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HOMOGENEOUS 2nd ORDER PDES ON THE ADJOINT CONTACT MANIFOLD OF A

SIMPLE COMPLEX LIE GROUP

DMITRI V. ALEKSEEVSKY, JAN GUTT, GIANNI MANNO, AND GIOVANNI MORENO

Abstract. There is a natural method to obtain 2nd order PDEs with prescribed simple group of symmetries G.
However, one observes that the so–obtained PDEs are, in many cases, of high degree. In this paper we consider the
problem of existence of lower degree PDEs with the same group of symmetries.
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Introduction

‘Inverse problems’ in Mathematics are usually harder than their direct counterparts. For instance, describing the
group of symmetries of a given PDEs is rather algorithmic, whereas the problem of realising a PDE with a prescribed
group of symmetries poses nontrivial challenges. In spite of the extensive literature concerning specific instances
(see, e.g., [11, 13, 14, 14, 8, 16, 3] and references therein), a unified treatment of the general problem appears to
be unpractical. Even the very particular case of classifying homogeneous PDEs on homogeneous contact manifolds,
dating back the paper [1] by one of the present authors (DVA), is simply too large to be dealt with in a single work.

In the present paper we further restrict ourselves to a particularly well–behaved setting, narrow enough to obtain
a reasonably complete result, but general enough to avoid trivialities. Before explaining what our setting is going to
be, and before stating the main results, we recall a few generalities about homogeneous PDEs.

Invariant 2nd order PDEs on a homogeneous contact manifold. Traditionally, a scalar n–dimensional 2nd order
PDE E is understood as a hypersurface E ⊂ J2(n, 1) := J2(Rn,R) in the space of 2nd order jets of R–valued functions
on Rn. For many purposes—most notably, the study of the characteristics of E—one needs also the underlying 1st

order jet space J1(n, 1), which is a contact (2n + 1)–dimensional manifold. All the interesting interactions between
the equation E and its characteristics are mediated by the bundle structure J2 → J1, which is an affine one, modelled
over S2Rn ∗. Such a framework is extremely convenient for local analysis, but it has no topological content: its obvious
‘global’ analogous can be obtained as follows.

Replace J1(n, 1) with an arbitrary (2n + 1)–dimensional contact manifold (M, C), where C is a completely non–
integrable one–codimensional distribution defined on M , and replace J2(n, 1) with the corresponding Lagrangian
Grassmannian bundle:

(1) M (1) :=
∐

p∈M

LGr(Cp) −→ M .

In this context, a (scalar) 2nd order PDE on M is defined as a codimension–one sub–bundle E ⊂ M (1); a solution of
E is an n–dimensional Lagrangian submanifold L ⊂M such that TL ⊂ E . If now (M, C) is a G–homogeneous contact
manifold, for some group G, one can focus on G–invariant PDEs, which we conveniently collect into the set

(2) Inv(M,G) := {E | E ⊂M (1) is a 2nd order PDE on M such that G · E = E} .

The problem of studying G–invariant 2nd order PDEs is the problem of studying the sets (2). But one can hope to
obtain a reasonably complete picture about Inv(M,G) only by imposing some restrictions both on the group G and
on the contact manifold (M, C).
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Setup and assumptions. The main results of this paper are formulated in the context of complex contact manifolds
and their (complex) Lagrangian Grassmannian bundles.1 More precisely, we shall assume that G is a complex,
connected and simply–connected, simple Lie group, and that (M, C) is not any G–homogeneous contact manifold,
but the so–called adjoint manifold (associated with G), i.e., the one infinitesimally given by the negative part of the
contact grading

(3) g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ,

where g is the (complex) simple Lie algebra of G. According to the Killing–Cartan classification, we label the group
G by the type of the corresponding Dynkin diagram, herewith denoted by A,B,C,D,E,F,G. As we shall see, the case
of G of type C can be safely ruled out, as it leads to trivial results.

Recall that, up to conjugacy, the above grading is uniquely defined (see, e.g., [5], Section 3.2.4) by the fact that
the Lie bracket equips g−1 with a symplectic form ω (up to a trivialisation of the one–dimensional subspace g−2). So,
even in our particular setting, it makes sense to associate with the adjoint variety M the Lagrangian Grassmannian
bundle M (1), defined the same way as in (1). The typical fibre of this bundle is the Lagrangian Grassmannian

(4) LGr(g−1) ≡ LGr(ω) ≡ LGr(n, 2n) ,

where n = 1
2 dim g−1. Just observe that now LGr(g−1) is a smooth projective variety of dimension n(n+1)

2 , since it sits
into the so–called Plücker embedding space PΛn

0g−1. The symbol Λn
0g−1 stands for the ‘trace–free part’ of the space

of n–vectors on g−1, with respect to the obvious pairing between n–vectors (with values in Λ2ng−1 ≡ C).
Another way to introduce the Plücker embedding space, more convenient for our purposes, is by fixing a Cartan

subalgebra in Sp(ω) ≡ Spn (which is of type Cn) and a set of fundamental characters λ1, . . . , λn, following the Bourbaki
labelling (see Remark 3 later on). Then, it can be proved that

(5) Vλn
≃ Λn

0g−1 ,

and that LGr(g−1) is the orbit of the weight vector vλn
corresponding to λn. In particular, PVλn

is the smallest
projective space LGr(g−1) can be embedded into. As usual, we denote by O(1) the canonical (tautological) line
bundle on LGr(g−1) induced from the surrounding projective space PVλn

, and by O(d) its dth tensor powers. By
definition of the Plücker embedding, the fibre of O(1) over a Lagrangian plane L ∈ LGr(g−1) is the line spanned by
the ‘volume’ of L, i.e., the product e1 ∧ · · · ∧ en, with e1, . . . , en an arbitrary basis of L.

Now we are in position of defining scalar 2nd order PDEs over the adjoint contact manifold M associated with a
complex, connected and simply–connected, simple Lie groupG. We are aware that the term ‘scalar’ may be misleading,
since in our setting scalars are complex numbers.

Definition 1. A scalar 2nd order PDE on the adjoint manifold M is a codimension–one sub–bundle E of M (1), such
that all the fibres of E are closed (analytic) hypersurfaces (possibly singular) in the fibres of M (1). The set Inv(M,G)
of G–invariant PDEs is defined by the same formula (2), according to the present definition of a PDE.

Recall that, by the definition of the adjoint manifold M , the contact plane Cp at a point p ∈ M identifies with
g−1 (whereas g−2 is spanned by the Reeb vector field). In contrast with the traditional definition of a PDE E , where
each fibre Ep ⊂ LGr(Cp) is a smooth hypersurface (possibly open), in the present setup Ep is always closed, and it
can be presented as the union of projective hypersurfaces (i.e., the zeroes of homogeneous polynomials, instead of
smooth functions). Even at risk of sound pedantic, we also warn the reader that the order, or differential degree, of
our equations is fixed to 2, whereas their degree, or algebraic degree, which is a novelty with respect to the traditional
setting for PDEs, is just the degree of a generic fibre Ep, understood as an algebraic variety. The latter notion is
central in our main results.

The main results. Before announcing the main results, we need to introduce a remarkable subgroup Gss
0 of Sp(ω),

which represents the ‘residue action’ of Sp(ω) on the contact plane g−1. A convenient way to introduce Gss
0 is via the

adjoint map ad : g0 → End g−1 (see grading (3)). Indeed, this map allows to unambiguously define the connected
closed subgroup Gss

0 ⊂ Sp(ω), by requiring its Lie algebra to coincide with the image of [g0, g0].

Definition 2. The ring of invariants for Gss

0 on LGr(ω) is

(6) R :=
⊕

d≥0

Rd =
⊕

d≥0

Γ(LGr(ω),O(d))G
ss

0 .

In general, the adjoint map ad : g0 → End g−1 is injective, so that we may consider g0 itself as the Lie algebra of a
connected subgroup G0 ⊂ CSp(ω) of the group preserving the conformal class [ω] of symplectic forms. We may then
decompose

G0 = Gss
0 × Z(G0)

where Z(G0) the centre of G0. By semisimplicity, the factor Gss
0 is always contained in Sp(ω). On the other hand, the

centre behaves as follows:

• for g not of type A we have Z(G0) ≃ C× and Z(G0) ∩ Sp(ω) ≃ {1},
• for g of type A we have Z(G0) ≃ C× × C× and Z(G0) ∩ Sp(ω) ≃ C×.

In what follows we shall use C× to denote precisely Z(G0) ∩ Sp(ω) in type A, unless explicitly stated otherwise.

1Only in the concluding Section 4 we go back to the real smooth context.
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Definition 3. For g of type A we shall say that a nonzero element r ∈ R of degree d has weight m ∈ Z if and only if
λ · r = λmr for λ ∈ C×.

In particular, we conclude the following.

Lemma 1. Let r ∈ Rd be a nonzero element. Then:

(1) for g not of type A, the element r ∈ Rd is a relative G0-invariant.
(2) for g of type A, the element r ∈ Rd is a relative G0-invariant if and only if it has a weight.

Theorem 1 (Main). For g of given type, the following table provides a d > 0 such that Rd 6= 0:

type A B D E F G

d 1 4 2 2? 4? 3

where the numbers for types E and F are only conjectural. Furthermore:

• in type A the ring R is generated by a pair of elements of degree 1 and opposite, nonzero weights,
• in type G2 the ring R is generated by a single element of degree 3.

The relationship between Theorem 1 and the general question of realising certain groups as the groups of symmetries
of a PDE is clarified by the following proposition.

Proposition 1. Assume G is a connected, simply connected complex simple Lie group not of type C, with Lie algebra
g, and that M is its adjoint variety equipped with the canonical G–invariant contact structure. Then:

(1) The elements of Inv(M,G) are in one–to–one correspondence with projective classes of reduced homogeneous
elements of R of positive degree and—in type A—definite weight.

(2) Let E ∈ Inv(M,G). Assume that either g is not of type A or E is not irreducible. Then the local infinitesimal
symmetry algebra of E at each point of M is isomorphic to g.

Another way to state part (1) of the above Proposition is that degree d elements of Inv(M,G) are in one–to–one
correspondence with:

• PRd for g not of type A,
• fixed points of the C×-action on PRd for g of type A.

The table displayed in the statement of Theorem 1 may now be read as follows: for any group G of the above–
mentioned type, we are able to exhibit an element on Inv(M,G), i.e., in view of Proposition 1, a 2nd order G–invariant
PDE E on the corresponding adjoint contact manifold M , whose degree is 1,4,2,2,4,3, depending on G being of type
A,B,D,E,F,G, respectively. Moreover, modulo the assumptions in item (2) of Proposition 1, not only is E a G–
invariant PDE, but it actually allows us to recover the Lie algebra g from local data (the local infinitesimal symmetry
algebra of E at m ∈M means the Lie algebra of germs at m of infinitesimal contactormorphisms whose lifts to M (1)

are tangent to E). This way, Proposition 1 allows us to derive from Theorem 1 our second main result in the form of
the following:

Corollary 1. Assume G is a connected, simply connected complex simple Lie group not of type C, and let M be its
adjoint variety equipped with the canonical G-invariant contact structure.

• In type A the set Inv(M,G) consists of three elements: a pair of G–invariant PDEs of degree 1, and their
union, itself a G–invariant PDE of degree 2. The latter has g as its local infinitesimal symmetry algebra.

• In type G2 the set Inv(M,G) consists of a single G–invariant PDE of degree 3.
• In types B and, conjecturally, F, the set Inv(M,G) contains a G–invariant PDE of degree 4.
• In types D and, conjecturally, E, the set Inv(M,G) contains a G–invariant PDE of degree 2.

Furthermore, the local infinitesimal symmetry algebra of each of the elements described above, except for those of degree
1, is precisely g.

Background, motivations and perspectives. The study of the ring of invariants (6) can be carried out by various
means, one of which deserves a special attention for its naturality. In spite of its evident simplicity, it was apparently
overlooked so far, though being independently observed by D. The in his recent preprint [17].

The idea is to produce invariant functions on the Lagrangian Grassmannian LGr(C) = LGr(n, 2n) out of (n− 1)–
dimensional submanifolds in P2n−1 = PC, by means of a ‘Lagrangian’ variant of the well–known Chow form, introduced
by Wei-Liang Chow in 1937 [6]. Indeed, the projectiveised contact plane PC = Pg−1 of the adjoint contact manifold M
associated with G contains (essentially) a unique (n− 1)–dimensional submanifold, known as the sub–adjoint variety
associated with G (found, e.g., in the works of J. Landsberg and J. Buczyǹski [12, 4]), if G is not of type C.

Hence, there is a natural way to associate with G a nontrivial element of the ring (6), the ‘Lagrangian Chow form’,
and hence an element of Inv(M,G), i.e., in view of Proposition 1, a 2nd order G–invariant PDE on the corresponding
adjoint contact manifold M . This method, which we shall review below, is very direct and very nice, but its main
drawback is that of producing PDEs of possibly high algebraic degree.

However, one should note that the degree of EG, coinciding with the degree of the variety X , can be very high. It
would thus be practical to find lower–degree PDEs with the same symmetries.

The main Theorem 1 makes use of less evident tricks than the ‘Lagrangian Chow form’ in order to produce invariant
PDEs of a reasonably low degree. We underline that in [17] the problem of the uniqueness of the ‘exceptionally simple
PDEs” found there (i.e., those obtained as the Lagrangian Chow forms of the subadjoint varietites) is not addressed.
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Here we show that for certain types (namely A and G, see Sections 2.2 and 2.3) the Lagrangian Chow form is in fact
unique, whereas in other cases there are other invariant PDEs of significantly lower degree.

Finally, it is also worth stressing that, in spite of our decision to work with semisimple complex Lie groups, analogous
structures to the ones exploited here are, to some degree, present in the more general case. Indeed, as proved in [1],
contact homogeneous manifolds of a general Lie group G correspond to co–adjoint orbits of G, with a contact structure
induced from the Kirillov–Kostant–Souriau symplectic structure (in our case, we are dealing the projectivisation of
the highest–weight orbit). Furthermore, as an immediate extension of our setting, one may consider different real
forms of the complex situation presented here: this is briefly discussed in the last Section 4

The reader will notice that our treatment is, to a certain extent, projective–geometric. However, instead of thinking
in terms of projective geometry in a projective contact space, it is possible to work more generally with not necessarily
closed, conical C∞–submanifolds of the underlying symplectic vector spaces. Applying our construction to this setting
is much more subtle, and it would require a separate study.

Arrangement. The preliminary Section 1 contains all material necessary to state and prove the main results. We
review there the construction of the adjoint contact manifold, and the subadjoint variety associated to a simple complex
Lie group. We recall the standard construction of the Chow form. We introduce the Lagrangian Grassmannian, define
its Plücker embedding space, and study their basic properties.

In Section 2 we prove the main Theorem 1, which establishes the existence of low–degree invariants, and we review
D. The’s result on the Lagrangian Chow forms of the subadjoint varieties [17]. In Section 3 we clarify the link between
the ring of invariants and the set of invariant PDEs, by proving Proposition 1, which links those invariants to 2nd

order nonlinear PDEs on the adjoint contact manifold.
Finally, in Section 4 we discuss some real forms.

1. Preliminary

1.1. The adjoint variety associated with a complex simple Lie group. We recall how to introduce the contact
grading (3) on the Lie algebra g corresponding to the connected, simply connected complex simple Lie group G. To
this end, we need to choose a Cartan subalgebra h and a decomposition Φ = Φ+ ∪ Φ− of the corresponding root
system Φ into positive and negative roots. Then, there is a one–to–one correspondence between isomorphism classes
of finite–dimensional irreducible representations of G (irreducible G-modules) and dominant integral weights λ ∈ h∗.
We denote by Vλ the irreducible G-module associated with a dominant weight λ ∈ h∗, and by vλ the corresponding
weight vector.

Lemma 2. The orbit G[vλ] ⊂ PVλ of [vλ] ∈ PVλ is the only closed G–orbit.

Proof. Since the stabiliser P of [vλ] is a parabolic subgroup, the orbit G[vλ] is a compact simply connected submanifold
of PVλ. Conversely, assume that the orbit G[v] is compact. Then, by Borel theorem, the action of Borel subgroup
B ⊂ G has a fixed point [v′] ∈ G[v]. The stability subgroup P := G[v′] contains B. This shows that v′ is a highest
weight vector and G[v] = G[v′] is the orbit of a highest weight vector. �

In virtue of the adjoint representation, we can specialise Lemma 2 to the particular case when the G–module is
the Lie algebra g itself. To this end, denote by α ∈ Φ+ (resp., by Eα) the maximal root (resp., root vector) and
by Hα := [Eα, E−α] the associated element of h. Let θ ∈ g∗ be the 1–form on g dual to E−α. We also denote
by p := g0 ⊕ g+ the non–negative part of the contact grading (3) and by P (resp., G0, G+) the unique connected
subgroup of G corresponding to p (resp., g0, g+). Recall that (3) is precisely the eingenspace decomposition for the
endomorphism adHα

.

Corollary 2. The following results hold.

(1) The orbit M = AdG[Eα] ⊂ Pg is the only closed orbit in the projective space Pg.
(2) The stability subalgebra is p, and hence M = G/P .
(3) The isotropy representation of p (resp., of P = G0 ·G+) in the tangent space ToM = g− has kernel g+ (resp.,

G+) and reduces to the adjoint action adg0 (resp., AdG0).
(4) The 2–form ω := dθ is non–degenerate on g−1, and

ω(X,Y ) = −θ([X,Y ]) , X, Y ∈ g−1.

The conformal class [θ] is invariant with respect to the isotropy representation and defines an invariant line
bundle of contact forms on M . This bundle possesses no invariant sections.

(5) If g is not of type A, then the Lie algebra g0 has a direct sum decomposition g0 = 〈Hα〉 ⊕ gss0 where gss0 is the
semisimple part of g0 and the isotropy action of the subalgebra gss0 preserves the form ω.

(6) M has a canonical invariant complex contact structure C ⊂ TM whose value Co at the origin o = eP is g−1.

Proof. Well–known, see, e.g., [5]. �

Definition 4. The adjoint variety M associated with the connected, simply connected complex simple Lie group G is
the contact manifold (M, C), where M is the orbit G/P and C is the canonical G–invariant contact structure on M .
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Table 1. Table of adjoint varieties for types different than C

type Co Gss
0 Xo degXo

An+1 Cn ⊕ Cn∗ SLn Pn−1 ∪ Pn−1 2
B•, D• C2 ⊗ Cn SL2 × SOn P1 ×Q 2(n− 1)

G2 S3C2 SL2 Veronese 3
F4 Λ3

0C
6 Sp3 LGr(3, 6) 16

E6 Λ3C6 SL6 Gr(3, 6) 42
E7 spinor Spin12 NGr(6, 12) large
E8 FTS(A) E7 Freudenthal very large

The Lie group Gss
0 , whose Lie algebra appears in Corollary 2 (5), is precisely the Lie group involved in our definition

of the ring of invariants (Definition 2). It can be proved that Gss
0 is a maximal connected subgroup (except in type

A, where it is the intersection of two maximal parabolic subgroups, see Lemma 7 later on). But the true importance
of the group G0 is that the isotropy representation of P factors through it. In particular, P–invariant varieties in
Pg−1 = PCo are the same as the G0–invariant ones, or even – except for type A – Gss

0 -invariant ones (in type A one
additionally need invariance under C×).

1.2. The sub–adjoint variety. We show now that the action of Gss
0 on PCo displays an interesting property: it

possesses an (essentially) unique closed orbit, whose dimension is n− 1 (if G is not of type C).
Let G be a connected simply–connected simple complex Lie group, and consider the Gss

0 –module Co (recall Corollary
2 (6)). If G is not of type A, then Co is irreducible. If G is of type A, then Co consists of two mutually dual C×-invariant
irreducible components, say C+

o and C−
o , which are not equivalent one to the other (see first row of Table 1). Then, by

Lemma 2, PCo contains either a unique irreducible closed orbit (if G is of type different than A), or the union of two
irreducible closed orbits (if G is of type A).

Definition 5. The unique closed Gss

0 –orbit Xo ⊂ PCo (resp., the union Xo of the closed G0–orbits X
±
o ⊂ PC±

o ) is
called the subadjoint variety at o ∈M , if G is not of type A (resp., is of type A).

Proposition 2. The sub–adjoint variety Xo is (n − 1)–dimensional and irreducible, except in the case A, when it
consists of two (n− 1)–dimensional irreducible components, and in the case C, when it is the whole of PCo (see Table
1. Furthermore, its stabiliser in Sp(Co) ≡ Sp(ω) is precisely G0.

Proof. See, e.g., Table A.1 in [4]. �

Remark 1. Interestingly, the sub–adjoint variety X is the first member of an entire flag

(7) V1 ⊂ V2 ⊂ V3 ⊂ PCo ≡ Pg−1

of so–called Freudenthal sub–varieties, where Vi = P{v ∈ g−1 | adi+1
v g2 = 0} [10].

1.3. The Chow transform. Recall that the ‘projective Grassmannian’

(8) G(k, 2n− 1) := Gr(k + 1, 2n)

is the space of k–dimensional projective subspaces of P2n−1, which is in an obvious one–to–one correspondence with
the space of (k + 1)–dimensional projective subspaces of C2n. For instance, G(0, 2n− 1) is the set of points of P2n−1,
i.e, P2n−1 itself.

We are only interested in the case k = n− 1, for which we have that dimG(n− 1, 2n− 1) = n2.
Recall that G(n− 1, 2n− 1) is a projective variety in PΛnC2n, via the Plücker embedding. In particular, this allows

us to speak about lines (or P1’s) in G(n− 1, 2n− 1). As it turns out, such lines admit a nice description in terms of
pairs of (n− 2)– and n–dimensional projective subspaces of P2n−1.

Lemma 3. The generic line P1 ⊂ G(n− 1, 2n− 1) has the form P1 = ℓ(Pn−2,Pn), where

(9) ℓ(Pn−2,Pn) := {Pn−1 ∈ G(n− 1, 2n− 1) | Pn−2 ⊂ P
n−1 ⊂ P

n} .

We shall need the so–obtained lines in order to determine how the degree behave under the Chow transform.
The second feature of G(n−1, 2n), which will be useful to make the main point clear, is the corresponding incidence

relation

(10) F(0, n− 1, 2n− 1)

p̃

uu❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥❥

q̃

))❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙

P2n−1 ≡ G(0, 2n− 1) G(n− 1, 2n− 1) ,

where

(11) F(0, n− 1, 2n− 1) := {(P,Pn−1) ∈ P
2n−1 ×G(n− 1, 2n− 1) | P ∈ P

n−1} .

The key property of diagram (10) is that the fibres of both projections are Grassmannian themselves, and the two
projections are mutually transversal.
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Lemma 4. For any P ∈ P2n−1 and Pn−1 ∈ G(n− 1, 2n− 1), it is true that

(1) the fibre p̃−1(P ) identifies with G(n− 2, 2n− 2);
(2) the fibre q̃−1(Pn−1) identifies with P

n−1 itself;
(3) the two fibres above intersect transversally.

Definition 6. Let X ⊂ P2n−1 be an (n− 1)-dimensional subvariety. The variety

(12) X̃ := q̃(p̃−1(X)) ⊂ G(n− 1, 2n− 1)

is called the Chow transform2 of X.

Our next result is to show that the Chow transform produces hypersurfaces in G(n− 1, 2n− 1) out of (n− 1)–folds
in P2n−1, which is exactly what is needed here.

Proposition 3. If X ⊂ P
2n−1 is an (n− 1)–dimensional irreducible subvariety, then X̃ is an irreducible hypersurface

of degree equal to the degree of X̃.

Proof. The preimage p̃−1(X) is an irreducible subvariety of dimension

dim p̃−1(X) = n− 1 + n(n− 1) = n2 − 1,

so that X̃ is an irreducible closed subvariety of codimension 1 + e, where e is the dimension of the general fibre of

p̃−1(X) → X̃ . If e > 0, it follows that every (n−1)-plane in P2n−1 intersecting X intersects it in a positive-dimensional
subset; choosing a general n-plane Λ ⊂ P2n−1 so that dim(Λ ∩X) = 0, we then find that every (n− 1)-plane Λ′ ⊂ Λ

intersecting Λ∩X intersects it in a positive-dimensional subset – a contradiction. Hence e = 0 and X̃ is an irreducible
hypersurface in G(n − 1, 2n − 1). In order to compute its dimension, let us once again choose a general n-plane
Λ ⊂ P2n−1 so that Λ ∩ X consists of d points. Furthermore, choose a general (n − 2)-plane Λ′ ⊂ Λ so that none
of these points is contained in Λ′, and the (n − 1)-planes containing Λ′ and contained in Λ form a general line
P1
Λ′,Λ ⊂ G(n − 1, 2n− 1). Since there is precisely one such (n − 1)-plane through each of the d points of Λ ∩ X , we

have a bijection

P
1
Λ′,Λ ∩ X̃ ≃ Λ ∩X

whence the degree of X̃ in G(n− 1, 2n− 1) equals that of X in P2n−1. �

1.4. The Lagrangian Grassmannian LGr(n, 2n) and its Plücker embedding. We clarify now the definition and
the main properties of the (complex) Lagrangian Grassmannian (4), and its Plücker embedding space (5). Since all
the linear symplectic spaces are isomorphic each other, throughout this section we denote an arbitrary 2n–dimensional
symplectic space, whose symplectic form ω is defined up to a projective factor, by the same symbol C elsewhere used
for the contact distribution. To keep things simple, we may take C = Cn ⊕Cn∗, with ω given by the standard pairing
and we can forget, throughout this section, all the relationships with the contact grading (3) of g.

Remark 2. The condition

(13) ω|L ≡ 0

can be imposed on subspaces of any dimension—or even on flags of subspaces. For instance, we denote by Gω(k, 2n−1)
the subset of G(k, 2n−1), consisting of solutions of the equation (13); similarly, Fω(l, k, 2n−1) consists of flags (L′, L),
such that L satisfies (13) (which is an hereditary condition).

In continuity with the original definition (4), we use symbol LGr(n, 2n) instead of LGr(C) to denote the subset of
Gr(n, 2n) = Gr(n, C) consisting of solutions of the equation (13).

Lemma 5. Let LGr(n, 2n) = LGr(C) be the complex Lagrangian Grassmannian. Then:

(1) LGr(n, 2n) is a complex non–singular manifold of dimension n(n+1)
2 ;

(2) the group Spn acts transitively on LGr(n, 2n), with stabiliser P = GLn ⋉S
2Cn;

(3) LGr(n, 2n) identifies with the Spn–orbit of the ‘volume’ [e1 ∧ · · · ∧ en] ∈ PΛnC of any L0 = 〈e1, . . . , en〉 ∈
LGr(n, 2n).

Proof. We fix a bi–Lagrangian decomposition C := L0 ⊕ L∗
0 and using ω identify L∗

0 as the dual space to L0. Denote
by prL0

the canonical projection of C onto L0. Any n–dimensional subspace L such that prL0
L = L0 corresponds to a

linear map γL ∈ HomC(L0, L
∗
0) = L∗

0 ⊗L∗
0, whose graph is L = {v + γL(v) | v ∈ L0}. The subspace L is Lagrangian if

and only if γL is symmetric as a bilinear form. The open and dense domain LGr(C)L0 := {L ∈ LGr(C) | prL0
L = L0}

is thus identified with S2L∗
0, which gives a local chart in LGr(C). The coordinates of the symmetric bilinear form γL

are the local coordinates of L.
We fix a basis {e1, . . . , en} of L0 together with the dual basis {e1, . . . , en} of L∗

0. They form a symplectic basis e of C.
For any Lagrangian n–dimensional subspace L ∈ LGr(C) we can choose a symplectic basis f = (f1, · · · , fn, f

1, · · · , fn)

2See the classical textbook [9], Chapter 3, Section 2. The Chow form mentioned there is precisely the homogeneous polynomial whose
zero locus is the Chow transform mentioned here.
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of C, such that its first n vectors span L. Then the the linear transformation A which maps e to t transform L0 onto
L. It is a symplectic transformation A ∈ Spn, i.e., its matrix A has the form

(14) A =

{(
A B
C D

)
| AtC = CtA,BtD = DtB,AtD − CtB = 1

}
.

The new bi–Lagrangian decomposition C = AL0 + AL∗
0 = (AL + BL∗) + (CL + DL∗) gives a new chart S2L∗ =

S2(AL∗
0) in a neighborhood of AL0. The transition function between these two charts is given by the fractional linear

transformation LÂ : γ 7→ γ′ = (C +Dγ)(A+Bγ)−1. Obviously, L = L0 if and only if C = 0, This shows that the
stability subgroup of L0 is the upper block triangular (parabolic) subgroup P . This proves (1), (2).
Note that the symplectic Lie algebra is given by

(15) spn =

{(
A B
C −At

)
| C = Ct, B = Bt

}
,

Now we consider the ‘volume’ map

vol : LGr(n, 2n) −→ PΛnC(16)

L = 〈e1, . . . , en〉 7−→ [e1 ∧ · · · ∧ en] =: vol(L) .

Obviously it is injective and Spn–equivariant. Since Spn acts transitively on LGr(n, 2n), the image vol(LGr(n, 2n)) is
the orbit Spn(vol(L)), and (3) is proved. �

Lemma 5 shows that LGr(n, 2n) is a non–singular projective variety in PΛnC, contained into Gr(n, 2n). In fact, it
is cut out by a projective subspace (see (18) below). To see this, denote by ιω the following contraction:

(17) ιω : Λ•C−→Λ•C , η −→ ωyη ,

where ω is the symplectic form on C. It is a Spn–equivariant derivation of degree −2 of the Grassman algebra Λ•C.

Corollary 3. The only irreducible component of the Spn–module ΛnC whose projectivisation contains LGr(n, 2n) is
ker ιω |ΛnC.

Proof. By the definition (16), the volume of a Lagrangian n–plane is killed by the insertion (17). Hence, the image
belongs to the projectivisation of the module Λn

0C. One can check that the volume form of Lagrangian planes span all
vector space Λn

0C which shows that this module is irreducible. �

In accordance with (5), we set Λn
0C := ker ιω|ΛnC , and Corollary 3 immediately implies that

(18) LGr(n, 2n) = Gr(n, 2n) ∩ PΛn
0C .

Remark 3. In Cartan’s notation, Spn is a simple group of type Cn, and the highest weight of Λn
0C is precisely the nth

fundamental weight (Bourbaki labeling). In other words, the parabolic subgroup P is obtained by marking the long
root (i.e., the rightmost vertex) of the Dynkin diagram of type Cn, viz.

(19)
0
◦

0
◦

0
◦ · · ·

0
◦ ks

1
• .

2. The ring of invariants

This section contains the proof of the main Theorem 1, organised according to the type of G: type A is taken care
of in Section 2.2, types B and D (in degree 4) in Section 2.7, type D (in degree 2) in Section 2.4, type E in Section 2.5,
type F in Section 2.8, and type G in Section 2.3.

The ‘higher–degree” invariants PDEs arising as the Lagrangian Chow form of the subadjoint variety (the ‘exception-
ally simple’ PDEs exhamined in [17]) are discussed in Section 2.9. In Section 2.6 we discuss the general construction
of a quartic invariant on g−1. Section 2.1 serves only to refresh the setup and establish some preliminary results.

2.1. Setup. Recall that we assume G to be a complex, connected and simply–connected, simple Lie group of type
different than C, with Lie algebra g, and that a Cartan subalgebra h and a system of positive roots Φ+ has been chosen.
From these assumptions there follow many other things: the contact grading (3), the symplectic form ω ∈ Λ2g∗−1

(defined up to a projective factor), the connected closed subgroup Gss
0 (see Corollary 2), and the Plücker embedding

space PΛn
0g−1 of the Lagrangian Grassmannian LGr(ω) (see Lemma 5 (3) and Corollary 3).

Recall also that n = 1
2 dim g−1, so that Sp(ω) is a simple Lie group of type Cn.

Next lemma will clarify our definition of the rings of invariant (Definition 2). To this end, let I ⊂ S•Λn
0g

∗
−1 be the

homogeneous ideal of LGr(ω). Write I(d) ⊂ SdΛn
0g

∗
−1 for the degree d homogeneous component of I. Recall also the

identification (5).

Lemma 6. There are natural Sp(ω)–equivariant isomorphisms

Γ(LGr(ω),O(d)) ≃ SdΛn
0g

∗
−1/I

(d) ≃ V ∗
dλn

.
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Proof. The first isomorphism follows by minimality and projective normality of the Plücker embedding (see Corollary
3). The second one follows from the identification (5), and by the definition of O(d) as the bundle of degree d forms
on the tautological line bundle Sp(ω) · 〈vλ〉. �

Lemma 6 above allows to identify the space Rd (introduced in Definition 2) with the space of Gss
0 –invariants in

SdΛn
0g

∗
−1/I

(d).

Remark 4. Note that applying the same Definition 2 to g of type C yields R consisting of constants only: that is
because in type C the group Gss

0 coincides with the entire symplectic group Sp(ω) acting transitively on LGr(ω).

Now, propositions 4, 7, 6, 5 introduced in the following subsections will give a proof of our main Theorem 1 (except
for the numbers marked with a question mark). We shall thus establish the existence of low-degree invariants in the
ring R. It turns out that each of these actually suffices to reduce the symplectic group Sp(ω) to Gss

0 :

Lemma 7. Assume g is not of type A. Then Gss

0 is a maximal connected subgroup of Sp(ω).

Corollary 4. Assume g is not of type A. Let r ∈ Rd be a nonzero element with d > 0. Then the identity component
of its stabiliser in Sp(ω) is precisely Gss

0 .

Proof of Lemma 7. It is enough to decompose S2g−1 ≃ sp(ω) into irreducible gss0 -modules and observe that the
complement of gss0 in S2g−1 is a single irreducible component. We refer to Table 1 for information on G0 and its
representation on g−1. Types B,D:

S2(C2 ⊗ C
n) ≃ Λ2

C
n ⊕ S2

C
2 ⊕ (S2

C
2 ⊗ S2

0C
n) ≃ son ⊕ sl2 ⊕ (S2

C
2 ⊗ S2

0C
n).

Type G2:

S2S3
C

2 ≃ S2
C

2 ⊕ S6
C

2 ≃ sl2 ⊕ S6
C

2.

Type F4:

S2Λ3
0C

6 ≃ S2
C

6 ⊕ S2
0Λ3

0C
6 ≃ sp3 ⊕ S2

0Λ3
0C

6.

Type E6:

S2Λ3
C

6 ≃ sl6 ⊕ S2
0Λ3

C
6.

Type E7 (with S+ denoting one of the spinor representations of so12):

S2S+ ≃ Λ2
C

12 ⊕ S2
0S

+ ≃ so12 ⊕ S2
0S

+.

Type E8 (with FTS(A) denoting the Freudenthal triple system over the Albert algebra):

S2FTS(A) ≃ e7 ⊕ S2
0FTS(A).

The last one is computed using LiE. �

2.2. Results in type A. For g of type A, we have Gss
0 ≃ SLn and g−1 ≃ Cn ⊕ Cn∗ with a symplectic form induced

by the canonical pairing:

ω(x+ ξ, y + η) = ξ(y) − η(x), x, y ∈ C
n; ξ, η ∈ C

n∗.

A general Lagrangian subspace L ⊂ g−1 may be viewed as the graph of a symmetric linear map Cn → Cn∗ or Cn∗ → Cn,
as explained in the proof of Lemma 5. Denoting by U ⊂ LGr(ω) the locus of subspaces L projecting onto Cn, we have
that the complement H = LGr(ω)rU is a hyperplane section. Dually, we define U ′ and its complement H ′. Observe
that U,U ′, H,H ′ are Gss

0 –invariant, and we may identify U ≃ S2Cn∗, U ′ ≃ S2Cn with the natural linear action of Gss
0 .

In particular, H ′ ∩ U is the hypersurface in S2Cn cut out by the determinant det : S2Cn → (detCn)−2 ≃ C.

Proposition 4. For g of type A the ring of invariants R is generated by a pair of elements of degree 1 cutting out H
and H ′. The subgroup Gss

0 × C× ⊂ Sp(ω) is precisely the stabiliser of their product.

Proof. Suppose r ∈ Rd is a nonzero invariant of degree d and let D be the associated effective divisor on LGr(ω). We
may write D = aH + bDU for some non-negative integers a, b where DU is the restriction of D to U ≃ S2Cn∗. Since
DU is necessarily Gss

0 -invariant, it will be enough to check that the ring of SLn–invariants in C[S2Cn∗] is generated by
det. That is a classical result (see, e.g., [15]).

To check the second claim, we note that the stabilisers of H and H ′ in Sp(ω) are a pair of opposite maximal
parabolics U ⋊ SLn and SLn ⋉U

′ intersecting precisely in GLn ≃ Gss
0 × C×. �

2.3. Results in type G2. For g of type G2, we have Gss
0 ≃ SL2 and g−1 ≃ S3C2 with a symplectic form defined by

the natural SL2-equivariant map

Λ2S3
C

2 → S3Λ2
C

2 = (detC2)3 ≃ C.

The Plücker embedding space is identified with S4C2 as a representation of SL2, with LGr(ω) ⊂ PS4C2 being an
SL2–invariant quadric.

Proposition 5. For g of type G2 the ring of invariants R is generated by a single element of degree 3.

Proof. It is a classical result that the ring of SL2-invariants in C[S4C2] is generated by a pair of elements in degrees,
respectively, 2 and 3 (see, e.g., [15]). Now, the ideal I of LGr(ω) is generated by the quadric, whence the quotient
R ≃ C[S4C2]SL2/ISL2 is generated by the cubic. �
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2.4. Results in type D. For g of type D, we have Gss
0 ≃ SL2 × SOn and g−1 ≃ C2 ⊗ Cn with n even. The Plücker

embedding space Λn
0g−1 admits a Gss

0 –invariant inner product defined by

〈φ, ψ〉 = φ ∧ ψ

where we trivialise Λ2ng−1 ≃ C. We consider a Gss
0 –equivariant projection

π : Λn
0g−1 → Sn

C
2

defined on decomposable elements as

π(ξ1 ⊗ v1 ∧ · · · ∧ ξn ⊗ vn) = ξ1 · · · ξn · vol(v1, . . . , vn)

where vol ∈ ΛnCn∗ is the volume form. Recall that SnC2 admits an SL2–invariant quadratic form q ∈ S2SnC2∗

defined by the map

S2Sn
C

2 → SnΛ2
C

2 = (detC2)n ≃ C.

We may thus introduce a Gss
0 -invariant quadric B ∈ S2Λn

0g
∗
−1 by

B(φ) = q(πφ)

for all φ ∈ Λn
0g−1.

Proposition 6. For g of type D, the residue class of B defines a non–zero element of degree 2 in the ring of invariants
R.

Proof. It suffices to show that B(φ) 6= 0 for some φ ∈ Λn
0g−1 such that [φ] ∈ LGr(ω). Fix an orthonormal basis

e1, . . . , en of Cn. Let η ∈ SnC2 be such that q(η) 6= 0, and fix a factorisation η = ξ1 · · · ξn with ξi ∈ C2, 1 ≤ i ≤ n.
Now, consider the linear subspace

L = 〈ξ1 ⊗ e1, . . . , ξn ⊗ en〉 ⊂ g−1.

It is by construction Lagrangian, and furthermore its representing n-form

φ = (ξ1 ⊗ e1) ∧ · · · ∧ (ξn ⊗ en)

satisfies B(φ) = q(η) 6= 0. �

2.5. Results in types E6, E7, E8. For g of type E, we always have dim g−1 = 2n for n even, so that Λn
0g−1 admits an

invariant inner product. Analogously to the situation in type D, we conjecture that one can obtain a quadric invariant
from an orthogonal projection of Λn

0g−1 onto a Gss
0 –invariant subspace.

Let us illustrate this approach in case of E6. We have Gss
0 ≃ SL6 and g−1 ≃ Λ3C6 with dim g−1 = 2n = 20. The

symplectic form ω ∈ Λ2Λ3C6∗ is defined by ∧ : Λ3C6 × Λ3C6 → detC6 ≃ C, and we have

Λ10Λ3
C

6 = Λ10
0 Λ3

C⊕ ω ∧ Λ8Λ3
C

with a Gss
0 -invariant decomposition

Λ10
0 Λ3

C
6 = S4

0Λ3
C

6 ⊕ (S6
C

6 ⊕ S6
C

6∗) ⊕ (V2̟2+4̟5 ⊕ V ∗
2̟2+4̟5

) ⊕ V2̟1+2̟3+2̟5

where we used Vµ to denote the finite dimensional simple module with highest weight µ, a combination of the funda-
mental weights ̟1, . . . , ̟5 of gss0 . Each of the modules in parentheses is self-dual by means of a unique (up to scale)
Gss

0 -invariant inner product. The projection onto S6C6 may be symbolically written as

π = ǫ4 : Λ10Λ3
C

6 → S6
C

6

where ǫ ∈ detC6∗ is a volume form. Introducing a dual form ǫ′ ∈ detC6 and using ω to identify Λ3C6 ≃ Λ3C6∗ we
also have symbolically the other projection

π′ = ǫ′4ω10 : Λ10Λ3
C

6 → S6
C

6∗.

Finally thus, we have the pullback quadratic form

B(φ) = 〈πφ, π′φ〉

where 〈·, ·〉 denotes the canonical pairing S6C6 × S6C6∗ → C. Certain computational evidence at our disposal leads
us to conjecture that B does not vanish identically on LGr(ω).

2.6. Quartic invariants. We recall the fundamental quartic invariant of the Gss
0 action on g−1:

Υ(x) = ad4
x ∈ g2−2 ≃ C

for x ∈ g−1, i.e.

Υ(x) = 〈z, [x, [x, [x, [x, z]]]]〉

with a fixed element z ∈ g2 and 〈·, ·〉 denoting the Killing form on g. It is straightforward to extend Υ to a quartic on
the Plücker space Λn

0g−1:

Q(φ) = (ΛnΥ)(φ⊗ φ⊗ φ⊗ φ).

We wish to determine whether Q ∈ S4V ∗
λn

vanishes modulo I(4).
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2.7. Results in type B (and D). For g of type B or D, we have again Gss
0 ≃ SL2 × SOn and g−1 ≃ C2 ⊗ Cn

(if n is even, we already have the quadric, but we may still consider the quartic). Decomposing S4(C2 ⊗ Cn) into
Gss

0 –irreducible subspaces, we find that the quartic Υ is necessarily given by the projection

S4(C2 ⊗ C
n) → S2Λ2

C
2 ⊗ ker

[
S2Λ2

C
n ∧
−→ Λ4

C
n
]

id⊗〈,〉
−−−−→ (detC2)2 ⊗ C ≃ C

defined as

Υ(ξ1 ⊗ e1, ξ2 ⊗ e2, ξ3 ⊗ e3, ξ4 ⊗ e4) = ǫ(ξ1, ξ2)ǫ(ξ3, ξ4) [〈e1, e3〉〈e2, e4〉 − 〈e2, e3〉〈e1, e4〉]

where ǫ ∈ Λ2C2∗ is a volume form and 〈·, ·〉 the SOn-invariant inner product on Cn.

Proposition 7. For g of type B or D, the residue class of Q defines a non–zero element of degree 4 in the ring of
invariants R.

Proof. Consider as before a Lagrangian subspace of the form

L = 〈ξ1 ⊗ e1, . . . , ξn ⊗ en〉 ⊂ g−1

where e1, . . . , en is an orthonormal basis in Cn, while ξ1, . . . , ξn ∈ C2 is a general n–tuple. We compute Q(φ) for
φ =

∧n
i=1(ξi ⊗ ei):

Q(φ) =
∑

σ(1),σ(2),σ(3) sgn(σ(1)σ(2)σ(3))
∏n

i=1 ǫ(ξi, ξσ(1)i)ǫ(ξσ(2)i, ξσ(3)i)

[〈ei, eσ(2)i〉〈eσ(1)i, eσ(3)i〉 − 〈ei, eσ(3)i〉〈eσ(1)i, eσ(2)i〉]

=
∑

σ(1),σ(2),σ(3) sgn(σ(1)σ(2)σ(3))

n∏

i=1

[
δiσ(2)iδ

σ(1)i
σ(3)i − δiσ(3)iδ

σ(1)i
σ(2)i

]

×
∏n

i=1 ǫ(ξi, ξσ(1)i)ǫ(ξσ(2)i, ξσ(3)i)

= K(ξ1 · · · ξn)

Note that this way Q(φ) is computed as a SL2–invariant quartic K on SnC2. We only need to check that K 6= 0. We
further rewrite:

K(ξ1 · · · ξn) = (−1)n
∑

σ

(
∏

i

ǫ(ξi, ξσi)
2

)
×


sgn(σ)

∑

J⊂{1,...,n}

Cσ,J




where

Cσ,J = sgn(σJ ) sgn(σJc

), σJ (i) =

{
i i ∈ J

σ(i) i /∈ J

and sgn(σJ ) = 0 if σJ is not a permutation. The sum over J may be restricted to σ-invariant sets, in which case
Cσ,J = sgn(σ) and we obtain

K(ξ1 · · · ξn) = (−1)n
∑

σ

(
∏

i

ǫ(ξi, ξσi)
2

)
× |{J ⊂ {1, . . . , n} | σJ = J}|

Choosing ξ1, . . . , ξn to define n distinct points in P1 with real coefficients, we find that K(ξ1, . . . , ξn) > 0. �

2.8. Results in type F4. With the above definitions applied to G of type F4, we conjecture that the quartic Q does
not vanish identically on LGr(ω).

2.9. A distinguished invariant of geometric origin. We have thus far described the low–degree elements in the
ring of invariants R, defined earlier by (6). It turns out that there is also a ‘canonical’ higher-degree element of R,
arising from the sub–adjoint variety Xo ⊂ Pg−1 (see Definition 5) by means of the ‘Lagrangian version’ of the Chow
transform (see Definition 6). These are precisely the ‘exceptionally simple’ PDEs introduced by D. The in [17].

2.9.1. The Lagrangian Chow transform. The Lagrangian Grassmannian inherits a rich structure from its parent Grass-
mannian Gr(n, 2n). We shall not cover here all the details, but just the particular submanifolds needed for our purposes.

Lemma 8. If ℓ ∈ PC is a line, then ℓ̃ := {L ∈ LGr(n, 2n) | L ⊃ l} is a submanifold of LGr(n, 2n) isomorphic to
LGr(n− 1, 2(n− 1)).

Proof. Just observe that there is a one–to–one correspondence between ℓ̃ and LGr
(

ℓ⊥

ℓ

)
. �

The sub–Grassmannians ℓ̃ are precisely the maximal smooth Schubert varieties.
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We consider now a vector space C equipped with a symplectic form ω ∈ Λ2C∗, thus working in the same setting
as Section 1.4. We specialise the results obtained in Section 1.3 to this ‘Lagrangian’ context. From a choreographic
standpoints, one just needs to decorate with a subscript ‘ω’ the double fibration (10), thus reading now

(20) Fω(0, n− 1, 2n− 1)

p

tt❥❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥

q

**❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱

P2n−1 ≡ Gω(0, 2n− 1) Gω(n− 1, 2n− 1) = LGr(C) ,

in the sense that all the subspaces involved must be isotropic with respect to ω (see Remark 2). Comparing (20) with
(10), one sees that the down–left endpoint is the same, since points are automatically ω–isotropic. Hence, Definition
6 admits a straightforward analogue in the Lagrangian context.

Definition 7. The subset

(21) EX := q(p−1(X)) ⊂ G(n− 1, 2n− 1)

is called the Lagrangian Chow transform of X.

In the spirit of this new definition, we extend the results contained in Proposition 3.

Proposition 8 (Lagrangian Chow transform). Let X ⊂ PC be an (n− 1)–dimensional irreducible subvariety. Then
the transform EX ⊂ LGr(C) is an irreducible hypersurface of the same degree as X.

Proof. Since (compare Definition 6 and Definition 7)

(22) EX = X̃ ∩ LGr(C) ,

and X̃ is an hypersurface in G(n − 1, 2n − 1) by Proposition 3, either EX is an hypersurface in LGr(C), or it has
codimension zero. We wish to rule out the second possibility.

To this end, just observe (recall Lemma 8) that

dim p−1(X) = dimX + dim LGr(n− 1, 2n− 2) =

= n− 1 + n(n− 1)/2 = (n− 1)(n+ 2)/2 = n(n+ 1)/2 − 1 =

= dim LGr(C) − 1 ,

and since dim p−1(X) ≥ dim EX , one must have 1 = codim p−1(X) ≤ codim EX .
Finally, since LGr(C) is the intersection of G(n− 1, 2n− 1) with a linear subspace of the Plücker embedding space,

(recall formula (18)) it follows that the degree of EX in LGr(C) equals that of X̃ in G(n− 1, 2n− 1). �

2.9.2. The Lagrangian Chow form of the subadjoint variety. Returning to the main context (see Section 2.1), we may
now consider the Lagrangian Chow transform EXo

⊂ LGr(ω) of the sub-adjoint variety Xo ⊂ Pg−1. It is an irreducible
hypersurface, thus corresponding to an element rXo

∈ R, the Lagrangian Chow form of Xo. In view of Proposition 8,
the degree of rXo

is equal to the degree of Xo in Pg−1, and thus may be rather high (see Table 1). Nevertheless, the
invariant rXo

is distinguished by its geometric definition, valid in all types (other than C).

3. Invariant PDEs

We shall now prove Proposition 1. Recall that its first claim is a one–to–one correspondence between the set
Inv(M,G) of G–invariant PDEs and the set of reduced, positive–degree, homogeneous elements of the ring of invariants
R.

Proof of part 1 of Proposition 1. Given E ∈ Inv(M,G) we consider its fibre at o ∈ M , i.e. the G0-invariant hyper-
surface Eo ⊂ LGr(ω). Then, letting d be the degree of Eo with respect to O(1), we have that Eo is the zero-locus of
a reduced element r ∈ Rd, unique up to scale. Conversely, given such reduced r ∈ Rd, we let Eo ⊂ LGr(ω) be its
zero-locus, a G0-invariant degree d hypersurface. Then, we define E ∈ Inv(M,G) as E = G · Eo so that the fibre Em
over m ∈M is g · Eo for any g such that m = g · o. �

The second part of the Proposition states that for any G-invariant PDE E , i.e. an element of Inv(M,G), the Lie
algebra g exhausts the local infinitesimal symmetries of E . Recall that we are still in the context where g is a complex
simple Lie algebra not of type C.

Proof of part 2 of Proposition 1. Let E ∈ Inv(M,G) satisfy the assumptions of part (2) of the Proposition. Denote
by s the Lie algebra of germs at o ∈ M of infinitesimal contactomorphisms whose lifts to M (1) are tangent to E . We
equip s with a natural decreasing filtration s• induced by C. Namely, letting evo : s → ToM be the evaluation map,
we set s−2 = s, s−1 = ev−1

o Co, s
0 = ker evo; and then we further define

si+1 = {ξ ∈ si | [ξ, s−1] ⊂ si}

for i ≥ 0.
The action of g on M induces a natural inclusion ι : g → s of filtered Lie algebras. By construction, the non-positive

part of the associated graded Lie algebra is:

gr−2 s⊕ gr−1 s⊕ gr0 s ≃ g≤0 = g−2 ⊕ g−1 ⊕ g0
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where g• is the grading on g induced by the parabolic subalgebra p, and the isomorphism is induced by gr ι : gr g = g →
gr s. The only truly non-trivial statement here is the inclusion gr0 s ⊂ g0. Since gr0 s is contained in the infinitesimal
stabiliser of the hypersurface Eo ⊂ LGr(ω), i.e. of the projective class of some positive degree homogeneous element
r ∈ R in the ring of invariants, it is enough to check that the stabiliser of r in Sp(ω) is gss0 . If g is not of type A, this
follows from Corollary 4; if g is of type A, the additional hypothesis on E implies that r is the product of the two
degree 1 generators of R, and we use Proposition 4.

Let us introduce the notion of a Tanaka prolongation of g≤0 in terms of a universal property. Consider the category
whose objects are graded Lie algebra monomorphisms κ : g≤0 → a• satisfying the conditions:

(1) a≤0 = κ(g≤0),
(2) ad : a>0 → Hom(a−1, a) is injective.

The arrows from (κ, a•) to (κ′, a′•) are graded Lie algebra homomorphisms f : a• → a′• such that f ◦ κ = κ′.
Now, a Tanaka prolongation of g≤0 is a terminal object in this category; in particular, it is unique up to a canonical
isomorphism. The universal property gives a canonical morphism from any object (ι, a•) of our category to the Tanaka
prolongation; in fact, this morphism turns out to be injective by virtue of property (2) above. An explicit inductive
construction of a Tanaka prolongation g≤0 → g̃ is given by setting g̃i = gi for i ≤ 0, and then letting g̃i be the space
of degree i derivations of g<0 into the g<0-module

⊕
j<i g̃j for i > 0.

Now, we have that both g and gr s embed into the Tanaka prolongation of g≤0, compatibly with respect to the
inclusion g ⊂ gr s. On the other hand, checking that the positive degree subspaces in H1(g<0, g) vanish, one proves
by induction on degree that the Tanaka prolongation of g≤0 coincides with g. It follows that gr ι : g → gr s is an
isomorphism, and so is thus ι : g → s. �

4. Real forms

4.1. Preliminaries. Recall that a real form of a complex simple Lie algebra g are described as the fix point set gσ

of a antilinear involution σ of g. Such real form is defined in terms of Satake diagrams. A real form gσ inherits a
gradation g =

∑
gi of the Lie algebra g if and only is it preserves the grading element d such that dσ = d, where

add|gj
= jid.

The gradation is described by putting a cross on some simple roots of the Dynkin diagram of g. Let the crossed
roots are αj1 , · · · , αjk . Then the degree of a root vector Eα is defined as degEα = m := mj1 + · · · + mjk where
α =

∑n

i=1miαi is the decomposition of a root in terms of simple roots.
There is a simple criterion (see [7, 2]) when a real form gσ inherits the gradation in term of the Satake diagram

of gσ: the real form gσ inherits the gradation if and only if the crossed root s of associated Satake diagram are not
black and two connected by an arrow white roots are both crossed or uncrossed. The classification of all real forms
of complex simple Lie algebras which inherit the depth two gradation associated with adjoint variety are described by
Chen.

Proposition 9. A real form Gσ associated with an antilinear involution σ of the Lie algebra g acts transitively on a
compact contact manifold if (maybe, after a conjugation) σ preserves the grading element d, or equivalently, consistent
with the gradation:

gσ = (g−2)σ + (g−1)σ + (g0)σ + (g1)σ + (g2)σ.

The unique compact homogeneous contact Gσ manifold is the real form of Nµ that is Nµσ := PAdσ
GEµ = Gσ/P σ

where P σ is the parabolic subgroup generated by pσ = (g0)σ + (g1)σ + (g2)σ.

References

[1] D. V. Alekseevskii. Contact homogeneous spaces. Functional Analysis and Its Applications, 24(4):324–325, 1990.
ISSN 1573-8485. doi: 10.1007/BF01077337. URL http://dx.doi.org/10.1007/BF01077337.

[2] Dmitri V. Alekseevsky and Costantino Medori. Bi-isotropic decompositions of semisim-
ple lie algebras and homogeneous bi-lagrangian manifolds. Journal of Algebra, 313(1):8 –
27, 2007. ISSN 0021-8693. doi: http://dx.doi.org/10.1016/j.jalgebra.2006.11.038. URL
http://www.sciencedirect.com/science/article/pii/S0021869307000324. Special Issue in Honor of
Ernest Vinberg.

[3] K. Andriopoulos, P. G. L. Leach, and G. P. Flessas. Complete symmetry groups of ordinary differential equations
and their integrals: some basic considerations. J. Math. Anal. Appl., 262(1):256–273, 2001. ISSN 0022-247X. doi:
10.1006/jmaa.2001.7570. URL http://dx.doi.org/10.1006/jmaa.2001.7570.
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