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0. Introduction

Recall that the notion of a locally conformally Kähler (or shortly an lcK) manifold
(M,ω, J) is a generalization of the geometric structure encountered on the Hopf
manifolds [8], see Definition 2.13. The study of lcK manifolds goes beyond the
framework of Kähler and symplectic geometry while still remaining within that of
complex and Riemannian geometry. Ignoring the complex structure J one arrives
at the more general notion of a locally conformally symplectic (or shortly an lcs)
manifold (M,ω). Such manifolds were first considered in [6]. The fundamental 2-
form ω satisfies the equation

dω = λ ∧ ω
for some closed 1-form λ, see Definition 1.11. The relation between lcK manifolds
and lcs manifolds is analogous to the one existing between Kähler manifolds and
symplectic manifolds.

This work started in September 2010 during a meeting in Japan with discus-
sions about the work of Hasegawa and Kamishima on compact homogeneous lcK
manifolds. And conversely, some of the results of this collaboration have influenced
[5, 4] where this paper is referenced. This applies in particular to the proof of Theo-
rem 4.10 that a homogeneous lcK manifold of a reductive group is of Vaisman type
if the normalizer of the isotropy group is compact. In the special case of compact
groups, this theorem has been proved in [4, 3] (c.f. [7] for a proof under additional
assumptions).

Now we describe the structure of this paper and mention some of its main results.
In Sec. 1 we describe some general constructions relating symplectic manifolds,
contact manifolds, symplectic cones and lcs manifolds. In Sec. 2 we prove more
specific results relating Kähler manifolds, Sasaki manifolds, Kähler cones and lcK
manifolds. The main new object is an integrable complex structure compatible
with the geometric structures considered in Sec. 1. We believe that the systematic
presentation in Secs. 1 and 2 of the paper is useful although part of the material is
certainly known to experts in the field. In any case, it is a basis for our investigation
of homogeneous locally symplectic and lcK manifolds in Secs. 3 and 4 respectively.
Under rather general assumptions, we first prove that the dimension of the center
of a Lie group of automorphisms of an lcs manifold is at most 2. The main result of
Sec. 3 is then a classification of all homogeneous locally symplectic manifolds (M =
G/H,ω) with trivial twisted cohomology class [ω] ∈ H2

λ(g, h) (see Theorem 3.9).
These assumptions are satisfied if g is reductive (see Proposition 3.11).

In the last and main section we focus on homogeneous lcK manifolds of reductive
groups. As a warm up, we begin by classifying left-invariant lcK structures on four-
dimensional reductive Lie groups. We find that not all of them are of Vaisman
type. In Theorem 4.15 we give the classification of left-invariant lcK structures on
arbitrary reductive Lie groups. The case of general homogeneous spaces G/H of
reductive groups G is related to the case of trivial stabilizer H by considering the
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induced lcK structure on the Lie group NG(H)/H . Assuming the latter group to be
compact, we prove that the initial lcK structure on G/H is necessarily of Vaisman
type (see Theorem 4.10).

1. Symplectic Manifolds, Contact Manifolds and Symplectic Cones

1.1. Contactization

Definition 1.1. A symplectic manifold (M,ω) is called A-quantizable if there exists
a principal bundle π : P → M with one-dimensional structure group A = S1 or R

and connection θ such that dθ = π∗ω.

The closed 2-form ω gives rise to a Čech cohomology class [c] ∈ Ȟ2(M,R),
which can be defined as follows. Let (Uα) be a covering of M by contractible open
sets such that the intersections Uαβ := Uα ∩Uβ and Uαβγ := Uα ∩Uβ ∩Uγ are also
contractible. By the Poincaré Lemma, on each Uα we can choose a 1-form θα such
that dθα = ω|Uα . Similarly, the 1-form

θαβ := θα|Uαβ
− θβ|Uαβ

is closed and, hence, θαβ = dfαβ for some function fαβ = −fβα ∈ C∞(Uαβ). Finally,
the function

cαβγ := fαβ |Uαβγ
+ fβγ |Uαβγ

+ fγα|Uαβγ

is closed and hence constant. By construction, c = (cαβγ) is a Čech 2-cocycle
with values in the constant sheaf R. One can check that the corresponding class
[c] ∈ Ȟ2(M,R) depends only on the de Rham cohomology class [ω] ∈ H2(M,R).
We will call [c] the characteristic class of the symplectic manifold (M,ω). Recall
that a class [c] ∈ Ȟ2(M,R) is called integral if it can be represented by an integral
cocycle, that is a cocycle c = (cαβγ) such that cαβγ ∈ Z.

Proposition 1.2. A symplectic manifold (M,ω) is S1-quantizable if and only if
its characteristic class [c] ∈ Ȟ2(M,R) is integral. It is R-quantizable if and only if
[c] = 0. In particular, any exact symplectic manifold is quantizable.

Definition 1.3. Any such pair (P, θ) will be called a contactization (or, more pre-
cisely, A-contactization, where A = S1 or R) of the symplectic manifold (M,ω). By
a contact manifold we will understand a manifold P of dimension 2n+ 1 together
with a globally defined contact form θ, that is dθn ∧ θ �= 0. A contact manifold
(P, θ) will be called regular if its Reeb vector field Z generates a free and proper
action of A = S1 or R.

Proposition 1.4. Any contactization (P, θ) of an A-quantizable symplectic man-
ifold (M,ω) is a regular contact manifold with global contact form θ. The group
Aut(P, θ) contains the one-dimensional central subgroup A, which is the kernel of
the natural homomorphism Aut(P, θ) → Aut(M,ω).
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Proof. θ is indeed a contact form, since dθ = π∗ω is non-degenerate on the hori-
zontal distribution ker θ. The Reeb vector field Z is the generator of the principal
action, which is free and proper.

Proposition 1.5. There is a bijection between A-quantizable symplectic manifolds
(M,ω) with H1(M,R) = 0 up to isomorphism and regular contact manifolds (P, θ)
with Reeb action of A = S1 or R up to isomorphism.

1.2. Symplectic cone over a contact manifold

Let (P, θ) be a contact manifold. We denote by N = C(P ) = R>0 × P the cone
over P with the radial coordinate r.

Proposition 1.6. For any contact manifold (P, θ),

ωN := rdr ∧ θ +
r2

2
dθ = d

(
r2

2
θ

)

is a symplectic form on the cone N = C(P ).

Definition 1.7. The pair (N,ωN ) is called the symplectic cone over the contact
manifold (P, θ).

Now we give an intrinsic characterization of symplectic cones in the category of
symplectic manifolds.

Definition 1.8. A conical symplectic manifold (M,ω, ξ, Z) is a symplectic manifold
(M,ω) endowed with two commuting vector fields ξ and Z such that

ω(ξ, Z) > 0, Lξω = 2ω, LZω = 0.

A global conical symplectic manifold is a conical symplectic manifold (M,ω, ξ, Z)
such that ξ is complete.

Theorem 1.9. (i) The symplectic cone over any contact manifold is a global conical
symplectic manifold.

(ii) Conversely, any global conical symplectic manifold is a symplectic cone over a
contact manifold.

(iii) Any conical symplectic manifold is locally isomorphic to a symplectic cone over
a contact manifold.

Proof. (i) Let (N = C(P ), ωN ) be a symplectic cone over a contact manifold
(P, θ). The Reeb vector field of P can be considered as a vector field Z on N , which
together with ξ = r∂r defines a global conical structure. To prove (ii)–(iii) we need
the following lemma.

Lemma 1.10. Let (M,ω, ξ, Z) be a conical symplectic manifold. Let f be a positive
smooth function defined in some open neighborhood U such that df = −ιZω, i.e. f
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is the Hamiltonian of −Z. Then in U the symplectic form ω can be written as

ω = df ∧ θ + fdθ = rdr ∧ θ +
r2

2
dθ,

where

θ =
1
2f
η, η = ιξω, r =

√
2f.

Remark. The function f is unique up to addition of a constant c such that f+c>0.
We can choose, for example, f = 1

2ω(ξ, Z), which is characterized by the condition
Lξf = 2f .

Proof. The symplectic form is exact:

2ω = dη, η := ιξω.

We define

θ :=
1
2f
η.

Then we calculate

df ∧ θ + fdθ =
df

2f
∧ η + fd

(
1
2f

)
∧ η + ω = ω.

Now it suffices to rewrite

f =
r2

2

to obtain ω = rdr ∧ θ + r2

2 dθ.

The lemma proves part (iii) of the theorem. To prove (ii) we remark that using
the flow of the complete vector field ξ on a global conical symplectic manifold
(N,ω, ξ, Z) we get a global diffeomorphism N ∼= I × P , where P is some level set
of f = 1

2ω(ξ, Z) and I = (a, b), where 0 ≥ a = inf f , b = sup f . We have to show
that a = 0 and b = ∞. Let γ : R → N be an integral curve of ξ. Then Lξf = 2f
implies the differential equation h′ = 2h, where h = f ◦ γ. Therefore, h(t) = ce2t

for some positive constant c, since f > 0. This shows that I = R>0 and that N is
a symplectic cone N = C(P ), where P = {r = 1} = {f = 1/2}.

1.3. Symplectic cones and locally conformally symplectic

manifolds

Definition 1.11. A lcs manifold (or shortly an lcs manifold) is a smooth manifold
endowed with a non-degenerate 2-form such that dω = λ ∧ ω for some closed 1-
form λ called Lee form. An lcs manifold is called proper if dω �= 0. The vector field
Z := 1

2ω
−1λ is called the Reeb field.

Remark. Since ω is non-degenerate, the equation dω = λ ∧ ω implies dλ = 0
provided that dimM > 4.
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Proposition 1.12. The vector field Z is an infinitesimal automorphism of (M,ω).

Proof.

LZω = dιZω + ιZdω =
1
2
dλ+ ιZ(λ ∧ ω) = 0,

since λ(Z) = 2ω(Z,Z) = 0 and λ ∧ λ = 0.

Let (N,ωN ) be a symplectic cone over a contact manifold (P, θ). We define

ωlcs :=
1
r2
ωN = dt ∧ θ +

1
2
dθ, t = ln r.

Proposition 1.13. For any nontrivial discrete subgroup Γ ⊂ R>0 the manifold
(N/Γ = S1 × P, ωlcs) is lcs.

2. Kähler Manifolds, Sasaki Manifolds and Kähler Cones

2.1. Contactizations of Kähler manifolds

Definition 2.1. A Sasaki manifold (S, g, Z) is a Riemannian manifold (S, g)
endowed with a unit Killing vector field Z, such that J := ∇Z|H defines an inte-
grable CR-structure on the distribution H := Z⊥ ⊂ TS.

Let (S, g, Z) be a Sasaki manifold. Then we define the 1-form

θ := g(Z, ·).
Proposition 2.2. For any Sasaki manifold (S, g, Z) the 1-form θ is a contact form
with the Reeb vector field Z and the CR-structure is strictly pseudo-convex.

Proof. It follows from Definition 2.1 that dθ = g(J ·, ·) on Z⊥ = ker θ is non-
degenerate. Hence, θ is a contact form with positive definite Levi form. Furthermore,
θ(Z) = 1 and

0 = LZθ = ιZdθ,

which shows that Z is the Reeb vector field.

The following theorem establishes a one-to-one correspondence between quan-
tizable Kähler manifolds and regular Sasaki manifolds.

Theorem 2.3. Let A = S1 or R.

(i) The contactization of an A-quantizable Kähler manifold (M,ω, J) is a regular
Sasaki manifold (S, θ, gS , Z), where (S, θ), π : S → M = S/A, is the contacti-
zation of (M,ω) with the fundamental vector field Z of the A-action and

gS = θ2 +
1
2
π∗gM , gM = ω(·, J ·).

(ii) Conversely, any regular Sasaki manifold with Reeb action of A is the contacti-
zation of an A-quantizable Kähler manifold.
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2.2. Cones over Sasaki manifolds and Kähler cones

Definition 2.4. A conical Riemannian manifold (M, g, ξ) is a Riemannian manifold
(M, g) endowed with a nowhere vanishing (homothetic) vector field ξ such that
∇ξ = Id. If ξ is complete it is called a global conical Riemannian manifold.

Proposition 2.5. (i) The metric cone over any Riemannian manifold is a global
conical Riemannian manifold.

(ii) Conversely, any global conical Riemannian manifold is a metric cone.
(iii) Any conical Riemannian manifold is locally isometric to a metric cone.

Definition 2.6. A Kähler cone (N, gN , J) is a metric cone (N = C(M), gN =
dr2 + r2gM ) over a Riemannian manifold (M, gM ) endowed with a skew-symmetric
parallel complex structure J .

Proposition 2.7. Any conical Kähler manifold is locally a Kähler cone and any
global conical Kähler manifold is a Kähler cone.

Theorem 2.8. (i) The metric cone (N = C(S), gN ) over a Sasaki manifold
(S, gS , Z) equipped with the complex structure JN defined by

JN |H := J = ∇Z|H, JNξ := Z,

is a Kähler cone.
(ii) Conversely, any Kähler cone is the cone over a Sasaki manifold and any conical

Kähler manifold is locally isomorphic to a Kähler cone over a Sasaki manifold.

Now we give a characterization of Sasaki manifolds in the class of strictly pseudo-
convex CR-manifolds. In the same way one can characterize pseudo-Riemannian
Sasaki manifolds in the class of Levi non-degenerate CR-manifolds.

Let (P, θ, J) be a strictly pseudo-convex integrable CR-structure with globally
defined contact form θ, which defines the (contact) CR-distribution H = ker θ. We
denote by Z the Reeb vector field of θ, such that θ(Z) = 1 and dθ(Z, ·) = 0 and
extend J defined on H to an endomorphism field on TP = RZ ⊕ H by JZ = 0.
Then we define a natural Riemannian metric gP on P by

gP := θ2 +
1
2
dθ(·, J ·).

The vector field Z preserves θ but does not preserve J and gP in general.

Theorem 2.9. Let (P, θ, J) be a strictly pseudo-convex integrable CR-structure
with globally defined contact form θ. Then the symplectic structure ωN of the sym-
plectic cone (N,ωN ) over the contact manifold (P, θ) (see Definition 1.7) together
with the cone metric gN = dr2 + r2gP defines on N = C(P ) = R>0 × P an almost
Kähler structure. It is Kähler if and only if the Reeb vector field is holomorphic,

that is an infinitesimal CR-automorphism: LZJ = 0.
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Proof. We have to check that the skew-symmetric endomorphism JN = g−1
N ◦ ωN

is an almost complex structure. Recall that

ωN = rdr ∧ θ +
r2

2
dθ,

gN = dr2 + r2θ2 +
r2

2
dθ(·, J ·).

From these formulas we see that the decomposition H ⊕ span{∂r, Z} is orthogonal
with respect to ωN and gN . Hence, JN preserves this decomposition and JN |H = J .
We check that JNZ = −ξ := −r∂r and JNξ = Z:

ωN(Z, ·) = −rdr = −gN(ξ, ·),
ωN(ξ, ·) = r2θ = gN (Z, ·).

Now we investigate the integrability of JN , that is the involutivity of T 0,1N ⊂
TCN . The involutivity of H0,1 follows from the integrability of the CR-structure
J = JN |H. The involutivity of (H⊥)0,1 = C(Z + iξ) is automatic for dimensional
reasons. Finally the bracket of Z + iJNZ = Z − iξ with X + iJNX = X + iJX ,
X ∈ Γ(P,H) ⊂ Γ(N,H), is computed as follows:

[Z + iξ,X + iJX ] = [Z,X + iJX ] = [Z,X ] + i[Z, JX ],

which is of type (0, 1) if and only if [Z, JX ] = J [Z,X ] for all X , that is if and only
if LZJ = 0.

As a corollary, cf. Theorem 2.8, we obtain the following (connection-free) char-
acterization of Sasaki manifolds in terms of CR-structures.

Corollary 2.10. A Sasaki manifold (P, g, Z) is the same as a strictly pseudo-
convex CR-manifold (P, θ, J) with globally defined contact form θ such that the
corresponding Reeb vector field Z is holomorphic. The metric g = gP is the natural
Riemannian metric on P defined by the data (θ, J).

Theorem 2.11. Let (Si, gi, Zi), i = 1, 2, be two Sasaki manifolds. Then the man-
ifold N = S1 × S2 has a two-parameter family of integrable complex structures
J = Ja,b defined by

J |Hi = Ji, JZ1 = aZ1 + bZ2, JZ2 = cZ1 − aZ2,

where a ∈ R, b �= 0, c = − 1+a2

b and (Hi, Ji) is the CR-structure of Si. The complex
structures Jcan := J0,1 and −Jcan := J0,−1 are the only structures in the family Ja,b

for which the product metric is Hermitian.

Proof. This follows from the Newlander–Nirenberg theorem by a direct
calculation.
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As a special case we obtain the famous complex structures on products of
spheres, constructed by Calabi and Eckmann.

Corollary 2.12. The product of two odd-dimensional spheres has a two-parameter
family Ja,b of integrable complex structures. The product metric is Hermitian with
respect to the complex structure Jcan.

2.3. Kähler cones and locally conformally Kähler manifolds

Definition 2.13. A lcK manifold (or shortly an lck manifold) is a lcs manifold
(M,ω) endowed with a skew-symmetric integrable complex structure J such that
the metric

g = ω(·, J ·)
is positive definite. The Riemannian metric g is then called a lcK metric. The 1-form
θ := 1

2J
∗λ is called the Reeb form. The (locally gradient) vector field ξ = − 1

2g
−1λ

is called the Lee field. An lcK manifold (M,ω, J) is called Vaisman manifold if ξ is
a parallel unit vector field.

Remark that if ξ is parallel then λ(ξ) is constant. By rescaling ω we can always
normalize λ(ξ) = 2ω(Z, ξ) = 2g(JZ, ξ) = −2g(ξ, ξ) = −2, such that |ξ| = 1. Note
that, as a consequence of the above definition, the Lee and the Reeb field are related
by

Z = Jξ.

Similarly one defines the notion of a locally conformally pseudo-Kähler manifold
and that of a pseudo-Riemannian Vaisman manifold by allowing the metric to be
indefinite.

Vaisman manifolds were first studied by Vaisman, who called them generalized
Hopf manifolds. In [8] he proved the following theorem, which relates them to
Sasaki manifolds. For convenience of the reader we reprove it within the logic of
our exposition.

Theorem 2.14. Let (M,ω, J) be a complete Vaisman manifold. Then

(i) the Lee field ξ and the Reeb field Z = Jξ are infinitesimal automorphisms
of the lcK structure (ω, J) and

(ii) the universal cover of M is a Riemannian product of a line and a simply con-
nected Sasaki manifold S.

Proof. The de Rham theorem implies that the universal cover of a complete Vais-
man manifold is a Riemannian product M = R×S of a line and a simply connected
manifold S, where S is a leaf of the integrable distribution ker λ = ξ⊥. We already
know that ξ is a Killing vector field, since it is parallel. We also know that Z
preserves ω by Proposition 1.12. Therefore, in order to prove (i), we only have
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to show that ξ and Z are holomorphic, that is preserve the complex structure J .
We recall that a (real) vector field X is holomorphic if and only if JX is holo-
morphic. Moreover, under this assumption, X and JX commute. Since Z = Jξ, it
suffices to check that ξ is holomorphic. Now any lcK manifold (M,ω, J) admits a
canonical torsion-free complex connection ∇̃, which coincides with the Levi-Civita
connection of the locally defined Kähler metric g̃ = e−fg, where f is a locally
defined function such that df = λ. Indeed, since f is unique up to an additive con-
stant, the metric g̃ is unique up to a constant factor and its Levi-Civita connection
is a well defined connection on M . With our conventions, the explicit expression
for ∇̃ is

∇̃XY = ∇XY − 1
2
λ(X)Y − 1

2
λ(Y )X − g(X,Y )ξ. (2.1)

To prove this formula, it is enough to check that the torsion-free connection on the
right-hand side preserves the metric g̃. This is a straightforward calculation. Using
∇ξ = 0 and (2.1), we obtain LξJ = ∇ξJ = ∇̃ξJ = 0, as in [8].

It follows from (i) that Lξθ = 0. This means that θ can be considered as a
1-form on S.

Lemma 2.15. Let (M,ω, J) be an lcK manifold. Then

Lξω = λ(ξ)ω − λ ∧ θ + dθ.

Proof. We calculate

Lξω = dθ + ιξ(λ ∧ ω) = dθ + λ(ξ)ω − λ ∧ θ.

Under the assumptions of the theorem we have λ(ξ) = −2, θ(Z) = 1 and
Lξω = 0 such that

ω = −1
2
λ ∧ θ +

1
2
dθ.

This implies that dθ|S = 2ω|S has one-dimensional kernel RZ transversal to H =
ker θ = Z⊥. We have shown that θ is a contact form on S with Reeb vector field
Z. In order to prove that S is Sasakian, we choose a local function t such that
λ = −2dt. Then we can rewrite ω and g in the form

ω = dt ∧ θ +
1
2
dθ,

g = dt2 + θ2 +
1
2
ḡ,

where

ḡ = dθ(·, J ·) (2.2)

is the Levi form. One can easily check that the metric gK = e2tg is a Kähler metric
with Kähler form ωK = e2tω = d(1

2e
2tθ). The substitution r = et yields

gK = dr2 + r2gS , gS = θ2 +
1
2
ḡ, ξ = ∂t = r∂r .
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This is locally a Kähler cone and, hence, its covariant derivative ∇K yields

∇Kξ = Id, ∇KZ = ∇K(Jξ) = J.

Notice that gK |S and gS are homothetic and, hence, the Levi Civita connection
∇S of (S, gS) coincides with the connection induced by ∇K on the totally umbilic
submanifold S ⊂ (M, gK). From the Gauß equation we get

∇S
XZ = JX for all X ∈ TS ∩ Z⊥, ∇S

ZZ = 0.

This proves that (S, gS , Z) is a Sasaki manifold.

Remark. The isometry group of a compact Vaisman manifold does not necessarily
preserve the complex structure. It suffices to consider S1×S2n+1 endowed with the
product metric and the complex structure Jcan of Theorem 2.11. This is an example
of an lcK manifold as shown in the next proposition.

Let (N,ωN , JN ) be a Kähler cone over a Sasaki manifold (S, gS, Z). Recall that
ωlcs = dt∧ θ+ 1

2dθ is a conformally symplectic structure on N , where θ = g(Z, ·) is
the contact form and t = ln r.

Proposition 2.16. For any nontrivial discrete subgroup Γ ⊂ R>0 the complex
structure JN on the Kähler cone N induces a complex structure J on N/Γ = S1 ×
S such that (N/Γ, ωlcs, J) is a Vaisman manifold. The group S1 = R>0/Γ acts
freely, holomorphically and isometrically (with respect to the lcK metric) on the lcK
manifold N/Γ and Z is an S1-invariant holomorphic Killing vector field on N/Γ.

Proof. By Proposition 1.13, (N/Γ, ωlcs) is lcs. Therefore to prove that it is lcK
it suffices to show that JN is invariant under the group R>0 and, hence, induces
a complex structure J on N/Γ. This follows from the equations LξωN = 2ωN ,
LξgN = 2gN , since JN = g−1

N ωN . The group R
>0 acts isometrically on N with

respect to the Riemannian metric

ωlcs(·, JN ·) = dt2 + gS, (2.3)

which induces the lcK metric glcK on M . In fact ξ = ∂t is an obvious Killing vector
field for the metric (2.3). This shows that S1 acts isometrically on (N/Γ, glcK).
Obviously ξ = ∂t is a parallel unit field and preserves the 2-form ωlcs = dt∧θ+ 1

2dθ.
In particular, (N/Γ, ωlcs, J) is a Vaisman manifold.

The above complex structure onN/Γ = S1×S coincides with the complex struc-
ture Jcan of Theorem 2.11. The next theorem shows that the Vaisman manifolds of
Proposition 2.16 admit a canonical two-parameter family of Vaisman deformations.

Theorem 2.17. Let (N = R>0 × S, ωN , JN ) be a Kähler cone over a Sasaki man-
ifold (S, gS , Z) endowed with the lcs structure ωlcs = dt∧ θ+ 1

2dθ. Then (ωlcs, Ja,b),
where Ja,b is defined in Theorem 2.11, is a Vaisman lcK structure on N/Γ = S1×S
if and only if b > 0. The Reeb vector field Z and the Lee vector field ξa,b = −J∗

a,bZ

are holomorphic Killing vector fields for all of these structures.
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Proof. Ja,b is skew-symmetric with respect to ωlcs, since

ga,b := −ωlcs(Ja,b·, ·) = bdt2 − cθ2 − 2adtθ +
1
2
ḡ

is symmetric. (Recall that ḡ stands for the Levi form of S, see (2.2)). The metric
ga,b is positive definite if and only if b > 0. Since Ja,b is integrable, by Theorem 2.11,
we see that (S1 × S, ωlcs, Ja,b) is lcK if b > 0. The vector fields ξcan = ξ0,1 = ∂t

and Z preserve the 1-forms dt and θ and, hence, the metrics ga,b. Since the Reeb
field always preserves ω, this implies that both vector fields are holomorphic for all
Ja,b. As a consequence, any linear combination of ∂t and Z, such as ξa,b, is also
a holomorphic Killing vector field for any of the complex structures in the two-
parameter family. It remains to check that the lcK structure (ωlcs, Ja,b) is Vaisman.
The Lee field ξa,b = − 1

2g
−1
a,bλ is given by

ξa,b = −c∂t + aZ.

A direct calculation using the Koszul formula for g = ga,b shows that for all X,Y ∈
H = ker θ ∩ ker λ ⊂ TN we have

2g(∇XY, ∂t) = g([X,Y ], ∂t) = −aθ([X,Y ])

2g(∇XY, Z) = −Zg(X,Y ) + g([X,Y ], Z) − g(X, [Y, Z])

−g(Y, [X,Z]) = −cθ([X,Y ]),

since LZg = 0. As consequence, we obtain

g(∇Xξa,b, Y ) = −g(∇XY, ξa,b) =
1
2
(ac− ca)θ([X,Y ]) = 0,

for allX,Y ∈ H. Using the fact that ξa,b is a holomorphic Killing vector field, proven
above, we see that to prove ∇ξa,b = 0 it is enough to check that ∇ξa,b

ξa,b ⊥ H. Let
X ∈ Γ(H) be a local section, which commutes with ξa,b. Then the Koszul formula
yields

2g(∇ξa,b
ξa,b, X) = −Xg(ξa,b, ξa,b) = 0.

Corollary 2.18. The Vaisman manifold (S1 × S2n+1, ωlcs, Jcan), n ≥ 1, admits a
two-parameter deformation by Vaisman lcK manifolds (S1×S2n+1, ωlcs, Ja,b), b > 0.
The group T 2×SU(n+1) = S1×U(n+1) acts transitively on S1×S2n+1 preserving
all of these lcK structures. It is the maximal connected Lie group preserving any
of the above lcK structures. For b �= 1 this group coincides with the full connected
isometry group of the lcK metric ga,b. For b = 1 the full connected isometry group
is strictly larger, that is Isom0(S1 × S2n+1, gcan) = S1 × SO(2n+ 2).

3. Homogeneous Locally Conformally Symplectic Manifolds

Here we give a description of homogeneous lcs manifolds.
Let (M = G/H,ω) be a homogeneous lcs manifold with Lee form λ. For

all of this section we will assume that G is connected and effective and that
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dω �= 0. We will consider ω and λ as h-invariant forms on the Lie algebra g which
vanish on h.

3.1. A bound on the dimension of the center

Proposition 3.1. If λ does not vanish on the center z of g then dim z ≤ 2.

Proof. As λ is closed gλ := ker λ ⊂ g is an ideal. Since M is lcs we have the
equation dω = λ ∧ ω on g. Let Z0, Z1 ∈ z, λ(Z0) = 1, Z1, X ∈ ker λ. Then the
above equation yields

0 = dω(Z0, Z1, X) = ω(Z1, X).

This shows that z ∩ gλ ⊂ ker ω|gλ , which implies dim z ∩ gλ ≤ 1 and, hence,
dim z ≤ 2.

Corollary 3.2. If g admits an ad-invariant (possibly indefinite) scalar product b
such that the vector Z0 := b−1λ is not isotropic then dim z ≤ 2.

Proof. It suffices to prove that Z0 ∈ z. For all X,Y ∈ g we have:

b([Z0, X ], Y ) = b(Z0, [X,Y ]) = λ([X,Y ]) = −dλ(X,Y ) = 0.

Corollary 3.3. If G is reductive then dim Z(G) ≤ 2. In particular, a reductive
automorphism group of a homogeneous lcs manifold has at most two-dimensional
center.

Proposition 3.4. Let (M = G/H,ω, g) be a homogeneous Vaisman manifold such
that G = Aut(M,ω, g). Then the center z of g is two-dimensional.

Proof. By Theorem 2.14, the Reeb vector field is an infinitesimal automorphism
of (M,ω, g), which generates a one-parameter subgroup of G. Any vector X ∈ g

defines a Killing vector field X∗ on M . Let us denote by Z ∈ g the Reeb vector,
that is the vector such that Z∗ is the Reeb vector field. Then the G-invariance of
Z∗ implies that 0 = LX∗Z∗ = [X∗, Z∗] = −[X,Z] for all X ∈ g. Thus Z ∈ z, which
implies dim z ≥ 1. The same argument applies to the Lee field ξ = −JZ, showing
that dim z ≥ 2. On the other hand, Proposition 3.1 shows that dim z ≤ 2.

3.2. A construction of homogeneous lcs manifolds

Let G be a Lie group with the Lie algebra g and Q = Ad∗
Gφ = G/K the coadjoint

orbit of an element φ ∈ g∗. We denote by ωQ the (invariant) Kirillov–Kostant
symplectic form in Q given by

(ωQ)φ′(X · φ′, Y · φ′) := φ′([X,Y ]), φ′ ∈ Q, X, Y ∈ g,
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where X · φ′ = −φ′ ◦ adX ∈ Tφ′Q. Identifying ωQ with an AdK-invariant 2-form on
g vanishing on k = LieK we can simply write

ωQ(X,Y ) = φ([X,Y ]), X, Y ∈ g.

We will assume that the orbit Q is not conical, that is it is not invariant with
respect to multiplication by positive numbers. Then the restriction φ|k of the form
φ to the stability subalgebra k is not zero and h := k∩ker φ is an ideal of k (see [1]).
We will assume that the subalgebra h generates a closed subgroup H of G. Then
we have the following.

Proposition 3.5 ([1]). The 1-form φ defines an invariant contact structure φ

in P = G/H and the contact manifold (P = G/H, φ) is a quantization of the
homogeneous symplectic manifold (Q = G/K,ωQ), that is φ is a connection on
the A-principal bundle P = G/H → G/K with the curvature form ωQ, where
A = K/H ∼= R or ∼= S1.

Let D be a derivation of the Lie algebra g and g(D) := RD + g the associated
Lie algebra with the ideal g. We denote by λ the closed 1-form dual to D (such
that λ(D) = 1, λ(g) = 0) and define a 2-form ω on g(D) by

ω = −λ ∧ φ+ dφ. (3.1)

It is an ad∗
h-invariant 2-form with kernel h and satisfies

dω = λ ∧ dφ = λ ∧ ω.
We denote by G(D) a Lie group with the Lie algebra g(D) and by H its closed
(connected) subgroup generated by h. Obviously, we have the following.

Proposition 3.6. The Ad∗
H-invariant 2-form ω defines an invariant lcs structure

ω on the homogeneous manifold M = G(D)/H, that is an invariant non-degenerate
2-form ω such that dω = λ ∧ ω.

We say that (M = G(D)/H, ω) is a homogeneous lcs manifold associated with
the non-conical orbit Q = Ad∗

Gφ and a derivation D of the Lie algebra g.

Remark. Let (M,ω, J) be an lcK manifold of Vaisman type with Lee form λ and
Reeb form θ. Then Eq. (3.1) holds with φ = 1

2θ.

3.3. The main result for homogeneous lcs manifolds

In this subsection we show as a main result (Theorem 3.9) that the above con-
struction gives all homogeneous lcs manifolds satisfying a certain cohomological
assumption, which we will explain now.

Let (M = G/H,ω) be a homogeneous lcs manifold with Lee form λ. We consider
ω and λ as Ad∗

H -invariant forms on the Lie algebra g, which vanish on h. Then ω

defines a cohomology class

[ω] ∈ H2
λ(g, h) :=

ker(dλ : C2(g, h) → C3(g, h))
im(dλ : C1(g, h) → C2(g, h))

,
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where

Ck(g, h) := {α ∈ (∧kg∗)H | ιXα = 0 for all X ∈ h}
is the vector space of Ad∗

H -invariant alternating k-forms vanishing on h and

dλα := dα− λ ∧ α, for all α ∈ ∧kg∗.

We will assume that [ω] = 0, which means that there exists φ ∈ C1(g, h) satisfying
Eq. (3.1). Recall that g′ := gλ = ker λ is an ideal of g which contains h. We can
write

g = RD + g′

where D ∈ g such that λ(D) = 1. The assumption dω �= 0 implies that λ and φ are
linearly independent. Therefore, adding an element of g′ to D, we can assume that
φ(D) = 0. The restriction ω′ = ω|g′ is a closed 2-form on g′ and its kernel k is a
subalgebra which contains the codimension one subalgebra h.

Lemma 3.7. Let (M = G/H,ω) be a homogeneous lcs manifold with Lee form λ

and dω �= 0. Assume that G contains the one-parameter subgroup generated by the
Reeb vector field Z (see Proposition 1.12 and note that Z is automatically complete
since it is G-invariant). If [ω] = 0 in H2

λ(g, h) then the form ω can be written as

ω = −λ ∧ φ+ dφ,

where φ is an Ad∗
H-invariant 1-form on g with ker φ ⊃ RD + h which is not zero

on k. Moreover,

ω(Z, ·) = φ(Z)λ.

Proof. Since [ω] = 0, Eq. (3.1) holds for some Ad∗
H -invariant 1-form φ which

vanishes on h. The inclusion ker φ ⊃ RD+h holds by our choice of D, as explained
above. We prove that φ|k �= 0. Let Z ∈ g be the central element which corresponds
to the Reeb vector field. Then ad∗

Zψ = 0 for every k-form ψ on g and, in particular,

ιZdφ = −ad∗
Zφ = 0. (3.2)

Next we observe that the definition of the Reeb vector field (see Definition 1.11)
implies that

λ(Z) = 0, (3.3)

since ω is skew-symmetric. Therefore Eqs. (3.1) and (3.2) show that

ω(Z, ·) = φ(Z)λ. (3.4)

Since ω is non-degenerate on g/h this implies that

φ(Z) �= 0 (3.5)

and, hence, ω(D,Z) = −φ(Z) �= 0. So the plane E spanned by D and Z is ω-non-
degenerate. Let m′ ⊂ g′ be a subspace such that m′ ∩ h = 0 and which projects
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to the ω-orthogonal complement of Ē = (E + h)/h ⊂ g/h in g/h. In particular
m′ ⊥ω Z implies

g′ = ker λ = h + RZ + m′, (3.6)

in view of (3.3) and (3.4). Now we see that

k = ker ω′ = h + RZ, (3.7)

which, by (3.5), proves that φ does not vanish on k.

We claim that the kernel k of the exact 2-form ω′ = ω|g′ = d(φ|g′) on g′ coincides
with the stabilizer of φ′ := φ|g′ in the coadjoint representation of g′. In fact, this is
a consequence of the equation

ω′(X, ·) = −φ ◦ adX |g′ ,

which holds for all X ∈ g′, in view of (3.1). Hence, the corresponding subgroupK of
the groupG′ ⊂ G is closed. By Lemma 3.7, the coadjoint orbitQ := Ad∗

G′φ′ = G′/K
is not conical and h = k ∩ ker φ generates a closed subgroup H ⊂ G′ ⊂ G. The
Ad∗

H -invariant 1-form φ′ on g′ defines a contact form on P = G′/H and the contact
manifold P = G′/H is a quantization of the symplectic manifold Q = G′/K. The
contact property follows from the fact that dφ′ = ω′ induces a non-degenerate
2-form on g′/k (see Lemma 3.7, and the next lemma).

Lemma 3.8. Under the assumptions of Lemma 3.7, we have

ker φ′ + k = g′. (3.8)

Proof. Since φ and λ are linearly independent, φ′ = φ|g′ �= 0 and ker φ′ ⊂ g′ is a
hyperplane. By (3.5), Z �∈ ker φ′. Therefore, ker φ′ + RZ = g′, which implies (3.8).

Since adD |g′ is a derivation of the Lie algebra g′, we can write g = g′(adD) and
the 2-form ω on g has the form

ω = −λ ∧ φ+ dφ,

where φ is the canonical extension of φ′ to a 1-form on g. This shows the following.

Theorem 3.9. Any homogeneous lcs manifold satisfying the assumptions of
Lemma 3.7 can be obtained by the above construction, that is it is associated with a
non-conical coadjoint orbit Q = Ad∗

G′φ = G′/K of a Lie group G′ with the standard
symplectic form ωQ = dφ and a derivation D of the Lie algebra g′. More precisely, it
has the form (M = G′(D)/H, ω) where the Lie algebra of G′(D) is the D-extension
g′(D) = RD + g′ of g′, h := ker φ ∩ k and ω = −λ ∧ φ+ dφ.

Now we give some sufficient conditions which ensure the cohomological assump-
tion used in this section.

Definition 3.10. A homogeneous lcs manifold with Lee form λ is called locally

splittable if the ideal g′ = gλ ⊂ g has a complementary ideal, that is
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g = RD ⊕ g′ (D ∈ g). It is called splittable if G = A × Gλ, where A = R

or A = S1.

Proposition 3.11. Let (M = G/H,ω) be a locally splittable homogeneous lcs man-
ifold with Lee form λ and dω �= 0. Then [ω] = 0 in H2

λ(g, h), H1
λ(g, h) = 0 and

dimZ(g′) ≤ 1. In particular, this is the case if g is reductive.

Proof. We may assume that λ(D) = 1. Then we decompose ω as

ω = −λ ∧ φ+ ω′, (3.9)

where φ and ω′ are Ad∗
H -invariant forms on g′, which vanish on h. Differentiating

this equation and comparing with the lcs equation, we obtain

dω = λ ∧ dφ+ dω′ = λ ∧ ω = λ ∧ ω′.

This shows that

ω′ = dφ.

Substituting this into (3.9) we get dλφ = ω. To prove H1
λ(g, h) = 0, let α ∈ C1(g, h)

be a dλ-closed form. We decompose it as

α = cλ+ α′,

where c is a constant and α′ ∈ C1(g′, h) ⊂ C1(g, h). Differentiation yields

0 = dλα = −λ ∧ α′ + dα′,

which implies α′ = 0 and α = cλ = −cdλ1, where 1 ∈ C0(g, h) = R. The bound on
the dimension of the center of g′ follows from Proposition 3.1.

Corollary 3.12. Let Q = G/K = Ad∗
Gφ be a non-conical coadjoint orbit such that

the normal subgroup H ⊂ K generated by h = ker φ|k is closed. Then (P = G/H, φ)
is a homogeneous contact manifold and (M = A × P, ω = −dt ∧ φ + dφ) is a
homogeneous lcs manifold, where A = R or A = S1. Conversely, any splittable
homogeneous proper lcs manifold (M = G/H,ω) with Lee form λ can be obtained
from this construction.

We remark that the covering R × P of the lcs manifold A × P in the previous
corollary, where R → A is the universal covering group, is globally conformal to
the symplectic cone over the contact manifold (P, φ) after a redefinition t = −2t̃:
ω = 2(dt̃ ∧ φ+ 1

2dφ) = 2
r2 (rdr ∧ φ+ r2

2 dφ), where t̃ = ln r.

4. Homogeneous Locally Conformally Kähler Manifolds
of Reductive Groups

4.1. Left-invariant lcK structures on four-dimensional

reductive groups

In this section we prepare the classification of homogeneous lcK manifolds of reduc-
tive groups, to be given in Theorem 4.10, by classifying left-invariant lcK structures

1541001-17



2nd Reading

June 5, 2015 10:13 WSPC/S0129-167X 133-IJM 1541001

D. V. Alekseevsky et al.

on four-dimensional reductive groups. We first describe all left-invariant complex
structures J on such groups, then all left-invariant lcs structures ω and finally all
left-invariant locally conformally pseudo-Kähler structures (ω, J). In particular, we
describe all lcK and Vaisman examples. This extends the results of [4, Sec. 4]. The
following lemma is a well known basic fact.

Lemma 4.1. For any Lie group G, the map

J �→ lJ := Eig(J, i) = ker(J − iId)

induces a one-to-one correspondence between left-invariant complex structures J on
G and (complex) Lie subalgebras l = lJ ⊂ gC such that

gC = l + ρl, l ∩ ρl = 0, (4.1)

where ρ denotes the real structure (i.e. complex anti-linear involutive
automorphism) on gC with the fixed point set g.

Let g be a four-dimensional non-commutative reductive Lie algebra, that is
g = u(2) or g = gl(2,R), and G any connected Lie group such that g = LieG. We
may take G = U(2) or G = GL(2,R). Let us denote by g = z⊕ s the decomposition
of the reductive Lie algebra g into its center z = Re0 and its maximal semisimple
ideal s = [g, g], which is su(2) or sl(2,R). We denote by e0 the 1-form on g which
vanishes on s and has the value e0(e0) = 1.

Lemma 4.2. Let G be a (connected) four-dimensional non-commutative reductive
Lie group. Up to conjugation by an element of G, every left-invariant complex struc-
ture J on G is defined by a subalgebra lJ = span{e0 + e′, e′′} such that e′, e′′ ∈ sC,

[e′, e′′] = µe′′, µ ∈ C∗. In particular, e′′ belongs to the cone C ⊂ sl(2,C) of nilpo-
tent elements. This is precisely the null cone with respect to the Killing form of
sl(2,C) ∼= C3.

Proof. We have to describe all subalgebras l ⊂ gC = C ⊕ sl(2,C) satisfying (4.1).
From ρsC = sC we see that l �⊂ sC = sl(2,C). Therefore l admits a basis of the form
(e0 + e′, e′′), where e′, e′′ ∈ sC. Then

[e0 + e′, e′′] = [e′, e′′] ∈ l ∩ sC = Ce′′

shows that

[e′, e′′] = µe′′, µ ∈ C
∗. (4.2)

Therefore span{e′, e′′} ⊂ sC is a Borel subalgebra and e′′ belongs to the cone C.

Lemma 4.3. Given a complex structure J on g and a 1-form φ ∈ s∗ ⊂ g∗ such that
ω = e0∧φ+dφ is non-degenerate (and, hence, defines an lcs structure), the structure
(ω, J) is locally conformally pseudo-Kähler if and only if lJ = span{e0 + e′, e′′} ⊂
gC is isotropic with respect to ω. This is the case if and only if either µ = 1 or
φ(e′′) = 0.
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Proof. Notice first that the 2-form ω is J-invariant if and only if it is of type (1, 1),
which means that lJ and ρlJ are isotropic. Next we evaluate ω = e0 ∧ φ + dφ on
the basis of lJ :

ω(e0 + e′, e′′) = φ(e′′) − φ([e′, e′′]) = (1 − µ)φ(e′′).

The compact case

Let us first consider the case s = su(2) and denote by (e1, e2, e3) a basis of su(2) such
that [eα, eβ] = −eγ for every cyclic permutation of (1, 2, 3). In the following (α, β, γ)
will be always a cyclic permutation. Then the basis (e0, e1, e2, e3) of g∗ = u(2)∗

which is dual to (e0, e1, e2, e3) has the following differentials:

de0 = 0, deα = eβγ := eβ ∧ eγ .

Proposition 4.4. Up to conjugation by an element of U(2), every left-invariant
complex structure J on U(2) is contained in the following Calabi–Eckmann family

Je0 = ae0 + be1, Je1 = ce0 − ae1, Je2 = −e3, Je3 = e2, (4.3)

which depends on two-parameters a ∈ R and b ∈ R
∗; c = − 1+a2

b .

Proof. We specialize the description of complex structures in Lemma 4.2. Since
U(2) acts transitively on the quadric Q = P (C) ∼= CP 1 we can assume that e′′ =
e2 + ie3. Then Eq. (4.2) shows that e′ ≡ −iµe1 (mod Ce′′) and we can choose the
above basis of l such that e′ = −iµe1. Then (4.1) is satisfied if and only if ρe′ �= e′,
i.e. µ �∈ iR. This shows that the complex structure J defined by lJ = l is given by
(4.3), where µ = µ1 + iµ2 is related to a, b, c by

a =
µ2

µ1
, b =

|µ|2
µ1

, c = − 1
µ1
. (4.4)

Proposition 4.5. Up to scale, every left-invariant lcs form on U(2) is of the form

ω = e0 ∧ φ+ dφ, (4.5)

where φ =
∑
aαe

α ∈ s∗ is any nonzero form. All these structures are equivalent up
to conjugation in U(2).

Proof. Let ω be an lcs structure on g = u(2). Since e0 is the only closed 1-form
on g, up to scale, we can assume that the Lee form of ω is given by λ = −e0. The
canonical 1-form of ω is given by a nonzero element φ ∈ s∗ and any such element
defines an lcs structure ω by the formula (4.5).

Theorem 4.6. Let J = Ja,b be any of the left-invariant complex structures on
G = U(2), as defined in (4.3).

(i) If (a, b) �= (0, 1) then, up to scale, there is a unique left-invariant lcs structure
ω on U(2) such that (ω, J) is locally conformally pseudo-Kähler. It is given by
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ω = e01 +e23. All these structures are of Vaisman type. The locally conformally
pseudo-Kähler metric g = −ω ◦ J is definite if and only if b < 0.

(ii) If (a, b) = (0, 1) then (ω, J) is locally conformally pseudo-Kähler for every
left-invariant lcs structure ω on U(2). The metric is always indefinite and the
structure (ω, J) is of Vaisman type if and only if ω is proportional to e01 + e23.

Proof. The pair (ω, J) defines a locally conformally pseudo-Kähler structure on
G if and only if lJ = span{e0 + e′, e′′} ⊂ gC is isotropic with respect to ω, where
e′ = −iµe1, e′′ = e2 + ie3. To check this property we evaluate (4.5),

ω = −λ ∧ φ+ dφ =
∑

aαe
0α +

∑
aαe

βγ (4.6)

on the above basis of lJ :

ω(e0 + e′, e′′) = a2 + ia3 + a2e
31(−iµe1, ie3) + a3e

12(−iµe1, e2)
= a2 + ia3 − µa2 − iµa3

= (1 − µ)(a2 + ia3).

So we see that lJ is ω-isotropic if and only if either

(i) a2 = a3 = 0, that is ω = e01 + e23, up to scale, or
(ii) µ = 1, that is (a, b) = (0, 1).

In case (i) we compute

2ξ = ω−1J∗λ = −ω−1(ae0 + ce1) = −(−ae1 + ce0) = ae1 − ce0

and

2Z = 2Jξ = a(ce0 − ae1) − c(ae0 + be1) = (−a2 − cb)e1 = e1.

This shows that X = 2(ξ − aZ) = −ce0 ∈ z and, hence, defines a (nonzero) Killing
vector field. On the other hand, Lvω = 0 for all v ∈ span{e0, e1} = span{Z, ξ},
since e0, e1 ∈ ker dφ = e23, where

Lv := d ◦ ιv + ιv ◦ d : ∧kg∗ → ∧kg∗

is the linear map induced by the Lie derivative in direction of the left-invariant
vector field associated with the vector v ∈ g. In particular, LXω = 0. These two
properties of X show that X and, therefore, JX define (real) holomorphic vector
fields. Writing ξ as a linear combination of X and JX we see that also ξ defines a
holomorphic vector field. On the other hand, by the same argument as for X we
see that Lξω = 0, since ξ is a linear combination of e0 and e1. Therefore ξ defines
a Killing vector field. Now it suffices to remark that a locally conformally pseudo-
Kähler manifold is Vaisman if and only if the Lee field is Killing. In fact, the Lee
field is locally a gradient vector field (due to dλ = 0) and a gradient vector field is
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Killing if and only if it is parallel. To finish the proof of (i) we have to check when
the metric g = −ω ◦ J is definite. We compute

ω ◦ J = J∗e0 ⊗ e1 − J∗e1 ⊗ e0 + J∗e2 ⊗ e3 − J∗e3 ⊗ e2

= (ae0 + ce1) ⊗ e1 − (be0 − ae1) ⊗ e0 + e3 ⊗ e3 + e2 ⊗ e2

= −b(e0)2 + 2ae0e1 + c(e1)2 + (e3)2 + (e2)2,

which is definite if and only if b < 0. To prove (ii) we compute ω ◦ J for ω given in
(4.6) and J = J0,1:

ω ◦ J =
∑

aα(J∗e0 ⊗ eα − J∗eα ⊗ e0) +
∑

aα(J∗eβ ⊗ eγ − J∗eγ ⊗ eβ)

= −
∑

aαe
1 ⊗ eα − a1(e0)2 − a2e

3 ⊗ e0 + a3e
2 ⊗ e0 + a1((e2)2 + (e3)2)

− a2(e2 ⊗ e1 + e0 ⊗ e3) + a3(e0 ⊗ e2 − e3 ⊗ e1)

= −a1(e1)2 − a1(e0)2 + a1(e2)2 + a1(e3)2 − 2a2e
1e2

− 2a3e
1e3 − 2a2e

3e0 + 2a3e
2e0.

This metric is always of signature (2, 2). Now suppose that (ω, J) is of Vaisman
type. Then the Lee vector ξ satisfies Lξφ = ιξdφ = 0. This implies that ξ is a linear
combination c0e0 + c1�a of e0 and �a =

∑
aαeα. Since g(ξ, ·) = − 1

2λ applying ω ◦ J
to c0e0 + c1�a should be a multiple of λ = −e0. We calculate

ωJ(c0e0 + c1�a) = c0(−a1e
0 − a2e

3 + a3e
2) + c1a1(−a1e

1 − a2e
2 − a3e

3)

+ c1a2(a1e
2 − a2e

1 + a3e
0) + c1a3(a1e

3 − a3e
1 − a2e

0).

The coefficient of e1 is

−c1
∑

a2
α

and has to vanish. Since �a �= 0 this shows that c1 = 0 and that ξ is proportional to
e0. Then

ωJe0 = −a1e
0 − a2e

3 + a3e
2,

which is proportional to e0 only if a2 = a3 = 0. This implies ω = e01 + e23 up to a
factor, as claimed.

The non-compact case

Let us now consider the case s = sl(2,R) and denote by (h, e+, e−) a basis of
sl(2,R) such that [h, e±] = ±2e±, [e+, e−] = h. Then the basis (e0, h∗, e+, e−) of
g∗ = gl(2,R)∗ which is dual to (e0, h, e+, e−) has the following differentials:

de0 = 0, dh∗ = −e+ ∧ e−, de± = ∓2h∗ ∧ e±.
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We denote by ρ the standard real structure on gC associated with the real form
g = gl(2,R).

Proposition 4.7. Up to conjugation by an element of GL(2,R), every left-
invariant complex structure J on GL(2,R) belongs to one of the following two
families depending on µ = µ1 + iµ2 ∈ C\iR.

(i)

Je0 =
µ2

µ1
e0 − |µ|2

2µ1
(e+ − e−)

Jh = e+ + e−

Je± = ± 1
µ1
e0 ∓ µ2

2µ1
(e+ − e−) − 1

2
h.

(ii)

Je0 =
µ2

µ1
e0 +

|µ|2
2µ1

(e+ − e−)

Jh = −(e+ + e−)

Je± = ∓ 1
µ1
e0 ∓ µ2

2µ1
(e+ − e−) +

1
2
h.

These two families are related by the outer automorphism of gl(2,R) which maps
(e0, h, e±) to (e0, h,−e±). (See remark below for a description of these complex
structures in a basis which is orthonormal with respect to a suitably normalized
bi-invariant scalar product on gl(2,R).)

Proof. As before, any complex structure is defined by a subalgebra l ⊂ gC sat-
isfying (4.1). The latter admits a basis (e0 + e′, e′′), where e′, e′′ ∈ sC. Then
[e′, e′′] = µe′′, µ ∈ C∗, and e′′ ∈ C. The group SL(2,R) has three orbits on the
quadric Q = P (C). As representatives e′′ of these orbits we choose

e+, ih+ e+ + e−, h+ i(e+ + e−).

The first case is excluded, since ρe+ = e+. The elements e′ corresponding to e′′ =
ih+ e+ + e− and e′′ = h+ i(e+ + e−) are given by

iµ

2
(e+ − e−), − iµ

2
(e+ − e−).

Again µ �∈ iR by (4.1). This gives the two families (i) and (ii).

Using the Killing form we can identify s∗ with s. Since the Killing form of
s = sl(2,R) is Lorentzian we can further identify s with a Lorentzian vector space
R2,1.

Remark. Putting e1 := (e+ − e−)/2, e2 = h/2, e3 := (e+ + e−)/2 and using the
abbreviations (4.4) we can rewrite the complex structures in Proposition 4.7 in a
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form similar to (4.3):

(i)

Je0 = ae0 − be1, Je1 = −ce0 − ae1, Je2 = e3, Je3 = −e2.
(ii)

Je0 = ae0 + be1, Je1 = ce0 − ae1, Je2 = −e3, Je3 = e2.

Proposition 4.8. Up to scale, every left-invariant lcs form on GL(2,R) is of the
form

ω = e0 ∧ φ+ dφ, (4.7)

where φ =
∑
aαe

α ∈ s∗ ∼= s = sl(2,R) = R2,1 is any non-isotropic 1-form.

Proof. It suffices to check that ω is non-degenerate if and only if φ is space-like or
time-like.

Next we describe all left-invariant lcs structures which are compatible with any
of the complex structures Jµ on G = GL(2,R), as described in Proposition 4.7. It is
sufficient to consider the family (i), since it is equivalent to (ii) by an automorphism
of G.

Theorem 4.9. Let J = Jµ be any of the left-invariant complex structures on G =
GL(2,R), as defined in Proposition 4.7(i).

(i) If µ �= 1 then, up to scale, there is a unique left-invariant lcs structure ω on
GL(2,R) such that (ω, J) is locally conformally pseudo-Kähler. It is given by

ω = e0 ∧ (e+ − e−) − 2h∗ ∧ (e+ + e−) = e0 ∧ e1 − e2 ∧ e3,
where (e0, e1, e2, e3) denotes the basis dual to (e0, e1, e2, e3). All these structures
are of Vaisman type with (positive or negative) definite metric.

(ii) If µ = 1 then (ω, J) is locally conformally pseudo-Kähler for every left-invariant
lcs structure ω = e0 ∧φ+ dφ on GL(2,R). The locally conformally pseudo-
Kähler metric g = −ω ◦ J associated with a non-isotropic 1-form φ = ahh

∗ +
a+e

+ + a−e− ∈ s∗ is given by

g = −1
2
(a+ − a−)(e0)2 − 2(a+ − a−)(h∗)2

+ 2(a+ + a−)e0h∗ − 2a+(e+)2 + 2a−(e−)2

− ahe
0(e+ + e−) − 2ahh

∗(e+ − e−). (4.8)

It is of Vaisman type if and only if ah = 0 and a+ = −a− �= 0, in which
case the metric is definite. In particular, the locally conformally pseudo-Kähler
metric g is non-Vaisman and positive definite if and only if, first, ah �= 0 or
a+ �= −a− and, second, −a2

h > 4 a+a− and a− > 0 > a+.
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Proof. According to Proposition 4.8 any lcs structure on g is of the form ω =
e0 ∧ φ+ dφ, where φ = ahh

∗ + a+e
+ + a−e− ∈ s∗ is any non-isotropic 1-form. It is

of type (1, 1) with respect to J if and only if either (i) φ(e′′) = ah + i(a+ + a−) = 0
or (ii) µ = 1 (see Lemma 4.3). In the first case, we have, up to scale, φ = e+ − e−,
which implies ω = e0 ∧ (e+ − e−) − 2h∗ ∧ (e+ + e−). The corresponding locally
conformally pseudo-Kähler metric g is definite and Vaisman (the above basis of g is
g-orthogonal). In the second case, a straightforward calculation of the metric yields
the above formula (4.8), depending on the parameters ah, a±. Assuming that this
metric is Vaisman, we see that

ξ ∈ ker dφ = span
{
e0,�a =

ah

2
h+ a+e− + a−e+

}
.

So ξ = αe0 + β�a for some (α, β) ∈ R2\{0}. Then using (4.8) we see that g(ξ, ·) is
proportional to λ = −e0 if and only if the following equations hold

α(a+ + a−) = 0,

αah = 0,

β

(
a2

h

2
+ 2a+a−

)
= 0.

Since φ is not light-like, we see that a2
h

2 + 2a+a− �= 0. Therefore β = 0 and α �= 0,
which shows that ah = a+ + a− = 0. In that case, g = −a+(e0)2 − 4a+(h∗)2 −
2a+(e+)2−2a+(e−)2, which is definite. Now it suffices to check that the metric (4.8)
is always definite if ah = 0 and a+a− < 0. (In the case a+ < 0 it is positive definite.)
Now that we have characterized the Vaisman case in (ii), it follows that the metric
is non-Vaisman if and only if ah �= 0 or a+ �= −a−. So it only remains to check that
the metric is positive definite if and only if −a2

h > 4a+a− and a− > 0 > a+. This
is obtained from a calculation of principal minors.

4.2. Classification of homogeneous lcK manifolds of reductive

groups

In this subsection we prove the following main theorem.

Theorem 4.10. Every homogeneous proper lcK manifold (M = G/H,ω, J) of a
connected reductive Lie group G such that H is connected and NG(H) is compact
is of Vaisman type.

Proof. We assume without restriction of generality that G is effective. As before
we consider the fundamental form ω, the Lee form λ and the Reeb form θ = 1

2J
∗λ

as H-invariant forms on g which vanish on h. By Proposition 3.11 we know that
there exists φ ∈ C1(g, h) such that (3.1) is satisfied and that the 1-form φ is unique
up to addition of a multiple of λ. Let m ⊂ g be an H-invariant complement of h

containing the center z of g. Let us denote by Z, ξ ∈ m the linearly independent
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H-invariant vectors which correspond to the Reeb and Lee vector fields on M . We
choose φ such that φ(ξ) = 0. Together with Eq. (3.1) this makes φ unique. We will
call φ the canonical 1-form.

Proposition 4.11. Under the assumptions of Theorem 4.10, the canonical 1-form
coincides with the Reeb form θ up to a factor 1/2:

φ =
1
2
θ.

Proof. The proof of Proposition 4.11 is based on the following key lemma, the
proof of which is given below.

Lemma 4.12. Under the assumptions of Theorem 4.10, we have Z, ξ ∈ ker dφ.

Using Lemma 4.12, we compute

Lξφ = ιξdφ = 0,

where, for any AdH -invariant v ∈ m,

Lv := d ◦ ιv + ιv ◦ d : Ck(g, h) → Ck(g, h).

Lv is the linear map induced by the Lie derivative in direction of the G-invariant
vector field Xv which extends v. Since also Lξλ = ιξdλ = 0, Eq. (3.1) implies

Lξω = −λ ∧ Lξφ+ dLξφ = 0. (4.9)

Now Lemma 2.15 shows that

ω = − 1
λ(ξ)

dλθ =
1
2
dλθ.

Since ω = dλφ and H1
λ(g, h) = 0, this proves that φ = 1

2θ (mod Rλ). Finally, for
the canonical 1-form we have φ(ξ) = 0, such that φ = 1

2θ. This finishes the proof
of Proposition 4.11.

Proof of Lemma 4.12. Let us denote by G0 the maximal connected subgroup of
the normalizer of H in G. Since H is compact, G0 is reductive. The Lie algebra g0

of G0 is decomposed as

g0 = h + m0,

where m0 = Zm(h) contains z, Z and ξ. Since J is H-invariant, the maximal trivial
H-submodule m0 ⊂ m is J-invariant. This implies that ω is non-degenerate on m0,
because g = −ω ◦ J is positive definite. Therefore the restriction of (ω, J) to m0

defines an invariant lcK structure on M0 = G0/H with the Lee form λ0 = λ|m0 .
Notice that λ0 �= 0, since ξ ∈ m0. Therefore, the lcK structure on M0 is not Kähler,
unless dim M0 = 2. From the fact that H is normal in G0, we see that M0 is a Lie
group. In the Kähler case, the Lie group M0 is two-dimensional and thus Abelian.
So, in that case, dφ = 0 and the assertion of Lemma 4.12 follows. Otherwise M0
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is at least four-dimensional and the lcK structure is non-Kähler. Therefore, we can
assume from the beginning that H is trivial. This reduces the proof of Lemma 4.12
to the following special case.

Lemma 4.13. Under the assumptions of Theorem 4.10 and the additional assump-
tion that H is trivial, we have Z, ξ ∈ ker dφ.

Proof. Let B be a non-degenerate AdG-invariant symmetric bilinear form on g.
Then there exist endomorphisms Aω, Ag, Adφ, Aλ∧φ ∈ End g and a vector v = vφ ∈
g such that

ω = B ◦Aω , g = B ◦Ag, dφ = B ◦Adφ, λ ∧ φ = B ◦Aλ∧φ, φ = Bv.

We claim that

Adφ = −adv, Aλ∧φ = λ⊗ v + 2φ⊗ Agξ.

In fact,

dφ = −φ ◦ [·, ·] = −B(v, [·, ·]) = B([·, v], ·) = −B ◦ adv,

λ ∧ φ = λ⊗ φ− φ⊗ λ = λ⊗Bv − φ⊗ (−2gξ) = B ◦ (λ⊗ v + 2φ⊗Agξ).

The equation ω = −λ ∧ φ+ dφ can now be rewritten as

Aω = −Aλ∧φ − adv = −λ⊗ v − 2φ⊗Agξ − adv.

Since λ and φ are linearly independent (dω �= 0), the skew-symmetric endomorphism
Aλ∧φ has rank two. More precisely,

imAλ∧φ = span{v,Agξ}.
Notice that −2(B ◦ Ag)ξ = −2gξ = λ. Therefore, the equation dλ = 0 shows that
Agξ ∈ z = [g, g]⊥B . In particular, z �= 0. Since Aω has maximal rank, we see that
the image of adv is complementary to span{v,Agξ} in g and of codimension one
in the semisimple Lie algebra s = [g, g] ⊃ im adv. This implies that the centralizer
Zs(v) of v in s is one-dimensional.

This shows that the rank of s is one and dim s = 3. Since the dimension of g

is even, the inequality 1 ≤ dim z ≤ 2 implies that dim z = 1. Therefore, g = u(2),
because g is compact.

We have proven in Sec. 4.1 that all lcK structures on g = u(2) are of Vaisman
type and, hence, satisfy Z, ξ ∈ ker dφ. This finishes the proof of Lemmas 4.13 and
4.12, and thus completes the proof of Proposition 4.11.

The following proposition finishes the proof of Theorem 4.10.

Proposition 4.14. Let (M = G/H,ω, J) be a homogeneous proper lcK manifold
of a reductive Lie group G such that NG(H) is compact and such that the canonical
1-form is given by φ = 1

2θ. Then (M = G/H,ω, J) is of Vaisman type.
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Proof. Using the assertion ξ ∈ ker dφ in Lemma 4.12, we have shown in (4.9) that
Lξω = 0. Similarly, Z ∈ ker dφ implies

LZφ = ιZdφ = 0

and, hence,

LZω = −λ ∧ LZφ+ dLZφ = 0.

We claim that

span{Z, ξ} ∩ z �= 0. (4.10)

Since Z, ξ and z are contained in the normalizer g0 = Ng(h) of h in g, it is sufficient
to prove this in the case g = u(2), h = 0. Recall that any element X ∈ g defines a
Killing vector field X∗ on M = G/H and that any AdH -invariant element X ∈ m

extends as a G-invariant vector field X̃ on M = G/H . If X ∈ z ⊂ m then X̃ = X∗,
that is LX̃g = 0. If 0 �= X ∈ span{Z, ξ} ∩ z, then LZω = Lξω = 0 imply LXω = 0
and, hence, LX̃ω = 0. Combining these equations, we see that LX̃J = 0, which
implies that the Reeb and the Lee vector fields are both holomorphic. Since the
Lee field is a gradient vector field (dλ = 0) this shows that the Lee field is parallel.
This proves the proposition.

Example. Note that the normalizer NG(H) = T 2 = S1 × S1 of H = SO(2) ⊂
SL(2,R) in T 2 × SL(2,R) is compact. Therefore, Theorem 4.10 shows that every
G-invariant lcK structure on M = G/H = T 2×SL(2,R)/SO(2) is of Vaisman type.
This should be contrasted with the fact that S1 × SL(2,R) admits left-invariant
non-Vaisman lcK structures by Theorem 4.9.

4.3. Left-invariant lcK structures on reductive Lie groups

In this section we specialize to the case of left-invariant lcK structures on Lie groups
G. We will not assume that G is compact and will allow the pseudo-Kähler metric
to be indefinite.

Theorem 4.15. Let (G,ω, J) be a Lie group endowed with a left-invariant (proper)
locally conformally pseudo-Kähler structure.

(i) If g = LieG admits a bi-invariant (possibly indefinite) scalar product B with
non-isotropic B−1λ, then the dimension of the centralizer of v (as defined in
Lemma 4.13) in g is at most 2.

(ii) If g is reductive, then we have either g = u(2) or g = gl(2,R), and (ω, J) is one
of the locally conformally pseudo-Kähler structures classified in Theorems 4.6
and 4.9. In both cases there exist locally conformally pseudo-Kähler structures
that are not of Vaisman type and in the case g = gl(2,R) there even exist such
structures that are not of Vaisman type with positive definite metric.
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Proof. We keep the same notation as in the proof of Lemma 4.13. We first note
that since B−1λ is non-isotropic, g is splittable; and thus [ω] = 0 in H2

λ(g). The
equation

adv = −Aω − λ⊗ v − 2φ⊗Agξ

proven there (without using the compactness assumption of Lemma 4.13) shows
that the rank of adv is at least rkω − 2 = dim g − 2. This implies that Zg(v) is at
most two-dimensional. This proves (i). Now we prove (ii). If g is reductive the image
of adv is necessarily a proper subspace of s. To see this it is sufficient to decompose
v according to the decomposition g = s ⊕ z. This proves that the image of adv in
s is a hyperplane and that Zs(v) is one-dimensional, since 0 �= Agξ ∈ z. Since the
nilpotent part as well as the semisimple part of adv|s belongs to Zs(v) ⊂ s ∼= ad(s),
it follows that adv |s is either semisimple or nilpotent. It is clear that the dimension
of the centralizer of a semisimple element in a semisimple Lie algebra s is bounded
from below by the rank of s. The same is true for a nilpotent element. In fact, by a
theorem of de Siebenthal, Dynkin and Kostant [2, Theorem 4.1.6], the dimension of
the centralizer of a nilpotent element in a semisimple Lie algebra s is bounded from
below by the rank of s [2]. This proves that rk s = 1 and g = u(2) or g = gl(2,R),
since dim z ≤ 2 and dim g is even.
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