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Abstract. Multidimensional generalizations of the Weierstrass normal form
are considered, depending on the Waring decomposition. The straightforward
generalization exists for Fermat-type cubic forms, but does not exist for the
general cubic forms in four variables. On the other hand, if a cubic form
has a su�ciently small rank, then the corresponding hypersurface is invariant
under a nonidentity birational involution of the complex projective space. The
involution can be calculated in terms of radicals.

Let us focus on cubic hypersurfaces that are invariant under a nonidentity
birational involution of the complex projective space. Throughout the paper all
coe�cients are denoted by small Greek letters. A form means a homogeneous
polynomial over the �eld of complex numbers. A hypersurface means a projective
variety of codimension one. A hypersurface given by the form f is smooth if its
gradient ∇f is nonzero outside of the origin; otherwise it is singular. Two forms
f and g are equivalent to each other if there exists a nondegenerate linear trans-
formation J such that f(x) = g(Jx). A cubic form in three variables is equivalent
to the Weierstrass normal form y20y2 + y31 + αy1y

2
2 + βy32 . It is invariant under the

linear involution (y0, y1, y2) 7→ (−y0, y1, y2). The rank of a form f of degree d is the
minimal number of linear forms needed to represent f as a sum of d-powers. This
sum is known as the Waring decomposition. For example, each ternary cubic form
can be decomposed as the sum of �ve cubes (Sylvester Pentahedral Theorem).
The next example shows the relationship between the Weierstrass normal form
and the Waring decomposition. Let us consider the linear transformation given by
two equations x0 = 1

6y1 + y0 and x1 = 1
6y1 − y0. Then x

3
0 + x31 = y20y1 +

1
108y

3
1 .

Theorem 1. The general cubic form in four variables is not equivalent to any form

of the type y20y3 + g(y1, y2, y3).

Proof. Let us suppose the general cubic form f in four variables is equivalent to
a form of the type y20y3 + g(y1, y2, y3). One can assume that the surface given by
the equation f = 0 is smooth. The requirement of smoothness does not reduce the
dimension of the set of forms. The curve given by the equation g = 0 is smooth.
Thus, the form g is equivalent to the second normal form g = z31+z

3
2+z

3
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with replacement of three variables y1, y2, and y3 by linear forms in three variables
z1, z2, and z3. Then f = y20(ρ

2
1z1 + ρ22z2 + ρ23z3) + z31 + z32 + z33 − 3λz1z2z3, where

at least one of the coe�cients ρ1, ρ2, or ρ3 is nonzero. Otherwise, the form would
not depend on the variable y0; therefore the point with homogeneous coordinates
[1 : 0 : 0 : 0] would be a singular point of the surface. One can assume that
ρ3 6= 0. Replacing the variable y0 = ρ3z0 yields an equivalent cubic form of the
type f = z20(µ1z1 + µ2z2 + z3) + z31 + z32 + z33 − 3λz1z2z3. So a cubic form in four
variables with at most 20 monomials is de�ned by a matrix with 16 entries and
three parameters λ, µ1, and µ2. Mapping of the pair consisting of the form f(x)
and the matrix J to another form f(Jx) obtained by the linear transformation
of coordinates de�nes a regular surjection from the 19-dimensional a�ne complex
space onto an open set of the 20-dimensional complex space. There is a small
polydisc such that the map is bijective. This contradicts Brouwer's theorem. �

Theorem 2. Given the cubic form f = x30 + · · ·+ x3n + (α0x0 + · · ·+ αnxn)
3 in at

least three variables x0,. . . , xn. There exists a transformation of coordinates such

that f is equal to the rational function y20yn + g(y1, . . . , yn) in the complement of

a hyperplane given by the linear equation yn = 0 in at most three variables x0, x1,
and xn. The transformation is the identity map for all coordinates except three;

moreover it can be calculated in terms of radicals.

Proof. Let us consider the linear form ` = α0x0 + · · · + αnxn and the Hessian

matrix H, whose entries are equal to ∂2f
∂xi∂xj

. The matrix H is equal to the sum

of the diagonal matrix diag(6x0, . . . , 6xn) and the matrix with entries 6αiαj`.
Let us consider a point u with coordinates ui = 0 for all 2 ≤ i ≤ n − 1 such
that it is not the origin, and both `(u) and f(u) vanish. Its coordinates can be
calculated in terms of radicals. The rank of the matrix H(u) is at most three and
does not increase under a linear transformation of the coordinates. Let us consider
the quadratic form h = u0x

2
0 + u1x

2
1 + unx

2
n with the matrix H(u). It vanishes at

the point u because h(u) = f(u) = 0; likewise both gradients ∇f(u) and ∇h(u)
are collinear and nonzero. Both quadric h = 0 and cubic f = 0 have a common
tangent hyperplane with de�ning linear form zn = u20x0 + u21x1 + u2nxn up to a
nonzero factor. A linear subspace of codimension two lies on the quadric h = 0.
It is de�ned by two linear equations z1 = zn = 0 for some linear form z1 in three
variables x0, x1, and xn. Let us choose an independent linear form z0(x0, x1, xn)
such that z0(u0, u1, un) 6= 0. Let us set at last zi = xi for all indices 2 ≤ i ≤ n− 1.
The linear transformation is nondegenerate. Thus, the set {zi} is a basis for the
dual space. If both u0 and un are nonzero, then one can choose the forms z0 = x0
and z1 = u1x0 − u0x1.

The restriction of h to the subspace vanishes identically. Thus, the cubic form
is equal to f = ρ20z

2
0zn + 2ρ0z0(ρ1z1 + · · · + ρnzn)zn + 2τρ0z0z

2
1 + s(z1, . . . , zn),

where ρk and τ are complex numbers. As the cubic is not a cone, ρ0 6= 0.

In case τ = 0, the cubic form can be transformed to f = y20yn+g(y1, . . . , yn),
where y0 = ρ0z0 + ρ1z1 + · · ·+ ρnzn and for all indices i 6= 0 we set yi = zi.
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In case τ 6= 0, if zn 6= 0, then f is equal to

f = ρ20z
2
0zn + 2ρ0z0

(
ρ1z1 + · · ·+ ρnzn + τ

z21
zn

)
zn + s(z1, . . . , zn).

Let us set y0 = ρ0z0 + ρ1z1 + · · · + ρnzn + τ
z2
1

zn
and for all indices i 6= 0 we set

yi = zi. Then f = y20yn + g(y1, . . . , yn), but y0 and g are rational functions. Their
denominators are powers of a linear form u20x0 + u21x1 + u2nxn. �

Remark. There are 1
6 (n

3 − n) choices of three coordinates xi, xj , and xk instead
of x0, x1, and xn.

Theorem 3. Given the cubic form f = x30 + · · ·+ x3n + (α0x0 + · · ·+ αnxn)
3 in at

least three variables x0,. . . , xn. The corresponding cubic hypersurface is invariant

under a nonidentity birational involution of the ambient projective space.

Proof. According to Theorem 2, there is a birational map ϕ from the cubic hyper-
surface f = 0 to a hypersurface, which is invariant under the action of the linear
involution [y0 : y1 : · · · : yn] 7→ [−y0 : y1 : · · · : yn]. The composition of the map ϕ,
the involution, and ϕ−1 yields a sought involution. �

Remark. All cubic surfaces are rational. Thus, a large set of birational involutions
exists for any cubic surface. If there is a regular involution of an open set of the
surface with a unique singular point, then the point is �xed under the involution.
In this way, one can either localize the singular point, or verify smoothness of a
cubic surface having at most one singular point. The requirement for uniqueness
of the singular point is signi�cant. Otherwise, two singular points can be mapped
one into another under the involution.

The following theorem improves the result from [1] in case of cubic hypersur-
faces. The homogeneous coordinates of (−1, 1)-points are equal to [±1 : · · · : ±1 : 1]
up to a common nonzero factor.

Theorem 4. Given the cubic form f = x30+· · ·+x3n+(α0x0+· · ·+αnxn)
3 in at least

three variables x0,. . . , xn, where all the coe�cients αk are nonzero. There exists a

one-to-one correspondence between singular points of the cubic hypersurface f = 0
and (−1, 1)-points belonging to the hyperplane de�ned by the linear form h =

β0y0 + · · ·+ βnyn + yn+1 in n+ 2 variables with the coe�cients βk =
√
−α3

k.

Proof. Let us consider the cubic form g = β0y
3
0 + · · · + βny

3
n + y3n+1. Since all

the coe�cients βk are nonzero, the hypersurface g = 0 is smooth. Its hyperplane
section is projectively equivalent to the hypersurface f = 0. If both forms h and
g vanish simultaneously at a (−1, 1)-point, then the hyperplane is tangent to the
hypersurface g = 0 at this point. Thus, the section is singular.

At a singular point of the section, the hyperplane h = 0 coincides with the
tangent hyperplane to the hypersurface f = 0. Since all the coe�cients βk are
nonzero, both gradients ∇h and ∇g can be collinear only at the points whose
coordinates satisfy the system of the equations x2k = x2j for all indices k and j. All
the points are (−1, 1)-points. �
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In accordance with the Alexander�Hirschowitz theorem [2], the rank of the
general cubic form in four variables is equal to �ve. It is exactly one more than
the number of variables. If the Waring decomposition is known, then Theorem 4
solves the system for cubic surface by means of an auxiliary combinatorial task
that is equivalent to the set partition problem. Unfortunately, it is hard to �nd
a (−1, 1)-point belonging to the hyperplane in high dimensions [3]. On the other
hand, one can �nd (−1, 1)-points belonging to the hyperplane given by a linear
form with integer coe�cients near zero, using dynamic programming.
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