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On the Keller-Blank solution to the scattering
problem of pulses by wedges

A. E. Merzona*†, A. I. Komechb, J. E. De la Paz Mendezc and T. J. Villalba Vegaa

Communicated by V. V. Kravchenko

We prove that the solution of the scattering problem of pulses constructed by Keller and Blank in 1951 coincides with
the solution obtained by the method of complex characteristics. The method was developed by Komech and Merzon in
2006-2007. Its main advantage is that it provides the existence and uniqueness of solutions in suitable functional classes,
and the limiting amplitude principle. On the other hand, the uniqueness in the Keller-Blank approach was not studied
before. Our result means that the Keller-Blank solution belongs to our functional classes. We prove the coincidence for DD
and NN-boundary conditions. Moreover, we obtain the solution for the DN-case. Copyright © 2014 John Wiley & Sons, Ltd.
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1. Introduction

In 1934–1937, Sobolev [1–3] obtained an exact solution u.y, t/ to the nonstationary scattering of pulses by a two-dimensional wedge.
This problem is described by a mixed problem for the wave equation in the complement Q of a convex angle W with suitable boundary
conditions on the sides of the angle and the incident wave:

uin.y, t/ :D F.t � n0 � y/, y 2 Q (1)

Here, F is a given profile function, and n0 is the unit vector in the direction of the incident wave.
Sobolev considered the Heaviside profile function F.s/ D h.s/ and obtained the solution using the Smirnov–Sobolev representation

for general solutions of the wave equation [4]. This approach rises to Sommerfeld method of ramifying solutions [5].
In 1951, Keller and Blank [6] solved independently the same problem for the DD and NN boundary conditions. They used the

Busemann’s Conical Flow Method [7], which is in the same spirit as Sobolev’s approach.
In these papers by Sobolev, Keller, and Blank, the functional spaces of solutions are not specified, and the uniqueness of the solutions

were not analyzed. Moreover, the uniqueness fails if we do not specify the class of singularity at the vertex. On the other hand, the
existence breaks down if we require an excessive regularity of the solution. This is why we have developed the rigorous theory [8–13],
providing the uniqueness and existence of the solution in suitable functional spaces for the smooth Heaviside-type function profile
F 2 C1, supp F � Œ0,1/, F.s/ D 1 for s > s0 > 0 of the incident wave. This approach relies on the method of complex characteristics
[14, 15]. In [4], we have considered the case of an arbitrary tempered distribution F. The corresponding general formula is obtained in
[4]; see (3)–(7) in the following text.

This solution belongs to a space of distributions M" with " D 1 � �
2ˆ for DD- and NN-problems and " D 1 � �

ˆ
for DN-problem,

where ˆ D 2� � � and � is the magnitude of the wedge. Roughly speaking, M" is the space of functions with the asymptotics
jru.y, t/j � jyj�" at the vertex, i.e., as jyj ! 0.

In [4], we have proved that our solution for the pulse F D h coincides with the Sobolev formula [3]. In present paper, we prove that
our solution coincides also with the Keller–Blank formula [6] for the DD-problem. The coincidence in the case of the NN-problem can
be proved similarly.
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2. Formulation of the scattering problem

We consider the scattering of plane wave (1) by two-dimensional wedge W :D fy D .y1, y2/ 2 R2 : y1 D � cos � , y2 D sin � , � �
0, 0 � � � �g with the magnitude � 2 .0,�/; Q :D R2 n W is the open angle of the magnitude ˆ :D 2� � �, ˆ 2 .� , 2�/. The
boundary @Q D Q1 [ Q2 [ f0g, where Q1 :D f.y1, 0/ : y1 > 0g and Q2 :D f.� cos�, � sin�/ : � > 0g. The scattering is described by the
mixed problem: (

�u.y, t/ D 0, y 2 Q; Bu.y, t/jQ1[Q2
D 0, t 2 R

u.y, t/ D uin.y, t/, y 2 Q, t < 0
(2)

Here, � D @2
t � 4, B D .B1, B2/ and BujQ1[Q2

D
�

B1ujQ1
, B2ujQ2

�
where B1,2 are equal either to the identity operator I or to @=@n,

with the outward normal n to Q. We will consider the directions n0 D .cos˛, sin˛/ with max .0,� � �=2/ < ˛ < min .�=2,�/. The
extension of our result to another anglesˆ and ˛ is straightforward.

In [4, Sec.3], we have established the existence and uniqueness of the solution u to problem (2) in a suitable space of distributions
M" with " D 1 � �

2� . The solution u admits the splitting

u D uin C ur C ud (3)

For the Heaviside profile function F D h, the diffracted wave is given by

ud.�, � , t/ D

Z l.t=�/

�l.t=�/
Z.ˇ C i�/dˇ, � 2 ‚ D Œ�, 2�� n f�1, �2g, Z.ˇ/ D �H.�i�=2C ˇ/C H.�i�=2C ˇ/, ˇ 2 C (4)

with H.ˇ/ D coth.q.ˇ C i�=2 � i˛//� coth.q.ˇ � 3i�=2C i˛// for the DD and NN-problems, respectively. Here,

�1 D 2� � ˛, �2 D 2� � ˛ (5)

l.�/ D

8<
: ln

�
�C
p
�2 � 1

�
, � � 1

0, � 2 .0, 1/
(6)

For DN-problem, the expression for H can be found in [11, formula (2.16)]. The reflected wave ur is given by

ur D

8̂̂
<
ˆ̂:
�h.t � � cos.� � �1//, ' � � � �1

0, �1 < � < �2

�h.t � � cos.� � �2//, �2 � � � 2�

ˇ̌̌
ˇ̌̌
ˇ̌ t, � � 0 (7)

for the DD- and NN-problems, respectively (for the DN-problem the reflected wave is given in [4, formula (7.11)]).
Note that formulas (4) imply that ud is a continuous function of 0 � � � t and � 2 ‚, and

ud.�, � , t/ D 0, � 2 ‚, � � t

because l.t=�/ D 0 by (6). For � < t, the integral (4) can be calculated in all cases of the DD, NN, and DN boundary conditions. For the
DD-problem, we obtain

ud.�, � , t/ D
i

2�
Œ� ln U0 � ln U1 C ln U2 C ln U3� , � 2 .0, t/, � 2 ‚ (8)

Here,

Uk D
bqeick � b�qe�ick

� .bqe�ick � b�qeick /
, k D 0, 3; b D

t

�
C

s�
t

�

�2

� 1, 0 < � � t (9)

c0 D q.� � ˛/, c1 D q.� � �1/, c2 D q.� � �2/, c3 D q.� � .2� C ˛// (10)

and

Im ln.�/ 2 .�� ,�/.

The formulas for NN- and DN-boundary conditions can be obtained similarly.
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Formulas (9) imply that for k D 0, 3

Uk D
1 � B cos.2ck/C iB sin.2ck/

�1C B cos.2ck/C iB sin.2ck/
, e2ick , B :D b�2q D

 
t �

p
t2 � �2

�

!2q

, 0 < � � t, (11)

so

jukj D 1, k D 0, 3, 0 < B < 1 (12)

In the following section we express (8) in arg Uk , as in [6].
Let us note that

u.�, � , t/ D

(
1, � 2 Œ�1, �2�

0, � … Œ�1, �2�

ˇ̌̌
ˇ̌ � D t (13)

by (3), (7), and (1).

3. Solution in Keller–Blank variables

Formulas (11), (12) imply that

arg Uk D 2 arctan
B sin 2ck

1 � B cos 2ck
� � C 2ck , k D 0, 3, (14)

arctan.�/ 2 .0,�/ (15)

By (8) and (12), we obtain

ud.�, � , t/ D
1

2�
Œarg U0 C arg U1 � arg U2 � arg U3� , � 2 ‚, 0 < � � t

Hence,

ud.�, � , t/ D
1

�

�
arctan

B sin 2c0

1 � B cos 2c0
C arctan

B sin 2c1

1 � B cos 2c1
� arctan

B sin 2c2

1 � B cos 2c2
� arctan

B sin 2c3

1 � B cos 2c3

	
(16)

� 2 ‚, 0 < � � t by (14). Let us introduce the Keller–Blank [6] variables: for � < t

q1 :D
tp

t2 � �2
, �1 :D

�
q1 � 1

q1 C 1

�1=2

D
t �

p
t2 � �2

�
, � :D

�

ˆ
D 2q

Note that

0 < � � t” 0 < �1 � 1 (17)

Formula (11) implies that

B D ��1

Moreover, we introduce the angle variable � and the incidence angle  (see [6, Sec.2]) by

� :D � C �=2, ˛ :D  C �=2 (18)

The condition � 2 ‚ is equivalent to

� 2 ‚ :D .�=2, 2� � �=2/ n f� �  , 2� �  � �g (19)

By (10),

arctan
B sin 2c0

1 � B cos 2c0
D arctan

��1 sin�
�
� �  

�
1 � ��1 cos�

�
� �  

� (20)
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From (5) and (18), we obtain �1 D 3� � 3
2ˆ �  , and hence,

sin 2q.� � �1/ D � sin�
�
� � 2� C  

�
; cos 2q.� � �1/ D � cos�

�
� � 2� C  

�

Therefore,

arctan
B sin 2c1

1 � B cos 2c1
D arctan

���1 sin�
�
� � 2� C  

�
1C ��1 cos�

�
� � 2� C  

� (21)

Similarly, sin 2q.� � �2/ D � sin�
�
� C  

�
, cos 2q.� � �2/ D � cos�

�
� C  

�
. Hence,

arctan
B sin 2c2

1 � B cos 2c2
D arctan

���1 sin�
�
� C  

�
1C ��1 cos�

�
� C  

� (22)

Finally, sin 2q.� � .2� C ˛// D sin�
�
� � 2� �  

�
. Hence,

arctan
B sin 2c3

1 � B cos 2c3
D arctan

��1 sin�
�
� � 2� �  

�
1 � ��1 cos�

�
� � 2� �  

� (23)

Now (16), (19)–(23), and (17) imply that for � 2 ‚ and �1 2 .0, 1�

ud

�
�1, �

�
D

1

�

0
@arctan

��1 sin�
�
� �  

�
1 � ��1 cos�

�
� �  

� C arctan
���1 sin�

�
� � 2� C  

�
1C ��1 cos�

�
� � 2� C  

�

� arctan
���1 sin�

�
� C  

�
1C ��1 cos�

�
� C  

� � arctan
��1 sin�

�
� � 2� �  

�
1 � ��1 cos�

�
� � 2� �  

�
1
A

where arctan is defined by (15).
Formula (1) with F D h and formulas (3), (7), (19) imply that the total solution of (2) for the DD-conditions is given by

u
�
�1, �

�
D

8<
:

1C ud

�
�1, �

�
, � 2

�
�1, �2

�
ud

�
�1, �

�
, � 2 ‚ n

h
�1, �2

i (24)

where

�1 D � �  ; �2 D 2� �  � �

according to (18) and (4). Let us compare solution (24) with the Keller–Blank formula [6, (16)]

v
�
�1, �

�
D

1

�
arctan

8<
: �

�
1��2�

1

�
sin��

2��1 cos�
�
�C ��

�
C
�
�2�

1 C1
�

cos��

9=
;� 1

�
arctan

8<
:

�
1��2�

1

�
sin��

2��1 cos�
�
�� ��

�
�
�
�2�

1 C1
�

cos��

9=
; (25)

In particular, from this representation, we have that

v
�
�1, �

�
D

8<
:

1, � 2
�
�1, �2

�
0, � …

�
�1, �2

�
ˇ̌̌
ˇ̌̌ �1 D 1 � 0
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(see also the discussion in [6, Sect.5]). Hence, this solution coincides with (24) at �1 D 1 by (13) and (19):

v
�
�1, �

�
D u

�
�1, �

�
, � 2 ‚, �1 D 1

Therefore, by the continuity of u and v, it suffices to prove that

tan.�u/ D tan.�v/ (26)

which we will accomplish in the following section.

4. Proof of the identity (26)

Denote

a :D
��1 sin�

�
� �  

�
1 � ��1 cos�

�
� �  

� , b :D
���1 sin�

�
� � 2� C  

�
1C ��1 cos�

�
� � 2� C  

� , c :D
���1 sin�

�
� C  

�
1C ��1 cos�

�
� C  

� , d :D
��1 sin�

�
� � 2� �  

�
1 � ��1 cos�

�
� � 2� �  

�
x :D arctan a, y :D arctan b, z :D � arctan c, t :D � arctan d. (27)

Hence,

tan.x C t/ D
2��1 cos�

�
� �  � �

�
sin�� � �2�

1 sin 2��

1 � 2��1 cos�
�
� �  � �

�
cos�� C �2�

1 cos 2��
(28)

tan.y C z/ D
2��1 cos�

�
� C  � �

�
sin�� C �2�

1 sin 2��

1C 2��1 cos�
�
� C  � �

�
cos�� C �2�

1 cos 2��
(29)

Lemma 4.1
The following identity holds

tan.�ud/ D
D

G

Here,

D D 4��1

�
1 � �2�

1

�
sin�� cos�

�
� � �

�
cos� (30)

G D �4�
1 � 4��1

�
�2�

1 C 1
�

sin�
�
� � �

�
sin� cos�� � 4�2�

1 cos�
�
� C  � �

�
cos�

�
� �  � �

�
C 2�2�

1 cos 2�� C 1 (31)

Proof
Using (27)–(29), we obtain

D D
h

2��1 cos
�
�
�
� � � �  

��
sin.��/ � �2�

1 sin.2��/
i h

1C 2��1 cos
�
�
�
� � � C  

��
cos.��/C �2�

1 cos.2��/
i

C
h

2��1 cos
�
�
�
� � � C  

��
sin.��/C �2�

1 sin.2��/
i h

1 � 2��1 cos
�
�
�
� � � �  

��
cos.��/C �2�

1 cos.2��/
i

that gives (30). Similarly,

G D
h

1 � 2��1 cos�
�
� � � �  

�
cos�� C �2�

1 cos 2��
i h

1C 2��1 cos�
�
� � � C  

�
cos�� C �2�

1 cos 2��
i

�
h

2��1 cos�
�
� � � �  

�
sin�� � �2�

1 sin 2��
i h

2��1 cos�
�
� � � C  

�
sin�� C �2�

1 sin 2��
i

that gives (31).

Next corollary implies (26) by (24).
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Corollary 4.2
We have

tan.�v/ D tan.�ud/ (32)

Proof
From (25), it follows that tan.�v/ D W

Z , where

W D
�

1 � �2�
1

�
sin.��/

h
2��1 cos�

�
� �  � �

�
�
�
�2�

1 C 1
�

cos��
i

C
�

1 � �2�
1

�
sin.��/

h
2��1 cos�

�
� C  � �

�
C
�
�2�

1 C 1
�

cos��
i
D D

(33)

Z D
�

2��1 cos�
�
� C  � �

�
C
�
�2�

1 C 1
�

cos��
� �

2��1 cos�
�
� �  � �

�
�
�
�2�

1 C 1
�

cos��
�

C
h�

1 � �2�
1

�
sin.��/

i h�
1 � �2�

1

�
sin.��/

i
D �4�

1 � 4��1

�
�2�

1 C 1
�

sin�
�
� � �

�
sin� cos�� � 4�2�

1 cos�
�
� C  � �

�
cos�

�
� �  � �

�
C 2�2�

1 cos 2�� C 1 D G

(34)

Finally, (32) follows from (33) and (34) by (25).

5. Conclusion

There are different approaches to non-stationary scattering of plane waves by two-dimensional wedges. Some particular solutions for
the pulse incident wave were obtained by Sobolev in 1930 and Keller and Blanc in 1950. However, the uniqueness of the solutions in an
appropriate functional class was not established up to now. Moreover, it is well known that the solution is not unique if its singularity is
not specified.

Recently, we have proposed a universal approach that gives explicit formulas for the solution with general incident waves and
guarantees the existence and uniqueness of solutions in suitable functional classes.

In present paper, we check that for the pulse incident wave, our solution coincides with Keller–Blanc’s formula.
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