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Abstract. The length function ℓq(r,R) is the smallest length of a q-ary
linear code of covering radius R and codimension r. New upper bounds
on ℓq(r, 2) are obtained for odd r ≥ 3. In particular, using the one-to-one
correspondence between linear codes of covering radius 2 and saturating
sets in the projective planes over finite fields, we prove that

ℓq(3, 2) ≤
√

q(3 ln q + ln ln q) +

√

q

3 ln q
+ 3

and then obtain estimations of ℓq(r, 2) for all odd r ≥ 5. The new upper
bounds are smaller than the previously known ones. Also, the new bounds
hold for all q, not necessary large, whereas the previously best known
estimations are proved only for q large enough.
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1 Introduction

Let Fq be the Galois field with q elements. Let Fn
q be the n-dimensional vector

space over Fq. Denote by [n, n− r]q a q-ary linear code of length n and codimen-
sion (redundancy) r, that is, a subspace of Fn

q of dimension n− r. The sphere of
radius R with center c in Fn

q is the set {v : v ∈ Fn
q , d(v, c) ≤ R} where d(v, c) is

the Hamming distance between vectors v and c.

Definition 1. (i) The covering radius of a linear [n, n − r]q code is the least

integer R such that the space Fn
q is covered by spheres of radius R centered

at codewords.

⋆ The final publication is available at link.springer.com/book/10.1007%2F978-3-319-
66278-7



(ii) A linear [n, n − r]q code has covering radius R if every column of F r
q is

equal to a linear combination of at most R columns of a parity check matrix

of the code, and R is the smallest value with such property.

Definitions 1(i) and 1(ii) are equivalent. Let an [n, n − r]qR code be an
[n, n − r]q code with covering radius R. For an introduction to coverings of
vector Hamming spaces over finite fields, see [3, 4].

The covering density µ of an [n, n− r]qR-code is defined as

µ =
1

qr

R
∑

i=0

(q − 1)i
(

n

i

)

≥ 1.

The covering quality of a code is better if its covering density is smaller. For
fixed q, r, and R the covering density of an [n, n − r]qR code decreases with
decreasing n.

Definition 2. [3, 4] The length function ℓq(r, R) is the smallest length of a

q-ary linear code with covering radius R and codimension r.

Codes investigated from the point view of the covering quality are usually
called covering codes ; see an online bibliography in [13].

In this paper we consider covering codes with radius R = 2.
The known lower bound on ℓq(r, 2), based on Definition 1(ii), is

ℓq(r, 2) >
√
2q(r−2)/2. (1)

Really, in a parity check matrix of an [n, n − r]q2 code, one can take
(

n
2

)

dis-
tinct pair of columns and then form q2 linear combinations from every pair. By
Definition 1(ii), it holds that

(

n
2

)

q2 ≥ qr whence (1) follows.
For arbitrary q, covering codes of length close to this lower bound are known

only for r even [5, 7, 9, 10]. In particular, the following bounds are obtained by
algebraic constructions [7, Sect. 4.3, eq. (4.6)], [9, Th. 9]:

ℓq(r, 2) ≤ 2q(r−2)/2 + q(r−4)/2, q ≥ 7, q 6= 9, r = 2t ≥ 4, t = 2, 3, 5, and t ≥ 7.

ℓq(r, 2) ≤ 2q(r−2)/2 + q(r−4)/2 + q(r−6)/2 + q(r−8)/2, q ≥ 7, q 6= 9, r = 8, 12.

If r is odd, covering codes of length close to lower bound (1) are known only
when q is an even power of a prime, i.e. more exactly when q = (q′)2 and q =
(q′)4, where q′ is a prime power, and when q = p6 with prime p ≤ 73 [5–7,10,12].
In particular, the following bounds are obtained by algebraic constructions, see
[5, Ex. 6, eq. (33)], [6], [7, Sect. 4.4, eqs. (4.12),(4.13),(4.15)], [12], and the
references therein:

ℓq(r, 2) ≤
(

3− 1√
q

)

q(r−2)/2 +
⌊

q(r−5)/2
⌋

, q = (q′)2 ≥ 16, r = 2t+ 1 ≥ 3.

ℓq(r, 2) ≤
(

2 +
2
4
√
q
+

2√
q

)

q(r−2)/2 +
⌊

q(r−5)/2
⌋

, q = (q′)4, r = 2t+ 1 ≥ 3.



ℓq(r, 2) ≤
(

2 +
2
6
√
q
+

2
3
√
q
+

2√
q

)

q(r−2)/2 + 2
⌊

q(r−5)/2
⌋

, q = (q′)6,

q′ ≤ 73 prime, r = 2t+ 1 ≥ 3, r 6= 9, 13.

The goal of this work is to obtain new upper bounds on the length function
ℓq(r, 2) with r odd and arbitrary q, not necessarily having the form q = (q′)2

where q′ is a prime power. It is a hard open problem. The first and the most
important step in this problem is finding of upper bounds on ℓq(3, 2). It is usually
considered as a separate open problem.

Let PG(N, q), N ≥ 2, be the N -dimensional projective space over the field
Fq; see [11] for an introduction to the projective spaces over finite fields. Effective
methods obtaining upper bounds on ℓq(r, 2) with r odd, in particular on ℓq(3, 2),
are connected with saturating sets in PG(N, q), N ≥ 2.

Definition 3. A point set S ⊂ PG(N, q) is saturating if any point of PG(N, q)\
S is collinear with two points in S.

Saturating sets are considered in [5–10, 12, 14, 15], see also the references
therein. In the literature, saturating sets are also called “saturated sets” [5, 15],
“spanning sets”, “dense sets”, and “1-saturating sets” [6–8, 12].

Let s(N, q) be the smallest size of a saturating set in PG(N, q).
If q-ary positions of a column of an r×n parity check matrix of an [n, n−r]q2

code are treated as homogeneous coordinates of a point in PG(r−1, q) then this
parity check matrix defines a saturating set of size n in PG(r − 1, q) [5–7]. So,
there is the one-to-one correspondence between [n, n− r]q2 codes and saturating

sets in PG(r − 1, q). Therefore,

ℓq(r, 2) = s(r − 1, q), in particular, ℓq(3, 2) = s(2, q).

In [1, 2], by probabilistic methods the following upper bound is obtained in
the geometrical language.

s(2, q) ≤ 2
√

(q + 1) ln(q + 1) + 2 ∼ 2
√

q ln q. (2)

Also, in [1, 2] one can find the previous results and the references on this topic.
In [14], the following bound is proved for the projective plane PG(2, q).

s(2, q) ≤ (
√
3 + o(1))

√

q ln q. (3)

The proof of (3) is given in [14] by two approaches: probabilistic and algorithmic.
In both the approaches, starting with some stage of the proof, it is assumed (by
the context) that q is large enough. As the result of the algorithmic proof of [14],
the following form of the bound can be derived.

s(2, q) ≤
⌈

√

3q ln q
⌉

+

⌈

1

2

√
q

⌉

≤
√

3q ln q +
1

2

√
q + 2, q large enough. (4)

Note that the first steps of the algorithmic proof in [14] do not need q large
enough; this allows us to use these steps in Sect. 2.



Throughout the paper we denote

Υ (q) =
√

3 ln q + ln ln q +

√

1

3 ln q
+

3√
q
. (5)

Our new results are collected in Theorem 4 based on Theorems 7 and 11.

Theorem 4. Let q be an arbitrary prime power. Let the value of q be not nec-
essarily large. Let r be odd. For the length function ℓq(r, 2) and for the smallest

size s(r−1, q) of a saturating set in the projective space PG(r−1, q) the following
upper bounds hold.

(i) ℓq(3, 2) = s(2, q) ≤ Υ (q) · q(3−2)/2 = Υ (q)
√
q. (6)

(ii) ℓq(r, 2) = s(r − 1, q) ≤ Υ (q) · q(r−2)/2 + 2q(r−5)/2, r = 2t+ 1 ≥ 5, (7)

where r 6= 9, 13, t = 2, 3, 5, and t ≥ 7, q ≥ 19.

ℓq(r, 2) = s(r − 1, q) ≤ Υ (q) · q(r−2)/2 + 2q(r−5)/2 + q(r−7)/2 + q(r−9)/2, (8)

where r = 9, 13.

These upper bounds are smaller (i.e. better) than the previously known ones,
see Sect. 4.

The paper is organized as follows. In Sect. 2, a new upper bound on the
length function ℓq(3, 2) is obtained. In Sect. 3, upper bounds on the length
function ℓq(r, 2), r ≥ 5 odd, are considered on the base of the results of Sect. 2.
Finally, in Sect. 4 we compare the obtained new bounds with the previously
known ones.

2 An Upper Bound on the Length Function ℓq(3, 2)

Assume that in PG(2, q) a saturating set is constructed by a step-by-step algo-
rithm adding one new point to the set in every step.

Let i > 0 be an integer. Denote by Si the running set obtained after the i-th
step of the algorithm. A point P of PG(2, q) \ Si is covered by Si if P lies on
a t-secant of Si with t ≥ 2. Let Ri be the subset of PG(2, q) \ Si consisting of
points not covered by Si.

In [14] the following ingenious greedy algorithm is proposed. One takes the
line ℓ skew to Si such that the cardinality of intersection |Ri ∩ ℓ| is the minimal
among all skew lines. Then one adds to Si the point on ℓ providing the greatest
number of new covered points (in comparison with other points of ℓ). As a result
we obtain the set Si+1 and the corresponding set Ri+1.

In [14, Proposition 3.3, Proof], the following inequality is proved without
requirement that q is large enough:

|Ri+1| ≤ |Ri| ·
(

1− i(q − 1)

q(q + 1)

)

. (9)



The running set S2 contains two points; we consider the line through them.
All points on this line are covered by S2. So, alwaysR2 = (q2+q+1)−(q+1) = q2

where q2 + q+ 1 and q+ 1 are the number of points in PG(2, q) and in the line,
respectively. Starting from R2 = q2 and iteratively applying the relation (9), we
obtain for some k the following:

|Rk+1| ≤ q2fq(k),

where

fq(k) =
k
∏

i=2

(

1− i(q − 1)

q(q + 1)

)

.

Now we consider a truncated iterative process. We will stop the iterative
process when |Rk+1| ≤ ξ where ξ ≥ 1 is some value that we may assign arbitrary

to improve estimations.
By [14, Lemma 2.1] after the end of the iterative process we can add at most

⌈ |Rk+1|/2⌉ points to the running subset Sk+1 in order to get the final saturating
set S. Therefore, the size s of the obtained saturating set S is

s ≤ k + 1 +

⌈

ξ

2

⌉

under condition q2fq(k) ≤ ξ. (10)

Using the inequality 1− x ≤ e−x, we obtain that

fq(k) < e
−

k∑

i=2

i(q−1)/(q2+q)
= e−(k2+k−2)(q−1)/(2q2+2q),

which implies

fq(k) < e−(k2+k−2)(q−1)/(2q2+2q) < e−k2/(2q+2), (11)

provided that
(k2 + k − 2)(q − 1)

q
> k2

or, equivalently,

k2

k − 2
< q − 1,

k < q − 4. (12)

Lemma 5. Let ξ ≥ 1 be a fixed value independent of k. The value

k ≥
⌈

√

2(q + 1)

√

ln
q2

ξ

⌉

(13)

satisfies inequality q2fq(k) ≤ ξ.



Proof. By (11), to provide q2fq(k) ≤ ξ it is sufficient to find k such that

e−k2/(2q+2) <
ξ

q2
.

⊓⊔

Theorem 6. Let q be an arbitrary prime power. In the projective plane PG(2, q)
it holds that

s(2, q) ≤
√

2(q + 1)

√

ln
q2

ξ
+

ξ

2
+ 3, ξ ≥ 1, (14)

where ξ is an arbitrarily chosen value.

Proof. We substitute the value k from (13) to (10). The summand “+3” takes
into account that the size of a saturating set is an integer. ⊓⊔

In order to get a “good” estimation of s(2, q), we are trying to reduce the
right part of (14). For it, let us consider the function of ξ of the form

φ(ξ) =
√

2(q + 1)

√

ln
q2

ξ
+

ξ

2
+ 3.

Its derivative by ξ is

φ′(ξ) =
1

2
− 1

ξ

√

q + 1

2 ln q2

ξ

.

It is easy to check that φ′(1) < 0, φ′(q) > 0, and φ′(ξ) is an increasing function
of ξ. This means that for some value ξ0 > 1 it holds that φ′(ξ0) = 0. Moreover,
for ξ < ξ0, the derivative φ′(ξ) < 0 and φ(ξ) decreases, while for ξ > ξ0, the
derivative is positive and φ(ξ) increases. So, in the point ξ = ξ0 we have the
minimum of φ(ξ). Now we will find a value of ξ such that φ′(ξ) is close to 0 and,
in addition, the expression of the results is relatively simple.

Put φ′(ξ) = 0. Then it is easy to see that

ξ2 =
q + 1

ln q − 1
2 ln ξ

. (15)

We find ξ in the form ξ =
√

q+1
c ln q . By (15),

c = 1− ln(q + 1)

4 ln q
+

ln c+ ln ln q

4 ln q
.

We choose c ≈ 1− ln(q+1)
4 ln q ≈ 3

4 and put ξ =
√

4q
3 ln q . The value

φ′

(
√

4q

3 ln q

)

=
1

2
− 1

2

√

3(q + 1) ln q

q
(

3 ln q + ln ln q + ln 3
4

)



is close to zero for growing q. Also, see below, the expression of the results for
such ξ is quite simple.

So, the choice ξ =
√

4q
3 ln q in (14) seems to be convenient.

Theorem 7. Let q be an arbitrary prime power.

(i) In PG(2, q), there is a saturating set of size ≤ Υ (q)
√
q.

(ii) There exists an [n, n− 3]q2 code with n ≤ Υ (q)
√
q.

Proof. (i) We substitute ξ =
√

4q
3 ln q in (14) and obtain

s(2, q) ≤
√

(q + 1)

(

3 ln q + ln ln q + ln
3

4

)

+

√

q

3 ln q
+ 3.

It can be shown (e.g. by considering the corresponding derivatives) that
√

(q + 1)

(

3 ln q + ln ln q + ln
3

4

)

+

√

q

3 ln q
+ 3 < Υ (q)

√
q for q ≥ 43.

Also, the necessary condition (12) holds as Υ (q)
√
q < q − 4.

So, we have proved that a saturating set of size ≤ Υ (q)
√
q exists in PG(2, q)

for q ≥ 43.
Now note that in [7, Tab. 1], the smallest known (up to September 2010) sizes
of saturating sets in PG(2, q), q ≤ 1217, are given. All these sizes (including
the region q < 43) are smaller than Υ (q)

√
q.

The assertion (i) is proved.
(ii) The one-to-one correspondence between saturating sets and covering codes,

see Introduction, implies the existence of an [n, n − 3]q2 code with n ≤
Υ (q)

√
q.

⊓⊔
Theorem 7 immediately implies the estimation (6) of Theorem 4(i).

Remark 8. Let ξ = 1. From (14) we have

s(2, q) ≤ 2
√

(q + 1) ln q + 3, (16)

that practically coincides with bound (2) from [1, 2].
Let ξ =

√
q. From (14) we obtain the estimation

s(2, q) ≤
√

3(q + 1) ln q +
1

2

√
q + 3 (17)

which practically coincides with bound (4) of [14].

However, the value ξ =
√

4q
3 ln q gives the estimation (6) that is smaller (i.e.

better) than (16) and (17), see Sect. 4.

Remark 9. In fact, the estimations (2) from [1, 2], (3) and (4) of [14], and the
new estimation (6), proved in this section, hold in an arbitrary finite plane of
order q, not necessarily Desarguesian. But in a non-Desarguesian plane we have
not the one-to-one correspondence between [n, n−3]q2 codes and saturating sets.
It is why we consider here only the Desarguesian plane PG(2, q).



3 Upper Bounds on the Length Function ℓq(r, 2), r ≥ 5
odd

For upper bounds on the length function ℓq(r, 2), r ≥ 5 odd, an important tool
is the inductive construction of [5, 7] providing the following code parameters.

Proposition 10. [5, Ex. 6] [7, Th. 4.4] Let an [nq, nq − 3]q2 code exist. Then

the following holds.

(i) Under conditions nq < q and q + 1 ≥ 2nq, there is an infinite family of

[n, n− r]q2 codes with the parameters

n = nqq
(r−3)/2 + 2q(r−5)/2, r = 2t− 1 ≥ 5, r 6= 9, 13, t = 3, 4, 6, and t ≥ 8.

(18)

(ii) Under condition nq < q there is an infinite family of [n, n− r]q2 codes with

n = nqq
(r−3)/2 + 2q(r−5)/2 + q(r−7)/2 + q(r−9)/2, r = 9, 13. (19)

Theorem 11. Let q be an arbitrary prime power. Then there exists an infinite

family of [n, n− r]q2 codes with the parameters

n = Υ (q) · q(r−2)/2 + 2q(r−5)/2, r = 2t+ 1 ≥ 5, r 6= 9, 13, (20)

where t = 2, 3, 5, and t ≥ 7, q ≥ 19.
Also there exists an infinite family of [n, n− r]q2 codes with the parameters

n = Υ (q) · q(r−2)/2 + 2q(r−5)/2 + q(r−7)/2 + q(r−9)/2, r = 9, 13. (21)

Proof. Since Υ (q)
√
q < q, we may put that the starting [nq, nq − 3]q2 code

of Proposition 10 is the [n, n − 3]q2 code, n ≤ Υ (q)
√
q, of Theorem 7. It is

easy to check directly that the condition q + 1 ≥ 2Υ (q)
√
q holds for q ≥ 79.

Now, similarly to the proof of Theorem 7, we use the smallest known sizes of
saturating sets in PG(2, q) from [7, Tab. 1]. For q < 79, these sizes are smaller
than Υ (q)

√
q and, moreover, for 19 ≤ q < 79 they provide the condition q+1 ≥

2nq for Proposition 10. Now the relations (20) and (21) follow from (18) and
(19), respectively. ⊓⊔

Theorem 11 immediately implies the estimations (7) and (8) of Theorem 4(ii).

4 Comparison with the Previously Known Results

Surveys on the results on non-binary covering codes in [7, 10] show that the
inductive approach of Proposition 10 is the main tool to obtain upper bounds
on the length function ℓq(r, 2), r ≥ 5 odd. Proposition 10 uses the length function
ℓq(3, 2) as the base for inductive estimations. Therefore upper bounds on ℓq(3, 2),
smaller than the known ones, provide bounds on ℓq(2t+ 1, 2), 2t + 1 ≥ 5, that



are less than the corresponding known results. So, in the beginning we should
compare the new bound on ℓq(3, 2), see (6), with the best corresponding known
bound, see (4).

First of all we should emphasize that the new bound (6) holds for all q, not
necessary large, whereas the known bound (4) is proved only for q large enough.

Then we consider the difference ∆(q) between the bounds (4) and (6) where

∆(q) =
√

3q ln q +
1

2

√
q + 2− Υ (q)

√
q.

It can be shown (e.g. by considering the derivatives) that ∆(q) > 0 for q ≥ 337

and, moreover, ∆(q) and ∆(q)
√
q are increasing functions of q. For illustration, see

Fig. 1 where the top curve shows ∆(q) while the bottom one
√

q/7 is given for
comparison.

1 2 3 4 5 6 7 8 9 10

x 10
299

0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
149

√

q/7

∆(q)

q

Fig. 1. The difference ∆(q) (top dashed-dotted curve) vs
√

q/7 (bottom solid curve)

Note also that

lim
q→∞

∆(q)√
q

= lim
q→∞

(

√

3 ln q +
1

2
−
√

3 ln q + ln ln q − 1√
3 ln q

− 1√
q

)

=
1

2
.

Finally, if one uses Proposition 10 to estimate ℓq(r, 2), r ≥ 5 odd, then the
difference between new and known results will be of order∆(q)q(r−3)/2. It means
that our improvements for r = 3 directly expand to odd r ≥ 5.
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