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Abstract. In this work we summarize some recent results to be included in a
forthcoming paper [2]. In the projective space PG(N, q) over the Galois field of
order q, N ≥ 3, an iterative step-by-step construction of complete caps by adding
a new point on every step is considered. It is proved that uncovered points are
evenly placed on the space. A natural conjecture on an estimate of the number
of new covered points on every step is done. For a part of the iterative process,
this estimate is proved rigorously. Under the conjecture mentioned, new upper
bounds on the smallest size t2(N, q) of a complete cap in PG(N, q) are obtained, in
particular,

t2(N, q) <
1

q − 1

√
qN+1(N + 1) ln q +

1

q − 3

√
qN+1 ∼ q

N−1
2

√
(N + 1) ln q.

A connection with the Birthday problem is noted. The effectiveness of the bounds
is illustrated by comparison with sizes of complete caps obtained by computer.

1 Introduction. The main results

Let PG(N, q) be the N -dimensional projective space over the Galois field of
order q. A cap in PG(N, q) is a set of points no three of which are collinear. A
cap is complete if it is not contained in a larger cap. Caps in PG(2, q) are also
called arcs and they have been widely studied, see e.g. [1, 6].
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part by Ministry for Education, University and Research of Italy (MIUR) (Project “Geometrie
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ometric Structures and their Applications (GNSAGA - INDAM). The research of A.A. Davy-
dov was carried out at the IITP RAS at the expense of the Russian Foundation for Sciences
(project 14-50-00150).
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Caps are connected with Coding Theory. A complete n-cap in a space
PG(N, q), the points of which are treated as (N+1)-dimensional q-ary columns,
defines a parity check matrix of a non-extandable linear q-ary code with length
n, dimension n−N −1, minimum distance 4, and covering radius 2 (exceptions
are given by the 5-cap in PG(3, 2) and the 11-cap in PG(4, 3). For N = 2 this
code is MDS; if N = 3 it is Almost MDS.

Let t2(N, q) be the smallest size of a complete cap in PG(N, q).
A hard open problem in the study of projective spaces is the determination

of t2(N, q). The exact values of t2(N, q) are known only for very small q.
This work is devoted to upper bounds on t2(N, q).

The trivial lower bound for t2(N, q) is
√

2q
N−1

2 . Constructions of complete
caps whose size is close to this lower bound are only known for q even [5]. Using
a modification of the approach of [6], the probabilistic upper bound

t2(N, q) < cq
N−1

2 log300 q,
where c is a constant independent of q, has been obtained in [3, 4].

Theorem 1. (i) Under Conjecture 4(i), in PG(N, q), N ≥ 3, it holds that

t2(N, q) <

√
D

q − 1

√
qN+1(N + 1) ln q +

√
qN+1

q − 3
∼ q

N−1
2

√
D(N + 1) ln q. (1)

where D ≥ 1 is a constant independent of q.
(ii) Under Conjecture 4(ii), the bound (1) with D = 1 holds.

Conjecture 2. In PG(N, q), N ≥ 3, the upper bound (1) with D = 1 holds for
all q without any extra conditions and conjectures.

This work can be treated as a development and generalization of the pa-
per [1].

2 An iterative process. Probabilities of uncovering.
The basic and generalized conjectures

In PG(N, q), N ≥ 3, let a complete cap be constructed by a step-by-step algo-
rithm (Algorithm for short) which adds one new point to the cap in each step;
see e.g. a greedy algorithm that in every step adds to the cap a point providing
the maximal possible (for the given step) number of new covered points [1]. A
point of PG(N, q) is covered by a cap if the point lies on a bisecant of the cap.

The space PG(N, q) contains θN,q = qN+1−1
q−1 = qN + qN−1 + . . .+ q + 1 points.

Assume that after the w-th step of Algorithm a w-cap is obtained that does
not cover exactly Uw points. Let S(Uw) be the set of all w-caps in PG(N, q)
each of which does not cover exactly Uw points.
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Consider the (w + 1)-st step of Algorithm. This step starts from a w-cap
Kw with Kw ∈ S(Uw). The choice Kw from S(Uw) is random such that for
every cap of S(Uw) the probability to be chosen is equal to 1

#S(Uw) . So, the

set S(Uw) is considered as an ensemble of random objects with the uniform
probability distribution. Every point H of PG(N, q) is uncovered by Kw with
some probability pw(H).

Lemma 3. The probability pw(H) does not depend of the point H; it may be
considered as pw. Moreover,

pw =
Uw

#PG(N, q)
=

Uw
θN,q

.

Let the cap Kw consist of w points A1, A2, . . . , Aw. Let Aw+1 be the point
that will be included into the cap on the (w+1)-th step. The point Aw+1 defines
a bundle of w tangents A1Aw+1, . . . , AwAw+1 to Kw. Excluding A1, . . . , Aw, all
the points on the tangents of the bundle are candidates to be new covered
points in the (w+ 1)-th step. There are w(q− 1) + 1 candidates in the bundle.
One can use Uw distinct points Aw+1; therefore there are Uw distinct bundles.

Denote by Ew,q the expected value of the number of uncovered points
among w(q − 1) + 1 randomly taken points in PG(N, q), if the events to be
uncovered are independent. By Lemma 3,

Ew,q = (w(q − 1) + 1)pw =
(w(q − 1) + 1)Uw

θN,q
. (2)

Let ∆w(Aw+1) be the number of new covered points on the (w+ 1)-th step.
Since all new covered points lie on some bundle, they cannot be considered as
randomly taken points for which the events to be uncovered are independent.

In the other side, there are many random factors affecting the iterative
process, e.g. relative positions and intersections of bisecants and tangents, the
number of uncovered points on distinct tangents. Therefore, the conjecture
below seems to be reasonable and founded, see also Section 4.

Conjecture 4. (i) (the generalized conjecture) In PG(N, q), for q large
enough, for every (w + 1)-th step of the iterative process, there exists a w-cap
Kw ∈ S(Uw) such that there exists an uncovered point Aw+1 providing inequality

∆w(Aw+1) ≥
Ew,q
D

, (3)

where D ≥ 1 be a constant independent of q.
(ii) (the basic conjecture) In (3) we have D = 1.
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3 Upper bounds on t2(N, q) and their effectiveness

Let D ≥ 1 be a constant independent of q. We denote

Q =
θN,q
q − 1

=
qN+1 − 1

(q − 1)2
, fq(w;D) =

w∏
i=1

(
1− i

DQ

)
.

The function fq,D(w) with an integer D is used in the Birthday problem.

Theorem 5. Let ξ be a constant independent of w with ξ ≥ 1. Under Conjec-
ture 4, in PG(N, q) the following holds:

t2(N, q) ≤ w + 1 + ξ

where the value w satisfies the inequality

θN,qfq(w;D) ≤ ξ. (4)

Theorem 6. Let ξ be a constant independent of w with ξ ≥ 1. Let D ≥ 1 be a
constant independent of q. Under Conjecture 4, it holds that

t2(N, q) ≤
√

2DQ

√
ln
θN,q
ξ

+ 2 + ξ. (5)

Taking in (5) ξ = 1
q−1

√
qN+1, we obtain Theorem 1.

An illustration of the effectiveness of the new upper bounds is shown on
Fig. 1 where tG2 (N, q) is the size of a complete cap in PG(N, q) obtained by com-
puter via greedy algorithms2 in the region GN where G3 = {q ≤ 3701, q prime}
∪{3803, 3907, 4001, 4289}, G4 = {q ≤ 463, q prime} ∪ {503}.

4 Reasonableness of conjectures

For a cap Kw, denote by ∆aver
w (Kw) the average value of ∆w(Aw+1) by all Uw

uncovered points Aw+1, i.e.

∆aver
w (Kw) =

1

Uw

∑
Aw+1

∆w(Aw+1) ≥ 1. (6)

Throughout the paper, we consider continuous approximations of the dis-
crete function ∆w(Aw+1), ∆aver

w (Kw) and other ones keeping the same notations.

2Calculations were performed using computational resources of Multipurpose Computing
Complex of National Research Centre “Kurchatov Institute”, http://computing.kiae.ru

Here and further, for practice calculations connected with the illustration of researches, see
Remarks 9 and 10, we used the same cap adding to it one point in the each step of the iterative
process; the random choice of the cap Kw is not applied.
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Figure 1: Upper bounds on t2(N, q) of (1) with D = 1 (top dushed-dotted
curve) vs sizes tG2 (N, q) of complete caps obtained by greedy algorithms (bot-
tom solid curve), q ∈ GN , N = 3, 4. a) PG(3, q); b) PG(4, q)
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Lemma 7. For any w-cap Kw ∈ S(Uw), there hold the following inequalities

max
Aw+1

∆w(Aw+1) ≥ ∆aver
w (Kw) ≥ max{1, wUw

θN−1,q + 1− w
− w + 1}. (7)

The equalities max
Aw+1

∆w(Aw+1) = ∆aver
w (Kw) = wUw

θN−1,q+1−w − w + 1 hold if and

only if each tangent contains the same number of uncovered points. The equal-
ities max

Aw+1

∆w(Aw+1) = ∆aver
w (Kw) = 1 hold if and only if each tangent contains

at most one uncovered point.

Let D ≥ 1 be a constant independent of q. We denote

Φw,q(D) =
D(w − 1)θN,q(θN−1,q + 1− w)

DwθN,q − (θN−1,q + 1− w)(w(q − 1) + 1)
,

Υw,q(D) =
DθN,q

w(q − 1) + 1
.

For a part of the iterative process, we rigorously prove Conjecture 4.

Theorem 8. Let D ≥ 1 be a constant independent of q. Let one of the following
conditions hold: Uw ≥ Φw,q(D), Υw,q(D) ≥ Uw. Then for any cap Kw of S(Uw),
there exists an uncovered point Aw+1 providing the inequality (3).

Remark 9. To illustrate Conjecture 4, the values ∆w(Aw+1) were calculated
for numerous concrete iterative processes. For all the calculations done it holds
that max

Aw+1

∆w(Aw+1) > Ew,q. The ratio max
Aw+1

∆w(Aw+1)/Ew,q has an increasing

trend when w grows. In Fig. 2 for a complete k-cap in PG(3, 101), k = 415, the
following values are shown (see (2)–(7)): δmax

w = 1
Ew,q
·max
Aw+1

∆w(Aw+1) (top solid

curve), δaverw = 1
Ew,q

· ∆aver
w (Kw) (the 2-nd dashed-dotted curve), δmin

w = 1
Ew,q

·
min
Aw+1

∆w(Aw+1) (the 3-rd solid curve), δrigorw = 1
Ew,q
·max{1, wUw

θN−1,q+1−w−w+1}

(bottom dotted curve). The horizontal axis shows the values of w
k . The dashed

lines y = 1 and y = 1
5 correspond to Conjecture 4(ii) where D = 1 and to

Conjecture 4(i) with D = 5. The signs • correspond to values Φw,q(D) and
Υw,q(D) with D = 1 and D = 5.

In Fig. 2, the region where we rigorously prove Conjecture 4 lies left of
Φw,q(D) and right of Υw,q(D). This region takes ∼ 35% of the whole iterative
process for D = 1 and ∼ 75% for D = 5.

Remark 10. Let γw,j be the number of uncovered points on the j-th tangent
after the w-th step of Algorithm. The lower estimate in (7) is attained in two
cases: either every tangent contains the same number of uncovered points (i.e.
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Figure 2: Illustration of reasonableness of Conjectures 4(i) and 4(ii)

γw,j = γw,i for all pairs i, j) or each tangent contains at most one uncovered
point. The 1-st situation holds in the first steps of the iterative process only.
Then while the inequality Uw(D) ≥ Φw,q(D) holds, the differences γw,j−γw,i are
relatively small and estimate (7) works “well”. As Uw decreases, the differences
relatively increase, and the estimate becomes worse in the sense that actually
∆aver
w (Kw) is considerably greater than max{1, wUw

θN−1,q+1−w − w + 1}.
The 2-nd situation is possible, in principle, when Uw ≤ θN−1,q+1−w and the

average number γaverw of uncovered points on a tangent is smaller than 1. But on
this stage of the iterative process variations in the values γw,j are relatively big;

and again ∆aver
w (Kw) is considerably greater than max{1, wUw

θN−1,q+1−w −w+ 1}.
In the final region of the iterative process, where Uw ≤ Υw,q(D) and

Ew,q

D ≤ 1, estimate (7) becomes reasonable once more. Thus, in the region
Φw,q(D) > Uw > Υw,q(D) the estimate (7) does not reflect the real situation
effectively.

Denote by γaverw the average number of uncovered point on a tangent. It
holds that γaverw = Uw/(θN−1,q + 1 − w). Let γmax

w and γmin
w be the maximum

and minimum of the number γw,j of uncovered points on a tangent, respectively.
An illustration of the fact that the numbers γw,j of uncovered points on tangents
lie in a relatively wide region is shown on Fig. 3, where for complete k-caps in
PG(3, 101), k = 415 obtained by the greedy algorithm, the values γmax

w /γaverw
(top solid curve) and γmin

w /γaverw (bottom solid curve) are presented. The value
γmax
w /γaverw increases when the ratio w/k grows; in the region 0.8 < w

k < 0.95
(it is not shown in Fig. 3), the value γmax

w /γaverw increases from 28 to 590.

Other estimates and bounds on t2(N, q) are given in [2].
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Figure 3: Dispersion of the number of uncovered points on tangents
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