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Abstract. Conceptions of an almost complete subset of an elliptic quadric in the
projective space PG(3, q) and an almost complete cap in the space PG(N, q) are
proposed. Upper bounds of the smallest size of the introduced geometrical objects
are obtained by probabilistic and algorithmic methods.

1 Introduction

Let PG(N, q) be the N -dimensional projective space over the Galois field Fq of
order q. A cap in PG(N, q) is a set of points no three of which are collinear.
An n-cap of PG(N, q) is complete if it is not contained in an (n + 1)-cap of
PG(N, q). Caps in PG(2, q) are called also arcs. A point P of PG(N, q) is
covered by a cap K ⊂ PG(N, q) if P lies on a bisecant of K.

The space PG(N, q) contains θN,q = qN+1−1
q−1 points.

The concept of an almost complete subset of a fixed irreducible conic in
PG(2, q) is considered in [6], see also [3] and the references therein. An almost
complete subset of a conic covers all points of PG(2, q) except for the remaining
points of the conic and the nucleus of the conic if q is even. Let t(q) be the
smallest size of an almost complete subset of a conic. In [7] it is proved that
under the condition 3 ≤ N ≤ q + 2 − t(q), every normal rational curve in
PG(N, q) is a complete (q+1)-arc. In [3], the following upper bound is obtained:

t(q) <
√

q(3 ln q + ln ln q + ln 3) +
√

q

3 ln q
+ 4 ∼

√
3q ln q. (1)
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The concept of an almost complete arc in PG(2, q) is considered in [8] where
arcs of an infinite family K(q) are called almost complete if

lim
q→∞

#points not covered by K(q)
#points of the plane PG(2, q)

= 0. (2)

An almost complete subset of a conic is an almost complete arc as the number
of points not covered by it is smaller than q, cf. (2).

In this work, we generalize both of the aforementioned concepts.

Definition 1. (i) In PG(3, q), an almost complete subset of the elliptic quadric
(ACQ-subset, for short) is a proper subset of the quadric covering all the points
of PG(3, q) except for the remaining points of the quadric .

(ii) In PG(N, q), N ≥ 2, a cap K is almost complete if the number of points
not covered by K is not greater than θN−1,q.

Note that if caps of Definition 1(ii) form an infinite family of caps K(q) in
the spaces PG(N, q) with growing q then it holds that (cf. (2))

lim
q→∞

#points not covered by K(q)
#points of the space PG(N, q)

≤ θN−1,q

θN,q
= 0.

An ACQ-subset is an almost complete cap as the number of points not
covered by it is smaller than q2 + 1.

Let d(q) be the smallest size of an ACQ-subset in PG(3, q).
Let v(N, q) be the smallest size of an almost complete cap in PG(N, q).
This work is devoted to upper bounds on d(q) and v(N, q).
The main results of this work are presented in Theorem 1.

Theorem 1. (i) In PG(3, q), for the smallest size of an ACQ-subset, we have

d(q) ≤ (q + 1)
√

6 ln(q + 1) + 2q + 2 ∼ q
√

6 ln q. (3)

(ii) In PG(N, q), for the smallest size of an almost complete cap, it holds that

v(N, q) ≤
√

2NθN−1,q ln q + 1 ∼ q
N−1

2

√
2N ln q, N ≥ 2. (4)

Moreover, an almost complete cap of size at most
√

2NθN−1,q ln q + 1 can be
constructed by a step-by-step greedy algorithm that in every step adds to the
running cap a point providing the maximal possible (for the given step) number
of new covered points.

One see that the bounds (3) and (4) asymptotically coincide with each other.
For N = 2 the bound (4) does not improve the bound (1) obtained in [3].
As far as it is known of the authors, ACQ-subsets and almost complete caps

in PG(N, q), N ≥ 3, are not considered in the literature. Therefore, it remains
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for us only to compare the bounds (3) and (4) with the known bounds on the
smallest size t2(N, q) of a complete cap in PG(N, q). Of course, one should
remember that these estimates are obtained for objects which are similar to the
almost complete caps but not the same.

In [4], it is proved that

t2(N, q) < cq
N−1

2 log300 q, a constant c is independent of q.

In [2], under some probabilistic conjecture, it is shown that

t2(N, q) <
1

q − 1

√
qN+1(N + 1) ln q +

√
qN+1

q − 3
∼ q

N−1
2

√
(N + 1) ln q. (5)

We see that q
N−1

2
√

2N ln q is essentially smaller than cq
N−1

2 log300 q.
In the other side, the bound q

N−1
2
√

2N ln q (that is proved) is greater than
the conjectural bound (5).

In Section 2, the bound (3) is proved by probabilistic methods. In Section 3,
the bound (4) is obtained by an algorithmic approach.

2 An upper bound on the smallest size of an almost
complete subset of an elliptic quadric in PG(3, q)

Let w > 0 be a fixed integer. Let Q be an elliptic quadric in PG(3, q). Consider
a random (w + 1)-point subset Kw+1 ⊂ Q. The total number of such subsets
is

(
q2+1
w+1

)
. A fixed point A of PG(3, q) \ Q is covered by Kw+1 if it belongs to a

bisecant of Kw+1. We denote by Prob(¦) the probability of some event ¦.
We estimate

π := Prob(A not covered by Kw+1)

as the ratio of the number of (w + 1)-point subsets of Q not covering A over
the total number

(
q2+1
w+1

)
of subsets of Q with size (w +1). A set Kw+1 does not

cover A if and only if every line through A contains at most one point of Kw+1.
There are q(q−1)

2 bisecants and q + 1 tangents of Q through any point A ∈
PG(3, q) \ Q [5]. Every bisecant has two places to put a point of Kw+1 while
a tangent has the only one. For simplicity of presentation, we assume that a
tangent also has two places to put a point of Kw+1. (This will slightly worsen
our estimates.) Therefore,

π <
2w+1

(
q(q−1)/2+q+1

w+1

)
(
q2+1
w+1

) =
2w+1

(
(q2+q+1)/2

w+1

)
(
q2+1
w+1

) ,
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where the numerator estimates from above the number of (w+1)-point subsets
of Q not covering A. By straightforward calculations,

π <
(q2 + q + 2)(q2 + q)(q2 + q − 2) · · · (q2 + q + 2− 2i) · · · (q2 + q + 2− 2w)

(q2 + 1)(q2)(q2 − 1) · · · (q2 + 1− i) · · · (q2 + 1− w)

=
w∏

i=0

q2 + q + 2− 2i

q2 + 1− i
=

w∏

i=0

(
1− i− 1− q

q2 + 1− i

)
<

w∏

i=0

(
1− i− 1− q

q2 + 1

)
.

Using the inequality 1 − x ≤ e−x for x 6= 0, we obtain that under the
condition w > 2q + 2 + 4

2q−1 , it holds that

π < e
−

w∑
i=0

(i−1−q)/(q2+1)
= e−(w2−(2q+1)w−2q−2)/2(q2+1) < e−(w−2q)2/2(q+1)2 .

The set Kw+1 is not ACQ-subset if at least one point of PG(3, q) \Q is not
covered by it. As |PG(3, q) \ Q| = q3 + q, we have

Prob (Kw+1 is not ACQ-subset) ≤
∑

A∈PG(3,q)\Q
Prob(A not covered)

≤ (q3 + q)π < (q + 1)3e−(w−2q)2/2(q+1)2 .

The probability that all the points of PG(3, q) \ Q are covered by Kw+1 is

Prob (Kw+1 is ACQ-subset) > 1− (q + 1)3e−(w−2q)2/2(q+1)2 .

This probability is larger than 0 if one takes w − 2q =
⌈
(q + 1)

√
6 ln(q + 1)

⌉

where the condition w > 2q + 2 + 4
2q−1 holds. This shows that there exists an

ACQ-subset Kw+1 with size w + 1 ≤ (q + 1)
√

6 ln(q + 1) + 2q + 2.
Theorem 1(i) is proved.

3 An upper bound on the smallest size of an almost
complete cap in PG(N, q)

Assume that in PG(N, q), N ≥ 2, a cap is constructed by a step-by-step greedy
algorithm (Algorithm, for short) which in every step adds to the cap a point
providing the maximal possible (for the given step) number of new covered
points. After the w-th step of Algorithm, a w-cap is obtained that does not
cover exactly Uw points. For the (w + 1)-th step of Algorithm, let ∆w be the
maximal possible number of new covered points. So,

Uw+1 = Uw −∆w. (6)

Similarly to [1, Lemma 2] and [2, Lemma 4.1], we have proved Lemma 1.
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Lemma 1. It holds that

∆w ≥ max
{

1,

⌈
wUw

θN−1,q + 1− w
− w + 1

⌉}
.

By (6) and Lemma 1,

Uw+1 ≤ Uw

(
1− w

θN−1,q + 1− w

)
+ w − 1 < Uw

(
1− w

θN−1,q

)
+ w

whence

Uw+1 − θN−1,q < Uw

(
1− w

θN−1,q

)
+ w − θN−1,q

= Uw

(
θN−1,q − w

θN−1,q

)
− (θN−1,q − w) =

(
1− w

θN−1,q

)
(Uw − θN−1,q). (7)

By (7),

U2 − θN−1,q <

(
1− 1

θN−1,q

)
(U1 − θN−1,q);

U3 − θN−1,q <

(
1− 2

θN−1,q

)
(U2 − θN−1,q)

=
(

1− 2
θN−1,q

)(
1− 1

θN−1,q

)
(U1 − θN−1,q);

. . .

Uw+1 − θN−1,q <

(
1− w

θN−1,q

)
. . .

(
1− 2

θN−1,q

)(
1− 1

θN−1,q

)
(U1 − θN−1,q).

Taking into account that U1 = θN,q − 1 < θN,q = θN−1,q + qN , we have

Uw+1 − θN−1,q < (U1 − θN−1,q)
w∏

i=1

(
1− i

θN−1,q

)
;

Uw+1 < qN
w∏

i=1

(
1− i

θN−1,q

)
+ θN−1,q. (8)

Using the inequality 1− x ≤ e−x for x 6= 0, we obtain

w∏

i=1

(
1− i

θN−1,q

)
<

w∏

i=1

e−i/θN−1,q = e−(w2+w)/2θN−1,q < e−w2/2θN−1,q . (9)
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Let

w =
⌈√

2θN−1,q ln qN

⌉
=

⌈√
2NθN−1,q ln q

⌉
∼ q

N−1
2

√
2N ln q. (10)

Then, by (8)–(10),

w2 = 2θN−1,q ln qN ; e−w2/2θN−1,q =
1

qN
;

Uw+1 < θN−1,q + 1; Uw+1 ≤ θN−1,q.

So, the number of points of PG(N, q) not covered by the cap Kw+1 is at most
θN−1,q.

We have proved Theorem 1(ii).
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