). Hence, T'(t)W = w and
we have proved that

AWN C T(H)AZ™, VA > 0.

We thus obtain (5.7). O
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