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Abstract

We provide a framework for modal logic of model-theoretic con-
structions and calculate the modal logic of submodels, which is S4.2.1
or S4 for models in any signature with finitely many functional symbols,
at least one binary functional symbol, and with or without constant
symbols, respectively.

modal logic, logic of submodels, expressible relation, large frame

Introduction

Given a class C of models in a fixed signature and a binary relation R be-
tween models in C, it is natural to use modal language to describe properties
of this (possibly large) frame. To this aim, one can interpret propositional
modal formulas as sentences of a given language L in such a way that 3ϕ is
true at a model A iff ϕ is true in some model B related to A via R. There
are a few examples of such an approach dealing with models of powerful the-
ories like PA ([7], [5]) or ZF ([3], [4], [1]) allowing to put the interpretation
inside the theory.

However, if we consider arbitrary models, we get an obstacle since 3ψ,
which should be considered as a sentence of L, may appear to be not express-
ible in L. Once this problem is overcome, the notions of truth and validity
can be defined like in the standard Kripke semantics. We notice that in this
case, the set of all valid modal formulas, the modal theory of (C,R), turns
out to be a logic of a (large) general frame, so we obtain a normal modal
logic. This provides a natural approach to modal logics of model-theoretic
relations.

Then, we apply this approach to the case of the submodel relation, where
ARB means that B is a submodel of A. It can be seen that the first-order
language is not powerful enough to express R. However, in the second-
order language, it is possible to express R on the class of all models C in any
signature Ω whose set of functional symbols is finite (and the set of predicate
symbols is arbitrary). If Ω contains at least one binary functional symbol,
the modal theory of (C,R) is either S4 or S4.2.1 = S4 + 32p ↔ 23p,
depends on whether Ω is without or with constant symbols.

1 Modal theories of translations

Fix a signature Ω and a language L based on Ω. We do not fix a specific
language in advance, which may be first- or higher-order, finitary or not,
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although our subsequent results on logic of submodels use the second-order
finitary language. Let Ls denote the set of all sentences of L.

A translation is a function t : Ls → Ls. A (propositional) valuation
in L is a function θ : PV → Ls, where PV = {p0, p1, . . .} is an infinite
set of propositional variables. MF denotes the set of modal formulas. For
a valuation θ in L and a translation t, define the map θt : MF → Ls by
induction on the length of a modal formula: θt(p) = θ(p) for p ∈ PV,
θt commutes with Boolean connectives, and θt(3α) = t(θt(α)).

For a translation t and a set of sentences T ⊆ Ls, the modal theory of
(T, t) is the set

MThL,Ω(T, t) = {α ∈ MF : θt(α) ∈ T for every valuation θ in L}.

Let C be a class of Ω-structures and t a translation. A modal formula α
is t-valid in C iff for every valuation θ we have C � θt(α), i.e. A � θt(α)
for every A ∈ C; in symbols: (C, t) � α. The modal theory of (C, t) is the
set of all modal formulas t-valid in C; in symbols: MThL,Ω(C, t). Note that
MThL,Ω(C, t) = MThL,Ω(T, t) for T = {ϕ ∈ Ls : A � ϕ for every A ∈ C}.

Let L be the language of arithmetic and let t(ϕ) express consistency
of a sentence ϕ. By well-known Solovay’s results [6], if T is PA then
MThL,Ω(T, t) is the Gödel–Löb logic GL, and if T is TA (the set of all
sentences true in the standard model of arithmetic) then MThL,Ω(T, t) is
the (quasi-normal but not normal) Solovay logic S.

Let L be the language of set theory and let t(ϕ) express that the sen-
tence ϕ holds in a generic extension. By [4], if T is ZFC then MThL,Ω(T, t) is
S4.2.

2 Modal theories of relations

In provability logic and logic of forcing, modalities are expressible in the
language of arithmetic and set theory, respectively. We want to have this
feature for model-theoretic constructions under our studying.

Let C be a class of Ω-structures. A translation t in a language L expresses
a binary relation R on C iff for every ϕ ∈ Ls and A ∈ C,

A � t(ϕ) ⇔ (∃B ∈ C) ARB & B � ϕ.

R is expressible in L iff some translation expresses it. Some examples will
be given below.

Let C be a class of Ω-structures, R a binary relation on C. If translations
t and s in L both express R, then MThL,Ω(C, t) = MThL,Ω(C, s).

This fact allows to replace translations with relations between models.
Let C be a non-empty class of Ω-structures, R an expressible binary relation
on C. We define MThL,Ω(C,R) as MThL,Ω(C, t) where t expresses R, and
call it the modal theory of (C,R).
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[Soundness theorem for normal logics] Suppose that C is a non-empty
class of Ω-structures and R an expressible in L relation on C. Then
MThL,Ω(C,R) is a normal modal logic.

3 General frames of models

Fix a nonempty set C of Ω-structures and a language L. Put Vϕ = {A ∈ C :
A � ϕ} for any sentence ϕ ∈ Ls, and V = {Vϕ : ϕ ∈ Ls}.

If R is expressible on C then (C,R,V) is a general frame and

MThL,Ω(C,R) = MLog(C,R,V).

Ω-structures A and B are L-equivalent iff A � ϕ ⇔ B � ϕ for all
sentences ϕ ∈ Ls; in symbols: A ≡L B. For an R expressible in L on C, by
identifying structures with the same theories in L, we obtain the so-called
refinement of the frame (C,R,V).

Namely, let CL = C/≡L. For an A in C let [A] denote its ≡L-class in C.
Given R on C, define RL on CL: for ≡L-classes [A], [B] ∈WL put

[A]RL[B] ⇔ (∃A′ ≡L A)(∃B′ ≡L B) A′RB′.

If t expresses R in C, put

[A]Rref
L [B] ⇔ (∀V ∈ V) B ∈ V ⇒ A ∈ R−1(V ),

thus, in other words,

[A]Rref
L [B] ⇔ (∀ϕ ∈ Ls) B � ϕ⇒ A � t(ϕ).

Finally, put V ϕ = {[A] ∈ CL : A � ϕ} for ϕ ∈ Ls, and VL = {V ϕ : ϕ ∈ Ls}.
If R is expressible on C, then (CL,RL,VL) and (CL,Rref

L ,VL) are also
general frames and their modal algebras are isomorphic to the modal al-
gebra of the frame (C, R,V) (see e.g. [2, Proposition 8.45]); in particular,
(CL,Rref

L ,VL) is the refinement of (C,R,V).
Let R be expressible in L on C. Then

MThL,Ω(C,R) = MLog(CL,RL,VL) = MLog(CL,Rref
L ,VL).

If moreover CL is finite then MThL,Ω(C,R) is MLog(CL,RL), the modal logic
of the Kripke frame (CL,RL).

Let R be an expressible binary relation on C. Is it true that

MThL,Ω(C,R) = MLog(CL,RL)?

Is it true, at least, that MThL,Ω(C,R) is Kripke complete?
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4 Logics of submodels

Let A w B mean “A contains B as a submodel”. We are going to calculate
the modal logic of this relation. As the first step, we note:

The relation w is not expressible in the first-order language and is ex-
pressible in any second-order language with finitely many functional (includ-
ing constant) symbols.

We illustrate the non-expressibility as follows:
Let Ω contain a binary predicate symbol ≤, and let L be the first-order

language.
1. Let (Z,≤) be the integers with their usual ordering and letX ·Y denote

the anti-lexicographic product of X and Y . If ϕ is the first-order sentence
characterizing dense linear orders without end-points, then 3ϕ means the
non-scatteredness of linear orders. However, we cannot distinguish scattered
orders by first-order means since e.g. (Z · Q,≤) and (Z,≤) are elementary
equivalent.

2. Suppose that t expresses w. Let ψ say that ≤ is a partial order and let
ϕ say that there is a ≤-minimal element. Then ψ ∧ ¬ t(¬ϕ) is a first-order
sentence saying that ≤ is well-founded, a contradiction.

A second-order formula ϕ is atomic iff it is of form P (t, . . .) for a predi-
cate constant P , or X(t, . . .) for a predicate variable X, and (second-order)
terms t, . . . . Let ϕ be any second-order formula and χ(x) a second-order
formula with one first-order parameter. The relativization ϕχ of ϕ to χ is
defined by recursion:

(i) ϕχ is ϕ for atomic ϕ ,

(ii) (¬ϕ)χ is ¬ϕχ, and (ϕ ∧ ψ)χ is ϕχ ∧ ψχ,

(iii) (∃xϕ)χ is ∃x χ(x) ∧ ϕχ,

(iv) (∃X ϕ)χ is ∃X
(
∀v0 . . . ∀vn−1X(v0, . . . , vn−1)→

∧
i<n χ(vi)

)
∧ ϕχ.

The relativization of other connectives and quantifiers easily follows. Note
also that (ϕψ)χ ↔ ϕψ∧χ, in particular, (ϕχ)χ ↔ ϕχ.

Let now Ω have only finitely many functional (including constant) sym-
bols (and arbitrarily many predicate symbols). Then the relation w can be
expressed by the existential second-order formula

∃X
(
X is a submodel ∧ ϕX

)
where X is a one-parameter second-order variable and “X is a submodel”
is the formula

(∃xX(x)) ∧
∧
{ψF (X) : F ∈ Ω is a functional symbol}
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where, in turn, ψF (X) is the formula

∀x0 . . . ∀xn−1

(∧
i<n

X(xi)→ X(F (x0, . . . , xn−1)
)
,

meaning that X is closed under F , for each functional symbol F in Ω.

Henceforth we assume that L is the second-order language and Ω has
only finitely many functional symbols, so w turns out be expressible in L.

Let C be a class of Ω-structures. Then MThL,Ω(C,w) is a normal modal
logic including S4. If Ω contains a constant symbol then MThL,Ω(C,w)
includes S4.2.1.

For an Ω-structure A, let Sub(A) denote the set of all its substructures.
Let C be a class of Ω-structures closed under substructures. Then

MThL,Ω(C,w) =
⋂
A∈C

MThL,Ω(Sub(A),w).

Let Qn be the lexicographical product of (n<n,⊆) (an n-ramified tree of
height n) and (n, n×n) (a cluster of size n), and Q′n the ordered sum of Qn
and a reflexive singleton. The following fact is well-known: S4 = MLog{Qn :
n ∈ ω}, S4.2.1 = MLog{Q′n : n ∈ ω}.

For any positive n < ω, there exists models An and A′n such that
(Sub(An)/≡L,wL) is isomorphic to Qn and (Sub(A′n)/≡L,wL) to Q′n.

Now our main result follows: Let Ω contain a binary functional symbol
and let C be the class of all Ω-structures. Then MThL,Ω(C,w) = S4 whenever
Ω has no constant symbols, and MThL,Ω(C,w) = S4.2.1 otherwise.
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