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Abstract

In a projective plane Πq (not necessarily Desarguesian) of order q, a point subset
S is saturating (or dense) if any point of Πq \ S is collinear with two points in S.
Modifying an approach of [31], we proved the following upper bound on the smallest
size s(2, q) of a saturating set in Πq:

s(2, q) ≤
√

(q + 1)

(

3 ln q + ln ln q + ln
3

4

)

+

√

q

3 ln q
+ 3.

The bound holds for all q, not necessarily large.
By using inductive constructions, upper bounds on the smallest size of a satu-

rating set in the projective space PG(N, q) with even dimension N are obtained.
All the results are also stated in terms of linear covering codes.

∗The research of D. Bartoli, M. Giulietti, S. Marcugini, and F. Pambianco was supported in part
by Ministry for Education, University and Research of Italy (MIUR) (Project “Geometrie di Galois e
strutture di incidenza”) and by the Italian National Group for Algebraic and Geometric Structures and
their Applications (GNSAGA - INDAM). The research of A.A. Davydov was carried out at the IITP
RAS at the expense of the Russian Foundation for Sciences (project 14-50-00150).
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1 Introduction

We denote by Πq a projective plane (not necessarily Desarguesian) of order q and by
PG(2, q) the projective plane over the Galois field with q elements.

Definition 1.1. A point set S ⊂ Πq is saturating if any point of Πq \ S is collinear with
two points in S.

Saturating sets are considered, for example, in [1–3, 6, 8, 10, 12–25, 27, 28, 30, 31, 34];
see also the references therein. It should be noted that saturating sets are also called
“saturated sets” [12, 13, 25, 28, 34], “spanning sets” [10], “dense sets” [1, 8, 20–22, 24], and
“1-saturating sets” [14–18].

A particular kind of saturating sets in a projective plane is complete arcs. An arc is a
set of points no three of which are collinear. An arc is said to be complete if it cannot be
extended to a large arc; see [4–6, 20, 23, 26] and the references therein.

The homogeneous coordinates of the points of a saturating set of size k in PG(2, q) form
a parity check matrix of a q-ary linear code with length k, codimension 3, and covering
radius 2. For an introduction to covering codes see [9, 11]. An online bibliography on
covering codes is given in [29].

The main problem in this context is to find small saturating sets (i.e. short covering
codes).

Denote by s(2, q) the smallest size of a saturating set in Πq.
Let sD(2, q) be the smallest size of a saturating set in the Desarguesian plane PG(2, q).
Let t2(2, q) be the smallest size of a complete arc in PG(2, q).
Clearly,

sD(2, q) ≤ t2(2, q).

The trivial lower bound is

s(2, q), sD(2, q), t2(2, q) >
√

2q + 1.

Saturating sets in PG(2, q) obtained by algebraic constructions or computer search can
be found in [1, 6, 8, 10, 12–20, 22–24, 27, 30, 32–34].

For PG(2, q) with q non-prime, in the literature there are a few algebraic constructions
of relatively small saturating sets providing, for instance, the following upper bounds:

sD(2, q) < 3
√
q − 1 if q = (q′)2 [12];

sD(2, q) < 2
√
q + 2 4

√
q + 2 if q = (q′)4 [14–16, 27];

sD(2, q) < 2
√
q + 2 3

√
q + 2 6

√
q + 2 if q = (q′)6, q′ prime, q′ ≤ 73 [14–16];

sD(2, q) < 2 m
√

qm−1 + m
√
q if q = (q′)m, m ≥ 2 [18, 22].
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Saturating sets of size approximately Cq
3
4 , with C a constant independent on q, have

been explicitly described in several papers; see [1, 8, 24, 32, 33].

In [22], algebraic constructions of saturating sets in PG(2, q) of size about 3q
2
3 are

proposed and the following bounds are obtained (here p is prime):

sD(2, q) <
2q

p t
+

(p t − 1)2

p− 1
+ 1 if q = pm, m ≥ 2t; (1.1)

sD(2, q) <
2

p
3
√

(qp)2 +
3
√

(qp)2 − 2 3
√
qp+ 1

p− 1
+ 1 if q = p3t−1;

sD(2, q) < min
v=1,...,2t+1

Φ(t, p, v) if q = p2t+1,

where Φ(t, p, v) =

{

(v + 1)pt+1 +
(pt − 1)2v

(p− 1)v(p2t+1 − 1)(v−1)
+ 2

}

.

For many triples (t, p, v), constructions of (1.1) provide relatively small saturating sets,
see [22].

In [5], by computer search in a wide region of q, the following upper bounds for the
smallest sizes of complete arcs in PG(2, q) are obtained:

sD(2, q) ≤ t2(2, q) < 0.998
√

3q ln q for 7 ≤ q ≤ 160001; (1.2)

sD(2, q) ≤ t2(2, q) < 1.05
√

3q ln q for 160001 < q ≤ 301813.

For q ≤ 160001 greedy algorithms are used while for 160001 < q ≤ 301813 the algorithm
with fixed order of points (FOP) is applied.

In [4], for PG(2, q) an iterative step-by-step construction of complete arcs, which adds
a new point in each step, is considered. As an example, it is noted the step-by-step greedy
algorithm that in every step adds to the arc a point providing the maximal possible (for
the given step) number of new covered points. For more than half of steps of the iterative
process, an estimate for the number of new covered points in every step is proved. A
natural (and well-founded) conjecture is made that the estimate holds for the other steps
too. Under this conjecture, the following upper bound on the smallest size of a complete
arc in PG(2, q) is obtained.

conjectural bound: sD(2, q) ≤ t2(2, q) <
√
q
√

3 ln q + ln ln q + ln 3 +

√

q

3 ln q
+ 3.

(1.3)

Note also that in [4] a truncated iterative step-by-step process is considered. The process
stops when the number of uncovered points attains some (a priori arbitrary assigned)
value. Then this value is summarized with the number of steps, executed before stopping
of the iterative process. The estimate (1.3) is obtained when the value, a priori assigned
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to stop the process, is
√

q

3 ln q
; it implies that the number of the steps, executed before

stopping of the step-by-step process, is
√
q
√
3 ln q + ln ln q + ln 3.

Surveys and results of probabilistic constructions for geometrical objects can be found
in [2, 3, 7, 8, 21, 26, 28, 31]; see also the references therein.

In [8], by using a modified probabilistic approach introduced in [28], the following
upper bound for an arbitrary (not necessarily Desarguesian) plane is proved:

s(2, q) < 3
√
2
√

q ln q < 5
√

q ln q. (1.4)

In [2], see also [3], by probabilistic methods different from these in [8,28] the upper bound

s(2, q) ≤ 2
√

(q + 1) ln(q + 1) + 2 ∼ 2
√

q ln q (1.5)

is obtained.
In [31], Z. Nagy obtained the following bound

s(2, q) ≤ (
√
3 + o(1))

√

q ln q). (1.6)

The proof of (1.6) is given in [31] by two approaches: probabilistic and algorithmic. In
the both approaches, starting with some stage of the proof, it is assumed (by the context)
that q is large enough.

The algorithmic approach in [31] considers an original step-by-step greedy algorithm
and obtains estimates for the number of new covered points in every step of the algorithm.
In order to obtain the bound, the iterative process stops after executing of

⌈√
3q ln q

⌉

steps. It is proved in [31], that in this case the number of uncovered points is not greater
than

√
q. Then the half of the number of uncovered points is summarized with the number

of executed steps. As the result of the algorithmic proof of [31], the following form of the
bound can be derived.

s(2, q) ≤
⌈

√

3q ln q
⌉

+

⌈

1

2

√
q

⌉

≤
√

3q ln q +
1

2

√
q + 2, q large enough. (1.7)

In some sense the algorithmic approach of [31] is close to consideration of bounds
in [4]. But in [4] the number of steps, executed before stopping of the iterative process,
depends on a priori assigned number of uncovered points. At the same time, in [31] the
iterative process always stops after executing of

⌈√
3q ln q

⌉

steps. Of course, it must be
noted that in [4] the bound is conjectural (as the estimates are not proved for all steps of
the iterative greedy process) whereas in [31] the bound is proved. Note also that problems
considered in [4] and [31] are close but not the same (small complete arcs in [4] and small
saturating sets in [31]).

In this paper, we modify the algorithmic approach of [31] so that the final formula
holds for an arbitrary q (not necessarily large) and, moreover, the value of a new bound
is smaller than in (1.7), see (2.14)–(2.16).

Our main results is Theorem 1.2.
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Theorem 1.2. For the smallest size s(2, q) of a saturating set in a projective plane (not
necessarily Desarguesian) of order q (not necessarily large) the following upper bound
holds:

s(2, q) ≤
√

(q + 1)

(

3 ln q + ln ln q + ln
3

4

)

+

√

q

3 ln q
+ 3. (1.8)

Note that modifying the algorithmic approach of [31], we (similarly to [4]) stop the
iterative process when the number of uncovered points attains a priori assigned value, ξ
say. If ξ = 1 we obtain the bound coinciding with (1.5); if ξ =

√
q we obtain the bound

coinciding with (1.7), see Remark 2.4. Finally, if ξ =
√

4q
3 ln q

we get the bound (1.8).

Remark 1.3. It is interesting that the main term
√
3q ln q is the same in the bounds

(1.2), (1.3) for complete arcs and (1.6)–(1.7), (1.8) for saturating sets.

Theorem 1.2 can be expressed in terms of covering codes.
The length function ℓ(R, r, q) denotes the smallest length of a q-ary linear code with

covering radius R and codimension r; see [9–11].
Theorem 1.2 can be read as follows.

Corollary 1.4. The following upper bound on the length function holds.

ℓ(2, 3, q) ≤
√

(q + 1)

(

3 ln q + ln ln q + ln
3

4

)

+

√

q

3 ln q
+ 3.

Let PG(N, q) be the N -dimensional projective space over the Galois field of q elements.

Definition 1.5. A point set S ⊂ PG(N, q) is saturating if any point of PG(N, q) \ S is
collinear with two points in S.

A particular kind of saturating sets in a projective space is complete caps. A cap is a
set of points no three of which are collinear. A cap is said to be complete if it cannot be
extended to a large cap.

Let [n, n−r]qR be a linear q-ary code of length n, codimension r, and covering radius R.
The homogeneous coordinates of the points of a saturating set with size n in PG(r−1, q),
form a parity check matrix of an [n, n− r]q2 code.

Results on saturating sets in PG(N, q) and the corresponding covering codes can be
found in [7, 9–19, 23, 25, 34] and the references therein.

Let s(N, q) be the smallest size of a saturating set in PG(N, q), N ≥ 3.
In terms of covering codes, we recall the equality

s(N, q) = ℓ(2, N + 1, q).
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The trivial lower bound for s(N, q) is

s(N, q) >
√
2q

N−1
2 .

Constructions of saturating sets (or the corresponding covering codes) whose size is close
to this lower bound are only known for N odd, see [13, 16, 23] for survey. In particular,
in [19, Theorem 9], see also [16, Section 4.3], the following bound is obtained by algebraic
constructions:

s(N, q) = ℓ(2, N + 1, q) ≤ 2q
N−1

2 + q
N−3

2 , N = 2t− 1 ≥ 3, N 6= 7, 11, q ≥ 7, q 6= 9,
(1.9)

where t = 2, 3, 5, and t ≥ 7.
From (1.8), by using inductive constructions from [13,16], we obtained upper bounds

on the smallest size of a saturating set in the N -dimensional projective space PG(N, q)
with N even; see Section 3. In many cases these bounds are better than the known ones.

The paper is organized as follows. In Section 2, we deal with upper bounds on the
smallest size of a saturating set in a projective plane. In Section 3, bounds for saturating
sets in the projective space PG(N, q) are obtained.

2 A modification of Nagy’s approach for upper bound

on the smallest size of a saturating set in a projec-

tive plane

Assume that in Πq a saturating set is constructed by a step-by-step algorithm adding one
new point to the set in every step.

Let i > 0 be an integer. Denote by Si the running set obtained after the i-th step of
the algorithm. A point P of Πq \ Si is covered by Si if P lies on t-secant of Si with t ≥ 2.
Let Ri be the subset of Πq \ Si consisting of points not covered by Si.

In [31] the following ingenious greedy algorithm is proposed. One takes the line ℓ skew
to Si such that the cardinality of intersection |Ri ∩ ℓ| is the minimal among all skew
lines. Then one adds to Si the point on ℓ providing the greatest number of new covered
points (in comparison with other points of ℓ). As a result we obtain the set Si+1 and the
corresponding set Ri+1.

The following Proposition is proved in [31].

Proposition 2.1. [31, Proposition 3.3, Proof] It holds that

|Ri+1| ≤ |Ri| ·
(

1− i(q − 1)

q(q + 1)

)

. (2.1)

6



Clearly, that always

R2 = q2. (2.2)

Iteratively applying the relation (2.1) to R2 = q2, we obtain for some k the following:

|Rk+1| ≤ q2
k
∏

i=2

(

1− i(q − 1)

q(q + 1)

)

. (2.3)

We denote

fq(k) =
k
∏

i=2

(

1− i(q − 1)

q(q + 1)

)

. (2.4)

Similarly to [4], we consider a truncated iterative process. We will stop the iterative
process when |Rk+1| ≤ ξ where ξ ≥ 1 is some value that we may assign arbitrary to
improve estimates.

By [31, Lemma 2.1] after the end of the iterative process we can add at most ⌈ |Rk+1|/2⌉
points to the running subset Sk+1 in order to get the final saturating set S.

The size s of the obtained set S is

s ≤ k + 1 +

⌈

ξ

2

⌉

under condition q2fq(k) ≤ ξ. (2.5)

Using the inequality 1− x ≤ e−x we obtain that

fq(k) < e
−

∑k
i=2

i(q−1)

q2+q = e
− (k2+k−2)(q−1)

2(q2+q) ,

which implies

fq(k) < e
− (k2+k−2)(q−1)

2(q2+q) < e−
k2

2q+2 , (2.6)

provided that
(k2 + k − 2)(q − 1)

q
> k2

or, equivalently,

k2

k − 2
< q − 1,

k < q − 4. (2.7)

7



Lemma 2.2. Let ξ ≥ 1 be a fixed value independent of k. The value

k ≥
⌈

√

2(q + 1)

√

ln
q2

ξ

⌉

(2.8)

satisfies inequality q2fq(k) ≤ ξ.

Proof. By (2.6), to provide q2fq(k) ≤ ξ it is sufficient to find k such that

e−
k2

2q+2 <
ξ

q2
.

Theorem 2.3. In a plane Πq it holds that

s(2, q) ≤
√

2(q + 1)

√

ln
q2

ξ
+

ξ

2
+ 3, ξ ≥ 1, (2.9)

where ξ is an arbitrarily chosen value.

Proof. The assertion follows from (2.5) and (2.8).

We consider the function of ξ of the form

φ(ξ) =
√

2(q + 1)

√

ln
q2

ξ
+

ξ

2
+ 3.

Its derivative by ξ is

φ′(ξ) =
1

2
− 1

ξ

√

q + 1

2 ln q2

ξ

.

Put φ′(ξ) = 0. Then it is easy to see that

ξ2 =
q + 1

ln q − 1
2
ln ξ

. (2.10)

We find ξ in the form ξ =
√

q+1
c ln q

. By (2.10),

c = 1− ln(q + 1)

4 ln q
+

ln c+ ln ln q

4 ln q
.

For simplicity, we choose c ≈ 3
4
and put

ξ =

√

4q

3 ln q
. (2.11)

Now, substituting ξ =
√

4q
3 ln q

in (2.9), we obtain Theorem 1.2.
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Remark 2.4. (i) Let ξ = 1. From (2.9) we have

s(2, q) ≤ 2
√

(q + 1) ln q + 3, (2.12)

that practically coincides with bound (1.5) from [2, 3].

(ii) Let ξ =
√
q. From (2.9) we obtain the estimate

s(2, q) ≤
√

3(q + 1) ln q +
1

2

√
q + 3 (2.13)

which practically coincides with Nagy’s bound (1.7). However, as it is noted below,

the value ξ =
√

4q
3 ln q

gives a better estimate than (2.13).

We denote the difference

∆(q) =
√

3q ln q +
1

2

√
q + 2−

(

√

(q + 1)

(

3 ln q + ln ln q + ln
3

4

)

+

√

q

3 ln q
+ 3

)

.

It can be shown (e.g. by consideration of the corresponding derivations) that

∆(q) > 0 for q ≥ 919, (2.14)

and, moreover, ∆(q) and ∆(q)
√
q

are increasing functions of q. For illustration, see Fig. 1

where the top dashed-dotted black curve shows ∆(q) while the bottom solid red curve
√

q

7
is given for comparison.
Note also that

∆(q)√
q

≈
√

3 ln q +
1

2
−
√

3 ln q + ln ln q − 1√
3 ln q

,

∆(q)√
q ln q

≈
√
3 +

1

2
√
ln q

−
√

3 +
ln ln q

ln q
− 1√

3 ln q
,

whence

lim
q→∞

∆(q)√
q

=
1

2
, (2.15)

lim
q→∞

∆(q)√
q ln q

= 0. (2.16)

9



1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

√

q

7

∆(q)

q ×10299

∆
(q
)

×10149

Figure 1: The difference ∆(q) (top dashed-dotted black curve) vs
√

q

7
(bottom solid red

curve)

3 Upper bounds on the smallest size of a saturating

set in the projective space PG(N, q), N even

In further we use the results of [13, 16] that give the following inductive construction.

Proposition 3.1. [13, Example 6] [16, Theorem 4.4] Let exist an [nq, nq − 3]q2 code with
nq < q. Then, under condition q+1 ≥ 2nq, there is an infinite family of [n, n− r]q2 codes
with r = 2t − 1 ≥ 5, r 6= 9, 13, n = nqq

t−2 + 2qt−3, where t = 3, 4, 6, and t ≥ 8. For
r = 9, 13, it holds that n = nqq

t−2 + 2qt−3 + qt−4 + qt−5.

Now due to one-to-one correspondence between covering codes and saturating sets we

10



obtain the corollary from Theorem 1.2 and Proposition 3.1. We denote

Υ(q) =

√

(q + 1)

(

3 ln q + ln ln q + ln
3

4

)

+

√

q

3 ln q
+ 3.

Corollary 3.2. For the smallest size s(N, q) of a saturating set in the projective space
PG(N, q) and for the length function ℓ(2, N + 1, q), the following upper bounds hold:

(i)

s(N, q) = ℓ(2, N + 1, q) ≤ Υ(q) · qN−2
2 + 2q

N−4
2 , N = 2t− 2 ≥ 4, N 6= 8, 12,

(3.1)

where t = 3, 4, 6, and t ≥ 8, q ≥ 79.

(ii)

s(N, q) = ℓ(2, N + 1, q) ≤ Υ(q) · qN−2
2 + 2q

N−4
2 + q

N−6
2 + q

N−8
2 , N = 8, 12. (3.2)

Proof. By Theorem 1.2, in PG(2, q) there is a saturating set with size nq = Υ(q). From
the corresponding [nq, nq−3]q2 code, one can obtain an [n, n−r]q2 codes with parameters
as in Proposition 3.1. The condition q + 1 ≥ 2nq holds for q ≥ 79.

Surveys of the known [n, n− r]q2 codes and saturating sets in PG(N, q) with N even
can be found in [13, 16, 23]. In many cases bounds (3.1), (3.2) is better than the known
ones.
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[8] E. Boros, T. Szőnyi, and K. Tichler, On defining sets for projective planes, Discrete
Math. 303 (2005), 17–31.

[9] R. A. Brualdi, S. Litsyn, and V.S. Pless, Covering Radius, V. S. Pless, W. C. Huff-
man, and R. A. Brualdi (Eds.), Handbook of Coding Theory, vol. 1, pp. 755–826,
Elsevier, Amsterdam, The Netherlands, 1998.

[10] R. A. Brualdi, V. S. Pless, and R. M. Wilson, Short codes with a given covering
radius, IEEE Trans. Inform. Theory 35 (1989), 99–109.

[11] G. Cohen, I. Honkala, S. Litsyn, and A. Lobstein, Covering Codes, North-Holland,
Amsterdam, The Netherlands, 1997.

[12] A. A. Davydov, Constructions and families of covering codes and saturated sets of
points in projective geometry, IEEE Trans. Inform. Theory 41, (1995) 2071-2080.

[13] A. A. Davydov, Constructions and families of nonbinary linear codes with covering
radius 2, IEEE Trans. Inform. Theory 45 (1999), 1679–1686.

[14] A. A. Davydov, M. Giulietti, S. Marcugini, and F. Pambianco, Linear covering codes
over nonbinary finite fields. In: Proc. XI Int. Workshop on Algebraic and Com-
bintorial Coding Theory, ACCT2008, Pamporovo, Bulgaria, June 2008, pp. 70–75.
http://www.moi.math.bas.bg/acct2008/b12.pdf

[15] A. A. Davydov, M. Giulietti, S. Marcugini, and F. Pambianco, Linear covering
codes of radius 2 and 3. In: Proc. Workshop “Coding Theory Days in St. Peters-
burg”, Saint-Petersburg, Russia, October 2008, pp. 12-17. ISBN 978-5-8088-0378-7
http://iitp.ru/upload/publications/1538/CoverPeter2008.pdf

12

http://www.moi.math.bas.bg/acct2008/b12.pdf
http://iitp.ru/upload/publications/1538/CoverPeter2008.pdf


[16] A. A. Davydov, M. Giulietti, S. Marcugini, and F. Pambianco, Linear nonbinary cov-
ering codes and saturating sets in projective spaces, Adv. Math. Commun. 5 (2011),
119–147.

[17] A. A. Davydov, S. Marcugini, and F. Pambianco, On saturating sets in projective
spaces, J. Combin. Theory Ser. A 103 (2003), 1–15.
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