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0. Introduction

Recall that the notion of a locally conformally Kéahler (or shortly an lcK) manifold
(M,w,J) is a generalization of the geometric structure encountered on the Hopf
manifolds [8], see Definition 2.13. The study of lcK manifolds goes beyond the
framework of Kahler and symplectic geometry while still remaining within that of
complex and Riemannian geometry. Ignoring the complex structure J one arrives
at the more general notion of a locally conformally symplectic (or shortly an lcs)
manifold (M, w). Such manifolds were first considered in [6]. The fundamental 2-
form w satisfies the equation

dw=ANw

for some closed 1-form A, see Definition 1.11. The relation between lcK manifolds
and lcs manifolds is analogous to the one existing between Kéhler manifolds and
symplectic manifolds.

This work started in September 2010 during a meeting in Japan with discus-
sions about the work of Hasegawa and Kamishima on compact homogeneous lcK
manifolds. And conversely, some of the results of this collaboration have influenced
[5, 4] where this paper is referenced. This applies in particular to the proof of Theo-
rem 4.10 that a homogeneous lcK manifold of a reductive group is of Vaisman type
if the normalizer of the isotropy group is compact. In the special case of compact
groups, this theorem has been proved in [4, 3] (c.f. [7] for a proof under additional
assumptions).

Now we describe the structure of this paper and mention some of its main results.
In Sec. 1 we describe some general constructions relating symplectic manifolds,
contact manifolds, symplectic cones and lcs manifolds. In Sec. 2 we prove more
specific results relating Kahler manifolds, Sasaki manifolds, Kéhler cones and IcK
manifolds. The main new object is an integrable complex structure compatible
with the geometric structures considered in Sec. 1. We believe that the systematic
presentation in Secs. 1 and 2 of the paper is useful although part of the material is
certainly known to experts in the field. In any case, it is a basis for our investigation
of homogeneous locally symplectic and 1cK manifolds in Secs. 3 and 4 respectively.
Under rather general assumptions, we first prove that the dimension of the center
of a Lie group of automorphisms of an lcs manifold is at most 2. The main result of
Sec. 3 is then a classification of all homogeneous locally symplectic manifolds (M =
G/H,w) with trivial twisted cohomology class [w] € H3(g,h) (see Theorem 3.9).
These assumptions are satisfied if g is reductive (see Proposition 3.11).

In the last and main section we focus on homogeneous lcK manifolds of reductive
groups. As a warm up, we begin by classifying left-invariant 1cK structures on four-
dimensional reductive Lie groups. We find that not all of them are of Vaisman
type. In Theorem 4.15 we give the classification of left-invariant lcK structures on
arbitrary reductive Lie groups. The case of general homogeneous spaces G/H of
reductive groups G is related to the case of trivial stabilizer H by considering the
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induced 1cK structure on the Lie group Ng(H)/H. Assuming the latter group to be
compact, we prove that the initial IcK structure on G/H is necessarily of Vaisman
type (see Theorem 4.10).

1. Symplectic Manifolds, Contact Manifolds and Symplectic Cones
1.1. Contactization

Definition 1.1. A symplectic manifold (M, w) is called A-quantizable if there exists
a principal bundle 7 : P — M with one-dimensional structure group 4 = S* or R
and connection # such that df = 7*w.

The closed 2-form w gives rise to a Cech cohomology class [¢] € H?(M,R),
which can be defined as follows. Let (U,) be a covering of M by contractible open
sets such that the intersections Ung := Uy NUp and Uygy := U, NUgNU, are also
contractible. By the Poincaré Lemma, on each U, we can choose a 1-form 6, such
that df, = w|y, . Similarly, the 1-form

604ﬁ = 0a|Ua[3 - 65|Uaﬁ

is closed and, hence, 8,3 = df,s for some function fog = —f3a € C°°(Uag). Finally,
the function

Capy = ff’tﬁ'Uaﬁ»y + fﬁ7|Uaﬁ'y + f'Ya|Ua[5'y

is closed and hence constant. By construction, ¢ = (cagy) is a Cech 2-cocycle
with values in the constant sheaf R. One can check that the corresponding class
[c] € H*(M,R) depends only on the de Rham cohomology class [w] € H?(M,R).
We will call [¢] the characteristic class of the symplectic manifold (M,w). Recall
that a class [¢] € H?(M,R) is called integral if it can be represented by an integral
cocycle, that is a cocycle ¢ = (cqpy) such that cap, € Z.

Proposition 1.2. A symplectic manifold (M,w) is S'-quantizable if and only if
its characteristic class [c] € H*(M,R) is integral. It is R-quantizable if and only if
[c] = 0. In particular, any exact symplectic manifold is quantizable.

Definition 1.3. Any such pair (P, #) will be called a contactization (or, more pre-
cisely, A-contactization, where A = S! or R) of the symplectic manifold (M,w). By
a contact manifold we will understand a manifold P of dimension 2n + 1 together
with a globally defined contact form 6, that is df™ A 0 # 0. A contact manifold
(P,0) will be called regular if its Reeb vector field Z generates a free and proper
action of A = St or R.

Proposition 1.4. Any contactization (P,0) of an A-quantizable symplectic man-
ifold (M,w) is a regular contact manifold with global contact form 6. The group
Aut(P,0) contains the one-dimensional central subgroup A, which is the kernel of
the natural homomorphism Aut(P,0) — Aut(M,w).
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Proof. 6 is indeed a contact form, since df = 7*w is non-degenerate on the hori-
zontal distribution ker . The Reeb vector field Z is the generator of the principal
action, which is free and proper. O

Proposition 1.5. There is a bijection between A-quantizable symplectic manifolds
(M,w) with H*(M,R) = 0 up to isomorphism and regular contact manifolds (P, 0)
with Reeb action of A =S or R up to isomorphism.

1.2. Symplectic cone over a contact manifold

Let (P,6) be a contact manifold. We denote by N = C(P) = R>? x P the cone
over P with the radial coordinate r.

Proposition 1.6. For any contact manifold (P,0),
2 2
wy =rdr N0+ %d@ =d <T—0>
is a symplectic form on the cone N = C(P).

Definition 1.7. The pair (N,wy) is called the symplectic cone over the contact
manifold (P, 6).

Now we give an intrinsic characterization of symplectic cones in the category of
symplectic manifolds.

Definition 1.8. A conical symplectic manifold (M, w, &, Z) is a symplectic manifold
(M, w) endowed with two commuting vector fields £ and Z such that

w(é,Z2)>0, Lew=2w, Lzw=0.

A global conical symplectic manifold is a conical symplectic manifold (M,w,&, Z)
such that £ is complete.

Theorem 1.9. (i) The symplectic cone over any contact manifold is a global conical
symplectic manifold.

(ii) Conversely, any global conical symplectic manifold is a symplectic cone over a
contact manifold.

(iii) Any conical symplectic manifold is locally isomorphic to a symplectic cone over
a contact manifold.

Proof. (i) Let (N = C(P),wn) be a symplectic cone over a contact manifold
(P, 0). The Reeb vector field of P can be considered as a vector field Z on N, which
together with & = r0, defines a global conical structure. To prove (ii)—(iii) we need
the following lemma.

Lemma 1.10. Let (M,w, &, Z) be a conical symplectic manifold. Let f be a positive
smooth function defined in some open neighborhood U such that df = —izw, i.e. f
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is the Hamiltonian of —Z. Then in U the symplectic form w can be written as

2
w:df/\9+fd9:rdr/\0+%d9,

where

1
0= ﬁn, nN=1tew, T=+/2f.

Remark. The function f is unique up to addition of a constant ¢ such that f+c> 0.
We can choose, for example, f = %w(f , Z), which is characterized by the condition

Lef =2f.

Proof. The symplectic form is exact:

2w=dn, n:=upuw.

We define
1
0:=—n.
o
Then we calculate
df/\&—l—fd@—ﬁ/\ + fd i AN+w=w
—ap af ) T T
Now it suffices to rewrite
2
I=3
to obtain w = rdr A 0 + éd@. O

The lemma proves part (iii) of the theorem. To prove (ii) we remark that using
the flow of the complete vector field ¢ on a global conical symplectic manifold
(N,w,&,Z) we get a global diffeomorphism N = [ x P, where P is some level set
of f = %w(f, Z) and I = (a,b), where 0 > a = inf f, b = sup f. We have to show
that @ = 0 and b = co. Let v : R — N be an integral curve of {. Then L¢f = 2f
implies the differential equation b’ = 2h, where h = f o 5. Therefore, h(t) = ce?!
for some positive constant ¢, since f > 0. This shows that I = R>? and that N is
a symplectic cone N = C(P), where P = {r =1} = {f =1/2}.

1.3. Symplectic cones and locally conformally symplectic
manifolds

Definition 1.11. A lcs manifold (or shortly an lcs manifold) is a smooth manifold
endowed with a non-degenerate 2-form such that dw = A A w for some closed 1-
form A called Lee form. An lcs manifold is called proper if dw # 0. The vector field
Z := Jw '\ is called the Reeb field.

Remark. Since w is non-degenerate, the equation dw = A A w implies d\A = 0
provided that dim M > 4.
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Proposition 1.12. The vector field Z is an infinitesimal automorphism of (M, w).

Proof.
1
Lzw=dizw+ 1zdw = §d)\ +iz(AANw) =0,
since \(Z) =2w(Z,Z) =0 and AA X =0. |

Let (N,wn) be a symplectic cone over a contact manifold (P,6). We define

1 1
Wies 1= r_sz =dtNO+ §d9, t=1Inr.

Proposition 1.13. For any nontrivial discrete subgroup T C R>° the manifold
(N/T = 8! x P wies) is lcs.

2. Kahler Manifolds, Sasaki Manifolds and K&ahler Cones
2.1. Contactizations of Kdhler manifolds

Definition 2.1. A Sasaki manifold (5,g,7) is a Riemannian manifold (S5, g)
endowed with a unit Killing vector field Z, such that J := VZ|5¢ defines an inte-
grable CR-structure on the distribution H := Z+ C T'S.

Let (S,g,7Z) be a Sasaki manifold. Then we define the 1-form
0:=g(Z,-).
Proposition 2.2. For any Sasaki manifold (S, g, Z) the 1-form 0 is a contact form
with the Reeb vector field Z and the CR-structure is strictly pseudo-convex.

Proof. It follows from Definition 2.1 that df = g(J-,-) on Z+ = ker # is non-
degenerate. Hence, 6 is a contact form with positive definite Levi form. Furthermore,
0(Z) =1 and

0= Lze = dee,
which shows that Z is the Reeb vector field. |

The following theorem establishes a one-to-one correspondence between quan-
tizable Kéhler manifolds and regular Sasaki manifolds.

Theorem 2.3. Let A= S' or R.

(i) The contactization of an A-quantizable Kdhler manifold (M,w,J) is a reqular
Sasaki manifold (S,0,9s,Z), where (S,0), m: S — M = S/A, is the contacti-
zation of (M,w) with the fundamental vector field Z of the A-action and

1
gs :02+§Tl'*gM’ gm :LU(,J)

(i1) Conwersely, any regular Sasaki manifold with Reeb action of A is the contacti-

zation of an A-quantizable Kdhler manifold.
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2.2. Cones over Sasaki manifolds and Kdhler cones

Definition 2.4. A conical Riemannian manifold (1, g, §) is a Riemannian manifold
(M, g) endowed with a nowhere vanishing (homothetic) vector field £ such that
V¢ =1d. If € is complete it is called a global conical Riemannian manifold.

Proposition 2.5. (i) The metric cone over any Riemannian manifold is a global
conical Riemannian manifold.

(i1) Conwersely, any global conical Riemannian manifold is a metric cone.

(iii) Any conical Riemannian manifold is locally isometric to a metric cone.

Definition 2.6. A Ké&hler cone (N, gn,J) is a metric cone (N = C(M),gn =
dr? +1%gyr) over a Riemannian manifold (M, gjs) endowed with a skew-symmetric
parallel complex structure J.

Proposition 2.7. Any conical Kdhler manifold is locally a Kdhler cone and any
global conical Kahler manifold is a Kdhler cone.

Theorem 2.8. (i) The metric cone (N = C(S),gn) over a Sasaki manifold
(S,9s,Z) equipped with the complex structure Jy defined by

JN|}( :=J=VZ|}(, JNf :ZZ,

18 a Kdhler cone.

(ii) Conversely, any Kdhler cone is the cone over a Sasaki manifold and any conical
Kahler manifold is locally isomorphic to a Kdhler cone over a Sasaki manifold.

Now we give a characterization of Sasaki manifolds in the class of strictly pseudo-
convex CR-manifolds. In the same way one can characterize pseudo-Riemannian
Sasaki manifolds in the class of Levi non-degenerate CR-manifolds.

Let (P,0,J) be a strictly pseudo-convex integrable CR-structure with globally
defined contact form 6, which defines the (contact) CR-distribution H = ker 6. We
denote by Z the Reeb vector field of 6, such that §(Z) = 1 and df(Z,-) = 0 and
extend J defined on H to an endomorphism field on TP = RZ & H by JZ = 0.
Then we define a natural Riemannian metric gp on P by

1
gp = 0%+ d0C, ).
The vector field Z preserves 6 but does not preserve J and gp in general.

Theorem 2.9. Let (P,0,J) be a strictly pseudo-convex integrable CR-structure
with globally defined contact form 6. Then the symplectic structure wy of the sym-
plectic cone (N,wn) over the contact manifold (P,0) (see Definition 1.7) together
with the cone metric gy = dr? + r2gp defines on N = C(P) = R>% x P an almost
Kahler structure. It is Kdhler if and only if the Reeb vector field is holomorphic,
that is an infinitesimal CR-automorphism: LzJ = 0.
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Proof. We have to check that the skew-symmetric endomorphism Jy = gx,l own
is an almost complex structure. Recall that

2
wy =rdr N0+ Ed&,

2
gn = dr? + 1262 + %d0(~, 7).

From these formulas we see that the decomposition H & span{0,., Z} is orthogonal
with respect to wy and gn. Hence, Jy preserves this decomposition and Jy |4 = J.
We check that JyZ = —¢§ := —r0, and Jy& = Z:

wn(Z,-) = —rdr =—gn(&, ),
wn (&) =120 = gn(Z, ).

Now we investigate the integrability of Jy, that is the involutivity of T“'N C
TCN. The involutivity of H%! follows from the integrability of the CR-structure
J = Jn/|sc. The involutivity of (H+)%! = C(Z + i€) is automatic for dimensional
reasons. Finally the bracket of Z +iJyZ = Z — i with X +iJyX = X +iJX,
X eT(P,H) C (N, H), is computed as follows:

(Z +i6, X +iJX]=[Z,X +iJX] = 2, X] +i[Z, JX],

which is of type (0,1) if and only if [Z, JX| = J[Z, X] for all X, that is if and only
it LzJ=0. O

As a corollary, cf. Theorem 2.8, we obtain the following (connection-free) char-
acterization of Sasaki manifolds in terms of CR-structures.

Corollary 2.10. A Sasaki manifold (P,g,Z) is the same as a strictly pseudo-
convexr CR-manifold (P,60,J) with globally defined contact form 6 such that the
corresponding Reeb vector field Z is holomorphic. The metric g = gp is the natural
Riemannian metric on P defined by the data (0, J).

Theorem 2.11. Let (S;, gi, Zi), it = 1,2, be two Sasaki manifolds. Then the man-
ifold N = S1 x Sy has a two-parameter family of integrable complex structures
J = Jap defined by

J|f}fz :Jiv JZl :a21+bZ27 JZ2 :CZI _GZQ,

where a € R,b#0,¢c= —% and (H;, J;) is the CR-structure of S;. The complex
structures Jean := Jo,1 and —Jean 1= Jo,—1 are the only structures in the family Jq
for which the product metric is Hermitian.

Proof. This follows from the Newlander—Nirenberg theorem by a direct
calculation. 0
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As a special case we obtain the famous complex structures on products of
spheres, constructed by Calabi and Eckmann.

Corollary 2.12. The product of two odd-dimensional spheres has a two-parameter
family J,, of integrable complex structures. The product metric is Hermitian with
respect to the complex structure Jean.

2.3. Kadbhler cones and locally conformally Kdhler manifolds

Definition 2.13. A IcK manifold (or shortly an lck manifold) is a lcs manifold
(M,w) endowed with a skew-symmetric integrable complex structure J such that
the metric
9= w(" '])

is positive definite. The Riemannian metric ¢ is then called a IcK metric. The 1-form
6 := £J*X is called the Reeb form. The (locally gradient) vector field £ = —3g7*A
is called the Lee field. An IcK manifold (M, w, J) is called Vaisman manifold if £ is
a parallel unit vector field.

Remark that if € is parallel then A(§) is constant. By rescaling w we can always
normalize \(§) = 2w(Z,€) = 2¢9(JZ,£) = —29(£,€) = —2, such that |£] = 1. Note
that, as a consequence of the above definition, the Lee and the Reeb field are related
by

Z = JE.

Similarly one defines the notion of a locally conformally pseudo-Kéhler manifold
and that of a pseudo-Riemannian Vaisman manifold by allowing the metric to be
indefinite.

Vaisman manifolds were first studied by Vaisman, who called them generalized
Hopf manifolds. In [8] he proved the following theorem, which relates them to
Sasaki manifolds. For convenience of the reader we reprove it within the logic of
our exposition.

Theorem 2.14. Let (M,w,J) be a complete Vaisman manifold. Then

(i) the Lee field & and the Reeb field Z = J& are infinitesimal automorphisms
of the lcK structure (w,J) and

(ii) the universal cover of M is a Riemannian product of a line and a simply con-
nected Sasaki manifold S.

Proof. The de Rham theorem implies that the universal cover of a complete Vais-
man manifold is a Riemannian product M = R x S of a line and a simply connected
manifold S, where S is a leaf of the integrable distribution ker A = £+. We already
know that ¢ is a Killing vector field, since it is parallel. We also know that Z
preserves w by Proposition 1.12. Therefore, in order to prove (i), we only have
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to show that £ and Z are holomorphic, that is preserve the complex structure J.
We recall that a (real) vector field X is holomorphic if and only if JX is holo-
morphic. Moreover, under this assumption, X and JX commute. Since Z = J¢&, it
suffices to check that ¢ is holomorphic. Now any 1cK manifold (M,w, J) admits a
canonical torsion-free complex connection V, which coincides with the Levi-Civita
connection of the locally defined Kéhler metric § = e 7g, where f is a locally
defined function such that df = A. Indeed, since f is unique up to an additive con-
stant, the metric g is unique up to a constant factor and its Levi-Civita connection
is a well defined connection on M. With our conventions, the explicit expression
for V is

VxY =VxY — %)\(X)Y — %)\(Y)X —g(X, V)& (2.1)

To prove this formula, it is enough to check that the torsion-free connection on the
right-hand side preserves the metric g. This is a straightforward calculation. Using
V¢ =0 and (2.1), we obtain L¢J = VeJ = @gJ =0, as in [8].

It follows from (i) that L¢0 = 0. This means that 6 can be considered as a
1-form on S.

Lemma 2.15. Let (M,w,J) be an lcK manifold. Then
Lew = XEw — AN+ db.

Proof. We calculate

Lew=di+1e(ANw) =db + AE)w — ANE. |

Under the assumptions of the theorem we have A(§) = —2, 0(Z) = 1 and
Lew = 0 such that

1 1
=—=AA0+ =do.
w 2 + 5

This implies that df|s = 2w|s has one-dimensional kernel RZ transversal to H =
ker § = Z+. We have shown that 6 is a contact form on S with Reeb vector field
Z. In order to prove that S is Sasakian, we choose a local function ¢ such that
A = —2dt. Then we can rewrite w and ¢ in the form

wzdt/\&—k%d@,

1
g:dt2+92+§§,

where
g=4do(,J) (2.2)

is the Levi form. One can easily check that the metric g = e?!g is a Kéhler metric

with Kihler form wx = e?!w = d(3€2!0). The substitution r = e’ yields

1
gk =dr* +1gs, gs =0+ 59, =0 =10,
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This is locally a Kihler cone and, hence, its covariant derivative V¥ yields
vEe=1d, VFEZ=vVE(¢ =

Notice that gx|s and gs are homothetic and, hence, the Levi Civita connection
V¥ of (S, gs) coincides with the connection induced by V* on the totally umbilic
submanifold S C (M, gk ). From the GauBl equation we get

V3Z=JX forall X eTSNZ, V3Z=0.
This proves that (5, gs, Z) is a Sasaki manifold. O

Remark. The isometry group of a compact Vaisman manifold does not necessarily
preserve the complex structure. It suffices to consider S* x $2"*! endowed with the
product metric and the complex structure Jg,, of Theorem 2.11. This is an example
of an 1cK manifold as shown in the next proposition.

Let (N, wn, Jn) be a Kéhler cone over a Sasaki manifold (S, gs, Z). Recall that
Wies = At NG+ %d& is a conformally symplectic structure on N, where 6 = g(Z,-) is
the contact form and ¢ = Inr.

Proposition 2.16. For any nontrivial discrete subgroup T C R>Y the complex
structure Jy on the Kahler cone N induces a complex structure J on N/T = St x
S such that (N/T,wies,J) is a Vaisman manifold. The group S' = R>°/T acts
freely, holomorphically and isometrically (with respect to the lcK metric) on the lcK
manifold N/T' and Z is an S*-invariant holomorphic Killing vector field on N/T.

Proof. By Proposition 1.13, (N/I',wies) is les. Therefore to prove that it is 1cK
it suffices to show that .Jy is invariant under the group R>Y and, hence, induces
a complex structure J on N/I'. This follows from the equations Lewy = 2wy,
Legn = 29w, since Jy = g;,le. The group R>? acts isometrically on N with
respect to the Riemannian metric

wlcs(-, JN-) = dt? +3gs, (23)

which induces the 1cK metric gicx on M. In fact £ = 0; is an obvious Killing vector
field for the metric (2.3). This shows that ST acts isometrically on (N/T', gick)-
Obviously £ = 0, is a parallel unit field and preserves the 2-form wy.s = dt A0+ %d&.
In particular, (N/I', wies, J) is a Vaisman manifold. m|

The above complex structure on N/T' = S! xS coincides with the complex struc-
ture Jean of Theorem 2.11. The next theorem shows that the Vaisman manifolds of
Proposition 2.16 admit a canonical two-parameter family of Vaisman deformations.

Theorem 2.17. Let (N =R>% x S, wy, Jy) be a Kdihler cone over a Sasaki man-
ifold (S, gs, Z) endowed with the lcs structure wies = dt A0+ %d&. Then (Wics, Jab)s
where Jop is defined in Theorem 2.11, is a Vaisman lcK structure on N/T' = Stx S
if and only if b > 0. The Reeb vector field Z and the Lee vector field o p = —J5 ,Z
are holomorphic Killing vector fields for all of these structures.

1541001-11
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Proof. J,; is skew-symmetric with respect to wics, since
1
Gap = —Wics(Ja by -) = bdt? — c0? — 2adth + 5@

is symmetric. (Recall that g stands for the Levi form of S, see (2.2)). The metric
Jab is positive definite if and only if b > 0. Since J, 3 is integrable, by Theorem 2.11,
we see that (S' X S, wics, Jap) is IcK if b > 0. The vector fields &ean = €01 = O
and Z preserve the 1-forms dt and 6 and, hence, the metrics g, . Since the Reeb
field always preserves w, this implies that both vector fields are holomorphic for all
Jab. As a consequence, any linear combination of 9, and Z, such as &, is also
a holomorphic Killing vector field for any of the complex structures in the two-
parameter family. It remains to check that the IcK structure (wics, Jq5) is Vaisman.
The Lee field £, = —%g;}))\ is given by

§a7b = —c@t + al.

A direct calculation using the Koszul formula for g = g, shows that for all X,Y €
H =ker § nker A C T'N we have

29(VxY,0) = g([X,Y],0¢) = —af([X,Y])
29(VxY,Z) = -Zg(X,Y) +g([X,Y], Z) — g(X,[Y, Z])
—g(Y, [Xv Z]) = _00([X7 Y])a

since Lzg = 0. As consequence, we obtain

0V x60s V) = ~g(VxYiEas) = 3 (ac — ca)d([X.Y]) =0,

for all X, Y € J. Using the fact that &, ; is a holomorphic Killing vector field, proven
above, we see that to prove V§,, = 0 it is enough to check that V¢, £, L H. Let
X € I'(H) be a local section, which commutes with &, ;. Then the Koszul formula
yields

QQ(VEa,b§a7b7 X) = _Xg(fa,ba ga,b) = 0. O

Corollary 2.18. The Vaisman manifold (S* x S*" 1 wies, Jean), n > 1, admits a
two-parameter deformation by Vaisman lcK manifolds (S x S?" 1, wieg, Jap), b>0.
The group T? x SU(n+1) = St x U(n+1) acts transitively on S* x S?"+1 preserving
all of these IcK structures. It is the maximal connected Lie group preserving any
of the above IcK structures. For b # 1 this group coincides with the full connected
isometry group of the lcK metric g, . For b =1 the full connected isometry group
is strictly larger, that is Isomg (St x S?"*1 gean) = St x SO(2n + 2).

3. Homogeneous Locally Conformally Symplectic Manifolds

Here we give a description of homogeneous lcs manifolds.
Let (M = G/H,w) be a homogeneous lcs manifold with Lee form A. For
all of this section we will assume that G is connected and effective and that
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dw # 0. We will consider w and A as h-invariant forms on the Lie algebra g which
vanish on b.

3.1. A bound on the dimension of the center

Proposition 3.1. If A does not vanish on the center 3 of g then dim 3 < 2.

Proof. As )\ is closed g* := ker A C g is an ideal. Since M is lcs we have the
equation dw = A A w on g. Let Zy,Z1 € 3, AM(Zy) = 1, Z1,X € ker \. Then the
above equation yields

0= dw(Zo7 Zl,X) = w(Zl,X).
This shows that 3 N g* C ker w|ygx, which implies dim 3 N g* < 1 and, hence,
dim 3 < 2. O

Corollary 3.2. If g admits an ad-invariant (possibly indefinite) scalar product b
such that the vector Zy := b~ X is not isotropic then dim3 < 2.

Proof. It suffices to prove that Zy € 3. For all X,Y € g we have:
b([Z07 X]7 Y) = b(Zo, [X7 Y]) = )‘([Xv Y]) = _d)‘(X7 Y) =0. o

Corollary 3.3. If G is reductive then dim Z(G) < 2. In particular, a reductive
automorphism group of a homogeneous lcs manifold has at most two-dimensional
center.

Proposition 3.4. Let (M = G/H,w, g) be a homogeneous Vaisman manifold such
that G = Aut(M,w, g). Then the center 3 of g is two-dimensional.

Proof. By Theorem 2.14, the Reeb vector field is an infinitesimal automorphism
of (M,w,g), which generates a one-parameter subgroup of G. Any vector X € g
defines a Killing vector field X™* on M. Let us denote by Z € g the Reeb vector,
that is the vector such that Z* is the Reeb vector field. Then the G-invariance of

Z* implies that 0 = Lx«Z* = [X*, Z*] = —[X, Z] for all X € g. Thus Z € 3, which
implies dim 3 > 1. The same argument applies to the Lee field ¢ = —JZ, showing
that dim 3 > 2. On the other hand, Proposition 3.1 shows that dim 3 < 2. O

3.2. A construction of homogeneous lcs manzifolds

Let G be a Lie group with the Lie algebra g and @ = Adg¢ = G/K the coadjoint
orbit of an element ¢ € g*. We denote by wg the (invariant) Kirillov-Kostant
symplectic form in @ given by

(WQ)¢'(X ' d)I’Y : d)l) = ¢/([X7Y})7 (ZS/ S Qa X7Y €y,
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where X - ¢/ = —¢' cadx € Ty Q. Identifying wg with an Adg-invariant 2-form on
g vanishing on € = Lie K we can simply write

wo(X,Y)=0¢(X,Y]), X, Yeg

We will assume that the orbit @ is not conical, that is it is not invariant with
respect to multiplication by positive numbers. Then the restriction ¢[¢ of the form
¢ to the stability subalgebra £ is not zero and b := ¢Nker ¢ is an ideal of ¢ (see [1]).
We will assume that the subalgebra h generates a closed subgroup H of G. Then
we have the following.

Proposition 3.5 ([1]). The 1-form ¢ defines an invariant contact structure ¢
in P = G/H and the contact manifold (P = G/H,®) is a quantization of the
homogeneous symplectic manifold (Q = G/K,wq), that is ¢ is a connection on
the A-principal bundle P = G/H — G/K with the curvature form wq, where
A=K/H=R or= 8!,

Let D be a derivation of the Lie algebra g and g(D) := RD + g the associated

Lie algebra with the ideal g. We denote by A the closed 1-form dual to D (such
that A(D) = 1, A(g) = 0) and define a 2-form w on g(D) by

w=—=AN¢+ do. (3.1)
It is an ad’,;—invariant 2-form with kernel h and satisfies
do=ANdp=ANw.

We denote by G(D) a Lie group with the Lie algebra g(D) and by H its closed
(connected) subgroup generated by h. Obviously, we have the following.

Proposition 3.6. The Adj;-invariant 2-form w defines an invariant lcs structure
w on the homogeneous manifold M = G(D)/H, that is an invariant non-degenerate
2-form w such that dw = XA A\ w.

We say that (M = G(D)/H,w) is a homogeneous lcs manifold associated with
the non-conical orbit @ = Adg¢ and a derivation D of the Lie algebra g.

Remark. Let (M,w, J) be an 1cK manifold of Vaisman type with Lee form A and
Reeb form 6. Then Eq. (3.1) holds with ¢ = 6.

3.3. The main result for homogeneous lcs manifolds

In this subsection we show as a main result (Theorem 3.9) that the above con-
struction gives all homogeneous lcs manifolds satisfying a certain cohomological
assumption, which we will explain now.

Let (M = G/H,w) be a homogeneous lcs manifold with Lee form A\. We consider
w and \ as Adj;-invariant forms on the Lie algebra g, which vanish on h. Then w
defines a cohomology class

ker(dy : C%(g,h) — C3(g,h))
im(dy : C'(g,h) — C?(g,h))’

[w] € Hi(g,b) =
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where
C*(g,h) == {a e (A*g") |1xa =0 for all X € b}
is the vector space of Adj-invariant alternating k-forms vanishing on f and
dya:=doa—AAa, forall aeAfg*

We will assume that [w] = 0, which means that there exists ¢ € C(g, b) satisfying
Eq. (3.1). Recall that g’ := g* = ker \ is an ideal of g which contains h. We can
write

g=RD+g

where D € g such that A(D) = 1. The assumption dw # 0 implies that A and ¢ are
linearly independent. Therefore, adding an element of g’ to D, we can assume that
¢(D) = 0. The restriction w’ = w|y is a closed 2-form on g’ and its kernel ¢ is a
subalgebra which contains the codimension one subalgebra b.

Lemma 3.7. Let (M = G/H,w) be a homogeneous lcs manifold with Lee form A
and dw # 0. Assume that G contains the one-parameter subgroup generated by the
Reeb vector field Z (see Proposition 1.12 and note that Z is automatically complete
since it is G-invariant). If [w] = 0 in H3(g,h) then the form w can be written as

w=—AA ¢+ do,

where ¢ is an Adj-invariant 1-form on g with ker ¢ D RD + § which is not zero
on t. Moreover,

Proof. Since [w] = 0, Eq. (3.1) holds for some Adj-invariant 1-form ¢ which
vanishes on h. The inclusion ker ¢ D RD + h holds by our choice of D, as explained
above. We prove that ¢|¢ # 0. Let Z € g be the central element which corresponds
to the Reeb vector field. Then adZ1) = 0 for every k-form ¢ on g and, in particular,

Lzdd = —adl¢ = 0. (3.2)

Next we observe that the definition of the Reeb vector field (see Definition 1.11)
implies that

ANZ) =0, (3.3)
since w is skew-symmetric. Therefore Egs. (3.1) and (3.2) show that
w(Z,-) =¢(2)A. (3.4)
Since w is non-degenerate on g/h this implies that
o(2) 40 (3.5)

and, hence, w(D, Z) = —¢(Z) # 0. So the plane E spanned by D and Z is w-non-
degenerate. Let m’ C g’ be a subspace such that m’ N'h = 0 and which projects
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to the w-orthogonal complement of £ = (E + h)/h C g/b in g/b. In particular
m’ L, Z implies

g =ker \=h+RZ+m', (3.6)

in view of (3.3) and (3.4). Now we see that
t=kerw =h+RZ, (3.7)
which, by (3.5), proves that ¢ does not vanish on €. O

We claim that the kernel € of the exact 2-form w’ = w|g = d(¢|y) on g’ coincides
with the stabilizer of ¢' := ¢|g in the coadjoint representation of g'. In fact, this is
a consequence of the equation

W'(X,)=—¢po adx|gr,

which holds for all X € ¢/, in view of (3.1). Hence, the corresponding subgroup K of
the group G’ C G is closed. By Lemma 3.7, the coadjoint orbit @ := Adf.¢' = G'/K
is not conical and h = €N ker ¢ generates a closed subgroup H € G’ C G. The
Adj-invariant 1-form ¢’ on g’ defines a contact form on P = G'/H and the contact
manifold P = G'/H is a quantization of the symplectic manifold @ = G'/K. The
contact property follows from the fact that d¢’ = w’ induces a non-degenerate
2-form on g’/¢ (see Lemma 3.7, and the next lemma).

Lemma 3.8. Under the assumptions of Lemma 3.7, we have

ker ¢ +t=g'. (3.8)

Proof. Since ¢ and A are linearly independent, ¢’ = ¢|y # 0 and ker ¢’ C g’ is a

hyperplane. By (3.5), Z ¢ ker ¢'. Therefore, ker ¢/ + RZ = ¢, which implies (3.8).

O

Since adp |g’ is a derivation of the Lie algebra g’, we can write g = g'(adp) and
the 2-form w on g has the form

w==AN¢+do,
where ¢ is the canonical extension of ¢’ to a 1-form on g. This shows the following.

Theorem 3.9. Any homogeneous lcs manifold satisfying the assumptions of
Lemma 3.7 can be obtained by the above construction, that is it is associated with a
non-conical coadjoint orbit Q = Adg.¢ = G'/K of a Lie group G' with the standard
symplectic form wg = dé and a derivation D of the Lie algebra g'. More precisely, it
has the form (M = G'(D)/H,w) where the Lie algebra of G'(D) is the D-extension
g (D)=RD+¢ ofg,h:=ker oNt and w=—-IAA ¢+ do.

Now we give some sufficient conditions which ensure the cohomological assump-
tion used in this section.

Definition 3.10. A homogeneous lcs manifold with Lee form A is called locally

splittable if the ideal g = g C g has a complementary ideal, that is
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g=RDa@g (D € g). It is called splittable if G = A x G*, where A = R
or A= St

Proposition 3.11. Let (M = G/H,w) be a locally splittable homogeneous lcs man-
ifold with Lee form X\ and dw # 0. Then [w] = 0 in H}(g,b), Hi(g,h) = 0 and
dim Z(g’) < 1. In particular, this is the case if g is reductive.

Proof. We may assume that A(D) = 1. Then we decompose w as
w=-AN¢p+u, (3.9)

where ¢ and w’ are Ad}-invariant forms on g’, which vanish on §. Differentiating
this equation and comparing with the lcs equation, we obtain

do=ANdp+dv' =XANw=AAw'"
This shows that
W' = do.

Substituting this into (3.9) we get dy¢ = w. To prove H; (g,h) = 0, let o € C'(g, b)
be a dy-closed form. We decompose it as

a=c\+d,
where ¢ is a constant and o/ € C'(g,h) C C(g,b). Differentiation yields
0=dya=—-AAd +dd,

which implies o/ = 0 and o = e\ = —cd)1, where 1 € C%(g,h) = R. The bound on
the dimension of the center of g’ follows from Proposition 3.1. |

Corollary 3.12. Let Q = G/K = Adg¢ be a non-conical coadjoint orbit such that
the normal subgroup H C K generated by h = ker ¢|¢ is closed. Then (P = G/H, ¢)
is a homogeneous contact manifold and (M = A x P,w = —dt A ¢ + do) is a
homogeneous lcs manifold, where A = R or A = S'. Conversely, any splittable
homogeneous proper lcs manifold (M = G/H,w) with Lee form A can be obtained
from this construction.

We remark that the covering R x P of the lcs manifold A x P in the previous
corollary, where R — A is the universal covering group, is globally conformal to
the symplectic cone over the contact manifold (P, ¢) after a redefinition ¢ = —2¢:
w=2(di A ¢+ 3dp) = Z(rdr A ¢ + 5 dg), where § = Inr.

4. Homogeneous Locally Conformally K&hler Manifolds
of Reductive Groups

4.1. Left-invariant lcK structures on four-dimensional
reductive groups

In this section we prepare the classification of homogeneous lcK manifolds of reduc-
tive groups, to be given in Theorem 4.10, by classifying left-invariant 1cK structures
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on four-dimensional reductive groups. We first describe all left-invariant complex
structures J on such groups, then all left-invariant lcs structures w and finally all
left-invariant locally conformally pseudo-Kéhler structures (w, J). In particular, we
describe all IcK and Vaisman examples. This extends the results of [4, Sec. 4]. The
following lemma is a well known basic fact.

Lemma 4.1. For any Lie group G, the map
J — 1y :=Eig(J, 1) = ker(J — iId)

induces a one-to-one correspondence between left-invariant complex structures J on
G and (complex) Lie subalgebras | =17 C g such that

g =1+pl, INpl=0, (4.1)

where p denotes the real structure (i.e. complexr anti-linear involutive
automorphism) on g with the fized point set g.

Let g be a four-dimensional non-commutative reductive Lie algebra, that is
g=u(2) or g = gl(2,R), and G any connected Lie group such that g = LieG. We
may take G = U(2) or G = GL(2,R). Let us denote by g = 3@ s the decomposition
of the reductive Lie algebra g into its center 3 = Reg and its maximal semisimple
ideal s = [g, g], which is su(2) or sl(2,R). We denote by e” the 1-form on g which
vanishes on s and has the value €°(eg) = 1.

Lemma 4.2. Let G be a (connected) four-dimensional non-commutative reductive
Lie group. Up to conjugation by an element of G, every left-invariant complex struc-
ture J on G is defined by a subalgebra |; = span{eq + €’,€"} such that €’,e” € s,
[e/,e"] = pe”, p € C*. In particular, " belongs to the cone C C sl(2,C) of nilpo-
tent elements. This is precisely the null cone with respect to the Killing form of
s1(2,C) = C3.

Proof. We have to describe all subalgebras [ C g© = C @ sl(2, C) satisfying (4.1).
From ps® = s€ we see that [ ¢ s© = s[(2, C). Therefore [ admits a basis of the form
(eg + €' e"), where €', e” € sC. Then

[eo +¢, ¢ =[¢,e"] € INsC =Ce”

shows that

"

e/, €] = ue”, pecCH (4.2)

Therefore span{e’, ¢’} C sC is a Borel subalgebra and e” belongs to the cone C. O

Lemma 4.3. Given a complex structure J on g and a 1-form ¢ € s* C g* such that
w = e9A\¢p+d¢ is non-degenerate (and, hence, defines an lcs structure), the structure
(w,J) is locally conformally pseudo-Kdhler if and only if 1; = span{eq + ¢’,e”} C
g€ s isotropic with respect to w. This is the case if and only if either n = 1 or

¢(e") = 0.
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Proof. Notice first that the 2-form w is J-invariant if and only if it is of type (1,1),
which means that [; and pl; are isotropic. Next we evaluate w = €% A ¢ + d¢ on
the basis of [:

wleo +e',e”) = p(e”) — d([e’,e"]) = (1 — p)o(e”). O

The compact case

Let us first consider the case s = su(2) and denote by (e1, ez, €3) a basis of su(2) Such
that [eq, eg] = —e, for every cyclic permutation of (1,2, 3). In the following («, 3, 7)
will be always a cyclic permutation. Then the basis (e, e!,e?,e3) of g* = (2)*

which is dual to (eg, e1, €2, e3) has the following differentials:
de® =0, de®=¢e"" =’ ne.

Proposition 4.4. Up to conjugation by an element of U(2), every left-invariant
complex structure J on U(2) is contained in the following Calabi-Eckmann family

Jeg = aeg +bey, Jey =ceg—aey, Jes = —e3, Jez=ea, (4.3)
which depends on two-parameters a € R and b € R*; ¢ = —%.
Proof. We specialize the description of complex structures in Lemma 4.2. Since
U(2) acts transitively on the quadric Q = P(C) = CP! we can assume that e” =
es + iez. Then Eq. (4.2) shows that e/ = —ipe; (mod Ce”) and we can choose the
above basis of [ such that e/ = —iue;. Then (4.1) is satisfied if and only if pe’ # ¢/,
i.e. u € iR. This shows that the complex structure J defined by [; = [ is given by
(4.3), where p = p1 + ius is related to a, b, ¢ by

2
1
a:@7 b:'ﬂ, c=——. (4.4)

M1 M1 M1 O

Proposition 4.5. Up to scale, every left-invariant lcs form on U(2) is of the form
w=e" A\ ¢+ dop, (4.5)
where ¢ =Y ane® € % is any nonzero form. All these structures are equivalent up

to conjugation in U(2).

Proof. Let w be an lcs structure on g = u(2). Since € is the only closed 1-form

on g, up to scale, we can assume that the Lee form of w is given by A = —e®. The
canonical 1-form of w is given by a nonzero element ¢ € s* and any such element
defines an lcs structure w by the formula (4.5). m|

Theorem 4.6. Let J = J, be any of the left-invariant complex structures on
G =U(2), as defined in (4.3).

(i) If (a,b) # (0,1) then, up to scale, there is a unique left-invariant lcs structure
w on U(2) such that (w,J) is locally conformally pseudo-Kdhler. It is given by
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w = e +e23. All these structures are of Vaisman type. The locally conformally
pseudo-Kdahler metric g = —w o J is definite if and only if b < 0.

(ii) If (a,b) = (0,1) then (w,J) is locally conformally pseudo-Kdhler for every
left-invariant lcs structure w on U(2). The metric is always indefinite and the
structure (w, J) is of Vaisman type if and only if w is proportional to e®t + e%3.

Proof. The pair (w,J) defines a locally conformally pseudo-Kéhler structure on
G if and only if [; = span{eg + ¢’,¢”} C g* is isotropic with respect to w, where
e’ = —ipey, € = es + ieg. To check this property we evaluate (4.5),

w = —A/\d)—kdd)zZaaeoo‘ —|—Zaaem (4.6)
on the above basis of [;:
w(eo +€',€") = as +iaz + aze® (—ipey,ies) + aze’*(—ipey, e2)
= ag + taz — pas — iuas
= (1—p)(az +ias).
So we see that [; is w-isotropic if and only if either

(i) az = az =0, that is w = €% + €23, up to scale, or
(ii) p =1, that is (a,b) = (0,1).

In case (i) we compute

26 =w LT N = —w Hae® + ce') = —(—aey + ceo) = aey — ceg
and

27 = 2J¢ = a(ceg — aey) — caeg + bey) = (—a® — cb)e; = e;.

This shows that X = 2(¢ —aZ) = —ceg € 3 and, hence, defines a (nonzero) Killing
vector field. On the other hand, L,w = 0 for all v € span{eg,e1} = span{Z, ¢},
since eg, e1 € ker d¢ = €23, where

Lyi=dou, +u,0d: ANFgt — Akg*

is the linear map induced by the Lie derivative in direction of the left-invariant
vector field associated with the vector v € g. In particular, Lxw = 0. These two
properties of X show that X and, therefore, JX define (real) holomorphic vector
fields. Writing £ as a linear combination of X and JX we see that also £ defines a
holomorphic vector field. On the other hand, by the same argument as for X we
see that Lew = 0, since £ is a linear combination of eg and e;. Therefore ¢ defines
a Killing vector field. Now it suffices to remark that a locally conformally pseudo-
Kahler manifold is Vaisman if and only if the Lee field is Killing. In fact, the Lee
field is locally a gradient vector field (due to d\ = 0) and a gradient vector field is
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Killing if and only if it is parallel. To finish the proof of (i) we have to check when
the metric ¢ = —w o J is definite. We compute
wodJ=J@e — T @eg+ J e @e> — T @ €2
= (ae’ +cel)@e! — (be® —ael) @ +e3 @ed +e? ®e?
= —b(e%)? + 2ae’" + c(e')? + () + (e?)?,
which is definite if and only if b < 0. To prove (ii) we compute w o J for w given in
(4.6) and J = Jp 1:
wolJ = Zaa(J*eO Re* — Je*®el) + Zaa(J*eﬂ ®e¥ — J*e¥ @ eP)
=— Z ane’ @e® — a1 (e")? — age® @ € + aze? ® e + a1 ((e?)? + (€3)?)
—ax(®@et +e®®@e®) Faz(®@e? — e @el)
= —a1(e")? — a1(e”)? + a1(e*)? + a1(e®)? — 2age’e?
0

— 2a36163 — 2a5e3e? + 2a3626 .

This metric is always of signature (2,2). Now suppose that (w,J) is of Vaisman
type. Then the Lee vector £ satisfies L¢¢p = 1ed¢ = 0. This implies that ¢ is a linear
combination cpeg + ¢1d@ of eg and @ = Y ageq. Since g(&,-) = —%)\ applying w o J
to coep + c1d should be a multiple of A\ = —e®. We calculate

wd(coep + c1d) = co(—a160 — ase® + a362) + clal(—alel — age? — a363)
+cras(are® — agze' 4 aze®) + craz(ae® — aze — azel).
The coefficient of e! is
—C1 Z ai

and has to vanish. Since @ # 0 this shows that ¢; = 0 and that ¢ is proportional to
eo. Then

0

wdeg = —a1e’ — ase’ + ageQ,

which is proportional to e? only if ay = a3 = 0. This implies w = %1 + €23 up to a
factor, as claimed. O

The non-compact case

Let us now consider the case s = s((2,R) and denote by (h,e4,e_) a basis of
sl(2,R) such that [h,es] = +2ey4, [e4,e—] = h. Then the basis (e, h*,eT,e™) of
g" = gl(2,R)* which is dual to (eg, h, e, e_) has the following differentials:

de® =0, dh* =—et ne™, deT = F2h* Net.
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We denote by p the standard real structure on g® associated with the real form
g =gl(2,R).

Proposition 4.7. Up to conjugation by an element of GL(2,R), every left-
invariant complex structure J on GL(2,R) belongs to one of the following two
families depending on p = py + ips € C\iR.

(i)

H2 |N|2
Jeg = —epg— —(ex —e_
0 " 0 2M1( + )
Jh:€+ +e_
1 125 1
Jer =+—egF —(ey —e_)— =h.
- " 2.“1( * ) 2
(ii)
M2 |/i|2
Jeg = —epg+ —(ex —e_
O 2.“1( * )

Jh=—(ex+e_)

1 2 1
Jer = F—egF —(eqy —e_)+ =h.
0 2u1( + )+ 5

These two families are related by the outer automorphism of gl(2,R) which maps
(e, h,ex) to (e, h,—ex). (See remark below for a description of these complex
structures in a basis which is orthonormal with respect to a suitably normalized
bi-invariant scalar product on gl(2,R).)

Proof. As before, any complex structure is defined by a subalgebra [ C g€ sat-
isfying (4.1). The latter admits a basis (eg + €’,e”), where €/,¢” € sC. Then
[e/,e"] = pe”’, uw e C*, and ¢” € €. The group SL(2,R) has three orbits on the
quadric Q = P(C). As representatives e” of these orbits we choose

ey, th4+ey+e_, h+iley+e).

The first case is excluded, since pey = e, . The elements e’ corresponding to e =
th+er +e_ and ¢’ = h +i(es + e_) are given by
T T
7(@ —e-), —7(€+ —e-).
Again p ¢ 1R by (4.1). This gives the two families (i) and (ii). m|
Using the Killing form we can identify s* with s. Since the Killing form of

s = 5l(2,R) is Lorentzian we can further identify s with a Lorentzian vector space
R%1,

Remark. Putting e := (e; —e_)/2, e2a = h/2, e3 := (e4 + e_)/2 and using the
abbreviations (4.4) we can rewrite the complex structures in Proposition 4.7 in a
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form similar to (4.3):
(i)

Jeg = aeg —bey, Jey = —ceg—ae;, Jex=e3, Jez= —es.
(i)

Jeg =aeg + bey, Jey =ceg—aer, Jes=—e3, Jez=es.

Proposition 4.8. Up to scale, every left-invariant lcs form on GL(2,R) is of the
form

w=e"A¢+dop, (4.7)

where ¢ = 3" ane® € 5% =25 = 5[(2,R) = R*! is any non-isotropic 1-form.

Proof. It suffices to check that w is non-degenerate if and only if ¢ is space-like or
time-like. |

Next we describe all left-invariant lcs structures which are compatible with any
of the complex structures J,, on G = GL(2,R), as described in Proposition 4.7. It is
sufficient to consider the family (i), since it is equivalent to (ii) by an automorphism
of G.

Theorem 4.9. Let J = J,, be any of the left-invariant complex structures on G =
GL(2,R), as defined in Proposition 4.7(i).

(i) If u # 1 then, up to scale, there is a unique left-invariant lcs structure w on
GL(2,R) such that (w,J) is locally conformally pseudo-Kdhler. It is given by

w=e’Alem —e7) =2 A(eT +e7) =€’ Nel —e? ned,

where (€%, el,e?, e3) denotes the basis dual to (eq, e1,ea,e3). All these structures

are of Vaisman type with (positive or negative) definite metric.
(ii) If u =1 then (w, J) is locally conformally pseudo-Kdhler for every left-invariant
les structure w = e A¢p+do on GL(2,R). The locally conformally pseudo-

Kahler metric g = —w o J associated with a non-isotropic 1-form ¢ = aph™ +
ayet +a_e” €5* is given by
1 *
9= —5lay —a)(e")* = 2(ay —a)(h")?

+2(ay +a_)e’h* —2ay(e")? + 2a_(e)?
—ape’ (et +e7) = 2aph* (et —e7). (4.8)

It is of Vaisman type if and only if a, = 0 and ay = —a_ # 0, in which
case the metric is definite. In particular, the locally conformally pseudo-Kdhler
metric g is non-Vaisman and positive definite if and only if, first, ap, # 0 or
ay # —a_ and, second, —a? >4ara_ and a_ > 0> ay.
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Proof. According to Proposition 4.8 any lcs structure on g is of the form w =
e A ¢+ do, where ¢ = aph* +a,et +a_e” € s* is any non-isotropic 1-form. It is
of type (1,1) with respect to J if and only if either (i) ¢(e”) = ap +i(ar +a—) =0
or (ii) p =1 (see Lemma 4.3). In the first case, we have, up to scale, p = et —e™,
which implies w = € A (et —e™) — 2h* A (et + 7). The corresponding locally
conformally pseudo-Kéhler metric g is definite and Vaisman (the above basis of g is
g-orthogonal). In the second case, a straightforward calculation of the metric yields
the above formula (4.8), depending on the parameters aj,a+. Assuming that this
metric is Vaisman, we see that

¢ € kerdo = span {607&' = aQ—hh +ape_ + a,e+}.

So & = aeg + 3d for some («, ) € R?\{0}. Then using (4.8) we see that g(¢,-) is
proportional to A = —e® if and only if the following equations hold

alay +a-) =0,

aap =0,

a2
B <7h + 2a+a) =0.
Since ¢ is not light-like, we see that % + 2aya_ # 0. Therefore § =0 and « # 0,
which shows that a, = a4 + a— = 0. In that case, g = —a(e)? — day (h*)? —
2a (e7)?—2a4 (e)?, which is definite. Now it suffices to check that the metric (4.8)
is always definite if aj, = 0 and aya_ < 0. (In the case a4 < 0 it is positive definite.)
Now that we have characterized the Vaisman case in (ii), it follows that the metric
is non-Vaisman if and only if ap, # 0 or a4 # —a_. So it only remains to check that
the metric is positive definite if and only if —a} > 4a;a_ and a_ > 0 > a,. This
is obtained from a calculation of principal minors. O

4.2. Classtfication of homogeneous lcK manifolds of reductive
groups

In this subsection we prove the following main theorem.

Theorem 4.10. Every homogeneous proper lcK manifold (M = G/H,w,J) of a
connected reductive Lie group G such that H is connected and Ng(H) is compact
s of Vaisman type.

Proof. We assume without restriction of generality that G is effective. As before
we consider the fundamental form w, the Lee form A and the Reeb form 0 = %J A
as H-invariant forms on g which vanish on . By Proposition 3.11 we know that
there exists ¢ € C'(g, h) such that (3.1) is satisfied and that the 1-form ¢ is unique
up to addition of a multiple of \. Let m C g be an H-invariant complement of b
containing the center 3 of g. Let us denote by Z,¢ € m the linearly independent
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H-invariant vectors which correspond to the Reeb and Lee vector fields on M. We
choose ¢ such that ¢(£) = 0. Together with Eq. (3.1) this makes ¢ unique. We will
call ¢ the canonical 1-form. |

Proposition 4.11. Under the assumptions of Theorem 4.10, the canonical 1-form
coincides with the Reeb form 0 up to a factor 1/2:

1
o= 50.
Proof. The proof of Proposition 4.11 is based on the following key lemma, the
proof of which is given below.
Lemma 4.12. Under the assumptions of Theorem 4.10, we have Z,& € ker do.
Using Lemma 4.12, we compute
Lep = 1edp =0,
where, for any Adg-invariant v € m,
Ly =dou,+u,0d:C"(g,h) — C¥(g,h).

L, is the linear map induced by the Lie derivative in direction of the G-invariant
vector field X, which extends v. Since also Le\ = 1edA = 0, Eq. (3.1) implies

Lew=-ANLep+dLep = 0. (4.9)
Now Lemma 2.15 shows that
1 1
NG R

Since w = dx¢ and Hj(g,h) = 0, this proves that ¢ = %9 (mod RA). Finally, for
the canonical 1-form we have ¢(§) = 0, such that ¢ = %0. This finishes the proof
of Proposition 4.11. |

Proof of Lemma 4.12. Let us denote by Gy the maximal connected subgroup of
the normalizer of H in G. Since H is compact, G is reductive. The Lie algebra gg
of Gy is decomposed as

go = b +my,

where my = Zy(h) contains 3, Z and . Since J is H-invariant, the maximal trivial
H-submodule my C m is J-invariant. This implies that w is non-degenerate on my,
because ¢ = —w o J is positive definite. Therefore the restriction of (w,J) to mg
defines an invariant IcK structure on My = Go/H with the Lee form g = A|m,-
Notice that Ay # 0, since £ € mg. Therefore, the 1cK structure on Mj is not Kéhler,
unless dim My = 2. From the fact that H is normal in Gy, we see that My is a Lie
group. In the Kéhler case, the Lie group My is two-dimensional and thus Abelian.
So, in that case, d¢p = 0 and the assertion of Lemma 4.12 follows. Otherwise My
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is at least four-dimensional and the lcK structure is non-Kéahler. Therefore, we can
assume from the beginning that H is trivial. This reduces the proof of Lemma 4.12
to the following special case.

Lemma 4.13. Under the assumptions of Theorem 4.10 and the additional assump-
tion that H is trivial, we have Z, & € ker d¢.

Proof. Let B be a non-degenerate Adg-invariant symmetric bilinear form on g.
Then there exist endomorphisms A,,, Ay, Agg, Axre € End g and a vector v = vy €
g such that

w=BoA,, g=BoA, dp=DBoAys, AN$p=DBoA\ng, ¢ = DBv.

We claim that
Agp = —ady, Axpg =AQ0 +20® AgE.
In fact,
dp = =¢o[,]==B(v,[,]) = B([-,v],") = =Boad,,

ANG=AR¢—0pRA=AQBv— ¢ ®(—29§) = Bo (A@v+20® A ).

The equation w = —A A ¢ + d¢ can now be rewritten as
Ay = =Axpg —ady = A Qv — 20 ® Ay — ad,.

Since A and ¢ are linearly independent (dw # 0), the skew-symmetric endomorphism
Axne has rank two. More precisely,

im Axpg = span{v, A€}

Notice that —2(B o A,){ = —2¢g§ = A. Therefore, the equation d\ = 0 shows that
Ay € 3 = [g,9) 7. In particular, 3 # 0. Since A, has maximal rank, we see that
the image of ad, is complementary to span{v, A;(} in g and of codimension one
in the semisimple Lie algebra s = [g, g] D im ad,. This implies that the centralizer
Zs(v) of v in s is one-dimensional.

This shows that the rank of s is one and dim s = 3. Since the dimension of g
is even, the inequality 1 < dim 3 < 2 implies that dim 3 = 1. Therefore, g = u(2),
because g is compact.

We have proven in Sec. 4.1 that all IcK structures on g = u(2) are of Vaisman
type and, hence, satisfy Z,£ € ker d¢. This finishes the proof of Lemmas 4.13 and
4.12, and thus completes the proof of Proposition 4.11. |

The following proposition finishes the proof of Theorem 4.10.

Proposition 4.14. Let (M = G/H,w,J) be a homogeneous proper lcK manifold
of a reductive Lie group G such that Ng(H) is compact and such that the canonical
1-form is given by ¢ = %9. Then (M = G/H,w,J) is of Vaisman type.
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Proof. Using the assertion £ € ker d¢ in Lemma 4.12, we have shown in (4.9) that
Lew = 0. Similarly, Z € ker d¢ implies

Lzp=1z7dp=0
and, hence,
Lzw=-ANLz0p+dLz¢p = 0.
We claim that

span{Z,£} N3 # 0. (4.10)

Since Z, § and 3 are contained in the normalizer go = Ng(h) of b in g, it is sufficient
to prove this in the case g = u(2), h = 0. Recall that any element X € g defines a
Killing vector field X* on M = G/H and that any Adg-invariant element X € m
extends as a G-invariant vector field X on M = G/H. If X € 3 C m then X = X*,
that is L3g = 0. If 0 # X € span{Z,£{} N3, then Lzw = Lew = 0 imply Lxw =0
and, hence, L gw = 0. Combining these equations, we see that L ¢J = 0, which
implies that the Reeb and the Lee vector fields are both holomorphic. Since the
Lee field is a gradient vector field (dA = 0) this shows that the Lee field is parallel.
This proves the proposition. O

Example. Note that the normalizer Ng(H) = T? = S! x S of H = SO(2) C
SL(2,R) in T? x SL(2,R) is compact. Therefore, Theorem 4.10 shows that every
G-invariant IcK structure on M = G/H = T? x SL(2,R)/SO(2) is of Vaisman type.
This should be contrasted with the fact that S* x SL(2,R) admits left-invariant
non-Vaisman IcK structures by Theorem 4.9.

4.3. Left-invariant lcK structures on reductive Lie groups

In this section we specialize to the case of left-invariant lcK structures on Lie groups
G. We will not assume that G is compact and will allow the pseudo-Kéahler metric
to be indefinite.

Theorem 4.15. Let (G,w, J) be a Lie group endowed with a left-invariant (proper)
locally conformally pseudo-Kahler structure.

(i) If g = LieG admits a bi-invariant (possibly indefinite) scalar product B with
non-isotropic B~1\, then the dimension of the centralizer of v (as defined in
Lemma 4.13) in g is at most 2.

(ii) If g is reductive, then we have either g = u(2) or g = gl(2,R), and (w, J) is one
of the locally conformally pseudo-Kdhler structures classified in Theorems 4.6
and 4.9. In both cases there exist locally conformally pseudo-Kdhler structures
that are not of Vaisman type and in the case g = gl(2,R) there even exist such
structures that are not of Vaisman type with positive definite metric.
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Proof. We keep the same notation as in the proof of Lemma 4.13. We first note
that since B~1\ is non-isotropic, g is splittable; and thus [w] = 0 in H3(g). The
equation

ady = —A, —A®v —20® Ayl

proven there (without using the compactness assumption of Lemma 4.13) shows
that the rank of ad, is at least tkw — 2 = dim g — 2. This implies that Z4(v) is at
most two-dimensional. This proves (i). Now we prove (ii). If g is reductive the image
of ad, is necessarily a proper subspace of 5. To see this it is sufficient to decompose
v according to the decomposition g = s @ 3. This proves that the image of ad, in
s is a hyperplane and that Z;(v) is one-dimensional, since 0 # A,& € 3. Since the
nilpotent part as well as the semisimple part of ad, |s belongs to Zs(v) C s = ad(s),
it follows that ad, |s is either semisimple or nilpotent. It is clear that the dimension
of the centralizer of a semisimple element in a semisimple Lie algebra s is bounded
from below by the rank of s. The same is true for a nilpotent element. In fact, by a
theorem of de Siebenthal, Dynkin and Kostant [2, Theorem 4.1.6], the dimension of
the centralizer of a nilpotent element in a semisimple Lie algebra s is bounded from
below by the rank of s [2]. This proves that rks = 1 and g = u(2) or g = gl(2,R),
since dim 3 < 2 and dim g is even. |
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