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Lachlan obtained in [3] a necessary and sufficient condition for and upper 

semillatice to be isomorphic to an initial segment of an upper semilattice of 

recursively enumerable (r.e.) ~-degrees. In the present article we extend this 

result and show that Lachlan's condition is necessary in order for upper semi- 

lattices to be isomorphic to arbitrary segments of an upper semilattice of r.e. 

-degrees. The sufficiency of the condition is proved in the following sense; 

for any incomplete r.e. m -degree = and any upper semilattice F ,satisfying 

Lachlan's condition, there exists an r.e. m -degree u such that ~u ;for any 

r.e. m -degree ~ ,if ~ then ~<= or a~x , and the segment formed by the 

set of~-degrees {~I~~] is isomorphic to ~. The second of these results 

generalizes the results obtained in [I, 2] (in 12], a similar result was ob- 

tained for the case when F is a two-element lattice, while in [i] the result is 

generalized to the case when Fis any finite distributive lattice). The proofs 

of the present article are based in an essential way on the proofs in [3], and 

an acquaintance with [3] is neededfor understanding them. Proofs which are 

similar to those in [3] will be omitted, and the reader will be referred to [3]. 

We shall also mention many definitions given in [3] without dwelling on them in 

detail. 

Let (S, ~)be a partially ordered set. We describe as a segment of it any 

partially ordered set (Sag,~a~), where a.~S, a~, ~={~e~Ja~x~ ~} , ~ag is 

the restriction of ~ onto SaS" If ~ is the least element of (~), we call 

(~g,~a~) the initial segment. 

A pair (~), where P is a set of natural numbers, and ~ is a transitive and 

reflexive relation in P, is called a preordered lattice. The preordered lattice 

(~) is finite if Pis a finite set. A partially ordered set (Q,~)is said to be 

a partially ordered set associated with the preorHered lattice (~} if ~ is the 

set of all classes, into which P is divided by the equivalence relation ~ ~ 

~ x~&~, and ~ is a partial ordering in ~, induced by the relation ~. If 

a~ and ~, we say that ~ represents =. A sequence of preordered lattices 

{(~,~)} is said to be increasing if ~ P ~  for all ~ and ~ ~ , ~  for 

all ~,~6 ~. We define the limit of such a sequence as the preordered lattice 

(~,~), where P~=~o~ and ~m~ " ~_~(~) for ~EP~. 

We denote by N the set of all natural numbers, by ~- the set of all odd 
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numbers, by N + the set of all even numbers, and by ~ the empty set. The set with 

the number ~ in the standard numbering of the class of all r.e. sets is denoted 

by W~. We shall assume that a computable enumeration of the class of all par- 

tial recursive functions is given, where ~ is the function with number ~ in 

this numbering, and ~ is the graph of {~ . Let Wi s be a finite set of elements, 
s 

enumerated in ~/~ after S steps, let 7-f~ have the same meaning, and let fgs be the 

finite function with the graph ~s. 

If £~ is the class of r.e. sets, then (L(~},~)will denote the upper semilat- 

tice of computable enumerations of this class. It is well known that the upper 

semilattice of r.e.nz-degrees is isomorphic to the upper semilattices of com- 

putable enumerations of the class {~,10~}, The following theorem extends the 

necessity of Lachlan's condition of [3] to segments of any semilattice of com- 

putable enumerations. The proof is a trivial extension of the proof of Theorem 

3.1 of [3]. 

THEOREM i. Let ~be the class of r.e. sets, and let a,~eL[~) be such that 
6-< 6. Then there exists an increasing sequence of finite preordered lattices 

{(D6,~Z)} with limit (Dm,~m), such that the partially ordered set associated with 

(iPi,~m) is isomorphic to the segment (Z (~}a$, ~a~ ) of the upper semilattice 

(Z(OL),-.~) and the following conditions hold: 

I) O, le/7~,O~ 4for all ~ and O~x~ i /for all ~IU,:; 

2) for any ~, the partially ordered set, denoted by L~, associated with 

(Y_7~, ~ ) is a distributive lattice ; 

3) for all ~ and all 2,],g e/J i if g is the union in L i of the elements rep- 

resented by ~ and ~, then z is also the union in Lg+ 4 of the elements represented 

by ~ and ]; 

4) {DS} is a strictly computable sequence of finite sets; 

5) there exists a recursive relation R such that, for all ~ and all 2,]eD~ 

we have m~ ~ ~ > F~=7~ (~,~,~,~,~); 

6) there exist recursive functions ~, a such that, for all m,], Z, if~,~Di 

then ~(~,~,~) , ~(~,~,~/)eD g and ~,~,]), u~4~,]) represent the intersection and 

union in L~, respectively, of the elements represented by x and ~. 

Proof. Let~. We shall require the operator ~defined as follows. Let 

~be an r.e. set such that {~(m)I~e£ W}-~ ~, ~) is a recursive function enumerat- 

ing W. Then ~?(W)is the class of all numberings ~, equivalent to the numbering 
flu). For all remaining W, the value of ~[~]is not defined. The value of ~f(W) 
is independent of the choice of the function ~. Let w~ be another recursive 

function, enumerating W. Then the function X2/7~ (~, (]) = ~(~)) reduces ~m to fl~. 

We can similarly show that /swl reduces to,u). It is easy to directly show that, 

for any ~ and 2~ such that ~{~),~ are defined, we have ~f[~)~ ~(~) if and only 
if there exists a partial recursive function f such that its domain of defini- 

tion is ~, /{z) e2~ and ~C%)=~/(x) for all z eA . In particular, if A ~  then 
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~{A).~ ~(2~). L e t  a=~'i,~). The s e q u e n c e  {(~,~.~)] and r e c u r s i v e  f u n c t i o n s  ]i w i l l  

b e  d e f i n e d  i n  s t e p s .  

Step 0 Y)~=~0,~, m~ ~, (m=ov~-¢)&~]e~,~o/O),~(f)are the indices of 

~,H, respectively, in the standard numbering of the class of all r.e. sets. For 

the remaining ~c we put ~=(X] = 0. 
p= 

We define the relation P~ : (m,~)e ~/ : ~ (~,~)e~ & V/ ~]~{ ((j,k ~£ 
/sm(p~/~)&]~x(/~}~(];). The basic properties of & are ,Z~-- 

-~(~/=~, ~m:7~((m,~)e~ & ~(~)~(~;) ' Pi is finite. Let P'=U~ and 

let ~ be the least-equivalence relation containing P~. Obviously, @i is recur- 

sively enumerable. We call the pair (~,[) true if #(~?)- ~(]); otherwise, it is 

false. AlsoW #~-- - {~l_~(]eW&(~c,]) ~ ~g] . Let W be an r.e. set such that 

{}~(~)I~W}-- ~. We shall show that ~(W#~]=~(W). Since W~ W~i, we have {#(W)~ 
~(W~). It can easily be seen that /7 ~ contains only a finite number of false 

i pairs. Let ~0,',]~ be all the elements of false pairs of 72 == ..... ~k' such that 

~(~.)~ ~(@; for ]'~. For any me ~s we can effectively find a sequence£o, ~ ..... ~m, 

such that x=~ , (x],Tbl) or (~.~,~.) is a true pair of P~ for g'<m and ~e W or Xm 

is an element of a false pair of P~ We define 

a] , i f  m,~e{] o ..... ~k}, 2 m = ~ j ,  

L Jc m o t h e r w i s e .  

Then,  f o r  a l l  me W#~ t h e  v a l u e  o f  ~[x] i s  d e f i n e d ,  ~r(~r;eW and ~(m)=#~(m)  . 

H e n c e ,  W(W~) ~ W(W). 

S t e p  (+{ . L e t  k b e  t h e  l e a s t  e l e m e n t  o f  ~ / - ~ . .  As t h e  v a l u e  o f  ~+~(k)we 

t a k e  t h e  i n d e x  W~u~, w h i c h  can  be  e f f e c t i v e l y  f o u n d  w i t h  r e s p e c t  t o  ~ ; f o r  

~ce~ i as  t h e  v a l u e  o f  ]~+, (~c~ we t a k e  t h e  i n d e x  W ~ ]~{~ . We number  a l l  t h e  c l a s s e s ,  

c o n s i s t i n g  o f  s u b s e t s  ~ i u  {k}, w h i c h  c a n n o t  b e  c o m p a r e d  w i t h  r e s p e c t  t o  i n c l u -  

s i o n ;  f o r  t h i s  we u s e  t h e  n e c e s s a r y  i n i t i a l  s e g m e n t  o f  ~ - ( . ~ i u t / Q ) .  L e t  ~ b e  

t h i s  s e g m e n t  and  ~x t h e  c l a s s  w i t h  number  ~ .  We d e f i n e  ~ + t =  /_P~ u{k]u.P, and f o r  

xe~ we take as the value of ]~+¢(.r] the index U{fltWF~,÷l(F,l~eX}lXe~,~ }. For all 

remaining m we define]~+l(~)--O. We define 

Clearly, the partially ordered set associated with {~+l,~]is isomorphic 

to the distributive lattice generated by the sets Wj~(x ) for xeDiuIk }. Let 

Wr,~¢Z, . This means that condition 3)is satisfied. Also, W]i(.~,)~,F) is a 

V3relation, so that condition 5)is satisfied. It can easily be Shown that all 

the other conditions likewise hold, and _~-U ~-N. Let us show that the par- 
b~o 

tially ordered set associated with (15~,-~)is isomorphic to the segment 

(LCC~)a~,~a{] • We define ~(m)=~(Wgi~)where ~ is any number such that meD~ 

From what has been proved above, the value of ~(mlis independent of the choice 

of ~; here, =~(~)~ for all x. 
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Let ~4~ . Then W.fz)_c W~ . for all sufficiently large ~, whence 

~'P/~(.~)) ~ ~('~/¢~;(F;). Hence,~ ~[.~)~,~1"~/!.~¢~ 
Let ~(m)-~(~l • Then there exist [ and g such that m, ~ 6_~; for any 

~e W~z(z ) the value of {~(Z}is defined, {~(z) e ~/~z(~) ' and all pairs C{~ are true. 

Let /~Z,~. Then ~#=~ _c~, so that 

i.e.,x4;.~. Hence, z~ . Let meL(i~}a ~. Then, m = ~F(W~I=~/(Wi(IA) for some ~. 
By construction, for ~ e_~-J0~ we have W~(#)-- ~. Then,/(~) = ~(~¢~ f#,)=m 

Hence, it follows that the mapping }6 induces the necessary isomorphism. 

QED. 

Let (L,- ~) be an upper semilattice of r.e.~-degrees, and let ~u~ be the 

least upper bound of elements a and { in (Z,~) . 

THEOREM 2. Let = be an incomplete r.e. ~-degree, and let {(2~,~,:~} be an in- 

creasing sequence of finite preordered lattices, satisfying conditions l-6)of 

Theorem i, with the limit (2~,~). Then there exists an r0e. :a-degree ~ such 

that : 

l )  ~ ~Z ; 

2) for any r.e.m-degree ~, if x~u, then ~ o r  ~ ; 

3) the segment (L~,ga~)of the upper semilattice of the r.e.~-degree {L0~) 

is isomorphic to the partially ordered set associated with l!7~) 

Proof. Let {[~',~g)} be an increasing sequence of finite preordered lat- 

tices, satisfying the conditions 1-6)of Theorem I, and let (/-~,~) be its limit. 

If /~0 then the partially ordered set associated with ~/_7~,~) has a single 

element, and ~=a satisfies the condition of the theorem. Henceforth we shall 

assume that 4~0. Let ~e and let Kbe a creative set,/(~. 

In order to describe the construction, we shall repeat some definitions of 

[3] (see [3] for more details). 

A family of nonempty nonintersecting subsets of a set ~, the union of which 

is equal to F, is called a division of /=. Let ~and ~ be divisions of the same 

set; then ~ is finer than Q, if every element of ~ is the union of several ele- 

ments of J~. 

A tower of order ~ is a collection (~,...,~, ~ ..... ~o), where ~ ..... ~ are 

divisions of the finite set F, called the base of the tower, and ~ are mappings 

of ~ into the set of all subsets _D~ such that: 
6 

(TI) ~a contains a single element, and ~ is finer than ~+~ for ~<~; 

(T2) for any Z~n, Pe~+,, A=~+~ CP) anH ~ ..... ~e~J. such that U~=P, the class 

I~  ( ~ )  . . . .  . e~ ( ~  ~} consists of sets U ~ [ ~ . ) = m ~  p a i ~ i s e  incomparable with 
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respect to inclusion, and this class is the unique subclass of ~. (~), possessing 

these properties. 

A basis of order a is a collection (~ ..... ~o )' where ~ is a class of sub- 

sets D~ such that: 

(FI) ~ consists of a single element; 

(F2.) for any ~<n and A e~+! there exists a unique subclass ~. (A)in ~ ,  con- 

sisting of sets which are incomparable with respect to inclusion, the union of 

which is equal to ~2~ ; 

(F3) ~4~---- U{a~Z(A) IA6d~z+,) f o r  Z<a. 

An associated basis of a tower (~ ..... ~,~ .... ;~) is defined as a basis 

(~a (~) ..... ~ (~)) (it is easily verified that this collection satisfies (P{) - (PS)). 

It was shown in [3] how, given any basis (~z ..... ~o), we can construct a tower 

for which this basis is an associated basis. This is done as follows. Let 

S={(4~ ' .... 4 ) l A u e . ~ ,  AzE~z(Az+,)} fo r  ,:<n, 

let P be the number of elements of ~,  and let F= la~ . . . . .  ap) be any finite set of 

natural numbers containing p elements. We enumerate $ with the numbers from 1 
J i to p. Let (~ ..... ~ ) be the element of ~ with the number ~. For ~ a we define 

and 
.t 

I t  i s  e a s i l y  shown t h a t  F i s  t he  ba se  o f  t he  tower  ( ~ , . . . , . ~  , ~# . . . .  ,~a)  w h i l e  

. . . .  i s  an a s s o c i a t e d  b a s i s .  

We say t h a t  t h e  tower  f =  ( ~  .. . . .  ~o,~m,...,~o) i s  c o m p a t i b l e  w i t h  t he  tower  

i f  t h e i r  b a s e s  do n o t  i n t e r s e c t ,  and f o r  a r b i t r a r y  Z *  

PEg~ , Q e Q~ such that ~ (Q)c_ ~ CP), there exists a tower 

such that : 

(MI) the base of f*isFo~, where F is the base of f; 

(M~-) ~.'~=~ (~-[p})ulpuQJ" 
(MS) for arbitrary ~nz and XE~. there exists a unique X~E ~.~such that 

Xc-X~and~(X)'.~; (X*), and for arbitrary X'E ~.~therej exists a unique X6~ such 

that X~X ; 

(M4) for arbitrary ]~g and X£ S such that XC-~ there exists X'e~ ~ such 

that X c--Y ~ and $. (X) ~_ ~; (X'). 

Given any two towers ~ and LL, we can effectively discover whether f is 

comparible with ~ and given the [,P, ~ described above, we can find the tower 

~, satisfying (MI-M4), in the case when ~ is compatible with ~. 
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Let a, m be recursive functions satisfying the hypotheses of the theorem. 

Given any ~-c2& 

O, i f  ~ - - # ,  

u(A,i,) "~ ~ ,  i f  A= {a,3, 
tl (i,,ctt, Lt ~ ~,~z,..U(i,,o~.p~U if ,4:{%,,..,Ok ],k > ¢. 

We define n(,4,g)simi lar ly.  For At_iT L 

( 

Let Pa be the ~-th prime number. Given any basis~--(~_ ,,~.), its modulus at the 

step s is mOds~=p ea+t where ~=HJc[pa >rna~{mo~s(~,g)IA6~ i , /-~}] The modu- 

lus of the tower at the step s is defined as the modulus of the basis associated 

with it at this step. 

We shall assume that an effective enumeration of the set {(m,n,¢)] m, a a2w} 

is given, in which the triple with number x is denoted by (~,n~,e~) and which 

is such that, for all k ,m~,nkeD k . We are also given an effective unique enumer- 

ation of all pairs, where c(~,g) is the number of the pair (Z,j) in this enumera- 

tion. 

CONSTRUCTION 

Step O. We put ~(~,o)= O for all ~, &/~D°: #. After the instructions of the 

step s-f (s~¢) have been performed, there may exist a finite number of towers, 

the bases of which do not intersect. The base of each of these towers contain 

only even numbers, and c_ U s-1 or c__A/-6/s-~. Some towers may have equal orders; 

for any two such towers, the associated bases are identical. All towers of the 

same order are numbered by the numbers forming the initial segment of the natu- 

ral series. A number is said to be used at the step 5 if it is located in the 

base of the tower constructed at a step <S; otherwise, it is said to be unused 

at the step 8. A tower exists at the step 8 if it was constructed at a step 

<S and was not destroyed at a step <s. A number is discarded at the step s if 

it was used at a step S and is not located in the base of the tower existing at 

the step S. The finite set F(4/) is defined at the step $ if the value of F[i,,j) 
was defined in the construction at a step <s. Let D s'~ be the set of all num- 

bers discarded at the step s, and let U s-~ be the set of all numbers enumerated 

in U after <s steps of the construction. Denote by K s, A 's the finite parts of 

the r.e. sets K, A, evaluated after 5 steps. 

Let Pk=" mi ' t t {~ l rnk , tZ t~Dz , }  " P k  "~k" 

The number k requires attention at the step S if the function ~e,,s is de- 

fined on the set {o,/~... f C~,s-~)~nU {P} at the step s there exists the tower 

~= (~m .... ~o,9~m,..,~) such that P~k and m k & ~Px (p)} and for all ~ of this set 

~&,s (m) 6 U I P] at the step s there exists the tower ~= (~,...,~, ~m .... ,~0 ) 
S--/ $- / 

such that Pe ~p~ and /z k 6 ~p~ (1))} UN-u2~-~U U and :ce ~s-, , /ex. s (~c) e [~ 
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The tower $--- (~m ..... ~,~ ..... ~) requires attention at the step S from the 

side of b if it exists at the step s, and there exists at the step s the tower 

~Z=(~ .... ,~o, ~a ..... ~o) and there exist Pe@,~eQ 6, such that 

was constructed later than~) & (for every tower ~ existing at the step ~, if 

m~d~ < m0~ s gf , then ~ is compatible with ~) . 

Step S(S~>¢). One of the following five cases must always hold. 

Case I. At the step S there exists at any rate one tower ~ for which 

~015~> mO~S_/~-or mO~s#'>mO~$_~7"-, if ~-was modified into ~at the step~-I • 

In this case we destroy each such tower. 

Case 2. Case 1 does not hold, and there exists at least one number ~, re' 

quiring attention at the step 3, and such that, at the step S, there exist pre- 

cisely {~k,S-i)+4 towers of order ~. Let ~0 be the ~ for which m0~s~-is least, 

where ~is a tower of order ~, existing at the step s. We define f(/~oS)=f(~,S-4)4-4 
and destroy each tower ZZ existing at the step s, for which m01sgf > nT0~ 3 ~, 

where ~ is a tower of order ~o' existing at the step 3. 

Case 3. Cases 1 and 2 do not hold, and there exists a tower requiring at- 

tention at the step s. We choose such a tower ~ at the least ~o~ s ~, and let 

be the least number, from the side of which ~ requires attention. Let J~= 

(~m ..... ~,~m ..... ~o ) , and let ~= ~6 ..... ~o, ~q' .... % ) be a tower, existing at the 

step 5 , while P£ ~ , ~ e~ are such that (I) is satisfied, and in particular, 

is compatible with Zf. We find the tower ~---(< ..... ~, ~ ~m, .... ~0 ), satisfying 
(M,-M4). 

We replace ~ by ~, and call this replacement the modification of ~by the 

number ~ at the step s. Henceforth, as in [3], we sh~ll allow some inaccuracy 

for the sake of simplicity, and regard ~and ~ as the same tower, undergoing 

change at the step ~. We destroy all the towers of order n and say that they 

are destroyed by the number 6. 

Case 4. Cases 1-3 do not hold, and there exists at least one pair (L,/) 

such that ~(Z,/)is not defined at the step S, and such that there exists, at the 

step 8 , a tower Srof order greater than c[4]) with base ~ such that ~ ~/~ ~ and 

~-cZ/-6~ s-~ . In this case we choose a pair (Z,j')with the least number and a tower 

~rof the least order, and we define T(~,/)=P, where P is the base of $'. We de- 

stroy every tower existing at the step 5, the order of which is equal to the 

'order of ~'. 

Case 5. Cases 1-4 do not hold. In this case, among all ~ and the bases 

of~ = (~k ..... ~a)such that ~6~,~k~A , where ~k={~], and at the step S there exist 

less than ~(k, 3-/)+/ towers of order k, we find those ~ and the basis of ~of 
order ~ such that m0~ S ~'is minimal (the fact that such ~ and ~rexist is easily 

proved by using Lemma 1 (see below) and the fact that /~ 0 for all ~ ) . It can 

easily be seen that, by definition of nl0~ ~just a finite number of bases needs 
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to be considered in order to find the required ~ and ~-. 

If no tower of order 3 exists at the step k, we construct {(k,s-/)+¢ towers 
on the basis ~r in the way indicated above, using as their bases the necessary 

nonintersecting segments, the union of which is the initial segment of the even 

numbers unused at the step s . If there exists at the step s at least one tower 

Z/of order k, then we construct the towers that are missing (so as to get a 

total of f ( k ,s - t )+  ! towers) in the basis associated with g~ choosing sets of bases 

for them in the same way as was done in Case I. Suppose that• there existed /~0 

towers of order ~ at the step S . We number the constructed towers by the num- 

bers 1. /+¢ . . . . .  f (k,~-f). 

A f t e r  a n a l y z i n g  a l l  t he  c a s e s ,  we p r o c e e d  as  f o l l o w s .  We t a k e  e a c h  }, and 

e a c h  ~ - t h  o r d e r  t o w e r  e x i s t i n g  a t  t h e  s t e p  s and n o t  d e s t r o y e d  a t  t h i s  s t e p ,  and 

l e t  1" be  t h e  o r d e r  number  o f  t h i s  t o w e r  among t h o s e  o f  o r d e r  k e x i s t i n g  a t  s t e p  

~; i f / e / (  s, we e n u m e r a t e  a l l  t h e  e l e m e n t s  o f  t he  b a s e  o f  t h e  t o w e r  i n  S .  Fo r  

e v e r y  p a i r  ([,,])such t h a t  F(~,])is d e f i n e d  a t  t h e  s t e p  s ,  i f  j e ~ s ,  we r e f e r  a l l  

t h e  e l e m e n t s  o f  F(42) t o  ~ .  For  e v e r y  Xe~Swe r e f e r  f z % / e l e m e n t s  to  ~ .  For  a l l  

z, if {(z,~) is not yet defined, we define it as {(z,s)= {(z,s-/) . We pass to step 

S+ I. 

The instructions of step S are not precise (single-valued) in some places. 

However, it is easy to make them precise in some • suitable way. We shall assume 

that this has been done. 

We have 

- U U 5 2 = U 2 s, 

In the light of what has been said U,2are r.e. sets. Also, let ~/be the opera- 

tor defined in [3]: ~/(~)=0 (a recursive m-degree), and for any nonempty r.e. set 

W, the set ~[W) is anrn-degree of the r.e. set {~l~{x)eU} , where ~ is any recur- 

sire function, enumerating W. By definition of ~, 4F(N'J = e. Let us show that 

• , 2s-2 s~'~ ~(/~)~ For any x62 we find S such that ~e . If, at the (s+d-th step, 

~eF(~',j') for certain i,] (there can only be one such pair [i,j)), then we define 

~(x)= 2j+/; otherwise, we define ~(~) =2a+! if xeLf s , ~(x)=Y~+f, if ;r~ s where 

2a+/ e ~ , f{+¢~ ~ (we assume that A~N and ~). Then, for all ~c£/_7, the value 

of ~Cx) is defined,~(I}EN-and~EU ~-~(x}EL[. Hence,~(~)~ ~(N-)-- ~, 

We shall slow by means of Lemmas 1-9 below that theTrz-degree U of the set 

U satisfies the condition of our theorem. Most of the lemmas are proved in the 

same way as the corresponding propositions in [33, so that their proofs will be 

omitted. 

Let m,n~-~ k. The basis 3-= [~k ,''"~o ) separates r~ from n, if meA, n~, 

where ~k = t A3.  

LEMMA i. A basis ~= (~k ,',',~o ) separating nz k from n k and such that 

~nzz~O~z~<=~, exists if and only if n~k~knk • 
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The proof is the same as that of Proposition 2 of [3]. 

LEMMA 2. Every tower may be modified at most at a finite number of steps. 

The proof is the same as that of Proposition 3 of [3]. 

A tower is said to be constant if it is constructed at a certain step and 

is not later destroyed. A tower is called final if it is constant and is not 

further modified during the construction. By Lemma 2, every constant tower be- 

comes a final tower after a finite number of modifications. If ~ is a constant 

tower, existing at the step s o , then n~0~s~- ,~0~s0Zf for all s>s o. Assume that, 

in this case, m~d~= e~r~ srnOd s~. 

LEMMA 3. For any k, if ~k~k/zk, then eg~s{(k.s)< oo while there exist 

{gms f(~,s} + f constant towers of order k, and at all sufficiently large steps, 

k does not require attention. 

Proof. Let us show as a preliminary that Case 5 holds at an infinite num- 

ber of steps. Assume the contrary. Then only a finite number of towers will 

be constructed during the construction. Hence, only a finite number of them can 

be destroyed. If, at some step, one of Cases i, 3, 4 holds, then at least one 

tower will be destroyed at this step. Hence, each of these cases can only hold 

at a finite number of steps. This means that Case 2 must hold at an infinite 

number of steps. But it can easily be seen that in that case, there must exist 

an infinite number of towers in the course of the construction. This contra- 

diction shows that Case 5 holds at an infinite number of steps. 

We define ~Ck)= ~af{~zmo~'I Y-is a basis of order k separating m k from 

~k} (we assume that ~n{~=~ ). Then, by Lemma I, ~ ~i~/zk "--~-I5(k)<o~ . If 

p(k)<~o , then #(k)=Pk ~or some ~>0, so that, if ~(~),~[~<~oand ~@~ then 

/s(~)#p(~). Notice that, since the basis with least modulus is chosen in Case 5, 

we have m0d~-= ~(k) for every constant tower S-of order k. 

The lemma will be proved by induction on/~[k). Let /~(k) < ~ and let the lem- 

ma hold for all m such that ~(x)<#[k). Let ~ be such that, for all ~ such that 

/3(m)</~(k), and all s>~, we have ~ /m, s) = {f~,~) ; then all /[~,~)+ f constant towers 

of order m will be in existence and will not be modified at the step S, and 

requires no attention at the step s. 

Let ~ be such that/(~) >/~(/<). Every tower E of order ~, existing at the 

step 8 such that moo~ ~/--~/~ (k], will henceforth be destroyed in accordance with 

Case i. For any basis of U of order ~, we have mo~ s ZZ >~(~) for all suf- 

ficiently large $. There are only a finite number of bases of order ~. For all 

bases ~ of sufficiently large orders, m01 s /Z >~ (}) for all s. It follows from 

all this that can be increased in such a way that ~L~(~}>~(~) , (V8>~) (at 

the step s there exists no tower ~ of order ~ for which ~0~ ~ ~/~(k)]. The num- 

ber ~ can also be increased so that, for all bases ~ of order ~, we have 

mo~i$ 71 >~ [k) for all 8>~ or m0~$ ~ = #[~) for all s>~ , the second being true 

for at any rate one of these bases. We also increase ~ so that, for any pair 
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(&/) such that c(6,/)< ~, the quantity F($,/) is defined at the step ~ or else FCgj} 

is never defined at all during the construction. Now suppose that, at some 

step s>~, there exists no tower of order k, and let s ~ be the first step ~sat 

which Case 5 holds. Then, in accordance with the choice of ~, at least one 

tower ~of order k will be constructed at this step, for which modeT-~(k) for 
all ~s r. Clearly, ~rcannot be destroyed at steps ~8~in accordance with Case i. 

By the choice of ~, ~- cannot be destroyed in accordance with Case 4 at 

these steps. Also, ~ cannot be destroyed aC a step ~3 r, in accordance with Case 

2, since, for this, there must exist at the step ~ a tower ~of order ~, for 

which mode[l<m~e~'m/s(~), and X must require attention at the step ~, which con- 

tradicts our inductive assumption, since it follows from this inequality and 

~>~ that 2s(~)~p [kJ . Further, the tower ~cannot be destroyed in accordance 

with Case 3 at a step ~>~s t, since, for this, some tower ~ of order ~ must exist 

and be modified at the step ~ , for which m0~ t ~ < rood e ~ , which is impossible, 

since~(x)~[k). In short, the tower ~ constructed at the step 8tis constant. 

It follows from these arguments that at least one constant tower of order k 

exists. 

Suppose that a tower J r4 of order k is constructed for the first time at 

the step s~ . Then, at steps s>£~, towers of order k will not be destroyed. 

As we pointed out, m0d~'f--~[k~ . If, at a step s~81,~, at which Case 5 holds, 

there exist less than ~(k,s-¢)+ 4 towers of order ~, then, since s>~, all the 

missing towers will be constructed at this step. It is easily seen from this 

that, if ~ms~k'S} < ~then there exist {smsf(/(,s}+ / constant towers of order k, 

while if ~r~sf(k,$)= c~, then there will exist infinitely many such towers. Let 

k require attention at a step S~, and let s r be the step >~S at which Case i 

does not hold for the first time. Then Case 2 will hold at the step 5~ and 

~[k,S~)#f(#.$~-f) . It is easily seen from this that k requires attention at only 

a finite number of steps if and only if ~rns~(~,~)<~. It thus remains to show 

that~m~k,s)<~ Assume the contrary. Then there exist infinitely many 

constant towers of order ~. For an infinite number of distinct s, we have~(k,~)~ 

~I~,$-~) , so that, with this ~, Case 2 holds at an infinite number of steps. 

Hence, there cannot exist a constant tower ~f for which ~od[7>~nod~=-/~(~). 
Let ~ .... ~ be all the final towers jrfor which m0d ~-<#(~)(by the induction as- 

sumption, there is a finite number of them). Every tower of order k, construct- 

ed at a step ~s~ , is constant. Each such tower receives a certain number. Let 

jr= ~ .... ,~,~ .... ,~)be such a tower with the number [, constructed at a step 

$~us~, and let ~ be the least $ such that, at the step $~, there exists PE~k 

such that ~k E ~p~ (P)and£aP. It is easily seen that the function %~. ~ is re- 

cursive. By construction, for all ~ we have ~e/(---~ e~ . Since ~m, s f(~,~) = ~o 

and ~ requires attention at an infinite number of steps, then ~ ~) is defined 

and ~eZf~ k (~)e ~/ for all g. In addition, if ~ek(a~}~U , then ~ (~) cannot be 

located in the base of a final tower of order k, since, for any Such tower 
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Z/== (@~,...,@~,~ ..... ¢=)and for any @e@F we have ~¢ era (~)" It is easily shown 

that every even number is discarded or is located in the base of some final 

tower. Hence, feJxi) is odd, or is discarded, or belongs to /~, or is located 

in the base of one of the towers ~'""d" Let ~6~, for ~-~p let ]~ be such that 

]'~ e ~ ~ the base of 5~ is contained in Z/, and let y be a partial reeursive 

function such that for all ~e~ , the value of ~[x)is defined, ~[x)e#/-and 

~e ~ ~ ~ ~(~c)e~, where the ~:was defined above. We fix certain enumerations of 

~7 and ~. We define 

FJ~' if /e (tug,belongs to the b a s e ~ , ~ p ;  

~!-(~fe.(e~¢ ), if the first two cases do not hold and 

/e~ (x~lis enumerated in~ earlier than in,f; 
otherwise. 

It is easily shown that, for all ~, we have ~eK*-~xz~---~ft. (x~)eU - , 

~(~)~A , and hence K~A . This is a contradiction, and hence {~msf (k.s) < 0.0 . 

QED. 

For all x, g such that xe~i, we define R#,i= [Zu2u U{Pl there exists the 

final tower ~={~ ..... ~, ~m ..... ~o ) such that pe~ and ~e ~(P)}. 

LEMMA 4. For any se, 5 such that xe/fl~ , R~, z is an r.e. set. 

The proof is the same as that of Proposition 8 of [3]. Notice that, to 

prove this proposition, and also Propositions 9 and 12 of [3], use was made in 

[3] of Propositions 5-7. These latter also apply in our case. There are some 

slight inaccuracies in the statements of these propositions in [3], and also in 

the relevant definitions. They are easily eliminated if, in the statements of 

Propositions 5 and 6, and also in the relevant definitions, we replace the 

phrase "final tower" by "final tower with base _c N-U." Further, in order for 

Proposition 7 to perform its task, it should be stated as follows: "There is at 

most a finite number of steps s such that some tower, L, satisfied at some step 

~S, is modified at the step s by the number ~ ." 

All these refinements to the statements of the proportions in [3] demand 

only obvious refinements to the proofs, which may be left to the reader. 

LEMMA 5. If x~/_D~._ i, then d/(~,~_1)=gY(Rm~). 

The proof is the same as that of Proposition 9 of [3]. 

It follows from Lemmas 4 and 5 that we can correctly define ~= ~/(R~. z UN-) 

for any ned w, where ~ is any number such that ~eDs. For any xeDwwe have 

a- -u#~  u. 

LEMMA 6. Let m,n, pef l ,~ and let p represent the union in the semilattice, 

associated with (Dw,~w) of elements represented by zv and n. Then UrnU~=Iz P. 

The proof is the same as that of Proposition i0 of [33. 
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LEMMA 7. If f~, /~¢2 x and ~ a ,  then u ~  • 

P r o o f .  L e t  m , ~ e / ~  and r e d a n .  

= u 

where f= mi~ {61m,~}. 

Suppose that ~E~. Then there exists a partial recursive function ~ such 

that, for all ~mpd~/-, the value of ~[~) is defined, f(~)eRapUA/- and 
e~--,~(~)£E . Let ~ be such that ~k= ~ ,~ -~,~-~. Since ~ , we have, by 

Lemma 3, ~sf(~,S)< ~ and at all sufficiently large steps, ~ does not require 

attention. Let ~(~,s)-~(~,So}and suppose that ~ does not require attention at 

step S for all sm$ o. At a sufficiently large step, any even number will be 

discarded or will be enumerated in the base of a final tower. Hence, for all 

sufficiently large $, {0, I ..... ~(k, So) } ~ U I~) at step s, there exists the tower 

~-(~'""~o,~ ..... ~o} such that (?e~?f and me~p{~)} = Ig,! ..... f(~,So)}nU[~l, there 
exists the final tower ~-(~, .... ~o, ~, .... ~o) such that ~e ~p and me ~p (~)} = P c__fl~p 

and ~o,i,...,c)n(Ul~) at step ~,there exists the towers U= (~E,...,~o, ~,'"'~o ) 

such that ~ e ~p and ,~e ~f(~)} vN-u~S-~bU=-~)={~,...,c}n(U[Ol, there exists the final 

tower ~=(~,'"'~o'~ ..... ~) such that ~a~p and /ze~fi~)}ON-UJPuLl)--P,E-7~apU N-, where 
o=~a~ {f(x)I:ceP]. By the property of f, for all sufficiently large 5 and all 

~e~, the value of fe~,s(~)is defined, 4.s(~)e P~ and ~:eE s-~; : ~e~,~(~) e ~f~, 

i.e., ~ requires attention at sufficiently large steps. This contradiction 

proves the lemma. 

LEMMA 8. For any ~ such that ~ '  /g), there exists~e~;, such that 

( n /v+) = ). 

The proof is the same as the proof of Proposition 12 of [3]. 

Let ~ be such that ~ ~(~}. By Lemma 8, there exists ~e/~,- such that 

~(R~,~) = ~/(W~nN+). We have ~= ~/{N-). Then, 

Hence,~ = ~/[W6}. It follows from this and Lemmas 6 and 7 that the mapping %~M x 

induces an isomorphic correspondence between the partially ordered set as- 

sociated with [D~,~) and the segment (/.=a,~=a) of the r.e. M-degree. 

LEMMA 9. For any r.e.m-degree ~, if ~ then' =~ or ~m=. 

Proof. Let ~u. Then, for some g, we have ~=~(Wg). We first take the 

case when F(i.j) is defined for all j. Then, by construction, jeA--~(i,J#~for 

all / . Let Sj be the least step at which ~ (4J) is defined. Then F(~,j~ n ~/isJ~ ~ . 

Let ~(L,/)be the least element of this set; %/~(~./) is a recursive function. By 

definition, ~ (~,d'# e W~ and /cA ~- > k {i,/)eLf for all j , whence it easily follows 
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that =4 ~(9/Z). 

Now suppose that ~(6,j)is not defined for some /. Every even number is lo- 

cated in the base of a final tower or in 2. Hence, W i- (N-U2U U) is finite, 

since otherwise ~[4j) would be defined. Hence, we obtain :c= ~CW~) -~ q/(H-uD):a. 

QED. 

It can be shown that this lemma remains in force if CL,~) is replaced by the 

semilattice of computable numerations of the class {#, [O),,.., In]) for arbi- upper 

trary ~. It is not known if the lemma remains in force if (L,~) is replaced by 
an arbitrary upper semilattice of computable numerations. 

The author thanks S. A. Badaev for finding an error in the original ver- 

sion of the construction of Theorem 2. 
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