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Abstract. We prove that the solution of the scattering problem of pulses, constructed by Sobolev (Proc Seismol Inst Acad
Sci URSS 41:1–15, 1934), coincides with the solution obtained by our method of complex characteristics. The coincidence
holds for the DD- and NN-boundary conditions. The method of complex characteristics has been developed by Komech and
Merzon in 2002–2007. Its main advantage is that it provides (a) the existence and uniqueness of the solutions in suitable
functional classes and (b) the limiting amplitude principle. The uniqueness in the Sobolev approach was not considered.
Our result means that Sobolev’s solution belongs to our functional classes and agrees with the limiting amplitude principle.
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1. Introduction

In 1934, Sobolev published his seminal paper [7] developing a scattering theory of plane waves by wedges.
In particular, an exact solution is constructed for an incident wave with the pulse profile. The scattering
is described by a mixed problem for the wave equation in the complement Q of a convex angle W with
suitable boundary conditions and the incident plane wave

uin(y, t) := F (t − n0 · y), y ∈ Q, t < 0. (1.1)

Here F is a given profile function, F (s) = 0 for s < 0 and n0 is the unit vector in the direction of the
incident wave. Sobolev considered the Heaviside profile function F (s) = h(s) and obtained a particular
solution using the Smirnov–Sobolev representation [15] for general solutions of the wave equation [16,
formulas (15)–(17)]. In 1951, Keller and Blank [5] independently considered the diffraction of Heaviside
incident wave by a wedge developing Buseman’s method [1] which is similar to Sobolev’s approach.
However, the functional spaces of the solutions are not specified, and uniqueness of solutions was not
analyzed. The uniqueness fails if we do not specify singularity of the solutions at the vertex. On the other
hand, the existence breaks down if we require an excessive regularity of the solution.

This is why we have developed a rigorous theory [3,4,6,7,12,13] providing the uniqueness and existence
of a solution in suitable functional spaces for the smooth Heaviside-type function profile F ∈ C∞,
suppF ⊂ [0,∞), F (s) = 1 for s > s0 > 0 of the incident wave.

The theory relies on reduction in the time-dependent problem to a stationary one by means of the
Fourier–Laplace transform in time. The most general results on solution to such problems in Sobolev
spaces are obtained in [2]. Our approach relies on the method of complex characteristics, which gives
more explicit representation of solutions, and allows to investigate their properties [8,11].
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In [9], we have extended the results to the case of general tempered distribution F . The corresponding
general formula is obtained in [9], see (2.7)–(2.5) below. This solution belongs to a space of distributions
Mε with ε = 1 − q for the DD− and NN -problems and ε = 1 − 2q for DN-problem, where q = π/(2Φ),
Φ = 2π − φ and φ ∈ (0, π) is the magnitude of the wedge. Roughly speaking, Mε is a space of functions
with the asymptotics |∇u(y, t)| = O(|y|−ε) at the vertex, i.e., as |y| → 0. Moreover, in [9], we have
established the stability of the diffracted wave with respect to local perturbations of the profile function
F .

Our main results in the present paper are the following.
I. In Theorem 6.1, we establish coincidence of our solution constructed in [9], with the Sobolev solution

[16] in the case of F (s) ≡ h(s).
II. We apply our results [9] to prove the uniqueness of the Sobolev solution in an appropriate functional

class (Corollary 7.2).
III. We also establish the stability of the solution with respect to local perturbations of the profile

function (Corollary 7.4).
Finally, we note that Sobolev’s motivation for the diffraction of discontinuous incident waves stemmed
from a concrete applied problem. In the next paper [17], Sobolev introduced his famous theory of the
“weak derivatives” of discontinuous functions. Next development resulted in the Schwartz theory of
distributions [14].

2. Scattering problem

We consider the scattering of plane waves (1.1) by two-dimensional wedge

W := {y = (y1, y2) ∈ R2 : y1 = ρ cos θ, y2 = sin θ, ρ ≥ 0, 0 ≤ θ ≤ φ}, (2.1)

where φ < π/2 is the wedge angle. Then Q := R2 \ W is an open angle of magnitude Φ = 2π − φ.
Throughout the paper, we will consider the case of the DD-boundary conditions. The case of the NN-
problem can be considered similarly by methods [4] (the DNA-problem is not considered in [16]).

We will restrict ourselves to the case when the direction vector n0 = (cos α, sin α) of the incident wave
(1.1) satisfies the condition considered by Sobolev [16, Fig. 2] which in our notations is

φ < α < π/2. (2.2)

The scattering is described by the mixed problem
⎧
⎪⎨

⎪⎩

�u(y, t) = 0, y ∈ Q;u(y, t)
∣
∣
∣
∂Q

= 0, t ∈ R

u(y, t) = uin(y, t), y ∈ Q, t < 0,

(2.3)

where � = ∂2
t − 
. For t > 0, we define the incident wave by (see Fig. 1)

uin(y, t) =

⎧
⎨

⎩

F (t − ρ cos(θ − α)), θ �∈ (φ, θ1)

0, θ ∈ (φ, θ1)

∣
∣
∣
∣
∣
∣
(ρ, θ) ∈ Q, t > 0, (2.4)

where θ1 := α.
The reflected wave ur for t > 0 is defined by

ur(ρ, θ, t) :=

⎧
⎨

⎩

0, θ1 < θ < θ2

−F (t − ρ cos(θ − θ2)), φ < θ < θ2

∣
∣
∣
∣
∣
∣

ρ, t > 0, (2.5)

where θ2 = 2π − α.
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Fig. 1. The incident and reflected waves

In [9, Section 3], we have established the existence and uniqueness of a solution u to the problem (2.3)
in a suitable space of distributions Mε with ε = 1 − q.

Let us introduce the space of solutions to problem (2.3). Let us take an arbitrary ε > 0.

Definition 2.1. (see Def. 2.4 of [9]) (i) Eε is the Banach space of functions u(y) ∈ C(Q) ∩ C1(Q̇) with
finite norm

‖u‖ε = sup
y∈Q

|u(y)| + sup
y∈Q̇

{y}ε|∇u(y)| < ∞, (2.6)

where {y} := |y|
1+|y| and Q̇ := Q \ 0.

(ii) Mε is the space of tempered distributions u(y, t) ∈ S′(Q × R+), such that its Fourier–Laplace trans-
form û(y, ω) is a holomorphic function of ω ∈ C+ with values in Eε.

The solution of (2.3) admits the splitting

u(y, t) = uin(y, t) + ur(y, t) + ud(y, t) (2.7)

which is a definition of the diffracted wave ud.
The diffracted wave is given by formula (1.10) from [9]:

ud(ρ, θ, t) =
∫ l(t/ρ)

−l(t/ρ)

Z(s + iθ)F (t − ρ cosh β)ds, θ ∈ Θ = [φ, 2π] \ {θ1, θ2}, (2.8)

Z(s) = −H(−iπ/2 + s) − H(−5iπ/2 + s), s ∈ C (2.9)
H(s) = coth(q(s + iπ/2 − iα)) − coth(q(s − 3iπ/2 + iα)) (2.10)

and

q =
π

2Φ
, (2.11)

l(λ) =
{

log(λ +
√

λ2 − 1), λ > 1
0, λ ∈ (0, 1).

(2.12)

Let us denote by St the “diffraction sector” of the plane:

St = {(ρ, θ) : 0 < ρ < t, θ ∈ (φ, 2π)}. (2.13)
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Note that formulas (2.8)–(2.10) imply that ud(ρ, θ, t) for each t > 0 is a continuous function in every
sector Θk, where

Θ1 := {(ρ, θ) : ρ > 0, θ ∈ (φ, θ1)},
Θ2 := {(ρ, θ) : ρ > 0, θ ∈ (θ1, θ2)},
Θ3 := {(ρ, θ) : ρ > 0, θ ∈ (θ2, 2π)}.

(2.14)

Moreover,

ud(ρ, θ, t) = 0, θ ∈ Θ, ρ ≥ t, (2.15)

since l(t/ρ) = 0 in this case by our definition (2.12).
We consider the case F ≡ h. Then the integral (2.8) can be easily calculated (see [10]):

ud(ρ, θ, t) =
i

2π

[
− log U0 − log U1 + log U2 + log U3

]
, 0 < ρ < t, θ ∈ Θ, (2.16)

where Im log(·) ∈ [−π, π), and

Uk =
r−qeick(θ) − rqe−ick(θ)

−(r−qe−ick(θ) − rqeick(θ))
, k = 0, 3; r =

t

ρ
−

√
(

t

ρ

)2

− 1, 0 < ρ < t; (2.17)

c0(θ) = q(θ − θ1), c1(θ) = q(θ − 2φ + α), c2(θ) = q(θ − θ2), c3(θ) = q(θ − 2π − α). (2.18)

For the NN-boundary conditions, the formulas similar to (2.8)–(2.12) and (2.15)–(2.17) are also obtained
in [9].

Let us note that the diffracted wave (2.8) is discontinuous on the critical rays θ = θk, k = 1, 2.
Nevertheless, the sum (2.7), which is the total solution, is continuous in St with the exception of two
points on its boundary.

In what follows, we consider the incident wave (1.1) with the profile function F = h as in Sobolev’s
paper [16].

Lemma 2.2. For F = h, the total solution u(ρ, θ, t) given by (2.4)–(2.8) is continuous in St\{(t, θ1), (t, θ2)}
for any t > 0.

Proof. In the case F = h, Lemma 4.1 of [16] implies that the diffracted wave is continuous outside the
rays θ = θk, k = 1, 2 and its jumps are given by

ud(ρ, θk + 0, t) − ud(ρ, θk − 0, t) = −1(k+1), k = 1, 2, ρ < t

in the sense of distributions of ρ > 0. Moreover, this relation holds also pointwise as it is shown in the
proof of [9, Lemma 4.1] for the Hölder functions F (s) of s ≥ 0.

Further, the function uin is also continuous outside the ray θ = θ1 by (2.4). Hence,

u(ρ, θ1 + 0, t) − u(ρ, θ1 − 0, t)
= (ud(ρ, θ1 + 0, t) + uin(ρ, θ1 + 0, t)) − (ud(ρ, θ1 − 0, t) + uin(ρ, θ1 − 0, t))
= ud(ρ, θ1 + 0, t) + 1 − ud(ρ, θ1 − 0, t) = 0, ρ < t,

so u is continuous on the ray {θ = θ1}. Similarly, the continuity of u on the ray θ = θ2 can be proved by
using (2.5). Thus, the total solution u(·, ·, t) is continuous in St \ {(t, θ1), t, θ2} for all t > 0. �

Finally, let us note that for F = h, we have

u(ρ, θ, t) =
{

1 + ud(ρ, θ, t), θ ∈ (θ1, θ2)
ud(ρ, θ, t), θ ∈ (φ, θ1) ∩ (θ2, 2π),

∣
∣
∣
∣ ρ, t > 0 (2.19)

by (2.4)–(2.7), where ud is given by (2.16)–(2.17).



Vol. 66 (2015) On uniqueness and stability of Sobolev’s solution in scattering by wedges 2489

Remark 2.3. Formulas (2.8)–(2.18) were obtained in [9] for α < φ, though in the present paper we consider
α > φ which corresponds to Sobolev’s geometry (see Fig. 2 and 5 from [16]). Nevertheless formulas (2.8)–
(2.18) remain correct in the case α > φ too, and function (2.7) is a solution to problem (2.3) which
belongs to Mε with ε = 1 − q. The proofs in this case are almost identical to the ones of [9].

3. Sobolev’s formula

The main goal of the present paper is identification of our solution (2.7) with Sobolev’s formula [16, (34)].
Sobolev considered the scattering in variables (x1, x2) which differ from (y1, y2) by the rotation over an
angle of π/2 − φ/2. The corresponding Sobolev’s polar angle is given by

θs := θ − 3π

2
− φ

2
. (3.1)

Let us denote Θs := [−3π/2 + φ/2, π/2 − φ/2]. Sobolev’s solution for t ∈ R is defined in the region

S :=
{

(ρ, θs) : ρ > 0, θs ∈ Θs

}
(3.2)

which complements the wedge |θs − π/2| ≤ φ/2.
The incident wave (1.1) with F = h coincides with Sobolev’s incident wave [16, (7)]

w0(x1, x2, t) = h(t − x1 sin β + x2 cos β), t < 0. (3.3)

Here

β = α + Φ/2, (3.4)

and Φ is given by (5.4), since α − φ/2 = β − π (see Fig. 2) (we take here Sobolev’s parameter b = 1, and
h denotes the Heaviside function).

The Sobolev solution to (2.3) is given by formulas (26) and (34) of [16]:

w0(ρ, θs, t) = Re
1
πi

log
(eiγ2 − ξ)(e−iγ2 − ξ)
(eiγ1 − ξ)(e−iγ1 − ξ)

, ρ < t, θs ∈ Θs, (3.5)

where Im log(·) ∈ [−π, π), and γ1, γ2 are some parameters depending on β from (3.3). However, Sobolev’s
expressions (33) of [16] for γ1 and γ2 do not correspond to his definition of β by (3.3). Rather, [16, formulas

0

Fig. 2. Boundary values of w0
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(33)] correspond to another Sobolev’s definition of β by Fig. 2 of [16]. These two values of β differ by π.
The Sobolev’s definition of γ1 and γ2 reads

γ1 =
π

2
− 2qβ + 2qπ, γ2 =

π

2
+ 2qβ + 2qπ. (3.6)

We show that the definition, corresponding to (3.3), reads

γ1 =
π

2
− 2qβ + 4qπ, γ2 = −π

2
+ 2qβ. (3.7)

Obviously, (3.6) follows if we replace β by β + π in (3.7). These discrepancies force us to trace Sobolev’s
calculations to justify the expressions (3.7). This is necessary for proving the coincidence of our solution
(2.6) with Sobolev’s formula (34) of [16].

4. Sobolev’s calculations

Here we trace briefly Sobolev’s calculations [16].

(i) According to the Smirnov–Sobolev theory [15], any function

w0(x1, x2, t) = Re W0(ζ(x1, x2, t)) (4.1)

is a solution to the wave equation �w0(x1, x2, t) = 0 if W0(ζ) is an analytic function of |ζ| < 1 and
ζ(x, y, t) is given by formula (20) of [16]:

ζ = ζ(ρ, θs, t) = (t/ρ −
√

t2/ρ2 − 1)eiθs = r(ρ, t)eiθs , (4.2)

where r(ρ, t) agrees with (2.17).
(ii) It remains to find an appropriate W0(ζ) satisfying the needed boundary conditions.

Namely, formulas (1.1) and (2.5) give the values of uin and ur on the diffraction sector St

boundary for any fixed t > 0 [see (2.13)].

Finally, Sobolev suggested the boundary values for the diffracted wave

ud(ρ, θs, t) = 0, ρ ≥ t

arguing by the Huygens principle. Thus, Sobolev takes the following values for the solution w0(x, y, t) on
the diffraction sector St boundary as shown in Fig. 2:

w0(ρ, θs, t) =

⎧
⎨

⎩

1, (ρ, θs) ∈
�
CD

0 (ρ, θs) ∈
�
CA ∪ OA ∪ AO ∪ OB ∪

�
BD .

(4.3)

Two “critical” points C and D lie on the rays which are the lines of discontinuity of the incident and
reflected waves according to (1.1) and (2.5), see Fig. 2.

Remark 4.1. These points C and D are the points of discontinuity for the solution w0(ρ, θ, t) according
to the boundary values (4.3).

In the next step, these boundary conditions are “transmitted” to the variable ζ given by (4.2). Namely,
the map (4.2) is a “ray-preserving” one-to-one correspondence of the region St onto the sector of the unit
circle S1 :=

{
|ζ| < 1, arg ζ ∈ Θs

}
(see Fig. 3).

The Sobolev’s solution w0(ρ, θs, t) in the diffraction sector St is given by (4.1):

w0(ρ, θs, t) = Re W0(ζ), ζ ∈ S1, (4.4)

where ζ is defined by (4.2).
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0
e 

1

Fig. 3. Boundary values of W0(ζ)

Hence, the transmitted boundary conditions (4.3) read as

Re W0(ζ) =

⎧
⎨

⎩

0, ζ ∈
�

A1C1 ∪ OA1 ∪ OB1 ∪
�

B1D1

1, ζ ∈
�

C1E1D1,
(4.5)

where A1 = ζ(A), B1 = ζ(B), C1 = ζ(C), D1 = ζ(D). It is easy to see that

C1 = eiδ1 , D1 = eiδ2 , δ1 = −5π

2
+ β, δ2 =

3
2
π − 2

φ

2
− β. (4.6)

Let us stress that we should choose the arguments δ1, δ2 ∈ Θs.

(iii) Next, Sobolev constructs an analytic function W0(ζ), of ζ ∈ S1 with boundary values (4.5).

The function W0(ζ) is obtained by means of a conformal map of S1 onto the lower half-disk {|ξ| <
1, Im ξ < 0},

ξ = ξ(ζ) = e−i π
2 (ei π

2 ζ)2q, |ζ| < 1 (4.7)

(see [16, formula (30)]). Here q is given by (2.11), and the branch of the power function (·)2q is s.t. 12q = 1.
Thus, the problem is reduced to construction of a function

W1(ξ) = W0(ζ(ξ)) (4.8)

in the lower half-disk (see Fig. 4).
with the boundary conditions corresponding to (4.5) (formulas (32) of [16]):

Re W1(ξ) =

⎧
⎨

⎩

0, ξ ∈
�

(C2,A2) ∪[A2,B2]∪
�

(B2,D2)

1, ξ ∈
�

(C2,D2),

where C2 = ξ(C1), D2 = ξ(D1). Let us calculate the arguments of C2 and D2.
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0
?  

Fig. 4. Boundary values of W1(ξ)

Using (4.6) and (4.7), we obtain

C2 = e−iπ/2(eiπ/2ei(−5π/2+β))2q = e−iπ/2(e−2πi+iβ)2q

= e−iπ/2e−4πiqe2iqβ = e−i( π
2 −2qβ+4qπ) = e−iγ1 , (4.9)

D2 = e−iπ/2(eiπ/2e3iπ/2−iφ−iβ)2q = e−iπ/2(e2iπ−i(2π−Φ)−iβ)2q = e−iπ/2e(iΦ−iβ)2q

= e−iπ/2eiπe−2iqβ = e−i(−π/2+2qβ) = e−iγ2 (4.10)

since −π < β − 2π < −π/2 and 0 < Φ − β < π. Here γ1 and γ2 are given by (3.7). It is important that
0 < γ2 < γ1 < π.

Let us recall that our formulas (3.7) for γ1 and γ2 differ from (33) of [16] since we use the first Sobolev’s
definition of β corresponding to the formula (3.3) for the incident wave. It is easy to check that we get
(33) if we replace β by β + π in (3.7).

Finally, Sobolev obtains the following expression for W1:

W1(ξ) =
1
πi

log
(eiγ2 − ξ)(e−iγ2 − ξ)
(eiγ1 − ξ)(e−iγ1 − ξ)

, |ξ| < 1 (4.11)

using the Schwarz symmetry principle. Now, (4.8) and (4.4) imply formula (3.5) with γ1 and γ2 given by
(3.7).

5. Evaluation of Sobolev’s formula

Here we evaluate formula (3.5) and transform it to our polar coordinate θ, see (3.1). We will denote this
function as w0(ρ, θ, t) though formally we should write it as w̃0(ρ, θ, t) := w0(ρ, θs, t).

Lemma 5.1. Sobolev’s solution (3.5) in our coordinate can be written as follows:

w0(ρ, θ, t) =
1
π

[
3∑

k=0

(−1)[
k
2 ] arctan

B sin 2ck

1 − B cos 2ck

]

, ρ < t, (5.1)

where ck are given by (2.18), B := r2q and

arctan(·) ∈ (−π/2, π/2). (5.2)

Proof. Let us express function (4.2) in our polar coordinate θ and with the angle α instead of β. From
(3.1), we obtain that

ζ(ρ, θ, t) = r(ρ, t)eiθ− 5
2 iπ+i Φ

2 , (5.3)
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since

Φ = 2π − φ. (5.4)

Now, we can express ξ, γ1 and γ2 in our coordinates. First, (4.7) implies that

ξ(ρ, θ, t) = e−iπ/2(eiπ/2reiθ−(5/2)iπ+iΦ/2)2q = r2qe−iπ/2e−4iπqe2iqθeiπ/2 = r2qe2iq(θ−2π), (5.5)

since q = π/(2Φ), and θ − (5/2)π + Φ/2 ∈ (−π, π) for θ ∈ (φ, 2π). Further, (3.7) gives

γ1 = 2q(2π − α), γ2 = 2qα (5.6)

by (3.4). Substituting these expressions of ξ and γ1, γ2 into (4.11), we obtain

W1(ξ(ρ, θ, t)) =
1
πi

log A(ρ, θ, t), (5.7)

where

A(ρ, θ, t) =

(
e2iqα − r2qe2iq(θ−2π)

)(
e−2iqα − r2qe2iq(θ−2π)

)

(
e2iq(2π−α) − r2qe2iq(θ−2π)

)(
e−2iq(2π−α) − r2qe2iq(θ−2π)

)

=

(
1 − Be2iq(θ−2π+α)

)(
1 − Be2iq(θ−2π−α)

)

(
1 − Be2iq(θ−α)

)(
1 − Be2iq(θ−4π+α)

) , B := r2q.

(5.8)

Now (5.7), (4.4) and (4.11) imply

w0(ρ, θ, t) = Re

(
1
πi

log

(
1 − Be2iq(θ−2π+α)

)(
1 − Be2iq(θ−2π−α)

)

(
1 − Be2iq(θ−α)

)(
1 − Be2iq(θ−4π+α)

)

)

=
1
π

arg

((
1 − Be2iq(θ−2π+α)

)(
1 − Be2iq(θ−2π−α)

)

(
1 − Be2iq(θ−α)

)(
1 − Be2iq(θ−4π+α)

)

)

, ρ < t, (5.9)

where arg(·) ∈ (−π, π). Hence,

w0(ρ, θ, t) =
1
π

[

− arctan
B sin 2q(θ − 2π + α)

1 − B cos 2q(θ − 2π + α)
− arctan

B sin 2q(θ − 2π − α)
1 − B cos 2q(θ − 2π − α)

]

+ arctan
B sin 2q(θ − α)

1 − B cos 2q(θ − α)
+ arctan

B sin 2q(θ − 4π + α)
1 − B cos 2q(θ − 4π + α)

+ κ, ρ < t, (5.10)

where arctan satisfies (5.2), and κ ∈ Z since w0 is a continuous function in St by (4.1), and 0 < B < 1
for ρ < t. Substituting θ = 2π − 0 into (5.10), we obtain κ = 0.

Now, we rewrite the representation (5.10) in terms of the parameters ck from (2.18). First, we note
that

sin 2q(θ − α) = sin 2c0, sin 2q(θ − 4π + α) = sin 2c1,
sin 2q(θ − 2π + α) = sin 2c2, sin 2q(θ − 2π − α) = sin 2c3.

(5.11)

Here the first and the last identities follow from (2.18) directly, and the third identity follows from (2.18)
and (2.11). Further, using (2.18), (5.4) and (2.11), we obtain that

c1 = q(θ − 2φ + α) = q(θ − 2(2π − Φ) + α)) = q(θ − 4π + α) + π,

that gives the second identity of (5.11). Similarly, identities (5.11) hold with cos(·) instead of sin(·). Now,
function (5.10) can be written as (5.1). Lemma 5.1 is proved. �
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6. Proof of the coincidence

The main result of our paper is the following.

Theorem 6.1. Solution (2.7) to problem (2.3) in the case of F = h coincides with Sobolev’s solution (3.5).

Proof. It suffices to check that our solution u(y, t) coincides with w0(ρ, θ, t) given by (5.1). It suffices to
prove this coincidence for ρ < t since for ρ > t, both solutions are reduced to the sum of the incident and
reflected waves which obviously coincide.

For ρ < t, formulas (2.17) can be rewritten as

Uk = e2ick
1 − B cos 2ck + iB sin 2ck

−1 + B cos 2ck + iB sin 2ck
, 0 < ρ < t, (6.1)

where 0 < B := r2q < 1. Obviously,

|Uk| = 1, k = 0, 3, (6.2)

hence log Uk is a purely imaginary number, and

log Uk(ρ, θ, t) = 2i
(
ck(θ) + arctan

B(ρ, θ) sin 2ck

1 − B cos 2ck
+ πmk(ρ, θ, t)

)
,

where mk(ρ, θ, t) ∈ Z and arctan(·) satisfies (5.2). Therefore, (2.16) implies that

ud(ρ, θ, t) =
1
π

[
3∑

k=0

(−1)[
k
2 ] arctan

B sin 2ck

1 − B cos 2ck

]

+ m(ρ, θ, t), (ρ, θ) ∈ St. (6.3)

Here m(ρ, θ, t) ∈ Z, and it is constant in every sector Rk := St ∩ Θk, in which ud is continuous by
Lemma 2.2.

Hence,

m(ρ, θ, t) = mk, θ ∈ Θk, k = 1, 2, 3. (6.4)

It remains to calculate mk for k = 1, 2, 3. Let us note that

ud(ρ, θ, t) = 0, ρ ≤ t, θ = φ + 0, θ = 2π − 0. (6.5)

In fact, u(ρ, φ+0, t) = 0 and u(ρ, 2π −0, t) = 0 by boundary conditions (2.3). Further, uin(ρ, φ+0, t) = 0
and uin(ρ, 2π − 0, t) = 1 by (2.4) with F = h; ur(ρ, φ + 0, t) = 0, ur(ρ, φ − 0, t) = −1 by (2.5). Thus (6.5)
follows from (2.7).

First, we calculate m1 = 0. Let us consider θ = φ + 0. Then

c0 = q(φ − θ1), c1 = q(φ − 2φ + α)) = q(−φ + α) = −c0,
c2 = q(φ − θ2) = q(−Φ + α), c3 = q(φ − 2π − α) = q(−Φ − α) (6.6)

by (2.18), (5.4) and (2.11). This implies that

arctan
B sin 2c1(φ)

1 − B cos 2c1(φ)
= − arctan

B sin 2c0

1 − B cos 2c0
.

Further,

arctan
B sin 2c2(φ)

1 − B cos 2c2(φ)
= arctan

B sin 2q(−Φ + α)
1 − B cos(−Φ + α)

,

arctan
B sin 2c3(φ)

1 − B cos 2c3(φ)
= arctan

B sin 2q(−Φ − α)
1 − B cos 2q(−Φ − α)

= − arctan
B sin 2c2(φ)

1 + B cos 2c2(φ)
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by (2.18), (2.11) and (5.4). Therefore, for θ = φ + 0, we have

3∑

k=0

(−1)[
k
2 ] arctan

B sin 2ck(φ)
1 − B cos 2ck(φ)

= 0.

Finally, (6.5), (6.3) and (6.4) imply that m1 = 0.

Similarly we calculate m3 = 0 considering θ ∈ Θ3. Namely, let us take θ = 2π − 0. In this case (2.18),
(5.4) and (2.11) imply that

c0 = q(2π − α), c1 = q(2π − (2φ − α)) = q(−2π + 2Φ + α),

c2 = q(2π − 2π + α) = qα, c3 = q(2π − 2π − α) = −qα.
(6.7)

Hence,

arctan
B sin 2c1

1 − B cos 2c1
= arctan

B sin 2q(−2π + 2Φ + α)
1 − B cos 2q(−2π + 2Φ + α)

= − arctan
B sin 2c0

1 − B cos 2c0
, (6.8)

and

arctan
B sin 2c3

1 − B cos 2c3
= − arctan

B sin 2c2

1 − B cos 2c2
. (6.9)

Therefore, (6.8) implies that m3 = 0 by (6.3) and (6.4).
Finally, let us calculate m2 = 0 considering θ ∈ Θ2. In this case,

ud(ρ, θ, t) = 0, ρ = t, θ ∈ Θ2. (6.10)

In particular,

lim
θ→θ1+0

ud(t − 0, θ, t) = 0. (6.11)

On the other hand, we can calculate this limit using our formula (6.3), where B = 1. We have:

c0 = q(α + 0 − α) = +0, c1 = q(2α − 4π) + π ∈ (−π, 0), c2 = q(2α − 2π), c3 = −2qπ

by (2.18) and (5.4), (2.11). Hence, calculating the terms of (6.3) with θ = θ1 + 0 and B = 1, we obtain

arctan
sin 2c0

1 − cos 2c0
= arctan

sin 2(0+)
1 − cos 2(+0)

=
π

2
,

arctan
sin 2c1

1 − cos 2c1
= arctan(cot c1) = −π

2
− 2qα + 4πq ∈

(
− π

2
,
π

2

)
,

arctan
sin 2c2

1 − cos 2c2
= arctan(cot c2) = −π

2
− c2 = −π

2
− 2αq + 2πq ∈

(
− π

2
,
π

2

)
,

arctan
sin 2c3

1 − cos 2c3
= arctan(cot c3) = −π

2
− c3 = −π

2
+ 2qπ ∈

(
− π

2
,
π

2

)

by (5.2), (5.4) and (2.11). Hence, (6.3) implies that

lim
θ→θ1+0

ud(t − 0, θ, t) =
1
π

3∑

k=0

(−1)[
k
2 ] arctan

sin 2ck(θ1 + 0)
1 − B cos 2ck(θ1 + 0)

+ m2

= 1 + m2, θ ∈ Θ2. (6.12)

Comparing with (6.11), we obtain m2 = −1.
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As the result, (6.4) with m1 = m3 = 0 and m2 = −1 gives

u(ρ, θ, t) =
1
π

[
3∑

k=0

(−1)[
k
2 ] arctan

B sin 2ck

1 − B cos 2ck

]

= w0(ρ, θ, t), (ρ, θ) ∈ St

by (2.19), (6.3) and (5.1). The same identity obviously holds for ρ > t since in this region, the diffracted
wave vanishes, while the incident and reflected waves coincide with the same ones of Sobolev. Theorem 6.1
is proved. �

7. Uniqueness and stability of Sobolev’s solution

7.1. Uniqueness

In [9, Sections 3.1 and 3.2], we have proved that there exists a unique solution u ∈ Mε with ε = 1 − q
(Definition 2.1), and this solution is expressed by (2.7), (2.4), (2.5) and (2.8). The Sobolev solution w0

coincides with our solution u by Theorem 6.1. Therefore we obtain the following corollary.

Corollary 7.1. The Sobolev solution (3.5) belongs to M1−q, and it is unique in this class of solutions.

7.2. Stability

Let us consider the incident profiles F ∈ L1
loc(R), for which F (x) = 0 for x < 0, and

F (s) → C, s → ∞. (7.1)

In [9, Thm 4.2], we have proved that the diffracted wave (2.16) converges in the long time limit:

ud(ρ, θ, t) −−−→
t→∞ ud(θ,∞) =

iC

4Φ

∫

R

Z(β + iθ)dβ, ρ > 0, θ ∈ Θ. (7.2)

Lemma 7.2. (i) Let w0 be Sobolev’s solution (3.5). Then

w0(ρ, θ, t) → w∞(θ), t → ∞, (7.3)

where

w∞(θ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
4Φ

∫

R

Z(s + iθ)ds + 1, ρ > 0, θ ∈ [θ1, θ2]

1
4Φ

∫

R

Z(s + iθ)ds, ρ > 0, θ ∈ [φ, θ1] ∪ [θ2, 2π]

(7.4)

with Z given by (2.8).

(ii) Let h̃(s) ∈ L1
loc(R+) s.t.

h̃(s) = h(s), s ≥ T (7.5)

for some T ∈ R, and ũ ∈ M1−q be a solution to diffraction problem (2.3) with F = h̃. Then

ũ(ρ, θ, t) → w∞(θ), t → ∞. (7.6)

Proof. (i) Our main result, Theorem 6.1, implies that Sobolev’s solution w0 admits representation
(2.19). Moreover, in our case F ≡ h, convergence (7.1) holds with C = 1. Hence, (7.2) with C = 1
and (2.19) imply (7.3) and (7.4).
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(ii) There exists the splitting ũ = ũin + ũr + ũd, where

lim
t→∞ ũin(ρ, θ, t) = lim

t→∞ uin(ρ, θ, t), lim
t→∞ ũr(ρ, θ, t) = lim

t→∞ ur(ρ, θ, t), lim
t→∞ ũd(ρ, θ, t) = lim

t→∞ ud(ρ, θ, t).

Here the first and the second identities follow by (7.5). The last identity follows from (7.2) since
(7.1) holds with C = 1 for both profile functions F = h and F = h̃. Thus, (7.6) follows from (7.3).

�

This lemma shows that the longtime asymptotics of Sobolev’s solution does not depend on a local
perturbation of the incident wave. In this sense, the Sobolev solution is asymptotically stable.

8. Conclusion

There are different approaches to non-stationary scattering of plane waves by two-dimensional wedges.
Some particular solutions for the pulse incident wave were obtained by Sobolev in 1930’, and Keller
and Blank in 1950’. However, the uniqueness of the solutions in an appropriate functional class was not
established up to now. Moreover, it is well known that the solution is not unique if its singularity is not
specified.

Recently we have proposed a universal approach that gives explicit formulas for the solution with
general incident waves and guarantees the existence and uniqueness of solutions in suitable functional
classes.

In the present paper, we have checked that for the pulse incident wave, our solution coincides with
Sobolev’s formula, and specify its uniqueness and stability properties.
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