ON DISCRETE FAMILIES OF RECURSIVELY ENUMERABLE SETS

V. V. V'yugin UDC 517.11:518.5

All the enumerations considered below are primitive enumerations of families of recursively enumer-
able sets and are assumed to be computable. <z, y> denotes the numeral of the pair of the natural num-
bers = and y in Canfor's enumeration of all the pairs of natural numbers, and £¢x) and z(x) are the
left and the right enumeration functions, respectively: £(< 2. y>) = &, Z(<xx,y>) = y. In what follows
we shall not distinguish between a pair of natural numbers and its numeral. An enumeration o of a family
of recursively enumerable sets is called positive if the set {< x,y > | ec(ac) = x( g)} is recursively enumer-~
able. An enumeration of a family is called minimal if it is equivalent to every enumeration of this family
which is reducible to it. Every positive enumeration is minimal [3]. All these definitions and properties
can be found in [1].

A family O of sets is called discrete if there exists a family ¥ _ of finite sets such that:
1) for every Aecf there exists £ edp ,suchthat p £ A
2) for every A,Bed and Pedt,,if p=A4 and P8, then A=8.

If we introduce the natural topology on the power set of the set of natural numbers [5], then every element
of the discrete family c¥ would be an isolated point, and every finite set ¢¥. would determine a neigh-
borhood not containing more than one element of ¢# . If a discrete family is such that there exists a strict-
ly computable family of finite sets which satisfies the conditions 1) and 2) (i.e., there exist a computable
enumeration s of the family </ and a general recursive function ¢ such that for all =, g(=) = the num-
ber of the elements of s (x) )}, then & is called effectively discrete (finitely separable in [3]). If & is a
computable enumeration of an effectively discrete family of recursively enumerable sets, then o is positive
since e« (@) = o (yl&=> Iz (alr)s w(x)na'/y), where B is a strictly computable enumeration of the family
¢t .Let us weaken the condition of the family ot . We shall call a family of sets ¥ weakly effective dis-
crete if there exists a computable family of finite sets satisfying the properties 1) and 2). The following
theorem shows that the property of having a positive enumeration is preserved in this case.

THEOREM 1, Every weakly effectively discrete computable family of recursively enumerable sets
has a positive enumeration.

Proof. Let & be a weakly effective discrete family, « be its computable enumeration, and let ¢t
be a computable family of finite sets satisfying 1) and 2), @ be its computable enumeration. Let us con-
struct the enumerations z and ¥ and the set 2. o ®(x) is a finite or empty subset of the set o(x)
constructed after & steps of computation of the set o¢xy by the method which gives the computable enumer-
ation & . (@) and JSH@:-) are finite or empty subsets of the sets €(ac) and v(«c) respectively, con-
structed at the step 5 of the construction described below. To start with, let us put vox) = ¢9x) = &
for all = .

Steps {(s.2 9). 1. We make the first number which is not already a successor a successor of S.
Let £f(s; = n and 2€(s)= r . ¥ =, ,then we pass to the point 2. Let therefore m =~ . &
follows from the properties of the functions ¢'¢z) and %(x) that 7,2 % s ,which means that ~ and ~
have successors. Let ~ < . In this case let us verify the condition (Fz < 8)(8°(2) = 7°(m)nT°(n)).
¥ such a #z does not exist, then we pass to the point 2. If the condition is satisfied, then we find the small-
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’ !
est z which satisfies it (let us denote it by s’ }; then we find 5”> s such that s ad(nyv /35(5) $é
4
25y nTSmy . Suchan S’ can always be found; for if we assume that (Vs’..\s)(/:s(z’)g_. TSy neny)

and hence that A ¢ 2% is finite, then it follows that A ¢ zh< T(m)ne(n) . Hence, by virtue of discreteness,
the first term of the disjunction is satisfied by ¢(r) =2(/) (it is obvious from the sequel that Z(ax) = x(x)).
If in the process of finding such an s’ the left hand term of the disjunction is satisfied first of all, then we
set s free from all its successors, we make all former successors of 7z successors of /2 and make the
first number which is not already a successor, a successor of /=, Let, in this case, 5, be the smallest

such s/ , then we put t“’(n,)= Sy uva®(n). We now pass to the point 2. In the contrary case we di-
rectly pass to the point 2.

2. Let us put
T ()= e o atm), i) =cr)v M),

if they have already been constructed at the point 1. For each & such that = is a succesor of 2 , we put
v St (=) = Vst‘:t) vzt (~v) . Similarly we construct v""(ac) for all x which are successors of ~z.

+
For all the remaining = and k we put vs+'(ac)= vix), s '(:é)- z50k).

For all x. y which are successors of #, let the pairs < o, >, <y, x> belong to ~ . Next we do
the same for all the successors of r» . Let the pair «s,6>belong to 2. We pass to the step s+7. The
construction is now complete.

Let us prove that v is an essential positive enumeration. It is obvious from the construction that v
is a computable enumeration and #Z is a recursively enumerable set such that for every « , x () = Z(x).

a) For every x, y(xje .

It is obvious from the construction that if x is a constant successor of 2, then y(x)= «(n) .
Therefore, it is sufficient to prove that &£ becomes a constant successor of some number at a certain step.
Since the construction can be continued infinitely long, = becomes a successor of some rn . ¥ x becomes
free, then at this step it would become a successor of a lesser number. Hence it follows that there exists
n,< m of which x is a constant successor.

b) For every Aecf there exists an x such that v(xy=A4. Let A= x(rt,) ™ ©(r,) ,where s, is
the smallest numeral of A in the enumeration & . It is sufficient to prove that ~, acquires a constant
successor at some step. If 71, loses a successor at some step, then it acquires a new one at the same
step. Consequently, it is sufficient to prove that ~«, cannot lose successors at an infinite number of steps.

Let us assume the contrary. Then there exist infinitely many steps s; (504 S,< ... ) and numbers
7

s7 s7z.  (not necessarily distinct) such that si’ > S, sm <,, :»:s"(m&- y= ot ()=~ (7,)=A (the first

Y
term of the disjunction at the point 1 is satisfied at the step s; ). It follows from /,m; <z, that there
exists an ~= suchthat ~z<~, and r,=rm for infinitely many 2 . Then 2(r) & o(7,)=<(z,) and from
the discreteness of ¢¥ , we have T(-m)= < (r)=(77,)=A. This is a contradiction since /1, is the smallest

numeral of A in the enumeration o .

c) P = {<x,y>l V(x)=9(y)} . ¥ <x,y>e P, then . and y are constant successors of the same
number from some moment. In this case it is easy to see that V(=) = Y(y). Let Yy = Y(y). At a
sufficiently great step in a), o and y become constant successors. Let us assume that = and y are
constant successors of different numbers 7 and 72, z7<sz . Then v(x) = T(n), V(y) =~ T{m), and

Z(n)= T(m), We now find a step 5 and a number 2z such that Ff(sy=n , z€(s)=m ,2< 5 ,/:1S (87) =

= p(z’) for all z’< =z , and Alz) = £%m)nT%n) . The right hand term of the disjunction at the point 1
cannot hold good. So we set y free. This is a contradiction. Hence, = and Y become successors of the
same number at some step, and the pair <=,y > belongs to £ . The theorem is proved.

THEOREM 2. There exists a computable weakly effectively discrete family of recursively enumera-
ble sets which is not discrete.

Proof. Let A be an enumerable unsolvable set and ae A . Let us define o= {Au{x)] xed}
and its enumeration
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Auvix), xd A,

X (Z) = Au{a},xeA.

Then oC‘;l (Avial)= Avu {a} is unsolvable and if z+# a ,zeA ,then og;' (Auv{=}) = {=x}. Hence it fol-

lows that if a#4 and a fe A, then the enumerations %z and o £ are not comparable. Consequently,
¥ is not effectively discrete according to [3]. However, O is a weakly effectively discrete family. We
construct the family ch of finite sets satisfying the conditions 1) and 2) and its computable enumera-
tion v in the following manner. Let o be a computable enumeration of & . Let us define v'(x) = ¢
for all = .

Step . &)= « . K v'"_/(x)g o« 7 (=) and there exists ye«”(x) — A" , then we define v7x)
-z v {7} where Y, is the smallest such ¥ . For every 4 #x (for all & , if the condition is not
satisfied) we define v7¢4) = 9”"(&) . Wenowpasstostepn+ys . Thetheorem isproved.

By using the diagonal method used in the construction of Sec. 4 in [2] we can construct a weakly ef-
fectively discrete computable family of finite sets which is not effectively discrete. Let us now construct
a computable discrete family which is not weakly effectively discrete. Inthis construction we use ideas
from [2]. We need the following lemma for further use.

LEMMA 1. Let ¢ be a computable weakly effectively discrete family of recursively enumerable
sets. Then there exists a computable family £ of finite sets satisfying the conditions 1) and 2) of the
definition and the condition 3): For every £/ € o thereexists an 4 &€ ¢ suchthat Pc A .

Proof. Let oc be a computable enumeration of (¥ and B be a computable enumeration of the family
O, of finite sets satisfying the conditions 1) and 2). Let us construct the enumeration v . We define
vix) = ¢ foral «.

Step n{azo . f(n) = = . Kthere exists an ¢ suchthat i<~ and p”(z’) = o« (x), then we
define v x)= v" (=) vp"(<,) , where i, is the smallest such < .

For every y#=x (for all 'y if such an i does not exist) we define \}"(y) = v"7 (y) . We now
pass to the step ~+ 7 . Thus the construction has been accomplished.

Let us define v(x)=ngaV"(x) L= {v(@)} x5,. It is easily seen that v(x) < o(x). Let z, be the
smallest ¢ such that LIS <) . Then if {(n) = o for all ~, starting from a certain one, we have

v = v ) Vp(i,) ,andif € # = for all such 2 , thenwe have v* (=) = v*® ' (x) :whence
it is obvious that v(x) is finite and B(%,) & Y(=). K v(xisx(y)ne(z), then A(z,) < oc(y)nec (3).

In this case, since the family o, satisfies the condition 2), we have oc.y)= (z) . Hence L satisfies
the conditions 1), 2), and 3). The lemma is proved.

Let # (<,7) be a computable enumeration of the family of all recursively enumerable sets such that
for every computable enumeration o of an arbitrary family of enumerable sets there exists an ¢ such
that for all / , we have «(j)= @ (<, j) [1].

THEOREM 3. There exists a discrete family of recursively enumerable sets which is not weakly ef-
fectively discrete and which has a positive enumeration.

Proof. We construct an enumeration o« of some family of recursively enumerable sets. At the
same time we construct the sets M, 2 and the functions c(e,n), £(e, n), g(en),n,(en), Ay (e.n)
M7 P and «“(x) are the finite or empty subsets of the sets M , 2 and «(x), respectively, obtained
at the step ~ of the construction. % “(e, i) is the finite or the empty subset of the set 7 (e, £) computed
after A steps of the computation of the set ¢ (e,¢) by the same method which gives the computable enumer-
ation of % . It will be obvious from what follows that P = {<=,y>|e« (y)=«(x)}, and that every set o (x)
is of one of the forms Mu| F(e,m)} . Mulf(en), A e}, Mu {f(en), A;Cen)} for some e, ~ ,
where £(e,7): A (e,n), A, (Qn') ¢ M. During the construction every number becomes a successor of
some number. An even number has successors of both the left and right types simultaneously. If a num-
ber « is a successor of € at all steps from a certain step onwards, then x is called a constant suc-
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sor of ¢ . A number ~ is said to be unused at the step o if x¢ U <" i) (for every ~ this set is
finite) and a number X is called free if & is not a successor. We defme M e % and «- () = & for
every « .

Step #_(a=20) . If ~ is even, then we pass to the point 1; in the contrary case, we pass to the
point 2.

1. n=lk, LCk)= e, I c (e, n—+) has been defined, then we pass to (x) . Let c (e, ~7)be
not defined. Then if ¢ is even, we pass to the point 1.1; and if e is odd, we pass to the point 1.2.

1.1. e= 2m . We verify the condition
t4
(Fean)Ty)(Vek e) (yez (m.iyp ydM & (c(eln-1)

is defined —» ( &’ is even =>{f(€jn-1)h @/n0,hEln))Riny = #) & (€’ isodd —> Fce!
n-1)§€ ©¥ 7 E))) . If this condition is not fulfilled, then we pass to (x). If it is fulfilled, then let 2 Yo
be the smallest numbers satisfying it. We define f(ez) = 7, . g (¢,7)=1, , and

—-M U{x [.re‘/‘ m, g,)u U{f(e n— f),ﬁ,(ea Qﬁ(en—f)}UU{f(eM)}&xvé}/a
e’ even e>e ehee oad
cEn-1) defined cee, rt-1) defined
For every e’>e welet o(e/r),f@En), g(eln), k (ein), k4, (e"n) remain undefined. Let 2,4, be
the two smallest unused numbers not belonging to 4" | 3/,} and 4,, 4, be the two smallest free num-
bers. We define c (e,n)=<4£,4,>,%@n = u, , A (e.n)= u, . where we call £, as a left successor, and
éa as a right successor, of e . For every e ’>e we set e’ free from all its successors (if it has them)
and we make all former successors of e’ left successors of e . We define or”‘(:é') =Mu {f(e,/z),/;,, (e.n)}s
o "b)=M"ulf(en), A, (e,n)} . (Let us observe that " (m, i,)= o "(h)neth) ). For each remaining
left successor of ¢ , we define < ()= ec"'(x) v "(4,) . (Let us observe that for every left successor
of & at this step, ecﬂ(x) = o "(é,).) We now pass to (x).
1.2. e=2m+/ . Let y be the smallest unused number. We define F(en)=y .c(en)=4, ,

where £, is the smallest free number. We call 4, as a successor of e . We define o4, ). 4™ 'y
{|# (e,n)}. We now pass to (x).

2. n=2k+/, f(é} = e. I ¢ (e, n—r) is not defined or e is odd, then we pass to (x) . Let there-
fore e=2m and c(en—+) be defined, c(e,n-1) = <4,,4,>, 9(e,rz) = 2 . One of the following cases al-
ways occurs:

Case 2.1. (Fel(e're& c(e’,n-1) isdefined & ((e’ iseven & |f.(e)n-1), 4, (en—1), 4,
(ef/z—/)} Nz (mi) £ #Iv( e/ isodd & f(eln—)e "T’sz"-i7))-

In this case we pass to (#).

Case 2.2. The case 2.1 does not occur, and { 4, (¢, ~~7), A, (en_,r)} na’(m.i) £ #- Inthis case we
define M= M"" U {w|xea " (n i) A, (e.re=1) A (e/z—/)}&x%f(en N}, f@n>fer) . Let us redefine

A gn) =u, , hy(@r)= t, ,where u,, u, are the two smallest unused numbers not belonging to M=
Let é be the smallest free number. Let us set ¢ free from the right successor é and make £ a

left successor, and 4, a right successor, of ¢ . We define c(e./r)= <4, 4>, o (é) ol (é oM’y
Uik, (e} = M%{f(e,/z),/z, (e}, ac"i’éJ)zM'Z/{f(e,n),éz(e,av}:. (We observe that « " "(4,) «?(4,) ,
7 "(m, i) o« "(4,)n<"(4,) ). For each remaining left successor of e we define o x)= ec"‘"(w)u‘oc”(é,) .
We now pass to («).

Case 2.3. The cases 2.1 and 2.2 do not occur. We define, in this case, M = M"  [z|ze @ (m.2)

& x%f(e ,z_/)} We then pass to (x) . (We observe that after o~ (é,) and c&”(éh have been constructed
as in (x), we should have 7 "(m,7)S o "4, )noc”(é 3.
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(*). If,atthe stepn, M " is not defined, we put me=nm" , and if for every 4, «"(£) has not
already been defined, we put oc* (4) =oc"h)yuM® . Hforeach of the following equations the left hand
side has not yet been defined and was not defined at the point 1.1 and the right hand side has been defined,
then we put ¢ (e/n)= ¢ (e r~1), FEln)=F(eln—1) ., §(€\n)= g(e’n—1) , k (eln)= h,(€ln-1), k,(en)
=/§(e,5:~x} for every e/ .

K x and y are both left successors of the same number,-then we let the pair <zy> belongto ~ .
We also let the pair <»~,n7> belong to £~ . We then pass to the step ~+7 . Thus the construction is complete.

It is obvious that o« is a computable enumeration, and &/ and ~ are enumerable sets. Let ¥ =

{e (x)} x20- We observe that ¢ (e,7z) and f(en) are either both defined or are both not defined; if e is
odd, then g(e.n), 4 (e,n), and A4,(en) are not defined for all ~ ; and if e is even, then c(@n),g@n),
h, (er) »and A@n) are either all defined or all not defined.

a) For every & there exists an rz, such that either c(e, ) is defined, or it is not defined for all
n=rr, . For e= a this statement is obvmus. Let this statement be true for all e’< e (e>0), and let ~,
be same for all e<e . Inthis case if c(e,~~7) is defined and ¢ (e,s)is not defined for rz >z, , then
this can be so only at the point 1.1 when n=24, f(b)=cle e, ¢ (e/n-1) is not defined and c(e{ n)
is defined, which contradicts the induction hypothesis. We observe that if for every =z =, , c(en) is
defined, then for every n=rn,, we have f(e,n)=F(en,).

b) Let us assume that e is such that ¢ (e,n) is defined and e, n)=F(@rn,) forall nz2n, ,
for some number », . ¥ e is odd, then for every 1=, ,we have c(e,71)=£ ,where £ is the only
successor of &, o (4)= MU{f(en) and for every x#£ , we have fee. n,,)ﬁorﬁﬁ . Let e be even,
Then for every 2~ =, ,we have e(c(en))-é and 3(e,n)=a,, for some é, and Z, ,and € does not
lose left successors. If the case 2.2 occurs for e, and ¢, at infinitely many steps, then every right suc-
cessor of & becomes a left successor at a sufficiently great step, the functions /L (e,n), and /zl (e, )
are redefined infinitely many times, and for every constant successor = of € we have a(@)=Mu | f (e,/z,,)}

at a sufficiently great step, Also for every & which is not a constant successor of & , we have

fe no),{’ x(x) . K the case 2.2 occurs for € and £, not more than a finite number of times, then there
exist rt;, and A (27 ) such that for every nz=n, ,we have C(e )= <é 4 2> é is a constant right

successor of e , 4,(en) =k (en,), h(e.rn)=%,(en,), Ot(é )"MU{JQ?/I) h,(e.n )} «(é )=Mu
{f (e r,, 2, (e,n}; for each « which is not a constant of e , left or right, we have f(e,z )y.’ec(x)

for every = which is not a constant left successor of e , we have A (e, )9{ oc (zc) , and for every a:,l-
we have A‘(é‘,ﬂ,) ¢ x(x). Let ¢ and n, be suchthat sz >, is not defined for every c(e,n) . Then e

does not have a successor at any step after the step sz, . All these facts are immediately obvious from
the construction.

c) cf is an infinite family. It is easily seen that if e is odd, then there exist 4, and 4 such
that ¢ (e ) is defined and is equal to 4 for every s =s2, . Accordingtob), o (‘4) is distinet from
o« (x) for x#4 .

d) For every = there exists an e such that - is a constant successor of e (left or right, if e
is even). Every number becomes a successor, only if at the point 1.2, at some step. Moreover, if e is
even and ac is a right successor of e , then, according to the case 2.2, & can become a left successor
of e . If e is odd and « is successor of € , or if e isevenand =« is a right or a left succesor of €,
then = can become a left successor of some e’<e at an even step. All possible transpositions of «c have
been described above. Hence it follows that there exists an e, / ¢« e such that « is a constant successor

of ¢/, right or left, if e/ is even.

e) o is adiscrete family. A€ ¥ , which means that 4 = (x). According to d), «¢ is a constant
successor of & . We observe that if = becomes a constant successor of e at the step -z, , then ¢ (¢,n)
is defined for every 7=7,. Hence according to b) there exists a number ¥ which is the value of one of the
functions £, 4,,and /;, such that ye A and for every Bedk, BAA ydB8 (8=x(%), £ camnot
be a constant successor of e , right or left if e is even, as is o since 574 A
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f) o 1is a positive enumeration.

If e is odd, then ¢ has a unique successor, and if e is even, then e cannot have more than one
constant right successor. Let =#y . I <« y>€/ ,then x and Yy are left successors of the same
number at some step. I they are set free, then they again become the left successors of one and the same
number at the same step. According to the construction, o () = =< (y).

let oc(x)= oc( ). According to d), « and y are constant successors, and according to b), =& and
iy can be constant successors of only one number; moreover both are left successors since x#£y . Then,
according to the construction, the pair <z, Y> belongs to /. Hence, {<x,y>|«(x)=c(y)} =~ is
enumerable.

g) O¢ is not a weakly effectively discrete family. According to b) and d) every set of ¢ has one
of the forms

ulfen,)}, Mulftenyy, b, (en,)y, Mulfieny hienr),

where f (e.7,), A,(e.ﬂ,)./lz(e,ri){ M . Let us assume that ¢¥ is a weakly effectively discrete family. Then
according to Lemma 1 there exists a computable family of finite sets satisfying the conditions 1), 2}, and 3).
Let e be such that { (el )} {20 is this family. Then from the form of the elements of ¥, we have
#(e,i)nM# ¢ for every £ . We shall prove that there exists an »z, such that c(Ze,n) is defined for

every n=r, . Letus assume the contrary. Then there exists an ,z, such that for every e ‘< Ze either

c(e’n) is defined for every s1=>r,, or neither ¢ (e’s1) nor c (ze, r)is defined for every n>s, . Let
A={e’le’< 2ze and c(elr) is defined for every n=n, }, 8= {e"!eleé , e’ is even, the case 2.2
oceurs for e/ and ¢, not more than a finite number of times}, €={e’| e’e A , e’ iseven,the case
2.2 occurs for €/ and z?a’ is an infinite number of times }, where 9(0,/’%)= :3”' .

According to a) and b) there exists an sz, (77,2, ) such that for every nzsn,, f (&'.n )=f(en,),

for every é&'e A, and A, (eln)~4En) /z,(e,’a)::é,’ (eln,) for every e’eB . K e’e A, then according to b)
F(e]n,) is an element of not more than two sets of C¥ ; and if e’€ 8 , then 4, (e/n,) is an element of
exactly one set of ¢¥ and the same is true of /4, ( 9',/1, ). Since ¢¥ is infinite, the family |7} ino R
is also infinite. Hence, we can find an ¢ suchthat f(ejn,) ¢ @@ (e,i) for every e’e A and 4 (eln),

i(e ,)( vile,r) for every e ‘e B . There exists ye 7z(et), y¢ M . Let us choose an sz, such that
ry=n,, ny=2k., El)=2e, i<n,, 7 "%(e,2 )= (e,2) and 4, (e]np1),4,(e/n—¥ied) for every e’eC
Such an sz, exists since the set @ (e, i) is finite, and since the case 2.2 occurs for every &2/e C oman
infinite number of steps, the functions A,, (ef n) and Az (e f/z ) are redefined infinitely many times, every
number which was formerly a value of one of these functions and then ceased to be so according to the

case 2.2 cannot be a value of any of them at a sufficiently great step. Hence for n=/s,, % (e, z) satisfies
the condition 1) of the construction and c (2e,7,) is defined. This contradicts our supposition.

This implies that there exists an s, such that ¢ (2e.n), F(se,n) ,and 9(22 n) are defined for
every rtzse, . Let y(Ze n)e= ”o . The case 2.2 cannot occur an infinite number of times for ¢ and z,
since # (e z,)is a finite set. This means that there exist , 4 and ,é such that "=, C(Ze,ﬂ)=

r*7
<é,,é3 > for every =7, , é, is a constant left successor of €, and bz is a constant right successor

of e . Ifthe case 2.2 occurs for € and Z, an infinite number of steps, then from the ohservations made
during the construction we have # (e,z,) & ac(é Jnoc(hy). But «(4,)+£oc(#,) , which contradicts the con-
dition 2). This implies that there exists an ~; such that rt, =, and for every n ez, , we have n=24+1,

Z(4)=2e and the case 2.1 occurs. Let us assume that at an infinite number of steps st the corresponding
e’# 2e areevenand { f(eln-, 4 (&,n-1), h (e, -1} n T (e,iJ£ F . (The case where at an infinite
number of steps the corresponding e’ are odd and #(e’r-s)e% (¢ Z,) is considered analogously.) Then
there exist infinitely many steps ~2 such that there exists an e’ for each of them such that e#ze, e’

is even, and f(e/n-7) e?(gi,) , or there exist infinitely many steps sz such that there exists an ¢/ for
each of them such that e/ Ze , e/ is even, and ﬁ, (e)n-1) e 7 (e, <,) , or the same is true of 4, (e/n—7).
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Let the first case occur. Then, since & (@ 2,) is finite, there exists y €% (e,Z,) suchthat y is the value
of the function £ at an infinite number of steps. The function # has the property: ¥ z=F(e,n) ,then
x # f (e’ m) for every e/>e, m>r . This implies that there exists an ea’ such that e;;% 2e and

£ é; ,72)=1 for infinitely many »~ . According to a) the function f (ea', n) is either not defined for all
sufficiently large A , or is defined and is constant for them. Consequently, there exists an ny such that
Ry2y f(ea’,n}, = f(e},n,) for every n=s, , and Ffle),n)e®(e,2,) . According to the condi-

tion 3) of Lemma 1, % (e,Z,) is contained in some set of K. For every rn=s, we have f(Jer) =
f(2é,n,) and according to b) f (Ze,z,)e® (e} implies that either (e<,)Soc(4,) or T(@.Z,) &

o< (4,) . Hence, f(e]rm)esx (4) or f(ea,,ﬂ,)éo_!(é) . But 4, and 4, are not constant successors
of ea’ since 33/ # Ze. This contradicts b). The remaining two cases are considered analogously. Hence
¢t is not a weakly effectively discrete family. The theorem is proved.

A family of sets is called normal if with every finite setf all its nonempty subsets belong to it [4]. R
has been proved in [4] that every minimal enumeration of an infinite normal family is equivalent to an enu-
meration in which every finite set has a finite set of numerals. The following theorem states that every
minimal enumeration of a discrete family also has this property.

THEOREM 4. Every minimal enumeration of an infinite computable discrete family of recursively
enumerable sets is equivalent to an enumeration in which every finite set has a finite set of numerals.

Proof. Let € be a minimal computable enumeration of the family < and f be a strictly com-
putable enumeration of the family of all finite sets. We shall construct the enumeration Ve and the func-

tion 4 . As a preliminary we put s =)= & for all « .
Step 0. We put Aco)=0, po)j=7’(0).

Step g+7 (szo). Let A(0), A(s)...A(i), ©<s+7 ,be already defined at the previous steps.
Let £2(st+1)=oc, v€(st1)=% | £ (x) and () are the lefi and the right enumeration functions in Cantor's
enumeration of all the pairs of natural numbers].

(1) ¥ p(e)s 7% () and (V< Z) (j(z)gé pﬂl(j)) , then we put 4(i+7)= =« . Inthe con-
trary case we have /4 (7+7) undefined. For every j< ©+7 ,if /A(;) is defined, we put /GW(J' )=

ﬁsH(j) U'Z?s"z/z(f} . We put pm(]')-—— /65+’
The construction is complete. It is obvious from the construction that /£ is a computable enumeration

and 4 is a computable function. The family C¥ is infinite and discrete; therefore the condition 1) will

be satisfied at an infinite number of steps. Hence 4 1is defined everywhere. I is easily seen that /J(x) =
Tk (x) for all x ; consequently, A(x)e cf . Let us assume that A€ect and that B(x)# A for every = .
Let A=2Z(n). As ck is discrete, there exists a step s+/ such that £€(s+/) =, 2l(s+1) =2, f(z)=
z3( n)and J’(z)sé B for every Beck , B8# A . Then we put A(z+s)=rz at this step for the corre-
sponding ¢ . We obtain /5( ¢+7) = ©(n) , which contradicts the assumption. Hence @8 is an enumeration

of the family ot .

Let A be finite and 4eC¥ . Also let A= () . By virtue of what has been proved above, we have

+/
(x)=A for some > . Let ,@s' ()= ¢ s"‘H(-?C) = A at the step 5,+7 , then at every subsequent step

s+7 , such that €€(s4s)=rm, T(m)= A | the condition 1) would not be satisfied and A would not get
more than one numeral in the enumeration 8 . Thus 4 has a finite set of numerals in the enumeration /3 .
According to the construction, /e(x)-—- Tk (x) for every o« , i.e., @ reduces to T . ¥ ¢ is a

(j) for all the remaining J . We now pass to the step s+2 .

minimal enumeration, then B is equivalent to z . The theorem is proved,

COROLLARY. Every infinite computable discrete family of finite sets is computable with finite
repetitions (i.e., has an enumeration in which every set has a finite set of numerals).

Let us observe that an example of a computable family of finite sets which cannot be computable
with finite repetitions is given in [4].

I take this opportunity to express my gratitude te S. S. Marchenkov and V. A. Uspenskii for taking
interest in this paper.
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