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FRÉCHET BARYCENTERS AND A LAW OF LARGE NUMBERS

FOR MEASURES ON THE REAL LINE

ALEXEY KROSHNIN1,2 AND ANDREI SOBOLEVSKI1,3

Abstract. Endow the space P(R) of probability measures on R with a trans-
portation cost J(µ, ν) generated by a translation-invariant convex cost func-

tion. For a probability distribution on P(R) we formulate a notion of average
with respect to this transportation cost, called here the Fréchet barycenter,
prove a version of the law of large numbers for Fréchet barycenters, and dis-
cuss the structure of P(R) related to the transportation cost J .

1. Introduction

The law of large numbers is probably the oldest result in statistics: already
by Kepler’s time, the sample arithmetic mean became universally accepted as es-
timator for a quantity whose measurements are subject to errors (see, e.g., [8]).
About a century later, in Part 4 of his Ars Conjectandi, published posthumously
in 1713 [2, 8], Jacob Bernoulli gave a rigorous proof that for two given outcomes,
the probability of either outcome can be determined by averaging the number of
its occurrences over a large sample.

Note that Bernoulli’s argument is based on embedding the two distinct outcomes
{0, 1} into the real line R whose affine structure is then used to perform averaging.
To use a similar approach in non-affine spaces, such as collections of geometric
shapes, Maurice Fréchet introduced in his memoir [5] a notion of averaging on a
general metric space (M,d): for a Borel measure µ its Fréchet mean is the global
minimum of

∫

d2(x, ·) dµ(x). This construction reduces to the conventional mean
if the space (M,d) is Euclidean and the measure µ has finite second moment, but
in more complex situations Fréchet means may fail to exist or to be unique.

In this paper we consider averaging in the space P(M) of measures over a metric
spaceM , using a transport optimization procedure to define a suitable concept of a
“typical element” [5, p. 224ff.], which extends the notion of Fréchet mean. For the
first time a construction of this kind was introduced by M. Agueh and G. Carlier in
[1]: a Wasserstein barycenter of a family of measures on the Euclidean space Rd is
defined as the Fréchet mean using the 2-Wasserstein distance W2 on P(Rd), which
is given by minimization of the mean-square displacement (a precise definition is
recalled on p. 5). In [1], the authors establish existence, uniqueness, and regularity
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results for the Wasserstein barycenter and, when d = 1, provide an explicit for-
mula for the Wasserstein barycenter in terms of quantile functions of the measures
involved.

Here we limit ourselves to the case d = 1 but take a general transportation cost

J(µ, ν) = inf
0≤γ∈P(R2) :
πx
#γ=µ,πy

#
γ=ν

∫

g(x− y) dγ(x, y) ≥ 0,

where g(·) ≥ 0 is a strictly convex function that satisfies g(0) = 0. Since J(µ, ν) = 0
iff µ = ν, this cost quanifiies separation between measures µ and ν in P(R) but
does not necessarily satisfy the triangle inequality; in [5] such measures of separation
(with an additional requirement of symmetry, J(µ, ν) = J(ν, µ)) are called “écarts”
to distinguish them from distances, for which the triangle inequality is satisfied.

Let a measure ν be fixed and µ be a random element of P(R) with distribution
Pµ. We introduce a notion of Fréchet typical element of Pµ with respect to J(·, ·),
which we propose to call the Fréchet barycenter of Pµ. It is defined as any measure ν
for which the expected cost

EJ(µ, ν) =

∫

P(R)

J(µ, ν) dPµ

attains its minimum over P(R). Rigorous definitions of such a distribution and an
integral are formulated in Section 4.

Suppose EJ(µ, ·) is not identically equal to +∞ on P(R). Under this assumption
the strict convexity of g ensures that a Fréchet barycenter ν∗ is unique, and the
one-dimensional setting allows to provide it with an explicit expression. Namely,
the quantile function of the distribution ν∗ is given by

ψ : (0, 1) ∋ x 7→ argmin
y∈R

E g(F−1
µ

(x)− y),

where F−1
µ

is the quantile function (i.e., the inverse of the cumulative distribution

function) of the random measure µ. In particular, when g(x, y) = (x − y)2 the
function ψ reduces to the usual arithmetic average of quantile functions, which was
shown in [1] to give the Wasserstein barycenter on R.

In other words, every quantile of the Fréchet barycenter ν∗, defined with respect
to a transportation cost on P(R) generated by the cost function g(·), is given by
the typical value of the corresponding quantile, defined on R with respect to the
function g(·). We establish this result first for Fréchet barycenters of finite samples
(Theorem 1) and then for an arbitrary probability distribution Pµ on P(R) such
that E J(µ, ν) < +∞ for at least one measure ν (Theorem 2).

These results are then used to obtain the following form of a law of large numbers:
the Fréchet barycenter of an independent sample of size n from the distribution Pµ

weakly converges as n→ ∞ to the Fréchet barycenter of Pµ itself.
To see this we first establish a similar statement for Fréchet typical elements

in R with respect to the function g. Let the distribution PX on R be such that the
function ξ(·) = E g(X − ·) is finite for all x ∈ R. Then the Fréchet typical element
of the i.i.d. sample X1,X2, . . . ,Xn from the distribution PX converges to x∗ :=
argminx∈R ξ(x) as n→ ∞ (Theorem 3). This implies the law of large numbers for
random measures on R, which is again proved “quantile-wise” (Theorem 4).
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This law of large numbers is then given another fornulation: the sequence of
“empirical” Fréchet barycenters νn converges to ν∗ in the sense that J(νn, ν

∗) → 0
almost surely (Theorem 5). This notion of convergence is shown to be somewhat
stronger than the weak convergence of measures (Theorem 6). We conclude with a
discussion of the topology on P(R) generated by this convergence, employing the
Urysohn lemma to show that this topology is metrizable even if J(·, ·) is itself not
a metric (Theorem 7).

The results reported here should be compared with recent results of T. Le
Gouic and J.-M. Loubes [7] (see also the earlier series of works [4, 6, 3], where
the law of large numbers based on Wasserstein barycenters in considered in the
context of deformation models). The paper [7] contains a general consistency re-
sult for Wasserstein barycenters when a sequence of probability distributions over
the 2-Wasserstein space (P(M),W2) converges with respect to the “derivate” 2-
Wasserstein distance (a 2-Wasserstein distence defined over (P(M),W2) taken as a
metric space itself). It should be stressed that in [7] the base space M is assumed
to be an arbitrary locally compact geodesic space.

Our results are comparable to the construction of [7] in the special situation
when the two settings agree, i.e., when M = R and g(x− y) = (x− y)2. Note that
we do not consider general convergence of measures, but only convergence of an
empirical measure of an i.i.d. sample to the distribution from which it is drawn. In
this setting conditions of our Theorems 2 and 4 are somewhat easier to check then
the condition of convergence under the “derivate” 2-Wasserstein metric. On the
other hand, we use the one-dimensional geometry of the base space in an essential
way, which is not readily extendable to a general manifold.

The paper is organized as follows. In Section 2 we introduce some standard def-
initions and notation and recall that when the cost function is defined on the real
line and convex, the optimal transport plan is given by a monotone map defined
solely by the marginal measures irrespective of the specific form of the cost function.
Then we define in Section 3 the generalized barycenter of a finite set of measures in
P(R) and provide it with an explicit representation. In Section 4 this construction
is extended to barycenters of continuous families of measures in P(R). Then the
central result of this paper is proved in Section 5: the convergence of empirical
barycenters for an i.i.d. sequence of random measures to the “barycenter expected
value” of the corresponding distribution. In order to prove it, we establish first
a version of the law of large numbers for a suitable “nonlinear averaging” (Theo-
rem 3) which has some independent interest. Section 6 establishes convergence with
respect to the transportation cost J(·, ·), a property which turns out to be more
informative than just the weak convergence, while Section 7 shows metrizability
of this convergence. An Appendix contains proof of a technical measure-theoretic
result used in Section 4.

2. Basic facts on mass transportation on the real line

For a measurable space X denote the space of probability measures on X by
P(X). In particular, if the space X is topological, we assume it to be endowed with
the standard Borel σ-algebra B(X). For two measurable spaces X , Y , a measurable
map T : X → Y induces a map T# : P(X) → P(Y ) given by T#µ(A) := µ(T−1(A))
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for any measurable A ⊂ Y . Recall that for any integrable function f

∫

Y

f(y) d(T#µ) =

∫

X

f(T (x)) dµ.

For two measures µ, ν ∈ P(X) define the set of transport plans taking µ to ν as

Π(µ, ν) :=
{

γ ∈ P(X ×X) : πx
#γ = µ, πy

#γ = ν
}

,

where πx and πy are projections of X×X to the first and second factor respectively.
Observe that Π(µ, ν) is always nonempty because it contains the direct product
measure µ× ν.

Fix a measurable function c : X × X → R and call it the cost function. The
transportation cost of a transport plan γ is defined as

K(γ) =

∫

R×R

c(x, y) dγ.

The Monge–Kantorovich problem for given µ, ν ∈ P(X) consists in minimizing the
transportation cost K(γ) over all γ ∈ Π(µ, ν). A transport plan γ∗ is called optimal
if K attains its minimum over Π(µ, ν) at γ∗. If moreover γ∗ = (id × T ∗)#µ for
some measurable T ∗, then T ∗ is called the optimal transport map. Observe that
T ∗
#µ = ν if T ∗ exists.

Recall that a measure µ on R is characterized by its (left-continuous) cumula-
tive distribution function Fµ(x) := µ((−∞, x)), and its (left-continuous) inverse
F−1
µ (y) := inf{x : F (x) ≥ y} for 0 < y < 1 is called the quantile function of the

measure µ. In this paper we consider X = R and take c(x, y) = g(x − y), where
the function g is strictly convex. We assume that g attains its minimum at x = 0
(unique because g is strictly convex) and, without loss or generality, that g(0) = 0.
In this setting the Monge–Kantorovich problem has a well-known explicit solution,
which we recall here.

Theorem 0. Let the infimum of transportation cost K(γ) on Π(µ, ν) be finite.
Then an optimal transport plan exists and has a uniquely defined form

(1) γ∗ = (F−1
µ × F−1

ν )# L|(0,1) ,

where L|(0,1) is the standard Lebesque measure on (0, 1).

We first prove the following lemma, which is used repeatedly in the sequel.

Lemma 1. For a convex function g(·), inequalities x < x+δ < y and x < y−δ < y
imply that

g(x) + g(y) ≥ g(x+ δ) + g(y − δ),

and when the function g is strictly convex, this inequality is strict.

Proof. Indeed, if λ = δ/(y − x), then clearly 0 < λ < 1 and

x+ δ = (1− λ)x + λy,

y − δ = λx+ (1− λ)y.

Therefore convexity can be used to get

g(x+ δ) ≤ (1− λ)g(x) + λg(y),

g(y − δ) ≤ λg(x) + (1− λ)g(y),
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which implies the statement. The case of strict convexity is treated similarly. �

Sketch of proof of Theorem 0. Consider points x1, x2, y1, and y2 in R such that
x1 < x2 and y1 < y2. Then both x1 − y1 and x2 − y2 lie strictly between x1 − y2
and x2− y1, which in view of the strict convexity of g and of Lemma 1 implies that

g(x1 − y1) + g(x2 − y2) < g(x1 − y2) + g(x2 − y1).

As infK(γ) over Π(µ, ν) is finite, there cannot exist sets A, B with γ∗(A) > 0,
γ∗(B) > 0 such that (x1 − x2)(y1 − y2) < 0 for all (x1, y1) ∈ A and (x2, y2) ∈ B.
Thus, if an optimal map T (·) exists, it must be nondecreasing µ-a.e., and the
support of γ∗ must have the form {(x(t), y(t)) : t ∈ (a, b)} for some interval (a, b).
As γ∗ ∈ Π(µ, ν), such a transport plan is necessarily given by (1). �

Remark 1. Observe that if the optimal map T (·) exists (in particular, if µ does not
have atoms), then µ-a.e.

(2) T (x) = F−1
ν (Fµ(x)).

Hence the optimal map does not depend on the specific form of the cost function g
(apart from the fact that it is strictly convex).

Remark 2. If g(·) is convex but not strictly so, then formulas (1) and (2) still give
an optimal transport plan and an optimal map (provided the latter is well defined),
but there may exist other optimal transport plans and maps.

3. Fréchet barycenters for convex cost functions on R

Define a functional on P(R)× P(R) by

(3) J(µ, ν) := inf{K(γ) : γ ∈ Π(µ, ν)} =

∫ 1

0

g(F−1
µ (x)− F−1

ν (x)) dx

(where we have used the above theorem) or, if an optimal map T exists, by

J(µ, ν) =

∫

R

g(x− T (x)) dµ.

One can show that if c(·, ·) is a distance function on R, then J satisfies the triangle
inequality on P(R), i.e., it is itself a distance. Another important particular case

is when c(x, y) = (x − y)2: in this case
√

J(µ, ν) gives a distance on P(R), called
the 2-Wasserstein distance and denoted W2(µ, ν).

Definition 1. Consider a finite set µ1, µ2, . . . , µn of measures in P(R) and the
weights λ1 > 0, λ2 > 0, . . . , λn > 0. The Fréchet barycenter bar(µi, λi)1≤i≤n ∈
P(R) with respect to the cost function c(x, y) = g(x−y) is a measure that minimizes

∑

1≤i≤n

λiJ(µi, ν)

over ν ∈ P(R).

Without loss of generality we can assume the weights to be normalized so that
∑

i λi = 1. In particular, the definition of Wasserstein barycenter given in [1] is
recovered when J(µ, ν) =W 2

2 (µ, ν).
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Theorem 1. Suppose
∑

i λiJ(µi, ν) < +∞ for some ν ∈ P(R). Then the Fréchet
barycenter exists and is uniquely defined as ν∗ = ψ# L|(0,1), where for 0 < x < 1

(4) ψ(x) := argmin
y∈R

∑

1≤i≤n

λig(F
−1
µi

(x)− y).

Proof. Observe first that J ≥ 0 and therefore the condition of the theorem ensures
that inf

∑

i λiJ(µi, ν) over ν ∈ P(R) is finite.
Now fix some n-tuple a = (a1, a2, . . . , an) ∈ Rn and consider the function

fa(y) :=
∑

1≤i≤n

λig(ai − y).

The assumptions on g imply that for all a this function is also strictly convex and
attains a unique minimum on R, so the function ψ introduced in (4) is well-defined.

Let us show that ψ is nondecreasing. Indeed, assume on the contrary that
ψ(x1) > ψ(x2) for some 0 < x1 < x2 < 1. Then convexity of g, monotonicity
of F−1

µi
(·), and Lemma 1 imply that

g(F−1
µi

(x1)− ψ(x2)) + g(F−1
µi

(x2)− ψ(x1))

≤ g(F−1
µi

(x1)− ψ(x1)) + g(F−1
µi

(x2)− ψ(x2)),

for all 1 ≤ i ≤ n, where y1 = ψ(x2) and y2 = ψ(x1) (the inequality will be nonstrict
if F−1

µi
(x1) = F−1

µi
(x2)). Multiplying each of these inequalities by λi and summing

over i, we get

(5)
∑

1≤i≤n

λi
[

g(F−1
µi

(x1)− ψ(x2)) + g(F−1
µi

(x2)− ψ(x1))
]

≤
∑

1≤i≤n

λi
[

g(F−1
µi

(x1)− ψ(x1)) + g(F−1
µi

(x2)− ψ(x2))
]

.

On the other hand, ψ(x1) and ψ(x2) are the unique minima of the right-hand side
of (4) for the respective values x1 and x2. Thus

∑

1≤i≤n

λig(F
−1
µi

(x1)− ψ(x2)) >
∑

1≤i≤n

λig(F
−1
µi

(x1)− ψ(x1))

and

∑

1≤i≤n

λig(F
−1
µi

(x2)− ψ(x1)) >
∑

1≤i≤n

λig(F
−1
µi

(x2)− ψ(x2)).

Adding the latter two inequalitites term by term, we obtain a contradiction with (5),
which proves that ψ is nondecreasing.

Define now F (x) := inf{y ∈ (0, 1): ψ(y) ≥ x} whenever the set in the r.h.s.
is non-empty, and F (x) = 1 if ψ(y) < x for all 0 < y < 1. Then F (−∞) = 0,
F (+∞) = 1 and F is left-continuous, i.e., there exists a measure ν∗ ∈ P(R) such
that ν∗((−∞, x)) = F (x) for all x ∈ R. Note that ψ(·) as defined in (4) is left-
continuous because all F−1

µi
(·) are, so F−1(x) = ψ(x) on (0, 1).



FRÉCHET BARYCENTERS AND A LAW OF LARGE NUMBERS IN P(R) 7

We now check that ν∗ is a Fréchet barycenter. For any ν ∈ P(R),

∑

1≤i≤n

λiJ(µi, ν) =
∑

1≤i≤n

λi

∫ 1

0

g(F−1
µi

− F−1
ν ) dx

=

∫ 1

0

∑

1≤i≤n

λig(F
−1
µi

− F−1
ν ) dx ≥

∫ 1

0

∑

1≤i≤n

λig(F
−1
µi

− ψ) dx

=
∑

1≤i≤n

λi

∫ 1

0

g(F−1
µi

− F−1
ν∗ ) dx =

∑

1≤i≤n

λiJ(µi, ν
∗).

The latter quantity is finite, and the strict convexity of g ensures that the inequality
of the middle line is strict unless ν = ν∗. Thus ν∗ = bar(µi, λi)1≤i≤n. �

Remark 3. If g(·) is smooth, then the function ψ is determined from the equation

∑

i

λig
′(F−1

µi
− ψ) = 0.

In particular when g(x) = x2 we recover the formula ψ(x) =
∑

i λiF
−1
µi

(x) for the
Wasserstein barycenter [1].

Remark 4. If g is convex but not strictly so, then argmin in (4) may be attained
on an interval rather than at a single point. Define ψ(x) to be the left endpoint of
this interval; we will then still obtain a Fréchet barycenter as the measure ν∗ for
which ν∗((−∞, x)) = ψ−1(x), but this barycenter will not necessarily be unique.

4. The Fréchet barycenter of a continuous distribution

Now we extend the notion of Fréchet barycenter to continuous families of mea-
sures, which allows to define an “expected value” for a probability distribution
over P(R). Endow P(R) with topology of weak convergence, and let B(P(R)) be
the corresponding Borel σ-algebra. We need a technical measurability lemma whose
proof is postponed to Appendix.

Lemma 2. The function K(µ, x) := F−1
µ (x), where µ ∈ P(R) and 0 < x < 1, is

measurable with respect to the product σ-algebra B(P(R))⊗ B((0, 1)).

Let now µ be a random element of P(R) distributed according to a law Pµ.
Recall from the last section that g(·) is assumed to be a strictly convex function
attaining on R a minimal value g(0) = 0. For the functional J(µ, ν) defined in (3)

EJ(µ, ν) =

∫

P(R)

J(µ, ν) dPµ ∈ [0,+∞].

Definition 2. Consider the problem of minimizing EJ(µ, ν) over P(R) and denote
its solution by bar(Pµ) or ν∗ for short. We call the measure bar(Pµ) the Fréchet
barycenter of the distribution Pµ.

Lemma 3. Let X be a random element of R with distribution PX . For any x ∈ R

consider the function

(6) ξ(x) := E g(X − x)

taking values in [0,+∞]. This function attains a unique minimum provided ξ(x) <
+∞ for some x.
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Proof. Indeed consider the set

I :=
{

x ∈ R : ξ(x) < +∞
}

.

Clearly ξ(·) is convex because so is g(·), which implies that I is a segment.
We now show that ξ(·) is lower semicontinuous. Take an arbitrary x0 ∈ R.
Case 1 : ξ(x0) = +∞. Fix an arbitrary C > 0. Then there exists a segment

[−A,A] such that
∫

[−A,A]
g(t− x0) dPX(t) > C. The function g is continuous and

therefore uniformly continuous on [−A,A], so for a suitable δ > 0 the condition
|x− x0| < δ implies that

ξ(x) = E g(X − x) ≥

∫

[−A,A]

g(t− x) dPX > C.

Therefore limx→x0
ξ(x) = +∞ = ξ(x0).

Case 2 : ξ(x0) < +∞. Fix ǫ > 0. Then there exists A such that
∫ A

−A
g(t −

x0) dPX(t) > ξ(x0) − ǫ. The continuity of g implies that there exists δ > 0 such
that from |x− x0| < δ it follows that

ξ(x) = E g(X − x) ≥

∫ A

−A

g(t− x) dPX(t) > ξ(x0)− ǫ.

Thus limx→x0
ξ(x) ≥ ξ(x0).

Note also that limx→±∞ g(x) = +∞ implies that limx→±∞ ξ(x) = +∞.
Together the convexity and lower semicontinuity of ξ mean that ξ(·) is continuous

on I. Moreover, if the interval I is open from either end, then ξ(x) grows indefinitely
as x approaches that endpoint. Thus a minimum of ξ(·) on I exists and is unique
due to the strict convexity of ξ. �

Theorem 2. Suppose µ ∈ P(R) is a measure-valued random variable with distri-
bution Pµ and EJ(µ, ν) < +∞ for some ν ∈ P(R). Then there exists a unique
solution ν∗ = ψ# L|(0,1), where for a.e. x ∈ (0, 1) (cf (4))

ψ(x) := argmin
y∈R

E g(F−1
µ

(x)− y).

Proof. Examination of equation (3) shows that for Lebesgue-a.e. 0 < x < 1 there
exists a value yx such that E g(F−1

µ
(x)− yx) < +∞. Therefore the function

ψ(x) := argmin
y∈R

E g(F−1
µ

(x) − y)

is defined according to Lemma 2 for Lebesgue-a.e. 0 < x < 1. Using the same
argument as in Theorem 1 (though with integrals over Pµ instead of sums over
λi), one can show that the function ψ is nondecreasing. Thus it can be extended
over the whole interval (0, 1), e.g., by left continuity. Then ψ generates a measure
ν∗ = ψ# L|(0,1) ∈ P(R), where F−1

ν∗ (·) = ψ(·) a.e.

We are left with a task of checking that ν∗ is a Fréchet barycenter. This can
again be done in the same way as in Theorem 1, exchanging the order of integration
over 0 < x < 1 and integration over P(R) (which replaces summation over i) by
Fubini’s theorem. In the process we employ the measurability lemma formulated at
the beginning of this section. Uniqueness of the Fréchet barycenter follows because
ψ (more precisely, its left-continuous version) is defined uniquely. �
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5. Weak convergence of the empirical Fréchet barycenter

First we prove a version of law of large numbers for a nonlinear version of aver-
aging performed in terms of the function g over ordinary scalar random variables.
We then employ this result to prove convergence of quantiles for a sequence of em-
pirical Fréchet barycenters, which implies the weak convergence of the barycenters
themselves.

Theorem 3. Let {Xn}n∈N be a sequence of i.i.d. real random variables with dis-
tribution PX such that the function x 7→ ξ(x) = E g(X − x) defined in (6) is finite
for all x ∈ R. Let x∗ := argminx∈R ξ(x) and define the random variables

(7) Xn := argmin
x∈R

∑

1≤i≤n

g(Xi − x), n = 1, 2, . . .

Then Xn converges to x∗ a.s.

Proof. It follows from Lemma 3 that x∗ is well defined. Suppose that Xn fails
to converge to x∗, and assume specifically that for some δ > 0 there exists a
subsequence nk → ∞ such that Xnk

> x∗ +2δ (the remaining case Xnk
< x∗ − 2δ

can be treated similarly).
We will show that ξ(x∗) − ξ(x∗ + δ) ≥ ǫ for a suitable ǫ > 0, which gives the

desired contradiction because ξ(·) is supposed to attain its minimum at x∗. It is
enough to show for all sufficiently large nk that

(8)
1

nk

∑

1≤i≤nk

g(Xi − x∗)−
1

nk

∑

1≤i≤nk

g(Xi − x∗ − δ) > ǫ

and to invoke the law of large numbers for the random variables g(Xi − x).
Define

ǫ(Xi) := g(Xi − x∗) + g(Xi − x∗ − 2δ)− 2g(Xi − x∗ − δ) > 0;

this quantity is positive for any i because of the strict convexity of g(·). Observe
that the points Xi−x

∗−2δ and Xi−Xnk
+δ lie between Xi−Xnk

and Xi−x
∗−δ,

and therefore the strict convexity of g and Lemma 1 imply that

g(Xi − x∗ − δ)− g(Xi − x∗ − 2δ) > g(Xi −Xnk
+ δ)− g(Xi −Xnk

).

Combining this with the definition of ǫ(Xi), we get

g(Xi − x∗)− g(Xi − x∗ − δ) = g(Xi − x∗ − δ)− g(Xi − x∗ − 2δ) + ǫ(Xi)

> g(Xi −Xnk
+ δ)− g(Xi −Xnk

) + ǫ(Xi).

Averaging these inequalities over 1 ≤ i ≤ nk, we obtain

1

nk

∑

1≤i≤nk

g(Xi − x∗)−
1

nk

∑

1≤i≤nk

g(Xi − x∗ − δ)

>
1

nk

∑

1≤i≤nk

g(Xi −Xnk
+ δ)−

1

nk

∑

1≤i≤nk

g(Xi −Xnk
) +

1

nk

∑

1≤i≤nk

ǫ(Xi)

≥
1

nk

∑

1≤i≤nk

ǫ(Xi),

where the last inequality follows from the definition (7) of Xnk
.
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We now observe that due the strict convexity of g(·), the quantity 2ǫ := E ǫ(X)
is positive. We can then invoke the strong law of large numbers for the random
variables g(X − x) (and therefore for ǫ(X)) to see that a.s.

1

n

∑

1≤i≤n

ǫ(Xi) ≥ ǫ > 0

for all sufficiently large n. This gives (8) and completes the proof. �

Theorem 4. Take a sequence {µn} of random measures in P(R), independent and
identically distributed with the law Pµ such that conditions of Theorem 2 are satis-
fied. Then empirical Fréchet barycenters νn = bar(µi, 1/n)1≤i≤n weakly converge
to ν∗ := bar(Pµ) almost surely.

Proof. Define a function ψ(·) as in Theorem 2:

ψ(x) := argmin
y∈R

E g(F−1
µ

(x) − y)

for a.e. 0 < x < 1. Theorem 3 implies that the quantile F−1
νn

(x) converges to ψ(x)

almost surely for a.e. 0 < x < 1. As ψ(·) = F−1
ν∗ (·) a.e., there exists a dense set

M ⊂ (0, 1) such that almost surely F−1
νn

(x) → F−1
ν∗ (x) for all x ∈ M . But this

implies that Fνn
→ Fν∗ at all points where Fν∗ is continuous.

Indeed, let this convergence fail at some x0 where Fν∗ is continuous. Without
loss of generality we can assume that there exists a subsequence nk such that
Fνnk

(x0) > Fν∗(x0) + ǫ for a suitable ǫ > 0. Take y ∈ M such that Fν∗(x0) < y <

Fν∗(x0) + ǫ. Then continuity of Fν∗ at x0 implies that there exists γ > 0 such that
Fν∗(x) < y whenever x < x0 + γ. Then F−1

ν∗ (y) ≥ x0 + γ whereas F−1
νnk

(y) ≤ x0,

which in the limit nk → ∞ gives a contradiction. �

6. Convergence of the empirical Fréchet barycenter
with respect to the transportation cost J

In this and the next section we will additonally assume that the cost function
g(·) ≥ 0 satisfies the following condition: there exist nonnegative constants A, B
such that

(9) g(x− y) ≤ A+B
(

g(x) + g(y)
)

for all x, y ∈ R (note that a similar condition with A = 0 appears in Fréchet’s
memoir [5, p. 228]). This condition is not exceedingly restrictive. In particular, it
is satisfied for cost functions of algebraic growth:

Lemma 4. For p > 0 suppose that constants 0 < C1 < C2, x0 > 0 are such that
C1|x|

p < g(x) < C2|x|
p for any |x| > x0. Then (9) holds.

Proof. Since g(·) is continuous, there exists a finite positive C0 := max|x|≤x0
g(x).

Then for any x, y on R

g(x− y) ≤ max{C0, C2|x− y|p} ≤ C0 + C2|x− y|p

|x− y|p ≤ 2pmax{|x|p, |y|p} ≤ 2p(|x|p + |y|p)

|x|p ≤ max{xp0,
g(x)

C1
} ≤ xp0 +

g(x)

C1
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Gathering these results, we get the desired inequality:

g(x− y) ≤ (C0 + 2p+1C2x
p
0) + 2p

C2

C1

(

g(x) + g(y)
)

. �

Under condition (9), convergence of Fréchet barycenters can be characterized in
terms of the transportation cost J defined in (3).

Theorem 5. Let {µn}n≥1 ⊂ C(ν0) ⊂ P(R) be a sequence of i.i.d. random elements
with distribution Pµ such that Pµ(C(ν0)) = 1. Then, under the hypotheses of
Theorem 2, the sequence µn := bar(µi, 1/n)1≤i≤n of empirical Fréchet barycenters
satisfies

lim
n→∞

J(µn, ν
∗) = lim

n→∞
J(ν∗,µn) = J(ν∗, ν∗) = 0 a.s.,

where ν∗ := bar(Pµ) is the Fréchet barycenter of Pµ, and the functional J .

Proof. Consider the function

ψ(x) := argmin
y∈R

E g(F−1
µ

(x)− y).

According to Theorem 2, F−1
ν∗ (x) = ψ(x) a.e. and

EJ(µ, ν∗) =

∫ 1

0

E g(F−1
µ

− ψ) dx < +∞.

It follows that

lim
k→∞

∫ 1
k

0

E g(F−1
µ

− ψ) dx = lim
k→∞

∫ 1

1− 1
k

E g(F−1
µ

− ψ) dx = 0.

For the random variables
∫ 1

k

0
g(F−1

µi
− ψ) dx, k ≥ 1, the strong law of large

numbers implies that

1

n

n
∑

i=1

∫ 1
k

0

g(F−1
µi

− ψ) dx −−−−→
n→∞

E

∫ 1
k

0

g(F−1
µ

− ψ) dx < +∞ a.s.

Using the bound (9) on g(·) and the construction of the empirical Fréchet barycenter
(Theorem 1), we get

(10)

∫ 1
k

0

g(F−1
µn

− ψ) dx ≤
A

k
+B

∫ 1
k

0

1

n

n
∑

i=1

(

g(F−1
µi

− F−1
µn

) + g(F−1
µi

− ψ)
)

dx ≤

≤
A

k
+

2B

n

n
∑

i=1

∫ 1
k

0

g(F−1
µi

− ψ) dx

−−−−→
n→∞

A

k
+ 2B E

∫ 1
k

0

g(F−1
µ

− ψ) dx −−−−→
k→∞

0.

Similarly one can prove that

(11)

∫ 1

1− 1
k

g(F−1
µn

− ψ) dx −−−−→
n→∞

A

k
+ 2B E

∫ 1

1− 1
k

g(F−1
µ

− ψ) dx −−−−→
k→∞

0 a.s.

But by Theorem 2 µn weakly converges to ν∗ a.s., hence for all k ≥ 1

(12)

∫ 1− 1
k

1
k

g(F−1
µn

− ψ) dx −−−−→
n→∞

∫ 1− 1
k

1
k

g(F−1
ν∗ − ψ) dx = 0 a.s.
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Now it follows from formulas (10), (11) and (12) that

J(µn, ν
∗) =

∫ 1

0

g(F−1
µn

− ψ) dx −−−−→
n→∞

J(ν∗, ν∗) = 0 a.s.

In the same way, one can obtain that a.s.

J(ν∗,νn) −−−−→
n→∞

J(ν∗, ν∗) = 0. �

It remains to clarify the relation between the convergence defined in terms of
the transportation cost (µn → µ iff J(µn, µ) → 0), which is used in the preceding
theorem, and the weak convergence of measures µn ⇀ µ.

Lemma 5. Let the sequence {µn}n≥1 be such that limn→∞ J(µn, µ
∗) = 0 for some

µ∗ ∈ P(R); then µn ⇀ µ∗.

Proof. Suppose on the contrary that the weak convergence of µn to µ∗ does not
hold. Then there exists a point 0 < x0 < 1 where F−1

µ∗ is continuous but the

sequence F−1
µn

(x0) does not converge to F−1
µ∗ (x0). Assume specifically that there

exists ǫ > 0 such that F−1
µn

(x0) ≥ F−1
µ∗ (x0) + 2ǫ for a suitable subsequence, which

we still denote µn. Monotonicity of F−1
µn

and continuity of F−1
µ∗ at x0 imply that

F−1
µn

(x) ≥ F−1
µ∗ (x) + ǫ for x0 < x < x0 + δ with some δ > 0. Then

J(µn, µ
∗) ≥

∫ x0+δ

x0

g(F−1
µn

− F−1
µ∗ ) dx ≥

∫ x0+δ

x0

g(ǫ) dx > 0,

which contradicts the assumption J(µn, µ
∗) → 0. �

Theorem 6. For a sequence of measures {µn}n≥1 and a measure µ∗ the following
conditions are equivalent:

(1) µn ⇀ µ∗ and J(µn, ν) → J(µ∗, ν) for all ν ∈ P(R);
(2) µn ⇀ µ∗ and there exists a measure ν0 such that J(µn, ν0) → J(µ∗, ν0);
(3) J(µn, µ

∗) → 0.

Proof. Obviously (1) implies (2). To show that (2) implies (3), observe that for any
ǫ > 0 we have

∫ 1−ǫ

ǫ

g(F−1
µn

− F−1
ν ) dx→

∫ 1−ǫ

ǫ

g(F−1
µ∗ − F−1

ν ) dx

due to the weak convergence of measures. Since

J(µn, ν) =
(

∫ ǫ

0

+

∫ 1−ǫ

ǫ

+

∫ 1

1−ǫ

)

g(F−1
µn

− F−1
ν ) dx

−−−−→
n→∞

J(µ∗, ν) =
(

∫ ǫ

0

+

∫ 1−ǫ

ǫ

+

∫ 1

1−ǫ

)

g(F−1
µ∗ − F−1

ν ) dx,

we have

(

∫ ǫ

0

+

∫ 1

1−ǫ

)

g(F−1
µn

− g−1
ν ) dx −−−−→

n→∞

(

∫ ǫ

0

+

∫ 1

1−ǫ

)

g(F−1
µ∗ − g−1

ν ) dx,
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where the right-hand side vanishes as ǫ → 0 because the integral
∫ 1−ǫ

ǫ g(F−1
µ∗ −

F−1
ν ) dx converges to J(µ∗, ν). Thus

(

∫ ǫ

0

+

∫ 1

1−ǫ

)

g(F−1
µn

− F−1
µ∗ ) dx

≤
(

∫ ǫ

0

+

∫ 1

1−ǫ

)

(A+Bg(F−1
µn

− F−1
ν ) +Bg(F−1

µ∗ − F−1
ν )) dx

−−−−→
n→∞

2Aǫ+ 2B
(

∫ ǫ

0

+

∫ 1

1−ǫ

)

g(F−1
µ∗ − F−1

ν ) dx −−−→
ǫ→0

0.

Using the weak convergence again we observe that

∫ 1−ǫ

ǫ

g(F−1
µn

− F−1
µ∗ ) dx→ 0

for any ǫ > 0. Thus

J(µn, µ) =

∫ 1

0

g(F−1
µn

− F−1
µ∗ ) dx→ 0.

It remains to prove that (3) imples (1). Fix a measure ν ∈ P(R). By Lemma 5
convergence J(µn, µ

∗) → 0 implies weak convergence µn ⇀ µ∗. Consider

∫ ǫ

0

g(F−1
µn

− F−1
ν ) dx ≤

∫ ǫ

0

(A+Bg(F−1
µn

− F−1
µ∗ ) +Bg(F−1

ν − F−1
µ∗ )] dx

≤

∫ ǫ

0

(A+Bg(F−1
µn

− F−1
µ∗ ) +AB +B2g(F−1

µ∗ − F−1
ν )) dx

−−−−→
n→∞

A(1 +B)ǫ +B2

∫ ǫ

0

g(F−1
µ∗ − F−1

ν ) dx −−−→
ǫ→0

0.

A similar result holds for
∫ 1

1−ǫ
g(F−1

µn
−F−1

ν ) dx. Now the weak convergence µn ⇀ µ∗

implies that

∫ 1−ǫ

ǫ

g(F−1
µn

− F−1
ν ) dx −−−−→

n→∞

∫ 1−ǫ

ǫ

g(F−1
µ∗ − F−1

ν ) dx −−−→
ǫ→0

J(µ∗, ν).

Gathering the results for
∫ ǫ

0
,
∫ 1−ǫ

ǫ
, and

∫ 1

1−ǫ
, we obtain J(µn, ν) → J(µ∗, ν). �

Remark 5. The arguments of J(·, ·) can be simultaneously swapped in each of the
conditions (1)–(3) without violating the theorem. In particular J(µn, µ

∗) → 0 is
equivalent to J(µ∗, µn) → 0.

Remark 6. In conditions (1) and (2), it is sufficient to require that

lim sup
ν→∞

J(µn, ν) ≤ J(µ∗, ν);

this is equivalent to convergence J(µn, ν) → J(µ∗, ν) thanks to features of the weak
convergence of measures.
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7. Topology of the space P(R)

Here we observe that P(R) can be endowed with a bundle structure where indi-
vidual fibers are composed of measures connected by transport maps of finite cost.
Recall the cost function g is assumed to satisfy the additional condition (9).

Lemma 6. Let the relation µ ∼ ν be defined as J(µ, ν) < +∞; then it is an
equivalence on P(R).

Proof. The relation ∼ is obviously reflective. It is symmetric because g(−x) ≤
A+Bg(x) according to (9) and therefore

J(ν, µ) =

∫ 1

0

g(F−1
ν − F−1

µ ) dx ≤ A+BJ(µ, ν) ≤ +∞.

Finally to prove that it is transitive we observe that for any measures λ, µ, ν

J(µ, ν) =

∫ 1

0

g(F−1
µ − F−1

ν ) dx ≤

∫ 1

0

(

A+Bg(F−1
µ − F−1

λ )

+Bg(F−1
ν − F−1

λ )
)

dx = A+BJ(µ, λ) +BJ(ν, λ) < +∞. �

Denote the equivalence class of ν with respect to the relation ∼ by C(ν) := {µ ∈
P(R) : µ ∼ ν}. Observe that for any ν ∈ P(R) the function J(·, ν) is measurable
with respect to the Borel σ-algebra generated by the topology of weak convergence
in P(R), and therefore C(ν) is measurable for any ν. Observe also that for g(x) =
|x|p, p ≥ 1, the corresponding Wasserstein space Wp coincides with C(δ0), the
equivalence class of a Dirac unit mass at the origin.

Remark 7. Equivalence classes C(ν) form a continuum. Indeed, take a measure

ν1 for which
∫ 1

0 |F−1
ν1 | dx = +∞ and define measures να for α ≥ 0 by rescaling:

F−1
να = αF−1

ν1 . For α 6= β

∫ 1

0

|F−1
να − F−1

νβ | dx = |α− β|

∫ 1

0

|F−1
ν | dx = +∞.

As the function g(·) is convex and attains a minimum at 0, its growth at infinity is at
least linear. Hence there exist constants C1 > 0 and C2 such that f(x) ≥ C1|x|+C2

for all x. Therefore J(να, νβ) = +∞, i.e., C(να) 6= C(νβ) for all nonnegative reals
α 6= β.

Lemma 7. (1) The barycenter bar(µi, λi)1≤i≤n is defined iff the measures µ1, . . . ,
µn all lie in the same equivalence class.

(2) If the barycenter bar(Pµ) exists, then suppPµ belongs to a single equivalence
class, i.e., there exists ν0 ∈ P(R) such that Pµ(C(ν0)) = 1.

Proof. (1) If µ1, . . . , µn belong to different equivalence classes, then the quantity
∑

1≤i≤n λiJ(µi, ν) is infinite for any ν ∈ P(R), and no barycenter exists. Con-

versely, if all measures are equivalent, then
∑

1≤i≤n λiJ(µi, ν) is finite e.g. for
ν = µ1, and a unique barycenter exists by Theorem 1.

(2) Let Pµ(C(ν)) < 1 for all ν ∈ P(R). Then Pµ(P(R)\C(ν)) = Pµ(µ /∈ C(ν)) =
Pµ(J(µ, ν) = +∞) > 0 and EJ(µ, ·) = +∞ on P(R), which again implies there is
no barycenter. �
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Now we fix some ν0 ∈ P(R). By Theorem 6, the convergence J(µn, µ
∗) → 0

implies that J(µn, ν) → J(µ∗, ν) for all ν ∈ C(ν0). This enables us to define
on C(ν0) the following topology, which is at least as strong as the topology of weak
convergence.

Definition 3. The balls Br(ν) := {µ ∈ C(ν0) : J(µ, ν) < r} form a basis of a
topology τg on C(ν0).

Lemma 8. The space (C(ν0), τg) is separable.

Proof. Consider the set S of measures µ ∈ C(ν0) given by the following construc-
tion: fix some n ≥ 1, choose the points 0 < x0 < x1 < · · · < xn < 1 and
q1 < q2 < · · · < qn such that all xi, 0 ≤ i ≤ n, and qj , 1 ≤ j ≤ n, are rational, and
define the quantile function of the measure µ ∈ S by

F−1
µ (x) =











F−1
ν0 (x), x ≤ x0,

qi, xi−1 < x ≤ xi, 1 ≤ i ≤ n,

F−1
ν0 (x), x > xn.

Clearly the set S is countable, and it remains to show that it is dense in C(ν0).
Take an arbitrary ǫ > 0 and a measure ν ∈ C(ν0). As J(ν0, ν) < +∞, the

integrals
∫ δ

0

g(F−1
ν0 − F−1

ν ) dx,

∫ 1

1−δ

g(F−1
ν0 − F−1

ν ) dx

can be made smaller than ǫ/3 by choosing a sufficiently small δ > 0. Fix δ at
some suitable rational value and choose a sufficiently rich set of rational points
δ = x0 < · · · < xn = 1 − δ and rational values q1 < · · · < qn such that the

corresponding measure µ satisfies
∫ 1−δ

δ g(qi − F−1
ν ) dx < ǫ/3. If q1 < F−1

ν0 (x0), we

replace x0 with a smaller rational value x′0 such that q1 ≥ F−1
0 (x′0) and

∫ x0

x′

0

g(q1 − F−1
ν ) dx ≤

∫ x0

x′

0

g(F−1
ν0 − F−1

ν ) dx.

The same operation van be performed if necessary in the neighborhood of x = 1.
We have thus constructed a measure µ ∈ S such that J(µ, ν) < ǫ. �

Theorem 7. The space (C(ν0), τg) is metrizable.

Proof. We will use Tychonoff’s formulation of the Urysohn lemma, which states
that a regular topological space with a countable basis is metrizable.

Clearly the T1 axiom holds for (C(ν0), τg), i.e., all one-point sets in (C(ν0), τg)

are closed. Moreover the closure of a ball Br(ν) is given by Br(ν) = {µ ∈
C(ν0) : J(µ, ν) ≤ r}. Thus for any measure ν ∈ C(ν0) and a ball Br(ν) we have
ν ∈ Br/2(ν) ⊂ Br/2(ν) ⊂ Br(ν), which implies that (C(ν0), τg) is regular.

Next we construct a countable basis for (C(ν0), τg). Take some µ∗ ∈ C(ν0) and
consider sequences {µn}n≥1, {νn}n≥1 such that all µn ∈ S, where S was constructed
in the proof of the preceding lemma and both J(µ∗, µn) → 0 and J(νn, µn) → 0.

Repeating the proof of Lemma 5 one can show that νn ⇀ µ∗. Moreover, similarly
to the proof of Theorem 6 one can obtain that J(νn, µ

∗) → 0, due to condition (9).
Let us now consider a ball Br(µ

∗). For a sufficiently small ǫ > 0 and for any mea-
sure µ ∈ S such that J(µ∗, µ) < ε, the argument just given implies that J(ν, µ∗) < r
as soon as J(ν, µ) < ε. Thus for a rational ǫ > 0 we constructed a ball Bǫ(µ) such
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that µ∗ ∈ Bǫ(µ) ⊂ Br(µ
∗). Therefore the space (C(ν0), τg) has a countable basis

{Br(µ) : µ ∈ S, r ∈ Q+}. It now follows from the Urysohn lemma that (C(ν0), τg)
is metrizable. �

Appendix: Proof of the measurability lemma

Proof of Lemma 2. We have to show that for any a ∈ R the set Ua := K−1((a,+∞))
is B(P(R))⊗ B((0, 1))-measurable. Fix some x ∈ R and consider the function

kx(µ) := K(µ, x) = F−1
µ (x)

on P(R); we will show first that k−1
x ((a,+∞)) ⊂ P(R) is open.

Take an arbitrary measure µ̄ ∈ Ua and denote y := kx(µ̄) = F−1
µ̄ (x) > a.

It suffices to show that there exists an open neighbourhood V of µ̄ in the weak
topology of P(R) such that V ⊂ k−1

x ((a,+∞)).
The left continuity of Fµ̄ ensures that Fµ̄(

a+y
2 ) < x − δ for some δ > 0. Take

a continuous function v : R → [0, 1] such that v(t) = 1 for t ≤ a and v(t) = 0 for
t ≥ (a+ y)/2. It follows that

∫

R

v dµ̄ ≤

∫
a+y
2

−∞

dµ̄ = Fµ̄

(a+ y

2

)

< x− δ.

On the other hand, for any µ ∈ P(R) such that Fµ(a+ 0) ≥ x we have

∫

R

v dµ ≥

∫ a

−∞

dµ = Fµ(a+ 0) ≥ x,

which implies
∫

R
v dµ −

∫

R
v dµ̄ > δ. Therefore for all measures ν in the weak

neighborhood

Vδ(µ̄) =
{

ν ∈ P(R) :
∣

∣

∣

∫

R

v dν −

∫

R

v dµ̄
∣

∣

∣
< δ

}

.

it follows that Fν(a+ 0) < x, or kx(ν) > a. Thus the set k−1
x ((a,+∞)) is open in

the weak topology of P(R).
From monotonicity of the inverse cumulative distribution function we obtain

that A× [x, 1) ⊂ Ua whenever A×{x} ∈ Ua. The left continuity of Fµ implies that
for any (µ, x) ∈ Ua there exists a rational s ∈ (0, x] such that F−1

µ (s) > a, whence
(µ, s) ∈ Ua. Therefore

Ua = ∪x∈(0,1)k
−1
x ((a,+∞))× {x} = ∪s∈(0,1)∩Qk

−1
s ((a,+∞))× [s, 1).

Thus Ua is measurable because it is a countable union of measurable sets, and
K(·, ·) is measurable. �
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