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446 R. R. Gontsov, I. V. Vyugin

1 Introduction

Consider on the Riemann sphere C a linear differential system

dy

dz
= B(z) y, y(z) ∈ C

p, (1)

of p equationswith ameromorphic coefficientmatrix B (whose entries are thus rational
functions) and singularities at some points a1, . . . , an . Solvability of linear differential
equations and systems in the Liouvillian sense (in other words, by quadratures) is a
classical problem of differential Galois theory developed by Picard and Vessiot at the
beginning of the twentieth century. In analogy to Galois theory of algebraic equations,
they connected to the system a group called the differential Galois group and showed
that solvability of the system by quadratures depends entirely on properties of its
differential Galois group. Later, in the middle of the century, Kolchin completed this
theory by considering other types of solvability and their dependence on properties of
the differential Galois group.

However, the Picard–Vessiot–Kolchin theory reveals the cause of solvability or
non-solvability of linear differential equations by quadratures rather than answers this
question addressed to a specific equation, since one does not know how the differential
Galois group of an equation depends on its coefficients. In our paper, we are interested
in the cases when the answer to the question of solvability of the system (1) by
quadratures can be given in terms of its coefficient matrix B. For example, in the case
of a Fuchsian system

dy

dz
=

(
n∑

i=1

Bi

z − ai

)
y, Bi ∈ Mat(p, C), (2)

with sufficiently small entries of the matrices Bi , Ilyashenko and Khovanskii (1974)
(see also Khovanskii 2008, Ch. 6, §2.3) obtained an explicit criterion of solvability.
Namely, the following statement holds:

There exists an ε = ε(n, p) > 0 such that a condition of solvability by quadratures
for the Fuchsian system (2)with ‖Bi‖ < ε takes an explicit form: the system is solvable
by quadratures if and only if all the matrices Bi are triangular (in some common basis).

Using results of Kolchin, these authors also obtained criteria for other types of
solvability of the Fuchsian system (2) with small residue matrices Bi in terms of these
matrices. Moreover, a topological version of Galois theory developed by Khovanskii
at the beginning of 1970’s allowed him to obtain stronger results concerning non-
solvability of Fuchsian systems.

Our paper may be considered as an attempt to generalize results of Ilyashenko and
Khovanskii to the case of non-Fuchsian systems. It is organized as follows. In the
next two sections we recall basic notions of differential Galois theory and of the local
theory of linear differential systems, which are used in the paper.

In Sect. 4, we describe a weak version of Ramis’s theorem (due to Ilyashenko
and Khovanskii) concerning the description of the local differential Galois group at
a singular point of a system in terms of local meromorphic invariants of the latter.
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Solvability of Linear Differential Systems with Small… 447

This theorem is essentially used to prove statements on solvability of non-Fuchsian
systems by quadratures. In this section we also recall the notion of exponential torus,
a subgroup of the local differential Galois group, which also appears in further proofs.

Section 5 is devoted to an approach that uses holomorphic vector bundles with
meromorphic connections on the Riemann sphere in a context of the analytic the-
ory of linear differential equations. This approach was developed and successfully
applied by Bolibrukh to solving inverse monodromy problems of this theory, in par-
ticular, Hilbert’s 21st (the Riemann–Hilbert) problem. Here we also use this approach,
combining it with techniques from differential Galois theory, to obtain statements con-
cerning solvability of linear differential systems by quadratures.

Section 6 is about solvability of Fuchsian systems (more generally, systems with
regular singular points) by quadratures. In particular, we refine here the Ilyashenko–
Khovanskii criterion in such away that it is sufficient that the eigenvalues of the residue
matrices Bi be small (the estimate is given) rather than the matrices themselves. This
refinement is naturally extended to other types of solvability, as well as to strong
non-solvability of Fuchsian systems.

In Sect. 7, we propose a generalization of the criterion of solvability by quadratures
to the case of essentialy non-Fuchsian systems (systems with non-resonant irregular
singular points) with small formal exponents, and also discuss other types of solvabil-
ity, including local solvability by quadratures over the field of meromorphic germs at
an irregular singular point.

2 Solvability by Quadratures and the Differential Galois Group

In this section, we recall the definitions of some basic notions of differential Galois
theory. Besides solvability of a linear differential system by quadratures, we consider
other types of solvability and explain how they depend on properties of the differential
Galois group of the system.

A Picard–Vessiot extension of the field C(z) of rational functions corresponding to
the system (1) is a differential field F = C(z)〈Y 〉 generated as a field extension ofC(z)
by all the entries of a fundamental matrix Y (z) of the system (1). Let us specify that
such a matrix is taken (by Cauchy’s theorem) in the field of germs of meromorphic
functions at a non-singular point z0 of the system. One says that the system (1) is
solvable by quadratures, if there is a fundamentalmatrixY ,whose entries are expressed
in elementary or algebraic functions and their integrals, or, more formally, if the field
F is contained in some differential field extension of C(z) generated by algebraic
functions, integrals and exponentials of integrals:

C(z) = F1 ⊂ · · · ⊂ Fm, F ⊆ Fm,

where each Fi+1 = Fi 〈xi 〉 is a field extension of Fi by an element xi , which is either:

– algebraic over Fi , or
– an integral (that is, an element whose derivative belongs to Fi ), or
– an exponential of an integral (that is, an element whose logarithmic derivative
belongs to Fi ).
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448 R. R. Gontsov, I. V. Vyugin

Such an extension C(z) ⊆ Fm is called Liouvillian; thus solvability by quadratures
means that the Picard–Vessiot extension F is contained in some Liouvillian extension
of the field of rational functions.

In analogy to classical Galois theory, solvability or non-solvability of a linear dif-
ferential system by quadratures is related to properties of its differential Galois group.
The differential Galois groupG = Gal (F/C(z)) of the system (1) (of a Picard–Vessiot
extension C(z) ⊆ F) is the group of differential automorphisms of the field F (i.e.,
automorphisms commuting with differentiation) that preserve the elements of the field
C(z):

G =
{
σ : F → F

∣∣∣∣σ ◦ d

dz
= d

dz
◦ σ, σ ( f ) = f ∀ f ∈ C(z)

}
.

(The differential Galois group can be defined by any Picard–Vessiot extension,
since these are all isomorphic as differential fields.) As follows from the defini-
tion, the image σ(Y ) of the fundamental matrix Y of the system (1) under any
element σ of the Galois group is a fundamental matrix of this system again. Hence,
σ(Y ) = Y C, C ∈ GL(p, C). As every element of the differential Galois group is
determined uniquely by its action on a fundamental matrix of the system, the groupG
can be regarded as a subgroup of thematrix groupGL(p, C) for any such Y . Moreover,
this subgroup G ⊆ GL(p, C) is algebraic, i.e., closed in the Zariski topology of the
space GL(p, C) (the topology, whose closed sets are those determined by systems of
polynomial equations), see (Kaplansky 1957, Th. 5.5). A very good reference for the
basics of differential Galois theory, especially the algebraic geometric aspects, is the
book by Crespo and Hajto (2011).

The differential Galois group G is a union of a finite number of disjoint connected
sets that are open and closed simultaneously (in the Zariski topology), and the set
containing the identitymatrix is called the identity component. The identity component
G0 ⊆ G is a normal subgroup of finite index (Kaplansky 1957, Lemma4.5).According
to thePicard–Vessiot theorem, solvability of the system (1) byquadratures is equivalent
to solvability of the subgroup G0 (see Kaplansky 1957, Th. 5.12; Khovanskii 2008,
Ch. 3, Th. 5.1). Recall that a group H is said to be solvable, if there exist intermediate
subgroups {e} = H0 ⊂ H1 ⊂ · · · ⊂ Hm = H , such that, for every i = 1, . . . , m,
Hi−1 is normal in Hi and the factor group Hi/Hi−1 is Abelian.

Alongside the differential Galois group, one considers the monodromy group M
of the system (1) generated by the monodromy matrices M1, . . . , Mn correspond-
ing to analytic continuation of the fundamental matrix Y around the singular points
a1, . . . , an . Each Mi is defined as follows: since the operation of analytic continua-
tion commutes with differentiation, the matrix Y considered in a neighbourhood of
a non-singular point z0 goes to another fundamental matrix, Y Mi , under an analytic
continuation along a simple loop γi encircling a point ai and no other a j . As analytic
continuation also preserves elements of the field C(z) (since they are single-valued
functions), one hasM ⊆ G. Furthermore, the differential Galois group of a Fuchsian
system coincides with the closure of its monodromy group in the Zariski topology
(see Khovanskii 2008, Ch. 6, Cor. 1.3). Hence, a Fuchsian system is solvable by
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Solvability of Linear Differential Systems with Small… 449

quadratures if and only if the identity componentM ∩G0 of its monodromy group is
solvable.

Now we will discuss other types of solvability. These are defined in analogy to
solvability by quadratures, and we leave formal definitions to the reader. Kolchin
(1948) gave criteria for a linear differential system to be solvable with respect to
each of these types in terms of its differential Galois group. Further we will need his
results only for a system, whose differential Galois group is triangular, meaning that
all matrices of the group are triangular in some common basis.

Kolchin’s criteria (See also Khovanskii 2008, Ch. 3, §8). Let the differential Galois
group G of the system (1) be triangular. Then the system is

1. solvable by integrals and algebraic functions if and only if the eigenvalues of all
elements of G are roots of unity;

2. solvable by integrals if and only if the eigenvalues of all elements of G are equal
to unity;

3. solvable by exponentials of integrals and algebraic functions if and only if G is
diagonal;

4. solvable by algebraic functions if and only if G is diagonal and the eigenvalues of
all its elements are roots of unity.

3 A Local Form of Solutions Near a Singular Point

In this section, we recall the definitions of regular and irregular singular points of a
linear differential system and describe the structure of solutions near a singular point
of each type.

A singular point z = ai of the system (1) is said to be regular, if any solution of
the system has at most polynomial growth in any sector with the vertex at this point
of sufficiently small radius and an opening less than 2π . Otherwise, the point z = ai

is said to be irregular.
A singular point z = ai of the system (1) is said to be Fuchsian, if the coefficient

matrix B(z) has a simple pole at this point. Due to Sauvage’s theorem, a Fuchsian
singular point is always regular (see Hartman 1964, Th. 11.1). However, the coefficient
matrix of a system at a regular singular pointmay in general have a pole of order greater
than one. Let us write the Laurent expansion of the coefficient matrix B of the system
(1) near its singular point z = a in the form

B(z) = B−r−1

(z − a)r+1 + · · · + B−1

z − a
+ B0 + · · · , B−r−1 �= 0. (3)

The number r is called thePoincaré rank of the system (1) at this point (or the Poincaré
rank of the singular point z = a). For example, the Poincaré rank of a Fuchsian singular
point is equal to zero.

The system (1) is said to be Fuchsian, if all its singular points are Fuchsian (then
it can be written in the form (2)). A system, whose singular points are all regular, will
be called regular singular.
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450 R. R. Gontsov, I. V. Vyugin

3.1 A Regular Singular Point

According to Levelt’s theorem Levelt (1961), in a neighbourhood of each regular
singular point ai of the system (1), there exists a fundamental matrix of the form

Yi (z) = Ui (z)(z − ai )
Ai (z − ai )

Ẽi , (4)

where Ui (z) is a holomorphic matrix at the point ai , Ai = diag(ϕ1
i , . . . , ϕ

p
i ) is a

diagonal matrix, whose entries ϕ
j
i are integers organized in a non-increasing sequence,

and Ẽi = (1/2π i) ln M̃i is an upper triangular matrix (the normalized logarithm of the
corresponding monodromy matrix M̃i ), whose eigenvalues ρ

j
i satisfy the condition

0 � Re ρ
j
i < 1.

Such a fundamental matrix is called a Levelt matrix, and one also says that its columns
form a Levelt basis in the solution space of the system (in a neighborhood of the
regular singular point ai ). The complex numbers β

j
i = ϕ

j
i +ρ

j
i are called the (Levelt)

exponents of the system at the regular singular point ai .
A singular point ai is Fuchsian if and only if the corresponding matrix Ui in the

decomposition (4) is holomorphically invertible at this point, that is, detUi (ai ) �= 0.
It is not difficult to check that in this case the exponents of the system at the point ai

coincide with the eigenvalues of the residue matrix Bi . In the general case of a regular
singularity ai , estimates for the order of the function detUi at this point were obtained
by Corel (2001) (see also Gontsov 2004):

ri � ordai detUi � p(p − 1)

2
ri ,

where ri is the Poincaré rank of the regular singular point ai . These estimates imply the
inequalities for the sum of exponents of a regular singular system over all its singular
points, which are called the Fuchs inequalities:

− p(p − 1)

2

n∑
i=1

ri �
n∑

i=1

p∑
j=1

β
j

i � −
n∑

i=1

ri (5)

(the sum of exponents is an integer).

3.2 An Irregular Singular Point

Let us now describe the structure of solutions of the system (1) near one of its irregular
singular points. We assume that the irregular singularity z = a of Poincaré rank r is
non-resonant, that is, the eigenvalues b1, . . . , bp of the leading term B−r−1 of the
matrix B(z) in the expansion (3) are pairwise distinct. Let us fix a matrix T , which
reduces the leading term B−r−1 to the diagonal form:

123



Solvability of Linear Differential Systems with Small… 451

T −1B−r−1T = diag(b1, . . . , bp).

The system possesses a uniquely determined formal fundamental matrix Ŷ of the form
(see Wasow 1965, §§10, 11)

Ŷ (z) = F̂(z)(z − a)	eQ(z), (6)

where

(a) F̂(z) is a matrix formal Taylor series in z − a, and F̂(a) = T ;
(b) 	 is a constant diagonal matrix, whose diagonal entries are called the formal

exponents of the system (1) at the irregular singular point z = a;
(c) Q(z) = diag(q1(z), . . . , qp(z)) is a diagonal matrix, whose entries q j (z) are

polynomials in (z − a)−1 of degree r without a constant term,

q j (z) = −b j

r
(z − a)−r + o((z − a)−r ).

For each pair (b j , bk) of eigenvalues of the matrix B−r−1, one has 2r rays starting
at the point a, which are called Stokes lines of the system (1) at this point:

{
z ∈ C

∣∣∣∣Re b j − bk

(z − a)r
= 0

}
=

{
z ∈ C

∣∣∣∣arg (z − a) = 1

r

(
arg(b j − bk) + π

2
+ πm

)
,

m = 0, 1, . . . , 2r − 1

}
.

These rays are asymptotic to the corresponding curves {Re (q j−qk) = 0},whichdivide
a neighbourhood of a into domains, in which the function eq j −qk has an exponential
growth or decay.

Consider a covering of a punctured neighbourhood of a by 2r congruent sectors

Sm =
{

d + (m − 1)
π

r
− δ < arg (z − a) < d + m

π

r
+ δ

}
, m = 1, . . . , 2r,

with an opening
π

r
+2δ. The direction d, 0 � d < 2π , and small δ > 0 can be chosen

in such a way that each sector contains exactly one Stokes line for each pair (b j , bk).
Such a covering is often referred to as a good covering by good sectors. According to
Sibuya’s sectorial normalization theorem (see Ilyashenko and Yakovenko 2008, Th.
21.13, Prop. 21.17), in each good sector Sm of a good covering there exists a unique
actual fundamental matrix

Ym(z) = Fm(z)(z − a)	eQ(z) (7)

of the system (1), whose factor Fm has the asymptotic expansion F̂ in Sm . In every
intersection Sm ∩ Sm+1, the fundamental matrices Ym and Ym+1 must differ by a
constant invertible matrix:
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452 R. R. Gontsov, I. V. Vyugin

Ym+1(z) = Ym(z)Cm, Cm ∈ GL(p, C),

and the logarithmic term (z − a)	 is analytically continued from S1 to S2, from S2 to
S3, . . . , from S2r to S1, so that

Y1(z)e
2π i	 = Y2r (z)C2r in S2r ∩ S1. (8)

The matrices C1, . . . , C2r are called (Sibuya’s) Stokes matrices of the system (1)
corresponding to a good covering {S1, . . . , S2r } of a punctured neighborhood of a
non-resonant irregular singular point a. They satisfy the relation

e2π i	 = M C1 . . . C2r , (9)

where M is the monodromy matrix of Y1 at a. Indeed, the fundamental matrix Y1
can be continued from S1 into S2 as Y2 C−1

1 , since Y1 = Y2 C−1
1 in S1 ∩ S2. Fur-

ther, it is continued from S2 into S3 as Y3(C1C2)
−1, etc. Finally, in S2r it becomes

equal to Y2r (C1 . . . C2r−1)
−1. Then, according to (8), it comes back into S1 as

Y1 e2π i	(C1 . . . C2r )
−1, which implies the relation (9). It is also known that all the

eigenvalues of any Stokes matrix are equal to 1, that is, the Stokes matrices are unipo-
tent (see Ilyashenko and Yakovenko 2008, Prop. 21.19 or Wasow 1965, Th. 15.2).

4 Local Differential Galois Groups

Alongside the differential Galois groupG of the system (1), one also defines the local
differential Galois groups Ga corresponding to each singular point z = a of the sys-
tem. Let Ma = C({z − a}) be the field of meromorphic functions at the point a.
Consider a fundamental matrix YS(z) of the system (1) on some open sector S with
vertex a (its entries are elements of the field of meromorphic functions in S) and the
Picard–Vessiot extension Ma ⊆ Fa = Ma〈YS〉 of Ma generated by all the entries
of YS . The corresponding differential Galois group Ga = Gal (Fa/Ma) is the group
of differential automorphisms of the field Fa that preserve the elements of the field
Ma . Like the global differential Galois groupG, this group is regarded as an algebraic
subgroup of the matrix group GL(p, C), where this representation depends of course
on a and on YS .

We have the following natural inclusion of eachGa intoG. Consider a fundamental
matrix Y of the system (1) in a neighbourhood U0 of a non-singular point z0 with
respect to which the group G is determined. The entries of Y are elements of the
field of meromorphic functions in U0. We analytically continue the matrix Y to the
sector S along some path γ and obtain a matrix ỸS , whose entries are elements of
the field Fa . Then we apply to ỸS some element σ of the group Ga and return σ(ỸS)

back to U0 along the path γ −1. Since C(z) ⊂ Ma , the automorphism σ preserves
rational functions, and thus the transformation τ−1

γ ◦ σ ◦ τγ , where τγ is the operator
of an analytic continuation along the path γ (we mean that τγ is an operator from the
solution space of (1) in U0 to that in S), is an element of the group G. On the level of
matrices, this looks as follows:
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C−1
γ Ga Cγ ⊂ G,

where Cγ ∈ GL(p, C) is a matrix connecting YS and the analytic continuation ỸS of
Y into S along γ , that is, ỸS(z) = YS(z)Cγ .

4.1 Sibuya’s Stokes Matrices as Elements of a Local Galois Group

It was J.-P. Ramis, who described the local differential Galois group Ga in terms of
local matrix invariants of the system (1) at the irregular singular point a (among which
the Stokesmatrices are). He defined (Ramis’s) Stokesmatrices in a somewhat different
way and showed that, in particular, they belong to the matrix group Ga (Ramis 1985;
Martinet and Ramis 1989, see also Mitschi 1991; van der Put and Singer 2003, Ch.
8). Further, Ilyashenko and Khovanskii (1990) proved that Sibuya’s Stokes matrices
defined in the previous section also belong toGa . We will describe their result in more
details.

Consider a good covering of a neighbourhood of the singular point a of the sys-
tem (1) by good sectors S1, . . . , S2r and the corresponding fundamental matrices
Y1, . . . , Y2r described in the previous section. The entries of each Ym are elements
of the field of meromorphic functions in the sector Sm . Let Ga be a matrix group
that represents the local differential Galois group of the system (1) at the point a
with respect to the fundamental matrix Y1 in S1. In the intersection S1 ∩ S2, one has
Y2(z) = Y1(z)C1, where C1 is the corresponding Stokes matrix.

Theorem 1 (Ilyashenko and Khovanskii 1990). The matrix C1 belongs to the group
Ga.

In fact, all the StokesmatricesCm are elements of the groupGa . Indeed, letGSm (Ym)

be the matrix group that represents the local differential Galois group of the system (1)
at the point a with respect to the fundamental matrix Ym in Sm [so thatGS1(Y1) = Ga].
In each intersection Sm ∩ Sm+1, one has Ym+1(z) = Ym(z)Cm , and the Stokes matrix
Cm belongs to GSm (Ym) in analogy to Theorem 1. But all groups GSm (Ym) coincide
with Ga , as can be shown by induction with respect to m. Note that an analytic
continuation of Ym+1 from Sm+1 into Sm is YmCm ; hence,

GSm+1(Ym+1) = GSm (YmCm) = C−1
m GSm (Ym)Cm = Ga,

since Cm ∈ GSm (Ym) and GSm (Ym) = Ga by the induction hypothesis.

Remark 1 Loday-Richaud (1994) gave an example of a linear differential 2×2 system
that is meromorphically equivalent to a system with a non-resonant irregular singu-
larity z = 0 of Poincaré rank 1. The sector S = {Re z > 0} does not contain any
of the two Stokes lines in that example (thus, S is not “good”); that is why there are
two actual fundamental matrices Y , Ỹ in S with the same asymptotics. Their quotient
C = (Y −1)Ỹ ∈ GL(2, C) is called also a Stokes matrix there (corresponding to the
two realizations of one formal fundamental matrix in one sector), and it is shown that
C does not belong to the Galois group of the system.
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4.2 The Exponential Torus

According to the discussion above, the local differential Galois group Ga (more pre-
cisely, its matrix representation with respect to the fundamental solution Y1 = YS1
in the good sector S1) contains the Stokes matrices C1, . . . , C2r as well as the for-
mal monodromy matrix e2π i	 (see the relation (9)). But it also contains a connected
subgroup, the exponential torus.

Consider the differential extensionMa ⊂ Ma〈eq1 , . . . , eqp 〉 ofMa generated by
the diagonal entries eq1 , . . . , eqp of the exponential factor eQ from the decomposition
(6). Let T denote the differential Galois group of this (Picard–Vessiot) extension, that
is, the group of its differential Ma-automorphisms. This group may be described in
more details as follows.

Let {p1, . . . , ps} be a basis of the Z-module Zq1 + · · · + Zqp, so that
Ma〈eq1 , . . . , eqp 〉 = Ma〈ep1 , . . . , eps 〉. Since the logarithmic derivative of each epi

belongs toMa , for any element σ ∈ T , one has

σ(ep1) = t1ep1 , . . . , σ (eps ) = tseps (10)

for some (t1, . . . , ts) ∈ (C∗)s . Conversely, any element of (C∗)s defines in this way a
differentialMa-automorphism ofMa〈ep1 , . . . , eps 〉, since there are no differentially-
polynomial relations over Ma between the functions ep1 , . . . , eps . Therefore, T is a
torus of dimension s, that is, a linear algebraic group isomorphic to (C∗)s .

To show the inclusion T ⊂ Ga , first let us extend any σ ∈ T to a differentialMa-
automorphism of the Picard–Vessiot extension Ma ⊂ Ma〈Ŷ 〉 generated by all the
entries of the matrix Ŷ . The latter extension may be viewed as a differential subfield
of a larger differential field

L = M̂a〈(z − a)λ1 , . . . , (z − a)λp , eq1 , . . . , eqp 〉,
which is an extension of the field M̂a = C((z − a)) of formal Laurent series in z − a
with a finite principal part generated by the diagonal entries of the matrices (z − a)	,
and eQ(z) regarded as formal objects so far. Since

M̂a〈(z − a)λ1 , . . . , (z − a)λp 〉 ∩ M̂a〈eq1 , . . . , eqp 〉 = M̂a,

one can extend any σ ∈ T given by (10) onto L by letting it be the identity map on
M̂a〈(z−a)λ1 , . . . , (z−a)λp 〉. Thus, we indeed have a differentialM̂a-automorphism
of L that preserves the Picard–Vessiot extensionMa ⊂ Ma〈Ŷ 〉. By restricting every
such an automorphism to Ma〈Ŷ 〉, we identify T with a subgroup of the differential
Galois group of the Picard–Vessiot extension Ma ⊂ Ma〈Ŷ 〉. It remains to note that
the latter group is isomorphic toGa , because the differential extensionsMa ⊂ Ma〈Ŷ 〉
andMa ⊂ Ma〈Y1〉 are differentially isomorphic (this is provided by the mapping of
Ŷ to Y1 via the operation of r -summability, which maps here the formal factor F̂ of Ŷ
to its sum F1 in the sector S1 and commutes with differentiation).

Finally, let us write the matrix Tσ representing an element σ ∈ T given by (10)
with respect to the fundamental solution Y1. Let
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q1(z) = m11 p1(z) + · · · + m1s ps(z),

. . . . . .

qp(z) = m p1 p1(z) + · · · + m ps ps(z)

for some mi j ∈ Z. Then

σ(eqi ) = σ(emi1 p1 . . . emis ps ) = tmi1
1 emi1 p1 . . . tmis

s emis ps = tmi1
1 . . . tmis

s eqi ;

hence,

Tσ = diag(τ1(t), . . . , τp(t)),

where t = (t1, . . . , ts) ∈ (C∗)s , τi (t) = tmi1
1 . . . tmis

s . Note that since the functions
q1, . . . , qp are pairwise distinct, the monomials τ1(t), . . . , τp(t) are pairwise distinct
as well.

5 Linear Differential Systems and Meromorphic Connections on
Holomorphic Vector Bundles

Let us recall some notions concerning holomorphic vector bundles and meromorphic
connections in a context of linear differential equations. We mainly follow Boli-
bruch et al. (2006) or Ilyashenko and Yakovenko (2008), Ch. 3 (see also Gontsov
and Poberezhnyi 2008).

In an analytic interpretation, a holomorphic bundle E of rank p over the Riemann
sphere is defined by a cocycle {gαβ(z)}, that is, a collection of holomorphic matrix
functions corresponding to a covering {Uα} of the Riemann sphere:

gαβ : Uα ∩ Uβ −→ GL(p, C), Uα ∩ Uβ �= ∅,

and satisfying the conditions

gαβ = g−1
βα , gαβgβγ gγα = I in Uα ∩ Uβ ∩ Uγ �= ∅.

Two holomorphically equivalent cocycles {gαβ(z)} and {g′
αβ(z)} define the same bun-

dle. Equivalence of cocycles means that there exists a set {hα(z)} of holomorphic
matrix functions hα : Uα −→ GL(p, C) such that

hα(z)gαβ(z) = g′
αβ(z)hβ(z). (11)

A section s of the bundle E is determined by a set {sα(z)} of vector functions
sα : Uα −→ C

p that satisfy the conditions sα(z) = gαβ(z)sβ(z) in non-empty inter-
sections Uα ∩ Uβ .

A meromorphic connection ∇ on the holomorphic vector bundle E is determined
by a set {ωα} of matrix meromorphic differential 1-forms that are defined in the
corresponding neighbourhoods Uα and satisfy gluing conditions
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ωα = (dgαβ)g−1
αβ + gαβωβg−1

αβ . (12)

Under a transition to an equivalent cocycle {g′
αβ} connected with the initial one by

the relations (11), the 1-forms ωα of the connection ∇ are transformed into the corre-
sponding 1-forms

ω′
α = (dhα)h−1

α + hαωαh−1
α . (13)

Conversely, the existence of holomorphic matrix functions hα : Uα −→ GL(p, C)

such that the matrix 1-forms ωα and ω′
α (satisfying the conditions (12) for gαβ and

g′
αβ respectively) are connected by the relation (13) in Uα implies the equivalence of

the cocycles {gαβ} and {g′
αβ} (one may assume that the intersections Uα ∩ Uβ do not

contain singular points of the connection).
Vector functions sα(z) satisfying linear differential equations dsα = ωαsα in the

corresponding Uα can be chosen, by virtue of the conditions (12), in such a way that
the set {sα(z)} determines a section of the bundle E , which is called horizontal with
respect to the connection ∇. Thus, horizontal sections of a holomorphic vector bundle
with a meromorphic connection are determined by solutions of local linear differential
systems. The monodromy of a connection (the monodromy group) characterizes the
ramification of horizontal sections under their analytic continuation along loops in
C not containing singular points of the connection 1-forms and is defined similarly
to the monodromy group of the system (1). A connection will be called Fuchsian
(logarithmic), regular, or irregular, depending on the type of the singular points of its
1-forms (as singular points of the corresponding linear differential systems).

If a bundle is holomorphically trivial (all matrices of the cocycle can be taken as
the identity matrices), then, by virtue of the conditions (12), the matrix 1-forms of a
connection coincide on non-empty intersections Uα ∩ Uβ . Hence, horizontal sections
of such a bundle are solutions of a global linear differential system defined on the
whole Riemann sphere. Conversely, the linear system (1) determines a meromorphic
connection on the holomorphically trivial vector bundle of rank p over C. Such a
bundle has a standard definition by the cocycle that consists of the identity matrices,
while the connection is defined by the matrix 1-form B(z)dz of coefficients of the
system. To our purpose, it will be more convenient to use the following equivalent
coordinate description [this construction appears already in Bolibruch et al. (2006)].

At first, we consider a covering {Uα} of the punctured Riemann sphere C\{a1, . . . ,
an} by simply connected neighbourhoods. Then, on the corresponding non-empty
intersections Uα ∩ Uβ , one defines the matrix functions of a cocycle, g′

αβ(z) ≡ const,
which are expressed in terms of themonodromymatrices M1, . . . , Mn of the system (1)
via the operations of multiplication and taking the inverse (see Gontsov and Poberezh-
nyi 2008). In this case, the matrix differential 1-forms ω′

α defining a connection are
equal to zero. Further, the covering {Uα} is complemented by small neighbourhoods
Oi of the singular points ai of the system; thus, we obtain the covering of the Riemann
sphere C. To non-empty intersections Oi ∩ Uα , there correspond matrix functions
g′

iα(z) = Yi (z) of the cocycle, where Yi (z) is a germ of a fundamental matrix of
the system, whose monodromy matrix at the point ai is equal to Mi (so, for analytic
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continuations of the chosen germ to non-empty intersections Oi ∩Uα ∩Uβ , the cocy-
cle relations giαgαβ = giβ hold). The matrix differential 1-forms ω′

i determining the
connection in the neighbourhoods Oi coincide with the 1-form B(z)dz of coefficients
of the system. To prove the holomorphic equivalence of the cocycle {g′

αβ, g′
iα} to the

identity cocycle, it is sufficient to check the existence of holomorphicmatrix functions

hα : Uα −→ GL(p, C), hi : Oi −→ GL(p, C)

such that

ω′
α = (dhα)h−1

α + hαωαh−1
α , ω′

i = (dhi )h
−1
i + hiωi h

−1
i . (14)

Since we have ωα = B(z)dz and ω′
α = 0 for all α, the first equation in (14) can be

rewritten as a linear system

d(h−1
α ) = (B(z)dz)h−1

α ,

which has a holomorphic solution h−1
α : Uα −→ GL(p, C), since the 1-form B(z)dz

is holomorphic in a simply connected neighbourhoodUα . The second equation in (14)
has a holomorphic solution hi (z) ≡ I , since ωi = ω′

i = B(z)dz.
One says that the bundle E has a subbundle E ′ ⊂ E of rank k < p that is stabilized

by the connection ∇, if the pair (E,∇) admits a coordinate description {gαβ}, {ωα} of
the following block upper triangular form:

gαβ =
(

g1
αβ ∗
0 g2

αβ

)
, ωα =

(
ω1

α ∗
0 ω2

α

)
,

where g1
αβ and ω1

α are k × k blocks (then the cocycle {g1
αβ} defines the subbundle E ′,

and the 1-forms ω1
α define the restriction ∇′ of the connection ∇ to the subbundle E ′).

Example 1 Consider a system (1), whose monodromy matrices M1, . . . , Mn are of
the same block upper triangular form, and the corresponding holomorphically trivial
vector bundle E with themeromorphic connection∇. Suppose that, in a neighbourhood
of each singular point ai of the system, there exist a fundamental matrix Yi (z), whose
monodromy matrix is Mi , and a holomorphically invertible matrix �i (z) such that
�i Yi is a block upper triangular matrix (with the same block structure as the matrix
Mi ). Let us show that a common invariant subspace of the monodromy matrices gives
rise to a vector subbundle E ′ ⊂ E that is stabilized by the connection ∇.

We use the above coordinate descriptions of the bundle and the connection with the
cocycle {g′

αβ, g′
iα} and set {ω′

α, ω′
i } of matrix 1-forms. The matrices g′

αβ are already
block upper triangular, since the monodromy matrices M1, . . . , Mn are (and ω′

α = 0),
while the matrices g′

iα = Yi can be transformed to such a form, �i g′
iα = �i Yi . Thus,

changing thematrices g′
iα to�i g′

iα andmatrix 1-formsω′
i to�i ω′

i �−1
i +(d�i )�

−1
i ,we

obtain a holomorphically equivalent coordinate description with the cocycle matrices
and connection matrix 1-forms, which have the same block upper triangular form.
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The following auxiliary lemma points to a certain block structure of a linear dif-
ferential system in the case when the corresponding holomorphically trivial vector
bundle with the meromorphic connection has a holomorphically trivial subbundle that
is stabilized by the connection.

Lemma 1 If a holomorphically trivial vector bundle E of rank p over C endowed
with a meromorphic connection ∇ has a holomorphically trivial subbundle E ′ ⊂ E
of rank k that is stabilized by the connection, then the corresponding linear system
(1) is reduced to a block upper triangular form via a constant gauge transformation
ỹ(z) = Cy(z), C ∈ GL(p, C), that is,

C B(z)C−1 =
(

B ′(z) ∗
0 ∗

)
,

where B ′(z) is a k × k block.

Proof Let {s1, . . . , sp} be a basis of global holomorphic sections of the bundle E (so
s1, . . . , sp are linearly independent at each point z ∈ C) such that the 1-form of the
connection ∇ in this basis is the 1-form B(z)dz of coefficients of the linear system.
Consider another basis {s′

1, . . . , s′
p} of global holomorphic sections of the bundle E

such that s′
1, . . . , s′

k form a basis of sections of the subbundle E ′, (s′
1, . . . , s′

p) =
(s1, . . . , sp)C−1, C ∈ GL(p, C).

Now, choose a basis {h1, . . . , h p} of sections of the bundle E such that h1, . . . , h p

are horizontal with respect to the connection ∇ and h1, . . . , hk are sections of the
subbundle E ′ (this is possible, since E ′ is stabilized by the connection∇). Let Y (z) be
a fundamental matrix of the system, whose columns are the coordinates of the sections
h1, . . . , h p in the basis {s1, . . . , sp}. Then

Ỹ (z) = CY (z) =
(

k × k ∗
0 ∗

)

is a block upper triangular matrix, since its columns are the coordinates of the sections
h1, . . . , h p in the basis {s′

1, . . . , s′
p}. Consequently, the transformation ỹ(z) = Cy(z)

reduces the initial system to a block upper triangular form. ��
The degree deg E (which is an integer) of a holomorphic vector bundle E endowed

with a meromorphic connection ∇ may be defined as the sum

deg E =
n∑

i=1

resai tr ωi

of the residues of local differential 1-forms tr ωi over all singular points of the connec-
tion ∇ (the notation “tr” stays for the trace), where ωi is the local matrix differential
1-form of the connection ∇ in a neighbourhood of its singular point ai . Later, when
calculating the degree of a bundle, we apply the Liouville formula tr ωi = d ln det Yi ,
where Yi is a fundamental matrix of the local linear differential system dy = ωi y.
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6 Solvability of a Regular Singular System with Small Exponents

6.1 Solvability by Quadratures

Consider a system (1) with regular singular points a1, . . . , an of Poincaré rank
r1, . . . , rn respectively. Here we prove that if the real parts of the exponents of (1)
are sufficiently small, then generically solvability of the system (1) by quadratures
implies a simple condition on the coefficient matrix B.

Theorem 2 Let for some k ∈ {1, . . . , p − 1} the exponents β
j

i of the regular singular
system (1) satisfy the conditions

Re β
j

i > −1/nk, i = 1, . . . , n, j = 1, . . . , p, (15)

and each difference β
j

i − βl
i /∈ Q\Z. Then solvability of the system (1) by quadra-

tures implies the existence of a constant matrix C ∈ GL(p, C) such that the matrix
C B(z)C−1 has the following block form:

C B(z)C−1 =
(

B ′(z) ∗
0 ∗

)
,

where B ′(z) is an upper triangular k × k matrix.

Remark 2 Though the inequalities (15) restrict the real parts of the exponents from
below, together with the estimates (5) they provide boundedness from above.

Remark 3 The sum of the Poincaré ranks of a regular singular system, whose expo-
nents satisfy the condition (15), is indeed restricted because of the Fuchs inequalities
(5), namely,

∑n
i=1 ri < p/k.

The proof of Theorem 2 is based on two auxiliary lemmas.

Lemma 2 Let the exponents β
j

i of the regular singular system (1) satisfy the condi-
tions (15). If the monodromy matrices of this system are upper triangular, then there
is a constant matrix C ∈ GL(p, C) such that the matrix C B(z)C−1 has the form
announced in Theorem 2.

Proof We use a geometric interpretation (discussed in the previous section) according
to which the regular singular system (1) gives rise to a holomorphically trivial vector
bundle E of rank p over the Riemann sphere endowedwith ameromorphic connection
∇ with regular singular points a1, . . . , an .

Since themonodromymatrices M1, . . . , Mn of the systemare upper triangular, there
exists, as shown in Example 1, a flag E1 ⊂ E2 ⊂ · · · ⊂ E p = E of subbundles of rank
1, 2, . . . , p respectively that are stabilized by the connection∇. Indeed, a fundamental
matrix Y determining the monodromy matrices M1, . . . , Mn of the system can be
represented near each singular point ai in the form

Y (z) = Ti (z)(z − ai )
Ei , Ei = (1/2π i) ln Mi ,
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where Ti is a meromorphic matrix at the point ai . This matrix can be factored as
Ti (z) = Vi (z)Pi (z), with a holomorphically invertible matrix Vi at ai and an upper
triangular matrix Pi , which is a polynomial in (z − ai )

±1 (see, for example, Gontsov
2004, Lemma 1). Thus, the matrix V −1

i Y is upper triangular.
Let us estimate the degree of each subbundle E j , j � k. For this, we note that,

in a neighbourhood of each singular point ai , the initial system is transformed via
a holomorphically invertible gauge transformation to a system with a fundamental
matrix of the form

Yi (z) =
(

U ′
i (z) ∗
0 ∗

)
(z − ai )

(
A′

i 0
0 ∗

)
(z − ai )

(
E ′

i ∗
0 ∗

)

such that the matrix Y ′
i (z) = U ′

i (z)(z −ai )
A′

i (z −ai )
E ′

i is a Levelt fundamental matrix
for a linear system of j equations with the regular singular point ai . The matrix 1-
form of coefficients of this system in a neighbourhood of ai is a local 1-form of the
restriction∇ j of the connection∇ to the subbundle E j , and the exponents β̃1

i , . . . , β̃
j

i
of this system (the eigenvalues of the matrix A′

i + E ′
i ) form a subset of the exponents

of the initial system at ai . Therefore,

Re β̃l
i > −1/nk, l = 1, . . . , j.

The degree of the holomorphically trivial vector bundle E p is equal to zero, and for
j � k one has:

deg E j =
n∑

i=1

resai d ln det Y ′
i =

n∑
i=1

ordai detU ′
i +

n∑
i=1

tr(A′
i + E ′

i )

=
n∑

i=1

ordai detU ′
i +

n∑
i=1

j∑
l=1

Re β̃l
i > − j/k � −1.

Since the degree of a subbundle of a holomorphically trivial vector bundle is non-
positive, one has deg E j = 0. Hence, all the subbundles E1 ⊂ · · · ⊂ Ek are
holomorphically trivial (a subbundle of a holomorphically trivial vector bundle is
holomorphically trivial, if its degree is equal to zero, see Ilyashenko and Yakovenko
2008, Lemma 19.16). Now the assertion of Lemma 2 follows from Lemma 1. ��
Definition 1 A matrix will be called N -resonant, N ∈ N, if it has two eigenvalues
λ1 �= λ2 such that λN

1 = λN
2 , that is,

|λ1| = |λ2|, | arg λ1 − arg λ2| = 2π

N
j, j ∈ {1, 2, . . . , N − 1}.

Let a groupM ⊂ GL(p, C) be generated bymatrices M1, . . . , Mn . If thesematrices
are sufficiently close to the identity (in the Euclid topology), then the existence of a
solvable normal subgroup of finite index inM implies their triangularity, see Theorem
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2.7 in Khovanskii (2008), Ch. 6. According to the remark following this theorem in
Khovanskii (2008), the requirement of proximity of the matrices Mi to the identity
can be weakened as follows.

Lemma 3 There is a number N = N (p) such that if the matrices M1, . . . , Mn are
not N-resonant, then the existence of a solvable normal subgroup of finite index in M
implies their triangularity.

Proof of Theorem 2 From the theorem assumptions, it follows that the identity com-
ponent G0 of the differential Galois group G of the system (1) is solvable; hence, G0

is a solvable normal subgroup of G of finite index. Then the monodromy groupM of
this system also has a solvable normal subgroup of finite index, namely, M ∩ G0.

As follows from the definition of the exponents β
j

i of a linear differential system at a

regular singular pointai , they are connectedwith the eigenvaluesμ
j
i of themonodromy

matrix Mi by the relation

μ
j
i = exp(2π i β j

i ).

Therefore,

μ
j
i = exp(2π i(Re β

j
i + i Im β

j
i )) = e−2π Im β

j
i (cos(2π Re β

j
i ) + i sin(2π Re β

j
i )),

and, for any N ∈ N, the matrices Mi are not N -resonant by the conditions on the
numbers β

j
i . Now the assertion of Theorem follows from Lemmas 2 and 3. ��

As a consequence of Theorem 2, we obtain the following refinement of the
Ilyashenko–Khovanskii criterion of solvability by quadratures (mentioned in Intro-
duction) of a Fuchsian system with small residue matrices.

Theorem 3 Let the eigenvalues β
j

i of the residue matrices Bi of the Fuchsian system
(2) satisfy the conditions

Re β
j

i > − 1

n(p − 1)
, i = 1, . . . , n, j = 1, . . . , p, (16)

and each difference β
j

i − βl
i /∈ Q\Z. Then solvability of the Fuchsian system (2) by

quadratures is equivalent to the simultaneous triangularity of the matrices Bi .

Proof The necessity of the simultaneous triangularity is a direct consequence of
Theorem 2, since the exponents of the Fuchsian system (2) at ai coincide with the
eigenvalues of the residue matrix Bi . The sufficiency follows from a general fact that
any linear differential system with an (upper) triangular coefficient matrix is solvable
by quadratures (one should solve it beginning with the last equation). ��
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Remark 4 The inequalities (16) restricting the real parts of the exponents of the Fuch-
sian system from below also provide their boundedness from above because of the
Fuchs relation

∑n
i=1

∑p
j=1 β

j
i = 0 (see (5)). Namely,

− 1

n(p − 1)
< Re β

j
i <

np − 1

n(p − 1)
.

In particular, the integer parts ϕ
j
i (the so-called Levelt valuations) of the numbers

Re β
j

i for such a system must belong to the set {−1, 0, 1}.

Remark 5 If each residuematrix Bi of the Fuchsian system (2) has only one eigenvalue
βi , then solvability of this system by quadratures is also equivalent to the simultane-
ous triangularity of the matrices Bi (regardless of the values Re βi ). Indeed, in this
case each monodromy matrix Mi has only one eigenvalue μi = e2π iβi ; hence, it is
not N -resonant. Therefore, solvability implies the simultaneous triangularity of the
monodromy matrices and the existence of a flag E1 ⊂ E2 ⊂ · · · ⊂ E p = E of
subbundles of the holomorphically trivial vector bundle E that are stabilized by the
logarithmic connection ∇ (corresponding to the Fuchsian system). Since the degree∑n

i=1 pβi of the bundle E is zero, the degree
∑n

i=1 jβi of each subbundle E j is also
zero, and all these subbundles are holomorphically trivial.

It is natural to expect that for a general Fuchsian system (with no restrictions on
the exponents) solvability by quadratures does not necessarily imply the simultaneous
triangularity of the residue matrices. This is illustrated by the following example due
to Bolibrukh.

Example 2 (Bolibruch 1994, Prop. 5.1.1). There exist points a1, a2, a3, a4 on the
Riemann sphere and a Fuchsian system with singularities at these points, whose mon-
odromy matrices are

M1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 −1 0 0 −1
0 −1 −1 0 0 0 1
0 0 1 1 2 2 2
0 0 0 1 1 0 1
0 0 0 0 1 1 1
0 0 0 0 0 1 0
0 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, M2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 1 1 1 0
0 −1 1 1 −1 1 −1
0 0 −1 −1 1 −1 0
0 0 0 1 1 1 0
0 0 0 0 −1 −1 1
0 0 0 0 0 1 0
0 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

M3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 −1 0 0
0 −1 −1 1 −1 1 2
0 0 1 1 −1 1 2
0 0 0 −1 1 −1 −2
0 0 0 0 −1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, M4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 −1 1 1 0
0 −1 1 −2 0 0 0
0 0 −1 1 0 0 0
0 0 0 −1 1 0 1
0 0 0 0 1 1 0
0 0 0 0 0 1 1
0 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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whereas the coefficient matrix of this system is not upper triangular. Moreover, this
system cannot be transformed in an upper triangular form via neither a constant gauge
transformation nor even a meromorphic (rational) one preserving the singular points
a1, a2, a3, a4 and the pole order (=1) of a coefficient matrix at these points. Thus, the
residue matrices of this Fuchsian system are not simultaneously triangular, though the
system is solvable by quadratures, since its monodromy group generated by triangular
matrices is solvable.

We notice that Theorem 3 does not apply to this example as the exponents of such
a system cannot satisfy the conditions (16). Indeed, for any exponent β j

i = ϕ
j
i + ρ

j
i ,

one has

ρ
j
i = 1

2π i
lnμ

j
i , μ

j
i ∈ {−1, 1};

hence, Re ρ
j
i is equal to 0 (for μ

j
i = 1) or 1/2 (for μ

j
i = −1). The inequalities (16)

imply (for n = 4, p = 7)

Re β
j

i > − 1

24
;

hence, ϕ j
i is equal to 0 or 1 (see Remark 4). Therefore, the sum of the exponents over

all singular points is positive, which contradicts the Fuchs relation.

6.2 Other Types of Solvability

At the end of Sect. 2, we gave Kolchin’s criteria for a linear differential system to be
solvable with respect to different types of solvability formulated in terms of the differ-
ential Galois group. For a Fuchsian system with sufficiently small residue matrices,
Ilyashenko and Khovanskii (1974) (see also Khovanskii 2008, Ch. 6, §2.3) converted
these conditions on the differential Galois group into conditions on the residue matri-
ces. Now this may be formulated in accordance with Theorem 3, while a proof is
mainly still the same.

Theorem 4 Under the assumptions of Theorem 3, the Fuchsian system (2) is

1. solvable by integrals and algebraic functions1 if and only if all the matrices Bi are
(simultaneously) triangular and the eigenvalues of each Bi are rational numbers
differing by an integer;

2. solvable by integrals if and only if all the matrices Bi are triangular and their
eigenvalues are equal to zero;

3. solvable by exponentials of integrals and algebraic functions2 if and only if all the
matrices Bi are diagonal;

1 Under the assumptions of the theorem, this type of solvability is equivalent to solvability by integrals and
radicals.
2 Under the assumptions of the theorem, this type of solvability is equivalent to solvability by exponentials
of integrals.
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4. solvable by algebraic functions3 if and only if all the matrices Bi are diagonal and
the eigenvalues of each Bi are rational numbers differing by an integer.

Proof We note that each type of solvability implies solvability by quadratures; hence,
by Theorem 3 we have a simultaneous triangularity of the residue matrices Bi . There-
fore, the differential Galois group G of the system is triangular, and we may apply
Kolchin’s criteria from Sect. 2. As the differential Galois group of a Fuchsian system
coincides with the closure of its monodromy group, each condition of the criteria is
equivalent to the same condition on the monodromy matrices (each condition deter-
mines a Zariski closed set).

So, the eigenvalues of all elements ofG are roots of unity if and only if the eigenval-
ues of the monodromy matrices are, and, therefore, the eigenvalues of all the residue
matrices Bi are rational numbers (recall that the eigenvalues of a monodromy matrix
Mi are e2π iβ

1
i , . . . , e2π iβ

p
i , where β1

i , . . . , β
p
i are the eigenvalues of a matrix Bi ).

Since, according to the assumptions of Theorem 3, β j
i − βl

i /∈ Q\Z, each difference

β
j

i − βl
i must be an integer.

All the eigenvalues of all elements ofG are equal to 1 if and only if the eigenvalues
of the monodromy matrices are; hence, all the eigenvalues of all the residue matrices
Bi are integers. These cannot be negative in view of (16), but they cannot be positive
either in view of the Fuchs relation

∑n
i=1

∑p
j=1 β

j
i = 0 (if one of them is positive,

then there would be another one that is negative).
Finally, G is diagonal if and only if all the monodromy matrices are. Therefore, a

holomorphically trivial vector bundle E over C (with a meromorphic connection ∇),
which corresponds to the system (2), is a direct sum of line bundles stabilized by∇. As
in the proof of Lemma 2, it follows from (16) that each of these line bundles is holo-
morphically trivial. Then an evident modification of Lemma 1 proves the reducibility
of the Fuchsian system (2) to a diagonal form via a constant gauge transformation.

Notice that, for each type of solvability, the sufficiency of the corresponding con-
dition also may be proved without using differential Galois theory and follows from
a method of solving first order non-homogeneous linear differential equations (one
begins to solve a Fuchsian system having an upper triangular coefficient matrix with
the last equation and uses the method of variation of constants). ��

It turns out that the class of functions Liouvillian over the field K = C(z) is
closed with respect to the non-algebraic operation of composition. For example, if
f is Liouvillian, then ln f is also Liouvillian, as it is an integral of f ′/ f . For an
algebraic function g, the function g ◦ f is Liouvillian: g satisfies an algebraic equation
P(z, g(z)) = 0 over K , therefore, g ◦ f satisfies P( f (z), g ◦ f (z)) = 0 and hence
is algebraic over K 〈 f 〉. However, if we add to the field K some non-Liouvillian
function, the situation will change. Consider a field K 〈F〉, where F is a meromorphic
non-Liouvillian function. Then the class of functions Liouvillian over this field is
not closed with respect to composition. For example, ln F is Liouvillian over K 〈F〉,
whereas F(ln z) is not. Hence, non-solvability of a linear differential equation by
quadratures over the field K 〈F〉 does not guarantee that there is no solution of the form

3 Under the assumptions of the theorem, this type of solvability is equivalent to solvability by radicals.
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F(ln z), for instance. Khovanskii developed a topological version of Galois theory,
where composition is equally involved, while the role of the Galois group is played by
themonodromy group of a function [for the details seeKhovanskii (1995) (Khovanskii
2008, Ch. 5)]. In this theory, one obtains stronger results about non-solvability of linear
differential systems. Let M be the field of meromorphic (in C) functions, and let L
be a class of functions that can be obtained fromM by using the standard arithmetic
operations, integration, differentiation, as well as composition. If all solutions of the
system (1) belong to L, then the monodromy group of the system possesses a solvable
normal subgroup of finite index (see Khovanskii 2008, Ch. 6, Cor. 2.13). Systems that
cannot be solved in such a way are called strongly non-solvable. Thus, we have the
following statement.

Under the assumptions of Theorem 3, the Fuchsian system (2) with non-triangular
residue matrices Bi is strongly non-solvable.

7 Solvability of a Non-Resonant Irregular System with Small Formal
Exponents

7.1 Solvability by Quadratures

Consider a system (1) with non-resonant irregular singular points a1, . . . , an of
Poincaré ranks r1, . . . , rn respectively. If the real parts of the formal exponents of this
system are sufficiently small, then the following criterion of solvability by quadratures
holds.

Theorem 5 Let at each singular point ai the formal exponents λ
j
i of the irregular

system (1) satisfy the conditions

Re λ
j
i > − 1

n(p − 1)
.

Then this system is solvable by quadratures if and only if there exists a constant matrix
C ∈ GL(p, C) such that C B(z)C−1 is upper triangular.

Proof As in Theorem 3, the sufficiency of the condition does not require a special
proof. Let us prove its necessity.

Consider a fundamental matrix Y of the system (1) in a neighbourhood of a non-
singular point z0 and the representation of the differential Galois groupGwith respect
to this matrix (the entries of Y are regarded as elements of the field of meromorphic
functions at z0). For each singular point ai , let Y ai

1 , . . . , Y ai
2ri

be the fundamental matri-
ces of the system defined respectively in the sectors Sai

1 , . . . , Sai
2ri

of a good covering
of a neighbourhood of ai (these sectors were defined at the end of Sect. 3; the upper
index ai is used here to emphasize that the involved sectors and matrices correspond
to the singular point ai ).

The connection matrix between an analytic continuation ỸS
ai
1

of Y into a neigh-

bourhood of each ai (more precisely, into each first sector Sai
1 ) and the corresponding

Y ai
1 is denoted by Pi :
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ỸS
ai
1

(z) = Y ai
1 (z)Pi , i = 1, . . . , n.

As follows from the explanations of Sect. 4, the matrices

C̃ai
1 = P−1

i Cai
1 Pi , . . . , C̃ai

2ri
= P−1

i Cai
2ri

Pi , i = 1, . . . , n,

belong to G (here Cai
1 , . . . , Cai

2ri
denote the Stokes matrices at the point ai , which

correspond to the set of fundamental matrices Y ai
1 , . . . , Y ai

2ri
). Furthermore, for any

set T1, . . . , Tn of diagonal matrices from the exponential tori at the points a1, . . . , an

respectively, the matrices

T̃i = P−1
i Ti Pi , i = 1, . . . , n,

belong to G. Recall that, for each singular point, the corresponding exponential torus
consists of all matrices T (t) = diag(τ1(t), . . . , τp(t)), where t = (t1, . . . , ts) ∈ (C∗)s

is an arbitrary parameter, s is the dimension of the torus, and τ j are pairwise distinct
monomials in t1, . . . , ts . Hence, for any N ∈ N, the N -th powers of τ j are also pairwise
distinct monomials. Thus, each matrix Ti can be chosen in such a way (by taking a
suitable value of t) that its eigenvalues are pairwise distinct, and that it is not N -resonant
for any N ∈ N. This value of t should be taken from the complement (C∗)s\ ⋃∞

N=1 AN

of the union
⋃∞

N=1 AN of a countable number of the algebraic subsets

AN =
⋃
i �= j

{t ∈ (C∗)s |τ N
i (t) = τ N

j (t)} ⊂ (C∗)s .

Denote by M̂ the group generated by the matrices T̃i , C̃ai
1 , . . . , C̃ai

2ri
, i = 1, . . . , n,

over all singular points. As follows from the assumptions of the theorem, the groupG
possesses the solvable normal subgroupG0 of finite index. Hence, the subgroup M̂ ⊂
G possesses the solvable normal subgroup of finite index, M̂ ∩ G0. For any N ∈ N,
the matrices generating the group M̂ are not N -resonant (the matrices Ti are chosen to
be non-resonant, whereas for the Stokes matrices this follows from their unipotence).
Therefore, according to Lemma 3, the generators of M̂ are simultaneously reduced to
an upper triangular form by conjugating to some invertible matrix C̃ . We may assume
that they are already upper triangular (otherwise, we would consider the fundamental
matrixY C̃ insteadofY ).As follows fromGantmacher (1959),Ch.VIII, §1, the relation

Ti = Pi T̃i P−1
i ,

where T̃i is an upper triangular matrix and Ti is a diagonal matrix, whose diagonal
entries are pairwise distinct, implies that the matrix Pi can be written as Pi = Di Ri ,
where Ri is an upper triangular matrix (the conjugation Ri T̃i R−1

i makes all the off-
diagonal entries of the matrix T̃i zero) and Di is a permutation matrix for Ti (that is,
the conjugation D−1

i Ti Di permutes the diagonal entries of the matrix Ti ).
In a neighbourhood of each ai , we pass from the set of fundamental matrices

Y ai
1 , . . . , Y ai

2ri
, which correspond to the sectors Sai

1 , . . . , Sai
2ri

, to the fundamental
matrices
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Ỹ ai
m (z) = Y ai

m (z)Pi (in particular, Ỹ ai
1 = Y )

connected to each other in the intersections Sai
m ∩ Sai

m+1 by the relations

Ỹ ai
m+1(z) = Ỹ ai

m (z)C̃ai
m .

From the decomposition of Pi above and from (7), it follows that the matrices Ỹ ai
m can

be written as

Ỹ ai
m (z) = Fai

m (z)(z − ai )
	i eQi (z)Di Ri = Fai

m (z)Di (z − ai )
	′

i eQ′
i (z) Ri ,

where

	′
i = D−1

i 	i Di , Q′
i (z) = D−1

i Qi (z) Di

are diagonal matrices obtained from the corresponding matrices 	i , Qi (z) by a per-
mutation of the diagonal entries. Therefore, in the intersections Sai

m ∩ Sai
m+1, we have

the relations

Fai
m+1(z)Di (z − ai )

	′
i eQ′

i (z) Ri = Fai
m (z)Di (z − ai )

	′
i eQ′

i (z) Ri C̃ai
m .

Thus, in the sectors Sai
1 , . . . , Sai

2ri
, which form a covering of a punctured neighbour-

hood of ai , there are holomorphically invertible matrices Fai
1 (z)Di , . . . , Fai

2ri
(z) Di

such that, in the intersections Sai
m ∩ Sai

m+1, their quotients

(Fai
m (z)Di )

−1Fai
m+1(z)Di = (z − ai )

	′
i eQ′

i (z) Ri C̃ai
m R−1

i e−Q′
i (z)(z − ai )

−	′
i

are upper triangular matrices. Since for each m = 1, . . . , 2ri , the matrix Fai
m (z)Di has

the same asymptotic expansion F̂i (z)Di in the corresponding sector Sai
m , there exists

a matrix �i (z) holomorphically invertible at ai such that all the matrices

F̃ai
m (z) = �i (z)Fai

m (z)Di , m = 1, . . . , 2ri ,

are upper triangular (according to Balser et al. 1980, Prop. 3). In particular,

�i (z)Y (z) = �i (z)Ỹ
ai
1 (z) = �i (z)Fai

1 (z)Di (z − ai )
	′

i eQ′
i (z) Ri

= F̃ai
1 (z)(z − ai )

	′
i eQ′

i (z) Ri

is an upper triangular matrix. Hence, for the pair (E,∇) consisting of a holomorphi-
cally trivial vector bundle E of rank p over C and a meromorphic connection ∇ on
it, which corresponds to the system (1), one has a flag E1 ⊂ E2 ⊂ · · · ⊂ E p = E of
subbundles of ranks 1, 2, . . . , p respectively that are stabilized by ∇ (see Example 1).

The final part of the proof, estimates for the degree of each subbundle E j , j � p−1,
proceeds as for Lemma 2. Since E j is stabilized by ∇, the initial system, in a neigh-
bourhood of each singular point ai , is transformed via a holomorphically invertible
gauge transformation into a system with a formal fundamental matrix of the form
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Ŷi (z) =
(

F̂1
i (z) ∗
0 ∗

)
(z − ai )

(
	1

i 0
0 	2

i

)
e

(
Q1

i (z) 0
0 Q2

i (z)

)

such that Ŷ 1
i (z) = F̂1

i (z)(z −ai )
	1

i eQ1
i (z) is a formal fundamental matrix (6) of a local

linear differential system of j equations that corresponds to the restriction∇ j (near ai )
of the connection ∇ to the subbundle E j [existence of the block formal fundamental
matrix Ŷi is proved, for example, in Loday-Richaud (1994), Lemma III.3.8]. There-
fore, the formal exponents λ̃1i , . . . , λ̃

j
i of this system (the eigenvalues of the diagonal

matrix 	1
i ) form a subset of the formal exponents of the initial system at ai ; hence,

Re λ̃l
i > − 1

n(p − 1)
, l = 1, . . . , j.

Thus, for the degree deg E j one has

deg E j =
n∑

i=1

resai d ln det Ŷ 1
i =

n∑
i=1

ordai det F̂1
i +

n∑
i=1

tr	1
i +

n∑
i=1

resai d tr Q1
i .

Recall that det F̂1
i (ai ) �= 0 and tr Q1

i is a polynomial in 1/(z − ai ); hence,

deg E j =
n∑

i=1

tr	1
i =

n∑
i=1

j∑
l=1

Re λ̃l
i > − j

p − 1
� −1.

This implies (as at the end of the proof of Lemma 2) that all deg E j = 0 and that all
subbundles E1 ⊂ · · · ⊂ E p−1 ⊂ E are holomorphically trivial, which implies the
assertion of theorem. ��

7.2 Other Types of Solvability

According to the behaviour of solutions of a linear differential system near its irregular
singular point, the system (1) with at least one irregular singular point is not solvable
by integrals and algebraic functions. For solvability by exponentials of integrals and
algebraic functions the following criterion holds.

Theorem 6 Under the assumptions of Theorem 5, the system (1) is solvable by expo-
nentials of integrals and algebraic functions4 if and only if there exists a constant
matrix C ∈ GL(p, C) such that the matrix C B(z)C−1 is diagonal.

Proof The sufficiency of the condition follows immediately from the integration of
a system with a diagonal coefficient matrix. To prove the necessity, we note that
solvability by exponentials of integrals and algebraic functions implies solvability by
quadratures. Hence, by Theorem 5, the coefficient matrix B is reduced to a triangular

4 Under the assumptions of the theorem, this type of solvability is equivalent to solvability by exponentials
of integrals.
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form via a constant gauge transformation. Therefore, the differential Galois group
G of the system (1) is triangular, and we may apply Kolchin’s criterion from Sect.
2. According to this criterion, G is diagonal. Further we proceed as in the proof of
Theorem 5 with appropriate simplifications. Namely, since M̂ ⊂ G is diagonal, the
Stokes matrices are trivial. Hence, the fundamental matrix Y (z) near each singular
point ai has the form

Y (z) = Fi (z)(z − ai )
	′

i eQ′
i (z),

where thematrix Fi (z) is holomorphically invertible at ai . Themonodromymatrices of
Y are diagonal, the matrix F−1

i (z)Y (z) is also diagonal. Therefore, a holomorphically
trivial vector bundle E of rank p over C (with a meromorphic connection ∇ on it),
which corresponds to the system (1), is a direct sum of line bundles stabilized by ∇
(see Example 1). From the bounds on the formal exponents, it follows again that each
of these line bundles is holomorphically trivial. Now a modification of Lemma 1, as
mentioned in the proof of Theorem 4, proves the reducibility of the system (1) to a
diagonal form via a constant gauge transformation. ��

As we have mentioned before, a topological version of Galois theory proves that
if a Fuchsian system is non-solvable by quadratures, then it is strongly non-solvable.
For linear differential equations with irregular singular points this property fails. For
example, the equation

y′′ + zy = 0

with one (irregular) singular point z = ∞ is non-solvable by quadratures (see Kaplan-
sky 1957, Ch. V), but its monodromy is trivial and all solutions are meromorphic in C.
Thus, the next natural question is to obtain some sufficient condition for strong non-
solvability of a linear differential system with irregular singular points (formulated in
terms of the coefficient matrix rather than monodromy group).

We conclude this subsection by discussing local solvability of a linear differential
system by quadratures near its singular point z = a. To define this type of solvability,
one naturally changes the base fieldC(z) of rational functions to the fieldMa ofmero-
morphic germs at a and considers Liouvillian extensions of Ma . If a Picard–Vessiot
extension Ma ⊂ Fa corresponding to the system is contained in some Liouvillian
extension ofMa , then the system is said to be locally solvable by quadratures near the
singular point z = a. In analogy to the global case, local solvability by quadratures is
equivalent to solvability of the identity component G0

a of the local differential Galois
group Ga of the system.

If the singular point z = a is regular, then the system is always locally solvable
by quadratures near this point. This follows both from the form (4) of a fundamental
matrix

Y (z) = U (z)(z − a)A(z − a)Ẽ ,

where U (z) is a holomorphic matrix at a, and from the fact that the local differential
Galois group in this case is the Zariski closure of the local monodromy group, which
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is cyclic, hence solvable. On the other hand, in the case of a non-resonant irregular
singular point the following criterion of local solvability by quadratures is obtained
along the proof of Theorem 5.

Theorem 7 A linear differential system is locally solvable by quadratures near its non-
resonant irregular singular point if and only if the coefficient matrix is locally reduced
to an upper triangular form via a holomorphically invertible gauge transformation at
this point.

If a linear differential system has only one singular point (for example, the entries of
the coefficient matrix are polynomials), then its local differential Galois group at this
point coincides with the global one (see Mitschi 1996, Prop. 1.3). Hence, solvability
of such a system by quadratures is equivalent to its local solvability. Thus, we obtain
the following consequense of Theorem 7.

Corollary 1 Consider a linear differential system with a polynomial coefficient
matrix, whose irregular singular point z = ∞ is non-resonant. This system is solv-
able by quadratures if and only if its coefficient matrix is locally reduced to an upper
triangular form via a holomorphically invertible gauge transformation at infinity.
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