SEGMENTS OF RECURSIVELY ENUMERABLE m-DEGREES
V. V. V'yugin UDC 517.11:518.5

Lachlan obtained in [3] a necessary and sufficient condition for and upper
semillatice to be isomorphic to an initial segment of an upper semilattice of
recursively enumerable (r.e.) m-degrees. In the present article we extend this
result and show that Lachlan's condition is necessary in order for upper semi-
lattices to be isomorphic to arbitrary segments of an upper semilattice of r.e.
m -degrees. The sufficiency of the condition is proved in the followingrsense;
for any incomplete r.e. m -degree g and any upper semilattice F ,satisfying
Lachlan's condition, there exists aﬁ r.e. m -degree « such that g<u ;for any
r.e. m -degree z ,1f z<¢ then L<a or gg¢gp, and the segment formed by the
set of m-degrees {ihls:2411} is isomorphic to F. The second of these results
generalizes the results obtained in [1, 2] (in [ 2], a similar result was ob-
tained for the case when F is a two-element lattice, while in [1] the result is
generalized to the case when F is any finite distributive lattice). The proofs
of the present article are based in an essential way on the proofs in [3], and
an acquaintance with [3] is needed for understanding them. Proofs which are
similar to those in [3] will be omitted, and the reader will be referred to [3].
We shall also mention many definitions given in [3] without dwelling on them in
detail.

Let (§, <) be a partially ordered set. We describe as a segment of it any
partially ordered set (§,p <,¢), where adeS, a<t, Saé’= {reSla < x< 4} , <.¢ is
the restriction of < onto 5;5. If a is the least element of (S<), we call
(S,4:5,¢) the initial segment.

A pair (P <), where P is a set of natural numbers, and < is a transitive and
reflexive relation in P, is called a preordered lattice. The preordered lattice
(<) is finite if Pis a finite set. A partially ordered set (&,<)is said to be
a partially ordered set associated with the preordered lattice (P «) if @ is the
set of all classes, into which P is divided by the equivalence relation L=y~
-‘—-vxéy&y\«t‘, and <€ is a partial ordering inléZ, induced by the relation <, If
aec ¢ and xrea, we say that Z represents @. A sequence of preordered lattices
{(10[,,45)} is said to be increasing if /ZZ.QPH, for all i and =zg y—rr<,, ¢ for
all x,yeJ%. We define the limit of such a sequence as the preordered lattice
(R,,4,), where ,Dw=590p& and £« , 4 ~~7i (z<, y) for Zye 7.

We denote by N the set of all natural numbers, by ¥ the set of all odd
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numbers, by N the set of all even numbers, ‘and by ¢ the empty set. The set with
the number ¢ in the standard numbering of the class of all r.e. sets is denoted
by W,. We shall assume that a computable enumeration of the class of all par-
tial recursive functions is given, where ﬁ is the function with number ¢ in

this numbering, and /} is the graph of f Let W be a finite set of elements,
enumerated in W. after § steps, let }'ﬁshave the same meaning, and let fLS be the
finite function w1th the graph T, ﬁ

If &4 is the class of r.e. sets, then (4(X),<)will denote. the upper semilat-
tice of computable enumerations of this class. It is well known that the upper
semilattice of r.e.m-degrees is isomorphic to the upper semilattices of com-
putable enumerations of the class {@,{0}}. The following theorem extends the
necessity of Lachlan's condition of [3] to segments of any semilattice of com-
putable enumerations. The proof is a trivial extension of the proof of Theorem
3.1 of [3].

THEOREM 1. Let O be the class of r.e. sets, and let q,4el((¥) be such that
~a<?. Then there exists an increasing sequence of finite preordered lattices
{(Z),\ }w:.th limit ( ), such that the partially ordered set associated with
(0;,<,) is isomorphic to the segment (4 (X),4, <,¢) of the upper semilattice
(4 (ct), <) and the following conditions hold:

1) 0/€0,,0<, 1 for all i and 0<;x<; /for all xe J;

2) for any i, the partially ordered set, denoted by Z;, associated with
(7,,%;) is a distributive lattice;

3) for all i and all 2,42 6./7&- if 2z is the union in L; of the elements rep-
resented by Z and ¢, then z is also the union in l’tH of the elements represented
by z and ¢; ‘

4) {J,} is a strictly computable sequence of finite sets;

'5) there exists a recursive( relation K such that, for all ¢ and all ry€ 175
we have T4, Y ~— Yudu R (684 a,0);

6) there exist recursive functions z, u« such that, for all z.y4, ¢, if tye
then #(¢,xy) u(&,a';y)eﬂ,; and 2,z 4) u’(é,a’,y) represent the intersection and
union in /;, respectively, of the elements represented by z and 4.

Proof. Let,aef. We shall require the operator ¥ defined as follows. Let
Wbe an r.e. set such that {g(@)lee W} = &, & is a recursive function enumerat-
ing W. Then ¥(W/is the class of all numberings &, equivalent to the numbering
pw. For all remaining W, the value of ¥(W is not defined. The value of ¥(W/
is independent of the choice of the function w. Let w, be another recursive
function, enumerating W. Then the function Azuy (W, (y) = W (z) reduces AW to S,
We can similarly show that gw, reduces to gsw. It is easy to directly show that,
for any A and B such that ¥Y(A),¥B) are defined, we have ¥(A)< Y(B) if and only
if there exists a partial recursive function f'such that its domain of defini-
tion is A, £(z) €3 and ,G(Z)=Af(z) for all zeA4 . 1In particular, if /4%:—5 then
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Y(A)< ¥ (B). Let a=¥(A. The sequence {(D‘-,éé)} and recursive functions g; will
be defined in steps.

Step 0. 1 ={0.4}, .2:4”5(*——r(;c=0vy=/)&-1‘.5/€ﬁ,,,90(0),5;,(1) are the indices of
¢,N, respectively, in the standard numbering of the class of all r.e. sets. For
the remaining x we put g,(x) = O

We deflne the relation 7;: (z, y)ep -~ (ry)e/" & Y Yk {3t ((j. k€l f
— B (J)Cp (:é)&p (k) € g5(p). The basic properties of P- are: vay((fc yrely — p@)=
=plyy—~H =17, ﬂxiy\(:c,y)e/ﬁ & p@ # p(y)— P; is finite. TLet Pt —;élé/p and

let QL be the least-equivalence relation containing P°. Obviously, g, is recur-
sively enumerable. We call the pair [z y) true if p(r) = plg); otherwise, it is
false. Also W&% = {xlqy (ye W& (z,y) € Q} Let W be an r.e. set such that
{p@]xeW}=a& . We shall show that z/r(w L)_M(W) Since WS W%, we have YIW)<
éS”(ng) It can easily be seen that P° contains only a flnlte number of false
»dye 4, , such that
IG(GJ-)= ,G(gl for j<k. For any xe W% we can effectlvely find a sequence Z,.3,....%,,

pairs. Let {,,..J be all the elements of false pairs of Py

such that ax=x, . (&7, Ty,) or (%, 7;) is a true pair of P’ for j<m and x_ e Wor o,
is an element of a false pair of Pb We define

Wx):{aj.lf:z-eyp, Y} Tm= Y

x, O therwise

Then, for all xe W % the value of 4@ is defined, 7 (x)eW and B(T)=pr(x).
Hence, w(Wai) < Y (W)

Step (+ . Let k be the least element of N=I . As the value of Giny (k) we
take the index W vd, which can be effectlvely found with respect to {; for
xeD; as the value of [ {(x) we take the index ng(x) We number all the classes,

consisting of subsets _7)‘-U{/<}, which cannot be compared with respect to inclu-
sion; for this we use the necessary initial segment of N —(Z;U{k}). Let D be
this segment and [, the class with number z. We define 2, = ZJ,u{kjuD, and for
zel we take as the value of ¢, () the index U{H{W (y,lgeX}]Xecx}. For all
remaining = we define ey (@)= 0. Ve define

22§ W S & 4D

Clearly, the partially ordered set associated with (7, .%$,, )is isomorphic
to the distributive lattice generated by the sets Wg (xy for 1'6_/7L-U{k} . Let

. 6’ Lk : =
Z,4,2€7; and Wy @ Y Wgcfy) g,(z) then, W w U Wy W = y‘fatcz) Teee W.%wf“‘i UWe,
W95+1(Z7 .  This means that condition 3)is satlsfled. Also, ng.wQW%,w is a

VI relation, so that condition 5) is satisfied. It can easily be shown that all
the other conditions likewise hold, and _Da)=_|.la_/7b,-/\(. Let us show that the par-
b/

tially ordered set associated with (Dy,4,) is isomorphic to the segment

(L(M),p, %44) - We define g(m) = (I/(Wg .zy) where ¢ is any number such that xeZ
From what has been proved above, the value of Y(x)is independent of the choice
of {; here, acx(r<d for all x.
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Let x4,y . Then W W,?” for all sufficiently large ¢, whence
L

YW, ) = (//(Wy‘.(y;). Hence, L)=X (Y.

) ()
Let f(x)<x(y) . Then there exist ( and ¢ such that .z, ye?;; for any

ze Wy (o the value of f,(%)is defined, f; (%) € Wy Wy and all pairs 7%, are true.
Let d';&,?f . Then /';t= % C_:Qj , so that
— &; —4g.
W%H o= W%/(x) < W%’( 5= ng o)
i.e., x4, y. Hence, 24,y . Let zel(),4- Then,z = YW;)=¥(WuA) for some i.
By constructlon, for £ €D, —1. we have Wy W™ = W,uA. Then, (k)= ¥(W H(h) =2

Hence, it follows that the mapping X induces the necessary 1somorphlsm
QED.

Let (4,«) be an upper semilattice of r.e.m-degrees, and let a v be the
least upper bound of elements ¢ and £ in (4,<) .

THEOREM 2. Let & be an incomplete r.e. m-degree, and let {(Z,%,)} be an in-
creasing sequence of finite preordered lattices, satisfying conditions 1-6)of
Theorem 1, with the limit (J,,%,). Then there exists an r.e.m-degree & such
that:

1) a<u ;
2) for any r.e.m-degree z, if x<u¢, then xr<saor 2<x ;

3) the segment (4, )of the upper semilattice of the r.e.m-degree (4,<

is isomorphic to the partlally ordered set associated with (2,,4

Proof. Let f(.D-,éb-)} be an increasing sequence of finite preordered lat-
tices, satisfying the conditions 1-6) of Theorem 1, and let (-Dw \w) be its limit.
If /4 0 then the partially ordered set associated with (D w0 2w
element and wu=q satisfies the condition of the theorem. Henceforth we shall
assume that /4, 0. Let Aea and let K be a creative set, K,/

) has a single

In order to describe the construction, we shall repeat some definitions of
[3] (see [3] for more details).

A family of nonempty nonintersecting subsets of a set F, the union of which
is equal to F, is called a division of F. Let #and { be divisions of the same
set; then # is finer than &, if every element of & is the union of several ele-

ments of A.
A tower of order n is a collection (£,..%, ¢,.-...%) , where £,..% are

divisions of the finite set 7, called the base of the tower, and ¢, are mappings
of fz into the set of all subsets .7, such that:
(T) £ contains a single element, and 4 is finer than £, for i<n;
(T2) for any i<n, Peﬂw,/l @, (P)and 2,. ﬂe./‘? such that U,D =P the class
]\

{% (Z),..., g, (7, )} consists of sets | @ (P) AnD, pairwise incomparable with
dsk
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respect to inclusion, and this class is the unique subclass of ¢ ('f}}, possessing

these properties.

A basis of order n is a collection (Jfﬂ,,,,,afﬂ) , where ag,; is a class of sub-
sets J, such that:

(F1) A, consists of a single element;

(F2) for any i<n and Aed;, there exists a unique subclass f; () in #; , con-
sisting of sets which are incomparable with respect to inclusion, the union of
which is equal to An2

(F3) = U{£ (A) | hed;,) for éi<n.
 An associated basis of a tower (£ ,...,#.,4,...%) is defined as a basis
(9, (B),.... 9, (%)) (it is easily verified that this collection satisfies(F7) - (F5)).

It was shown in [3] how, given any basis (£,...,£,), we can construct a tower
for which this basis is an associated basis. This is done as follows. Let

§={(A, ... A e, A e 4 (/1“_7,)} for i<n,

let P be the number of elements of §, and let F= {(Z,,..,,a/,} be any finite set of
natural numbers containing p elements. We enumerate § with the numbers from 1
to p. Let (A”’,,,,,A:) be the element of § With the number j. For ¢<nwe define

8 = {fa, 1Vylicyen—A = A )H(A,,,,,..,Aa)eS}

4
and

ooy iegen — A=A N=A;  for (A,,...4)eS.

It is easily shown that F is the base of the tower (‘9;,__,,?)0 s P ¥,) while

(£,,...,.£,) is an associated basis.
We say that the tower § = (.ff”,...,f’o,gﬂm,...,qﬂp) is compatible with the tower
U=(4, ..,00 v Ppren ), if their bases do not intersect, and for arbitrary i<m,z,

Pe f) , & €@, such that ¢, () < ¢, (P), there exists a tower
* . * : * * *
=(%, .l P, )
such that:
(M1) the base of f* is Fug, where F is the base of §;
(M2) £F= (P —[PPU{PUE};

(M8) for arbitrary j<m and Xef; there exists a unlqueX € f’ such that
xsx* and% (X)=- 5&71 (X*), and for arbitrary X*e J’" there exists a um.que Xeﬁ such
that XQX

(M4) for arbitrary j<i and Xeé? such that X<=§& there exists Xef’ such
that X €X* and ¢ (X) 90 (x*).

Given any two towers J and U, we can effectively discover whether § is
comparible with I« and given the ¢,72 & described above, we can find the tower
7% satisfying (Mi1-M), in the case when J is compatible with .

365



Let n, « be recursive functions satisfying the hypotheses of the theoren.
Given any 4 ¢ 7,

0., if A=#,
ulhi) = g, if A={a},
U(6,a, U (6.0, -ulia, ), if A<{a,..0].k>1.

We define n(A,i) similarly. For AU,
madg (A,0)= min ({z](Vare )1 R (6, 2(Ai), & DAz} vis}).

Let p, be the 2 -th prime number. Given any basisJ= (,1 £,), its modulus at the
step s is madsf=p;ﬂ+’ where Z, =/’1’[Pn > maz {mod (4, YY) G\ff , é<n}] . The modu-

lus of the tower at the step s is defined as the modulus of the basis associated
with it at this step.

We shall assume that an effective enumeration of the set {(rrz,n,e)l m,rze.Da,}
is given, in which the triple with number & is denoted by (/nk,/zé,ek) and which
is such that, for all & ,m,, 7€ 0, . We are also given an effective unique enumer-
ation of all pairs, where c¢(;j) is the number of the pair (;;) in this enumera-

tion.
CONSTRUCTION

Step 0. We put 7"(.'1’,0)= 0 for all g, vL2°= #. After the instructions of the
step 8~f/ (S=4) have been performed, there may exist a finite number of towers,
the bases of which do not intersect. The base of each of these towers contain
only even numbers, and € ¢%7 or eN-u*'. Some towers may have equal orders;
for any two such towers, the associated bases are identical. All towers of the
same order are numbered by the numbers forming the initial segment of the natu-
ral series. A number is said to be used at the step $§ if it is located in the
base of the tower constructed at a step <§; otherwise, it is said to be unused
at the step §. A tower exists at the step § if it was constructed at a step
<§ and was not destroyed at a step <$. A number is discarded at the step s if
it was used at a step § and is not located in the base of the tower existing at
the step §. The finite set F(;;) is defined at the step s if the value of F(4j)
was defined in the construction at a step <S. Let 2% be the set of all num-
bers discarded at the step s, and let UH be the set of all numbers enumerated
in { after <SS steps of the construction. Denote by Ks, A‘s the finite parts of
the r.e. sets K, A, evaluated after S steps.

Let py=min{i|lm , n,eD} . p <k.

The number k requires attention at the step § if the function f’ek,g is de-
fined on the set {4,/,... f(k,s=n}nU {P| at the step s there exists the tower
T=(2,.. §.4,-%) such that Pe@ and m 4 € Lo (P)} and for all = of this set

A('

fE S(.I‘) e U {/—7! at the step $§ there exists the tower JT={( -@ 5”,-,,,: ,%)

such that ,De.? and 7, € 50/‘, (PYUN uD™ ‘w* and zell’ “_“785 s () el’
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The tower ¥ = (ﬁm,...,\@,gam,,,,,%) requires attention at the step S from the
side of / if it exists at the step §, and there exists at the step § the tower
U= (Qz.....8,, $»e-n¥,) and there exist Pef, d€ &, such that

. S~1 _
(L rrwds 7< nwdsu & ¢, (q) = g ()& PEN- U & Qeh-u* &in};é&gnvg%&( U
was constructed later than ¥ ) & (for every tower X existing at the step §, if

mod £ < mod, & , then &£ is compatible with &).
Step 8§(§>1). One of the following five cases must always hold.

Case 1. At the step § there exists at any rate one tower J for which
motkg 7> mod,_  or m0d5f> mod, 9, if § was modified into § at the step s-f .

In this case we destroy each such tower.

Case 2. Case 1 does not hold, and there exists at least one number k, re-
quiring attention at the step §, and such that, at the step §, there exist pre-
cisely f(k,§-/)+1{ towers of order k. Let K, be the k for which mod,f is least,
where & is a tower of order k, existing at the step S. We define £ (k,,8)=f(k s-1)+1
and destroy each tower 7 existing at the step s, for which modsll >mad5 _’/'; ,

where .’/; is a tower of order ko, existing at the step §.

Case 3. Cases 1 and 2 do not hold, and there exists a tower requiring at-
tention at the step S. We choose such a tower § at the least mods F, and let ¢

be the least number, from the side of which frequires attention. Let f=

(ﬁm,..,,@, bnses %), and let U= (d,,...,4,, ¢;,....¢,) be a tower, existing at the
step 5, while P€ % ,{ed; are such that (1) is satisfied, and in particular, J

E o .
is compatible with . We find the tower T*= (ﬁ;, ,..,17),, r:;-..,(ﬁ: ), satisfying

(MI-M4) |

We replace 7 by f*, and call this replacement the modification of {/'by the
number ¢ at the step §. Henceforth, as in [3], we shall allow some inaccuracy
for the sake of simplicity, and regard £ and 7 as the same tower, undergoing
change at the step s. We destroy all the towers of order 2 and say that they
are destroyed by the number ¢.

Case 4. Cases 1-3 do not hold, and there exists at least one pair (¢,7)
such that F(¢7) is not defined at the step §, and such that there exists, at the
step §, a tower J of order greater than c¢(,)) with base F such that Fn W;# ¢ and

FEN-«*7 . 1In this case we choose a pair (¢,j)with the least number and a tower
J of the least order, and we define F(.j)=F, where F is the base of J, We de-
stroy every tower existing at the step s, the order of which is equal to the
‘order of 7.

Case 5. Cases 1-4 do not hold. 1In this case, among all % and the bases
of = (£,,..., #,)such that nz&eA,ﬂ‘,gM , where £k=(,4}, and at the step S there exist
less than f(k,s—/H-/ towers of order #, we find those 4 and the basis of J of
order £ such that mods Jis minimal (the fact that such £ and ¥ exist is easily
proved by using Lemma 1 (see below) and the fact that /%ka for all k). It can
easily be seen that, by definition of madsf/'just a finite number of bases needs

367



to be considered in order to find the required £ and J

If no tower of order § exists at the step k, we construct f(4S-7)+1 towers
on the basis 7 in the way indicated above, using as their bases the necessary
nonintersecting segments, the union of which is the initial segment of the even
numbers unused at the step s. If there exists at the step § at least one tower
U of order k, then we construct the towers that are missing (so as to get a
total of f(k,s~1)*{ towers) in the basis associated with Z choosing sets of bases
for them in the same way as was done in Case 1. Suppose that there existed ;20
towers of order k at the step 5. We number the constructed towers by the num-
bers j. j44....f (ks=1).

After analyzing all the cases, we proceed as follows. We take each k, and
each k-th order tower existing at the step s and not destroyed at this step, and
let j be the order number of this tower among those of order kK existing at step
S; ifJ'EKs, we enumerate all the elements of the base of the tower in &. For
every pair (¢,j)such that F(ij) is defined at the step s, if /eAs, we refer all
the elements of F{&,/') to . For every .z'eAs we refer Jz+{ elements to l/. For all
z, if f'(z,s) is not yet defined, we define it as f'(z,s)= f’(z,s—/) . We pass to step
S+7.

The instructions of step § are not precise (single-valued) in some places.
However, it is easy to make them precise in some suitable way. We shall assume
that this has been done.

We have

u-uvu, p=ur,
Sz0 $»0

In the light of what has been said 4,7 are r.e. sets. Also, let ¥ be the opera-
tor defined in [3]: ¥(@)=0 (a recursive m-degree), and for any nonempty r.e. set
W, the set ¥(W/) is an m-degree of the r.e. set {z|W(x)ell}, where @ is any recur-
sive function, enumerating W. By definition of &, ¥(N)=a. Let us show that
Y(D)<a . For any xel , we find § such that xeﬂs—ﬂs’_’. If, at the (s+7)-th step,
zeF(ij) for certain bj (there can only be one such pair (i,j)), then we deflne
g () = 2j+1; otherwise, we define g(zx) =Jag+¢{ if xeu.’ g(x) ZD’+/ if x¢l[ where
2a+7 € U ,26+1¢ UL (we assume that A#N and A##). Then, for all xeJ, the value
of g(x) is defined, g(x)e/\/'andxed ~—g(xje (/. Hence, ¥ (J) < Y (N )= a.

We shall slow by means of Lemmas 1-9 below that them-degree « of the set
{/ satisfies the condition of our theorem. Most of the lemmas are proved in the
same way as the corresponding propositions in [3], so that their proofs will be
omitted.

Let m,n€l,. The basis J = (#,,...,#£,) separates /m from n, if mel, nd A,
where £k= {A}-

LEMMA 1. A basis J= (£,,...,
tim,mod,J< o, exists if and only if M, 4 N

£,) separating m from 7, and such that
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The proof is the same as that of Proposition 2 of [3].
LEMMA 2. Every tower may be modified at most at a finite number of steps.
The proof is the same as that of Proposition 3 of [3].

A tower is said to be constant if it is constructed at a certain step and
is not later destroyed. A tower is called final if it is constant and is not
. further modified during the construction. By Lemma 2, every constant tower be-
comes a final tower after a finite number of modifications. If Z is a constant
tower, existing at the step §,, then modsu= maafsaZ[ for all s>s,. Assume that,
in this case, med % = fim mod U .

LEMMA 3. For any , if m,kqék/zk, then f(}m,s]f(/(.s)< co, while there exist
&msf'(k,s) + { constant towers of order £, and at all sufficiently large steps,
k does not require attention. '

Proof. Let us show as a preliminary that Case 5 holds at an infinite num-
ber of steps. Assume the contrary. Then only a finite number of towers will
be constructed during the construction. Hence, only a finite number of them can
be destroyed. If, at some step, one of Cases 1, 3, 4 holds, then at least one
tower will be destroyed at this step. Hence, each of these cases can only hold
at a finite number of steps. This means that Case 2 must hold at an infinite
number of steps. But it can easily be seen that in that case, there must exist
an infinite number of towers in the course of the construction. This contra-
diction shows that Case 5 holds at an infinite number of steps.

We define (k)= bnf{fi,mzmodl.ff 7 is a basis of order k separating m, from
n,} (we assume that inf@ ~e° ). Then, by Lemma 1,m 4 7, ~~plkl<oe . If
,B(k)<oo , then /J(k) = /7,5 for some £>0, so that, if AlT), plY) < oo and z# 4 then
/B(x)#p{(y}. Notice that, since the basis with least modulus is chosen in Case 5,
we have mod 9= (k) for every constant tower 7 of order £.

The lemma will be proved by induction on plk). Let p(k] < coand let the lem-
ma hold for all « such that p(o)<p(k). Let t be such that, for all z such that
pl@<plk), and all s>7?, we have £(z3) = f(x,t); then all f(r,f)+/ constant towers
of order z will be in existence and will not be modified at the step ¢, and
requires no attention at the step §.

Let ¢ be such that g(y) >p (k). Every tower X of order y, existing at the
step § such that moa,/S[[é/S (4}, will henceforth be destroyed in accordance with
Case 1. For any basis of U of order Yy, we have mods U > p(k) for all suf-
ficiently large §. There are only a finite number of bases of order y. For all
bases { of sufficiently large orders, rnods U>,6(k) for all s. It follows from
all this that ¢ can be increased in such a way that Yy [/S (y) > plk) — (¥s=7) (at

the step s there exists no tower U of order y for which nwdJ U é/a(k)]. The num-
ber % can also be increased so that, for all bases U of order &, we have

mod; U >p (k) for all s>t or mod Il = plk) for all s>t , the second being true
for at any rate one of these bases. We also increase ¢ so that, for any pair
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(ef) such that ¢(¢j) <k, the quantity F(i,f) is defined at the step £ or else Flij)
is never defined at all during the construction. Now suppose that, at some

step s>f, there exists no tower of order k, and let 8’ be the first step =85 at
which Case 5 holds. Then, in accordance with the choice of 7, at least one
tower J of order k will be constructed at this step, for which mod, 5= p (k) for
all {>s'. Clearly, ¥ cannot be destroyed at steps />8'in accordance with Case 1.

By the choice of ¢, ¥ cannot be destroyed in accordance with Case &4 at
these steps. Also, § cannot be destroyed at a step £28' in accordance with Case
2, since, for this, there must exist at the step { a tower Il of order z, for
which mod,% < mod,% = p(k), and & must require attention at the step ¢, which con-
tradicts our inductive assumption, since it follows from this inequality and
¢>/ that 8(z)<p (k) . Further, the tower J cannot be destroyed in accordance
with Case 3 at a step {>s', since, for this, some tower ¥/ of order &£ must exist
and be modified at the step ¢, for which maa’e U< mod,7 , which is impossible,
since g(x)<pg (k). In short, the tower & constructed at the step §/is constant.
It follows from these arguments that at least one constant tower of order £
exists.

Suppose that a tower I’ of order k is comstructed for the first time at

the step §, . Then, at steps §2§,, towers of order £ will not be destroyed.
As we pointed out,mod.f/=,6(/() . If, at a step §>8§,,Z, at which Case 5 holds,
there exist less than f(4,8-/) +/ towers of order k, then, since s>#, all the
missing towers will be constructed at this step. It is easily seen from this
that, if &}rnsf'(k,s) < oo then there exist f[,msf’(,(’,.?)+/ constant towers of order £,
while if &msf'(k,s)= co, then there will exist infinitely many such towers. Let
k require attention at a step §>%f, and let s' be the step »§ at which Case 1
does not hold for the first time. Then Case 2 will hold at the step s' and
f(k,S’)%f'(k,s’—-/) . It is easily seen from this that & requires attention at only

a finite number of steps if and only if &'rns-f'(,(',s)<w. It thus remains to show
that &msf’(/(,s)<w. Assume the contrary. Then there exist infinitely many
constant towers of order k. For an infinite number of distinct s, we have 7"(l',9)9é
f(k.s—f) » so that, with this £, Case 2 holds at an infinite number of steps.
Hence, there cannot exist a constant tower  for which moda>m0d.7’=/5(k) .
Let Z'.Z, be all the final towers J for which mod & < g(k) (by the induction as-
sumption, there is a finite number of them). Every tower of order X, construct-
ed at a step >§,, is constant. Each such tower receives a certain number. Let
I = (@,...,»@,%",.,%)be such a tower with the number ¢, constructed at a step

$,>s,, and let &; be the least x such that, at the step §;, there exists PG%

such that 77, € ka (P) and xeP. 1t is easily seen that the function A; Z; 1s re-

cursive. By construction, for all ¢{ we have ;e A~—g el . Since &msf’(k,s) = oo
and £ requires attention at an infinite number of steps, then fék (22) is defined
and féeZ[«»/gk (z,) € U for all (. In addition, if f'ek(az-);r{l/, then ‘;‘}k (x;) cannot be

located in the base of a final tower of order k, since, for any such tower
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U= (Qk,--.,go,%,-.-,%) and for any Qegﬂkwe have n,¢ ¢, (). It is easily shown
that every even number is discarded or is located in the base of some final
tower. Hence, fe[x) is odd, or is dlscarded or belongs to X, or is located
in the base of one of the towers ./ f;. Let ae i, for t<p let /s be such that
it €4 ~— the base of T is contalned in 7, and let g be a partial recursive
function such that for all xe? , the value of gix) is defined, 9{:::)6)\/ and

xe U«—-—g(x)’e[[, where the X was defined above. We fix certain enumerations of

Jand U/. We define

'/'t' if ;5 (x.)beilongs to the base.?;, t<p;
z[ﬂ,{a’)-f if ﬂ (x;) is odd.
——(g’f; (r)—4) if the first two cases do not hold and

f'g (x,)is énumerated in D earlier than in;
a otherw:.se

() =

It is easily shown that, for all (, we have (e K->z, el/-——»f’f x;)eld —
t(i)eA, and hence K<, A . This is a contradiction, and hence fim f Mhs) < oo .

QED.
For all z, i such that ze7;, we define R, =UuDvU{P | there exists the
final tower J=(%,..9, $ogr-- P ) such that pef and ze 9, (P)}.

LEMMA 4. For any «, ¢ such that zeZJ, , F_..is an r.e. set.

¢
The proof is the same as that of Proposition 8 of [3]. Notice that, to
prove this proposition, and also Propositions 9 and 12 of [3], use was made in
[3] of Propositions 5-7. These latter also apply in our case. There are some
slight inaccuracies in the statements of these propositions in [3], and also in
the relevant definitions. They are easily eliminated if, in the statements of
Propositions 5 and 6, and also in the relevant definitions, we replace the
phrase "final tower" by '"final tower with base € N—-U{." Further, in order for
. Proposition 7 to perform its task, it should be stated as follows: "There is at
most a finite number of steps s such that some tower, i/, satisfied at some step
<§, is modified at the step § by the number ¢."

All these refinements to the statements of the proportions in [3] demand
only obvious refinements to the proofs, which may be left to the reader.

= (R

The proof is the same as that of Proposition 9 of [3].

LEMMA 5. Ifxzed; ,, then ¥ (R

-Tl/'-f

It follows from Lemmas 4 and 5 that we can correctly define «,= ¥ (K., UN)
for any xel where ¢ is any number such that xed,. For any xeJ,we have
e, < U,

LEMMA 6. Let mmpe?, and let p represent the union in the semilattice,
associated with (_Uu,,—(\w) of elements represented by m and 2. Then UpUly=Upy.
The proof is the same as that of Proposition 10 of [3].
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LEMMA 7. If /Tt./le_/jw and mL£, 2, then Und Uy
Proof. Let mnel, and mA,n.

U= Y Ry UN), =¥ (R UN"),

where p= min{i|mneld,}.

Suppose that 4 _<«,. Then there exists a partial recursive function f' such
that, for all xe#,,UN , the value of f(#) is defined, f(.'t)e:/?,,PU/V‘ and x
el ~=f(mEl . Let k be such that m =, -/L.fex" f. since m#&n , we have, by
Lemma 3, &msf’(k,s)< <o and at all sufficiently large steps, £ does not require
attention. Let f(k,s)r—f’(k,sa)and suppose that k does not require attention at
step § for all s=§,. At a sufficiently large step, any even number will be
discarded or will be enumerated in the base of a final tower. Hence, for all
sufficiently large $, {g4,...,f(ks)} n U |&] at step s, there exists the tower
U= (&4, 4y, 9,,....9,) such that Qe d, and me g, (@)} = {0,1,...f (k,3,)} nU{& ], there
exists the final tower U=(&,....4,, ¢;,...¥,) such that Qe d, and me ¢, ()} =P ERm,

and {o,f,...,c}n(um) at step §,there exists the towers U= (@, ..., &,, ¥s,---.%,)
such that #ed, and ze Sf)/, @} UN VDU )={gs..c}n[UIQ] , there exists the final

tower U=(Qt'__‘,00,¢%,_.,,glzp) such that Qeé]P and ne ¥, @Y N vDUU)=P, S l?,,PU/V-, where

¢=maz {{(x)|xeP}. By the property of f, for all sufficiently large s and all
zeH the value of f?,,s () is defined, 7‘;‘,5(1‘)6 2 and el 7£€K.s (x)e U™,

i.e., £k requires attention at sufficiently large steps. This contradiction
proves the lemma.

LEMMA 8. For any ¢ such thata<¥ ' /), there existsZe€Z;, such that
Y wnNF) =R, ).

The proof is the same as the proof of Proposition 12 of [3].

Let ; be such that ¢ <¥(W,). By Lemma 8, there exists x€J; such that

Y(Rp;) =¥ (W;nN*). We have a=¥(N"). Then,

Uy =Y Ry  UN)= ¥ Ry JUUNI< Y (W NIU YW =Y (W)

YW )= Y WaN) VU (WnN )<Y R YN I=Y(R, 0N Kty

Hence ,up= ¥(W;). 1t follows from this and Lemmas 6 and 7 that the mapping ALy
induces an isomorphic correspondence between the partially ordered set as-
sociated with (Z,,%,) and the segment (Lyy < qu) of the r.e. m-degree.

LEMMA 9. For any r.e.m~-degree &, if T 4U then 4<x or x=a.

Proof. Let <« . Then, for some ¢(, we have = V/(W,;) . We first take the
case when F(;;) is defined for all j. Then, by construction,jeﬂ‘—"/:(l?rj)gusf.or
all j. Let S; be the least step at which F(4j) is defined. Then FlajpnW7# g .
Let £(s,7) be the least element of this set; Ajk(cj) is a recursive function. By
definition, £ (¢cj)€ W; and jeA < k(4/)el for allj, whence it easily follows
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that a< ¥ (W;).

Now suppose that F(i.j)is not defined for some /. Every even number is lo-
cated in the base of a final tower or in 7. Hence, Wé—(N'uDLIU) is finite,
since otherwise F(ij) would be defined. Hence, we obtain x=¥(W,)= YN uDka.

QED.

It can be shown that this lemma remains in force if (4<) is replaced by the
upper semilattice of computable numerations of the class [¢,{0}vu,yd} for arbi-
trary n. It is not known if the lemma remains in force if (4,«) is replaced by
an arbitrary upper semilattice of computable numerations.

The author thanks S. A. Badaev for finding an error in the original ver-
sion of the construction of Theorem 2.
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