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Abstract—We consider the weight spectrum of a class of quasi-
perfect binary linear codes with code distance 4. For example,
extended Hamming code and Panchenko code are the known
members of this class and it is known that Panchenko code
has the minimal number of weight 4 codewords. We give exact
recursive formulas for the weight spectrum of quasi-perfect
codes and their dual codes. As an example of application of the
weight spectrum we derive a lower estimate for the conditional
probability of correction of erasure patterns of high weights
(equal to or greater than code distance).

I. INTRODUCTION

Calculation or estimation of the weight spectrum of linear

code is one of very old unresolved problem that gives rise

a long list of other unresolved problems in coding theory.

The class of binary quasi-perfect codes has a long history in

investigation but with a “hole” in area of weight distribution

for the most of members of the class. We caught a happy

chance to find a “simple enough” solution for weight spectrum

of whole class of binary quasi-perfect codes.

The other and real motivation for the research was search

most effective encoding and decoding schemes for error cor-

rection and error detection in computer memory. The physical

volume of a contemporary memory cells tends to “zero” but

the probability of error or defect in a cell tends to be very

critical for a whole memory devise. As a consequence of this

trend we need more and more effective encoding schemes for

correction of independent errors and their collection as a two

dimensional blots.

Binary quasi-perfect code (Hamming code) is traditional

choice for memory devises. We suggest as a better choice

Panchenko code in original and product forms (for blot cor-

rection). The main our investment to a traditional solution is

extension of decoding area for erasures with transformation of

detected errors into erasures.

II. QUASI-PERFECT CODES CREATED BY DOUBLING

CONSTRUCTION

For a code with redundancy r we introduce the following

notations: nr is length of the code, Hr is its parity check

matrix of size r × nr, and dr is code distance.

Definition 1. Doubling construction creates a parity check

matrix Hr of an [nr, nr − r, dr] code from a parity check

matrix Hr−1 of a [ 12nr,
1
2nr − r + 1, dr−1] code as follows

Hr =





0 . . . 0 | 1 . . . 1
−−−− | − −−
Hr−1 | Hr−1



 . (1)

It is clear that in the doubling construction (1) we have

dr ≤ 4 independently of dr−1.

Remind that a quasi-perfect code with d = 4 has covering

radius 2 and it is “non-lengthening” in the sense that addition

of any column to a parity check matrix decreases code

distance.

Let us define matrices S and M as

S =









1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1









, M =

[

0 1
1 1

]

.

Theorem 2. [5] Let nr ≥ 2r−2 + 2 and let an [nr, nr − r, 4]
code be quasi-perfect. Then a parity check matrix Hr of the

code can be presented in the form (1) where matrix Hr−1 is

given in one of the following three variants only:

• Hr−1 is a parity check matrix of a [ 12nr,
1
2nr − r + 1, 4]

quasi-perfect code;

• Hr−1 = S;

• Hr−1 = M.

Corollary 3. [5] Let nr ≥ 2r−2 + 2, r ≥ 5, and let an

[nr, nr − r, 4] code be quasi-perfect. Then length nr can take

any value exclusively from among the sequence

nr = 2r−2 + 2r−2−g for g = 0, 2, 3, 4, 5, . . . , r − 2. (2)

Now we give a general description of parity check matrix

for whole class of quasi-perfect codes. Let

Bk,g = [bk . . . bk]

be the (r− g − 2)× (2g + 1) matrix of identical columns bk,

where r is code redundancy, bk is the binary representation of

the integer k (with the most significant bit at the top position).

Corollary 4. [5] Let nr = 2r−2 + 2r−2−g, r ≥ 5, g ∈
{0, 2, 3, 4, 5, . . . , r − 3}, and let an [nr, nr − r, 4] code be
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quasi-perfect. Then a parity check matrix Hr of the code can

be presented in the form

Hr =





B0,g | B1,g | | BD,g

− −− | − −− | . . . | − − −
Hg+2 | Hg+2 | | Hg+2



 , (3)

where D = 2r−g−2 − 1, Hg+2 is a parity check matrix of a

quasi-perfect [2g + 1, 2g + 1− (g + 2), 4] code.

Remark 5. By Corollary 4 a parity check matrix of any quasi-

perfect binary code with length 2r−2+2r−2−g and redundancy

r can be created by (r− g− 2)-fold applying of the doubling

construction.

Note that an arbitrary code with d = 4 is either a

quasi-perfect code or shortening of some quasi-perfect code.

Therefore Theorem 2, Corollaries 3, 4, and Remark 5, in

fact, describe all binary linear codes with d = 4 and length

≥ 2r−2 + 2. It is why weight spectrum of codes obtained by

the doubling construction (1) is an important problem.

The class of codes, say D, obtained by the doubling con-

struction is sufficiently wide. By (1), the [2r− 1, 2r− 1− r, 3]
Hamming code and many its shortenings are included to D.

Directly from Theorem 2 it follows that [2r−1, 2r−1 − r, 4]
extended Hamming code and Panchenko code Πr (see below)

belong to D. Other numerous non-equivalent codes of D can

be obtained by multiple application of doubling construction

to distinct quasi-perfect [2g + 1, 2g +1− (g +2), 4] codes C0
with g ∈ {0, 2, 3, 4, 5, . . . , r− 3}, see (3). Examples of codes

C0 can be find in [3], [5], [11] in algebraic and in geometrical

form. For instance, we give a parity check matrix of a quasi-

perfect [9, 9− 5, 4] code.
















00000 | 1111
− −− | − −−
10001 | 0000
01001 | 1001
00101 | 0101
00011 | 0011

















.

The quasi-perfect codes Πr were proposed by V.I. Pan-

chenko in paper [9]. The [n, n − r, 4] code Πr has length

n = 5 · 2r−4, redundancy r ≥ 5, and code distance d = 4. (In

paper [6] the code Πr is denoted as Π)

The parity check r× 5 · 2r−4 matrix Pr of Panchenko code

Πr is the matrix Hr of (3) with g = 2, D = 2r−4 − 1, and

Hg+2 = S. So,

Pr =

[

B0,2 B1,2 B2,2 . . . BD,2

S S S . . . S

]

. (4)

Remind that the known and important property of Pan-

chenko code is the following – it has the minimal number of

weight 4 codewords among all other codes of the same length

and redundancy (including the extended Hamming code) [1],

[6], [9]. As the consequence of this property, Panchenko code

has the minimal probability of undetected error. In particular,

it is important for error correction in computer memory [1],

[6].

Remark 6. A parity check matrix of any quasi-perfect binary

code with d = 4 can be created by multiple application of the

doubling construction. Therefore, Theorems 7 and 8 allow us

to obtain weight spectrum of such code (and its dual) starting

from weight spectrum of a short code.

III. WEIGHT SPECTRUM OF CODES CREATED BY THE

DOUBLING CONSTRUCTION

We use notations introduced in the previous section. Also,

for a code with redundancy r we denote by A
(r)
w the number of

codewords of weight w and by A
(r)⊥
w the number of codewords

of weight w in the dual code.

Theorem 7. Let dr ≤ 4. Assume that an [nr, nr − r, dr]
code Cr is created from a [ 12nr,

1
2nr − r + 1, dr−1] code

Cr−1 by doubling construction (1). Then weight spectrum

{A
(r)
w , w ≤ nr} of Cr can be obtained from weight spectrum

{A
(r−1)
w , w ≤ 1

2nr} of Cr−1 as follows:

A
(r)
2v = δ(r)v +

v−2
∑

j=0

22v−2j−1A
(r−1)
2v−2j

(1
2nr − 2v + 2j

j

)

(5)

where

δ(r)v =

{

0 if v odd
( 1

2
nr

v

)

if v even
;

A
(r)
2v+1 =

v−2
∑

j=0

22v−2jA
(r−1)
2v+1−2j

(1
2nr − 2v − 1 + 2j

j

)

. (6)

Proof. We consider a structure of a set of weight w codewords

and the structure of the corresponding set of w columns of a

parity check matrix.

(i) Let us consider all possible structures of words of even

weight 2v in the matrix Hr of (1). These words consist of the

following components:

• A codeword of even weight 2v−2j taken from Hr−1 and

partitioned by two parts that are placed in the left and right

sides of Hr.

• Two sets of the same columns of Hr−1 placed in the left

and right sides of Hr.

For j = 0, 1, . . . , v − 2 and for every codeword of even

weight in Hr−1, the following executed:

– The summand
v−2
∑

j=0

22v−2j−1A
(r−1)
2v−2j

( 1

2
nr−2v+2j

j

)

of (5).

A set Γ of columns corresponding to a codeword of even

weight 2v − 2j of Hr−1 is partitioned by two parts. Every

part contains an odd (resp. even) number of columns if j
is odd (resp. even). The partition is executed by all possible

ways. The number of the partitions is equal to 22v−2j−1. The

obtained parts are placed in the left and right sides of Hr.

Also, in every of two matrices Hr−1 of (1) we take the

same set of j columns not belonging to Γ. The number of

such j-sets is equal to
( 1

2
nr−2v+2j

j

)

. As a result, in the right

half of Hr we always have an even number of taken columns.

– The summand δ
(r)
v =

( 1

2
nr

v

)

of (5).

If v is even then in every of two matrices Hr−1 of (1) we take



the same set of v columns. The number of variants is equal

to
( 1

2
nr

v

)

.

(ii) Let us consider all possible structures of words of odd

weight 2v + 1 in the matrix Hr of (1). These words consist

of the following components:

• A codeword of odd weight 2v+1− 2j taken from Hr−1

and partitioned by two parts that are placed in the left and

right sides of Hr.

• Two sets of the same columns of Hr−1 placed in the left

and right sides of Hr.

For j = 0, 1, . . . , v − 2 and for every codeword of odd

weight in Hr−1 the following executed:

A set Γ of columns corresponding to a codeword of odd

weight 2v + 1− 2j of Hr−1 is partitioned by two parts. One

part, say Aodd, contains an odd number of columns, another

part, say Beven, contains an even number of columns. The

partition is executed by all possible ways. The number of the

partitions is equal to 22v−2j .

If j is odd then the part Beven (resp. Aodd) is placed in the

left (resp. right) half of Hr.

If j is even or j = 0 then the part Aodd (resp. Beven) is

placed in the left (resp. right) half of Hr.

Also, in every of two matrices Hr−1 of (1) we take the same

set of j columns not belonging to Γ. The number of such j-

sets is equal to
( 1

2
nr−2v−1+2j

j

)

. As a result, in the right half

of Hr we always have an even number of taken columns.

As a direct corollary from the previous theorems we give

the weight spectrum for duals to quasi-perfect codes.

Theorem 8. Let dr ≤ 4. Assume that an [nr, nr − r, dr] code

Cr is created from a [ 12nr,
1
2nr − r + 1, dr−1] code Cr−1 by

doubling construction (1). Then weight spectrum {A
(r)⊥
w , w ≤

nr} of the [nr, r, d
⊥

r ] code dual to Cr can be obtained from

weight spectrum {A
(r−1)⊥
w , w ≤ 1

2nr} of the [ 12nr, r−1, d⊥r−1]
code dual to Cr−1 as follows:

A
(r)⊥
2v = A(r−1)⊥

v +

{

0 if 2v 6= 1
2nr

2r−1 if 2v = 1
2nr

. (7)

Proof. We consider matrix (1) as a generator matrix of the

dual code. If codeword of the dual code is created without

inclusion the top row, then its weight is equal to the doubled

weight of the corresponding word formed from rows of matrix

Hr−1. If the top row is included into codeword, its weight is

equal to 1
2nr.

IV. ON CORRECTION OF ERASURE PATTERNS OF HIGH

WEIGHT

Remind that the known weight spectrum of a code opens

a way for calculation of very important probabilities for

the code, like conditional probability of correct decoding of

erasure patterns, probability of undetected error and so on.

Else, the number of parity bits is larger the binary code

distance, so that is a good reason to investigate a total ability

of a code to erasure correction.

The necessary condition for correction of weight ρ erasure

patterns is the full rank of submatrix, consisting of columns of

a code parity check matrix, corresponding to erased position.

Let Sρ be the number of erasure patterns of weight ρ, which

can be corrected by a code (equivalently, for a code parity

check matrix – the number of distinct sets of ρ linear inde-

pendent columns or the number of distinct r × ρ submatrices

of the full rank).

For a code of length n, let δρ =
Sρ

(n
ρ
)

be the conditional

probability of correct decoding of erasure patterns of weight ρ.

In further, for [n, n − r, d] code with weight spectrum

A0, A1, . . . , An we introduce the function

Ψ(n, d, ρ) =

(

n

ρ

)

−

ρ
∑

w=d

Aw

(

n− w

ρ− w

)

, d ≤ ρ ≤ r. (8)

As we see later this function gives a lower estimate of the

number Sρ.

Theorem 9. For an [n, n−r, d] code, the conditional probabil-

ity δρ and the value Sρ satisfy the following lower estimates:

δρ ≥
Ψ(n, d, ρ)

(

n
ρ

) , Sρ ≥ Ψ(n, d, ρ), d ≤ ρ ≤ r. (9)

In particular, the equalities hold:

δρ =
Ψ(n, d, ρ)

(

n
ρ

) , Sρ = Ψ(n, d, ρ),

under condition

ρ ≤ d+
d− 1

2
.

The proof of Theorem 9 is based on the fact that the value

Sρ is equal to difference between the total number of sets of ρ
columns of a parity check matrix and the number of patterns

of ρ linear dependent columns.

The following lemma allows us to improve estimates of

Theorem 9 using a recursive approach.

Lemma 10. Any set of ρ linear dependent columns of a parity

check matrix is an union of w columns with the zero sum

(corresponding to a weight w codeword ) and a set of ρ−w
linear dependent columns, where d ≤ w ≤ ρ.

We give a recursive form of function of type (8) :

Ψ̃(n, d, ρ) =

(

n

ρ

)

−

ρ
∑

w=d

Aw(n)Ψ̃(n− w, d, ρ− w),

where Aw(n) is the number of weight w words in a (shortened)

code of length n.



A recursive estimate of the conditional probability of correct

decoding of erasure patterns of weight ρ and the first and

second steps of the recursion has the form, respectively,

δ̃ (n, d, ρ) =
Ψ̃(n, d, ρ)

(

n
ρ

)

= 1−

ρ
∑

w=d

Aw(n)δ̃(n− w, d, ρ− w)

(

n−w
ρ−w

)

(

n
ρ

) ;

δ̃2 (n, d, ρ) = 1−

ρ
∑

w1=d

Aw1
(n)

(

n−w1

ρ−w1

)

(

n
ρ

) ×

×

[

1−

ρ−w1
∑

w2=d

Aw2
(n− w1)

(

n−w1−w2

ρ−w1−w2

)

(

n−w1

ρ−w1

)

]

.

Now we use the known binomial approximation of weight

spectrum of a binary linear code [4], [7], [8], writing it as

Aw ≈ 2−z
(

n
w

)

, r−1 < z ≤ r, w ≥ d, where z is a proper real

value for the weight region w ≥ d. We obtain the following

approximate estimate of the function Sρ for the region d ≤
ρ ≤ r.

Sρ ≥

(

n

ρ

)

−

ρ
∑

w=d

Aw

(

n− w

ρ− w

)

≈

(

n

ρ

)

− 2−z

ρ
∑

w=d

(

n

w

)(

n− w

ρ− w

)

=

(

n

ρ

)

− 2−z

(

n

ρ

) ρ
∑

w=d

(

ρ

w

)

.

From here, using [8, Lemma 10.8], we obtain an estimate of

the conditional probability δρ of correct decoding of erasure

patterns of high weight ρ.

δρ ≥
Sρ
(

n
ρ

) ≈ 1− 2−z

ρ
∑

w=d

(

ρ

w

)

≈ 1− 2−z · 2ρH(d/ρ) ≥ 1− 2ρ−z, d ≤ ρ < z,

where H(d/ρ) is the binary entropy.

The proposed estimate shows that for a fixed r, the proba-

bility δρ decreases exponentially with growth of ρ. Therefore

the reasonable extended region of correctable erasure patterns

is ρ < 2d.

V. APPLICATION TO MEMORY

An important area for application of quasi-perfect codes

is computer memory (Flash or SSD). Their ability to correct

a big number of erasures instead of one error and very low

probability of undetected error gives us a strong incentive

to investigate the conditional probability of correct decoding

for erasure patterns of high weight. As an example, that is

useful for application, we give two tables: one for conditional

probability of correct decoding for erasure patterns of weights

higher the code distance and second for the probability (uncon-

ditional) of decoding failure in memory channel with different

error probability for the product of Panchenko code.

Decoding algorithm for product of Panchenko codes con-

sists of following steps.

1) Error detection in rows and columns of the received

word (in parallel).

2) Check (in parallel) of the detected row (column) list for

correctability as erasure pattern.

3) Correction of the chosen erasure pattern (row or col-

umn) and output.

Check for correctability is executed in extended area up to

d+ erasures.

Table I gives a comparison between Hamming and Pan-

chenko codes with 7 and 8 parity symbols. We can see

from the table that extended decoding with correction of 4,

5, 6, 7 erasures has decreasing probability from 1 till 1/2

(approximately).

Table II demonstrates fast decreasing of the probability of

decoding failure for fixed number of parity bits with extension

of the decoding area for product of two Panchenko codes. We

can see from the second table fast decreasing of the failure

probability with extension of the decoding area from 3 till 6

erasures.

TABLE I
CONDITIONAL PROBABILITY δρ OF CORRECT DECODING OF ERASURE

PATTERNS OF WEIGHT ρ FOR HAMMING AND PANCHENKO CODES

code r ρ = d = 4 ρ = 5 ρ = 6 ρ = 7
Hamming 7 0.9836 0.9180 0.7469 0.4121
Panchenko 7 0.9870 0.9287 0.7656 0.4306

Hamming 8 0.9920 0.9600 0.8741 0.6879
Panchenko 8 0.9934 0.9647 0.8830 0.6996

TABLE II
FAILURE PROBABILITY FOR PRODUCT OF PANCHENKO CODES [72, 64, 4]

p 10−1 10−2 5 · 10−3 10−3 5 · 10−4

d+ = 3 1 0,996 0,250 1,1e-09 2,3e-14

d+ = 4 1 0,988 0,092 1,6e-12 5,1e-18

d+ = 5 1 0,967 0,027 7,0e-14 1,045e-18

d+ = 6 1 0,926 0,008 5,8e-14 1,029e-18
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