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Abstract. The length function `q(r, R) is the smallest length of a q-ary linear code
of covering radius R and codimension r.

In this work, by computer search in wide regions of q, we obtained short [n, n− 4, 5]q3
quasiperfect MDS codes and [n, n− 5, 5]q3 quasiperfect Almost MDS codes with covering
radius R = 3. The new codes imply the following upper bounds:

`q(4, 3) < 2.8 3
√
q ln q for 8 ≤ q ≤ 3323 and q = 3511, 3761, 4001;

`q(5, 3) < 3 3
√
q2 ln q for 5 ≤ q ≤ 563.

For r 6= 3t and q 6= (q′)3, the new bounds have the form

`q(r, 3) < c 3
√

ln q · q(r−3)/3, c is a universal constant, r = 4, 5.
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As far as it is known to the authors, such bounds have not been previously described in
the literature.

In computer search, we use the leximatrix algorithm to obtain parity check matrices
of codes. The algorithm is a version of the recursive g-parity check algorithm for greedy
codes.

Keywords: Covering codes, saturating sets, the length function, upper bounds, pro-
jective spaces.
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1 Introduction

1.1 Covering codes. The length function. Saturating sets in
projective spaces

Let Fq be the Galois field with q elements. Let F n
q be the n-dimensional vector space

over Fq. Denote by [n, n − r]q a q-ary linear code of length n and codimension (redun-
dancy) r, that is, a subspace of F n

q of dimension n−r. The sphere of radius R with center
c in F n

q is the set {v : v ∈ F n
q , d(v, c) ≤ R} where d(v, c) is the Hamming distance between

vectors v and c.

Definition 1.1. (i) The covering radius of a linear [n, n− r]q code is the least integer R
such that the space F n

q is covered by spheres of radius R centered at codewords.

(ii) A linear [n, n − r]q code has covering radius R if every column of F r
q is equal to a

linear combination of at most R columns of a parity check matrix of the code, and
R is the smallest value with such a property.

Definitions 1.1(i) and 1.1(ii) are equivalent. Let an [n, n− r]qR code be an [n, n− r]q
code with covering radius R. For an introduction to coverings of vector Hamming spaces
over finite fields, see [6, 7].

The covering density µ of an [n, n− r]qR-code is defined as

µ =
1

qr

R∑
i=0

(q − 1)i
(
n

i

)
≥ 1. (1.1)

The covering quality of a code is better if its covering density is smaller. For fixed q, r, R,
the covering density of an [n, n− r]qR code decreases with decreasing n.

Codes investigated from the point view of the covering quality are usually called
covering codes [7]; see an online bibliography [21], works [6, 8–10, 12–15, 19, 20], and the
references therein.

2



Definition 1.2. [6,7] The length function `q(r, R) is the smallest length of a q-ary linear
code with covering radius R and codimension r.

From (1.1), see also Definition 1.1(ii), one can get an approximate lower bound on
`q(r, R). The main term of the sum in (1.1) is (q − 1)R

(
n
R

)
; it implies

µ ≈
1

qr
(q − 1)R

(
n

R

)
≈ qR−r

nR

R!
& 1, n &

R
√
R! · q(r−R)/R,

and, in a more general form,

`q(r, R) & cq(r−R)/R, (1.2)

where c is independent of q but it is possible that c is dependent of r and R. In [10], see also
the references therein including [8, 12], the bound (1.2) is given in another (asymptotic)
form and infinite families of covering codes, achieving the bound, are obtained for the
following situations: r = tR, arbitrary q; r 6= tR, q = (q′)R; R = sR′, r = Rt+s, q = (q′)R

′
.

Here t, s are integers, q′ is a prime power. In the general case, for arbitrary r, R, q the
problem to achieve the bound (1.2) is open.

In the last decades, upper bounds on `q(r, R) have been intensively investigated, see
[6–10,12–15,19–21] and the references therein.

The goal of this work is to obtain new upper bounds on the length functions `q(4, 3)
and `q(5, 3) with r 6= tR and arbitrary q, in particular with q 6= (q′)3 where q′ is a prime
power. It is an open problems.

Let PG(N, q) be the N -dimensional projective space over the field Fq; see [16–18]
for an introduction to the projective spaces over finite fields, see also [14, 17, 19, 20] for
connections between coding theory and Galois geometries.

Effective methods to obtain upper bounds on `q(r, R) are connected with saturating
sets in PG(N, q).

Definition 1.3. A point set S ⊆ PG(N, q) is ρ-saturating if for any point A of PG(N, q)\
S there exist ρ+ 1 points in S generating a subspace of PG(N, q) containing A, and ρ is
the smallest value with such property.

By Definition 1.3, every point A from PG(N, q) can be written as a linear combination
of at most ρ+ 1 points of a ρ-saturating set, cf. Definition 1.1(ii).

Saturating sets are considered, for instance, in [1–3, 6, 8–12, 14, 15, 19, 20, 24]. In the
literature, saturating sets are also called “saturated sets”, “spanning sets”, “dense sets”.

Let sq(N, ρ) be the smallest size of a ρ-saturating set in PG(N, q).
If q-ary positions of a column of an r × n parity check matrix of an [n, n− r]qR code

are treated as homogeneous coordinates of a point in PG(r − 1, q) then this parity check
matrix defines an (R− 1)-saturating set of size n in PG(r− 1, q) [8–10,14,15,19,20]. So,
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there is a one-to-one correspondence between [n, n − r]qR codes and (R − 1)-saturating
sets in PG(r − 1, q). Therefore,

`q(r, R) = sq(r − 1, R− 1),

in particular, `q(4, 3) = sq(3, 2), `q(5, 3) = sq(4, 2).
Complete arcs in PG(N, q) are an important class of saturating sets. An n-arc in

PG(N, q) with n > N+1 is a set of n points such that no N+1 points belong to the same
hyperplane of PG(N, q). An n-arc of PG(N, q) is complete if it is not contained in an
(n+ 1)-arc of PG(N, q). A complete arc in PG(N, q) is an (N − 1)-saturating set. Points
(in the homogeneous coordinates) of a complete n-arc in PG(N, q), treated as columns,
form a parity check matrix of an [n, n− (N + 1), N + 2]qN maximum distance separable
(MDS) code. If N = 2, 3 these codes are quasiperfect.

Let sarcq (N,N − 1) be the smallest size of a complete arc in PG(N, q). By above,

`q(N + 1, N) = sq(N,N − 1) ≤ sarcq (N,N − 1).

1.2 Covering codes with radius 3

For arbitrary q, covering [n, n− r]q3 codes of length close to lower bound (1.2) are known
only for r = tR = 3t [10,12]. In particular, the following bounds are obtained by algebraic
constructions [10, Sect. 5, eq. (5.2)], [12, Th. 12]:

`q(r, 3) ≤ 3q(r−3)/3 + q(r−6)/3, r = 3t ≥ 6, r 6= 9, q ≥ 5, and r = 9, q = 16, q ≥ 23.

`q(r, 3) ≤ 3q(r−3)/3 + 2q(r−6)/3 + 1, r = 9, q = 7, 8, 11, 13, 17, 19.

`q(r, 3) ≤ 3q(r−3)/3 + 2q(r−6)/3 + 2, r = 9, q = 5, 9.

If r = 3t + 1 or r = 3t + 2, covering codes of length close to lower bound (1.2) are
known only when q = (q′)3, where q′ is a prime power [8–10, 15]. In particular, the
following bounds are obtained by algebraic constructions, see [8, 9], [10, Sect. 5, eqs.
(5.3),(5.4)]:

`q(r, 3) ≤
(

4 +
4
3
√
q

)
q(r−3)/3, r = 3t+ 1 ≥ 4, q = (q′)3 ≥ 64.

`q(r, 3) ≤

(
9− 8

3
√
q

+
4

3
√
q2

)
q(r−3)/3, r = 3t+ 2 ≥ 5, q = (q′)3 ≥ 27.

For arbitrary q 6= (q′)3, in the literature, computer results are given for [n, n − 4]q3
codes with q ≤ 563 [13, Tab. 1] and [n, n−5]q3 codes with q ≤ 43 [9, Tab. 1], [13, Tab. 2].

In this work, by computer search, we obtain new results for [n, n− 4, 5]q3 quasiperfect
MDS codes with q ≤ 3323, q = 3511, 3761, 4001, and [n, n − 5, 5]q3 quasiperfect Almost
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MDS codes with q ≤ 563. This gives upper bounds on `q(4, 3) and `q(5, 3) for a set of
values q larger than the one in [9, 13].

The following theorem collects the new results of this paper, see Sections 3 and 4.

Theorem 1.4. Let c4 = 2.8 and c5 = 3. For the length function `q(r, 3) and for the
smallest size sq(r − 1, 2) of a 2-saturating set in the projective space PG(r − 1, q) the
following upper bounds hold.

(i) `q(4, 3) = sq(3, 2) ≤ sarcq (3, 2) < c4
3
√

ln q · q(4−3)/3 = c4
3
√

ln q · 3
√
q

for 11 ≤ q ≤ 3323 and q = 8, 3511, 3761, 4001;

`q(4, 3) = sq(3, 2) < c4
3
√

ln q · q(4−3)/3 = c4
3
√

ln q · 3
√
q for q = 9.

(ii) `q(5, 3) = sq(4, 2) < c5
3
√

ln q · q(5−3)/3 = c5
3
√

ln q · 3
√
q2 for 5 ≤ q ≤ 563.

Note that an [n, n− 4, 5]q3 quasiperfect MDS code corresponds to a complete n-arc in
PG(3, q). So, we obtained also upper bounds on sarcq (3, 2) and sq(3, 2).

We emphasize that, for r 6= 3t and q 6= (q′)3, the new bounds of Theorem 1.4 have the
form

`q(r, 3) < c 3
√

ln q · q(r−3)/3, c is a universal constant, r = 4, 5.

As far as it is known to the authors, such bounds have not been previously described in
the literature.

Our results, in particular figures and observations in Sections 3 and 4, allow us to
conjecture the following.

Conjecture 1.5. The bounds of Theorem 1.4 hold for all q.

The paper is organized as follows. In Section 2, we describe a leximatrix algorithm
to obtain parity check matrices of covering codes. In Sections 3 and 4, upper bounds on
the length functions `q(4, 3) and `q(5, 3) are considered. In Conclusion, the results of this
work are briefly analyzed; some tasks for investigation of the leximatrix algorithm are
formulated. In Appendix, tables with sizes of codes obtained in this work are given.

2 Leximatrix algorithm to obtain parity check ma-

trices of covering codes

The following is a version of the recursive g-parity check algorithm for greedy codes, see
e.g. [5, p. 25], [22], [23, Section 7].

Let Fq = {0, 1, . . . , q − 1} be the Galois field with q elements.
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If q is prime, the elements of Fq are treated as integers modulo q.
If q = pm with p prime and m ≥ 2, the elements of Fpm are represented by integers

as follows: Fpm = Fq = {0, 1 = α0, 2 = α1, . . . , u = αu−1, . . . , q − 1 = αq−2}, where α is a
root of a primitive polynomial of Fpm .

For a q-ary code of codimension r, covering radius R, and minimum distance d = R+2,
we construct a parity check matrix from nonzero columns hi of the form

hi = (x
(i)
1 , x

(i)
2 , . . . , x

(i)
r )T , x(i)u ∈ Fq,

where the first (leftmost) non-zero element is 1. The number of distinct columns is

(qr − 1)/(q − 1). For hi we put i =
r∑

u=1

x
(i)
u qr−u. We order the columns in the list as

h1, h2, . . . , h(qr−1)/(q−1). The columns of the list are candidates to be included in the
parity check matrix.

By above, a column hi is treated as its number i in our list written in the q-ary scale
of notation. The considered order of columns is lexicographical.

The first column of the list should be included into the matrix. Then step-by-step, one
takes the next column from the list which cannot be represented as a linear combination
of at most R columns already chosen. The process ends when no new column may
be included into the matrix. The obtained matrix Hn is a parity check matrix of an
[n, n− r, R + 2]qR code.

We call leximatrix and leximatrix code the obtained parity check matrix and the
corresponding code.

It is important to note that for prime q, length n of a leximatrix code and form
of the leximatrix Hn depend on q and R only. No other factors affect code length
and structure.

For non-prime q, the length n of a leximatrix code depends on q and on the form of
the primitive polynomial of the field. In this work, we use primitive polynomials that are
created by the program system MAGMA [4] by default, see Table A. In any case, the
choice of the polynomial changes the leximatrix code length unessentially.

By the leximatrix algorithm, if R = 1, we obtain the q-ary Hamming code. If R = 2,
we obtain a quasiperfect [n, n−r, 4]q2 code; for r = 3 such a code is MDS and corresponds
to a complete arc in PG(2, q). If R = 3, we obtain a quasiperfect [n, n− r, 5]q3 code; for
r = 4 such a code is MDS and corresponds to a complete arc in PG(3, q); for r = 5 it is
Almost MDS.

Let nL
q (r, R) be length of the q-ary leximatrix code of codimension r and

covering radius R. It is assumed that for a non-prime field Fq, one uses the primitive
polynomial created by the program system MAGMA [4] by default; in particular, for
non-prime q < 4000, the polynomial from Table A should be taken.

Future, we represent length of an [nL
q (r, R), nL

q (r, R) − r, R + 2]qR leximatrix code in

6



Table A. Primitive polynomials used for leximatrix [n, n−r, 5]q3 quasiperfect codes with
non-prime q

q = pm primitive q = pm primitive q = pm primitive
polynomial polynomial polynomial

4 = 22 x2 + x+ 1 8 = 23 x3 + x+ 1 9 = 32 x2 + 2x+ 2
16 = 24 x4 + x3 + 1 25 = 52 x2 + x+ 2 27 = 33 x3 + 2x2 + x+ 1
32 = 25 x5 + x3 + 1 49 = 72 x2 + x+ 3 64 = 26 x6 + x4 + x3 + 1
81 = 34 x4 + x+ 2 121 = 112 x2 + 4x+ 2 125 = 53 x3 + 3x+ 2
128 = 27 x7 + x+ 1 169 = 132 x2 + x+ 2 243 = 35 x5 + 2x+ 1
256 = 28 x8 + x4 + x3+ 289 = 172 x2 + x+ 3 343 = 73 x3 + 3x+ 2

x2 + 1
361 = 192 x2 + x+ 2 512 = 29 x9 + x4 + 1 529 = 232 x2 + 2x+ 5
625 = 54 x4 + x2 + 2x+ 2 729 = 36 x6 + x+ 2 841 = 292 x2 + 24x+ 2
961 = 312 x2 + 29x+ 3 1024 = 210 x10 + x6 + x5+ 1331 = 113 x3 + 2x+ 9

x3 + x2 + x+ 1
1369 = 372 x2 + 33x+ 2 1681 = 412 x2 + 38x+ 6 1849 = 432 x2 + x+ 3
2048 = 211 x11 + x2 + 1 2187 = 37 x7 + x2 + 2x+ 1 2197 = 133 x3 + x2 + 7
2209 = 472 x2 + x+ 13 2401 = 74 x4 + 5x2 + 4x+ 3 2809 = 532 x2 + 49x+ 2
3125 = 55 x5 + 4x+ 2 3481 = 592 x2 + 58x+ 2 3721 = 612 x2 + 60x+ 2

the form

nL
q (r, R) = cLq (r, R) R

√
ln q · q(r−R)/r, (2.1)

where cLq (r, R) is a coefficient entirely given by r, R, q.

Remark 2.1. In the literature on the projective geometry, the columns are considered as
points in homogenous coordinates; the algorithm, described above, is called an “algorithm
with fixed order of points” (FOP) [2,3].

3 Upper bounds on the length functions `q(4, 3)

The following properties of the leximatrix algorithm are useful for implementation.

Proposition 3.1. Let q be a prime. Then the v-th column of the leximatrix of an
[n, n− 4, 5]q3 code is the same for all q ≥ q0(v) where q0(v) is large enough.

Proof. Let Hj = [h(1), h(2), . . . , h(j)] be the matrix obtained in the j-th step of the lex-
imatrix algorithm. Here h(v) is a column of the matrix. A column from the list, not
included in Hj, is covered by Hj if it can be represented as a linear combination of at
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most 3 columns of Hj. Suppose that h(j) = hs, where hs is the s-th column in the lexi-
cographical list of candidates. A column Q = hu 6∈ Hj is the next chosen column, if and
only if all the columns hm with m ∈ [s + 1, u − 1] are covered by Hj. This means that,
for any m ∈ [s+ 1, u− 1], at least one of the determinants det(h(v1), h(v2), h(v3), hm), with
h(v1), h(v2), h(v3) ∈ Hj, is equal to zero modulo q. This can happen only in two cases:

• det(h(v1), h(v2), h(v3), hm) = 0, we say that hm is “absolutely” covered by Hj;

• det(h(v1), h(v2), h(v3), hm) = B 6= 0, but B ≡ 0 mod q.

For q large enough, q does not divide any of the possible values of B and then, at least for j
relatively small, the columns covered are just the absolutely covered columns. Therefore,
when q is large enough the leximatrices share a certain number of columns.

The values of q0(v) can be found with the help of calculations based on the proof of
Proposition 3.1. Also, we can directly consider leximatrices for a convenient region of q.

Example 3.2. Values of q0(v), v ≤ 20, together with columns (x
(v)
1 , x

(v)
2 , x

(v)
3 , x

(v)
4 )T , are

given in Table 1. So, for all prime q ≥ 233 (resp. q ≥ 1321) the first 14 (resp. 20) columns
of a parity check matrix of an [n, n− 4, 5]q3 MDS leximatrix code are as in Table B.

Table B. The first 20 columns of parity check matrices of [n, n − 4, 5] leximatrix MDS
codes, q prime

v x
(v)
1 x

(v)
2 x

(v)
3 x

(v)
4 q0(v) v x

(v)
1 x

(v)
2 x

(v)
3 x

(v)
4 q0(v)

1 0 0 0 1 2 11 1 7 11 8 67
2 0 0 1 0 2 12 1 8 6 13 109
3 0 1 0 0 2 13 1 9 13 16 199
4 1 0 0 0 2 14 1 10 12 22 233
5 1 1 1 1 2 15 1 11 7 29 269
6 1 2 3 4 5 16 1 12 22 15 769
7 1 3 2 5 11 17 1 13 16 20 769
8 1 4 5 3 29 18 1 14 17 7 1283
9 1 5 4 2 41 19 1 15 21 10 1283

10 1 6 8 9 41 20 1 16 9 38 1321

Proposition 3.3. (i) There exist [7, 7−4, 5]83 and [7, 7−4, 4]93 codes, length n of which
satisfies n < 2.8 3

√
q ln q.

(ii) There exist [nL
q (4, 3), nL

q (4, 3) − 4, 5]q3 quasiperfect MDS leximatrix codes of length

nL
q (4, 3) < 2.8 3

√
q ln q for 11 ≤ q ≤ 3323 and q = 3511, 3761, 4001.
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Proof. (i) The existence of the codes is noted in [13, Tab. 1], see also the references
therein.

(ii) The needed codes are obtained by computer search, using the leximatrix algorithm,
Proposition 3.1, and Example 3.2.

Proposition 3.3 implies assertions of Theorem 1.4(i).
Lengths of [nL

q (4, 3), nL
q (4, 3)− 4, 5]q3 leximatrix quasiperfect MDS codes are collected

in Table 1 (see Appendix) and presented in Figure 1 by the bottom solid black curve.
The bound 2.8 3

√
q ln q is shown in Figure 1 by the top dashed-dotted red curve.
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Figure 1: Lengths nL
q (4, 3) of [nL

q (4, 3), nL
q (4, 3) − 4, 5]q3 leximatrix codes (quasiperfect

MDS codes) (bottom solid black curve) vs bound 2.8 3
√
q ln q (top dashed-dotted red curve),

all q ≤ 3323 and q = 3511, 3761, 4001. Vertical magenta line marks region q ≤ 3323
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We denote by δq(4, 3) the difference between the bound 2.8 3
√
q ln q and length nL

q (4, 3)
of the leximatrix code. So,

δq(4, 3) = 2.8 3
√
q ln q − nL

q (4, 3).

The difference δq(4, 3) is presented in Figure 2.
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Figure 2: Difference δq(4, 3) between bound 2.8 3
√
q ln q and length nL

q (4, 3) of
[nL

q (4, 3), nL
q (4, 3)− 4, 5]q3 leximatrix codes, q ≤ 3323 and q = 3511, 3761, 4001

By (2.1), we represent length of an [nL
q (4, 3), nL

q (4, 3) − 4, 5]q3 leximatrix code in the
form

nL
q (4, 3) = cLq (4, 3) 3

√
q ln q, (3.1)

where cLq (4, 3) is a coefficient entirely given by q. The coefficients cLq (4, 3) =
nL
q (4,3)
3√q ln q

are

shown in Figure 3.
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Figure 3: Coefficients cLq (4, 3) = nL
q (4, 3)/ 3

√
q ln q for [nL

q (4, 3), nL
q (4, 3)− 4, 5]q3 leximatrix

codes (quasiperfect MDS codes), q ≤ 3323 and q = 3511, 3761, 4001
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Observation 3.4. (i) The difference δq(4, 3) tends to increase when q grows, see Figures
1 and 2.

(ii) Coefficients cLq (4, 3) oscillate around the horizontal line y = 2.64, see Figure 3.

Observation 3.4(i) gives rise to Conjecture 1.5 for [n, n− 4]q3 codes.

Remark 3.5. It is interesting that the oscillation of the coefficients cLq (4, 3) around a
horizontal line, in principle, is similar to the oscillation of the values hL(q) around a
horizontal line in [2, Fig. 12, Observation 3.7], [3, Fig. 5, Observation 3.7].

In the papers [2, 3], small complete tL2 (2, q)-arcs in the projective plane PG(2, q) are
constructed by computer search using algorithm with fixed order of points (FOP). These
arcs correspond to [tL2 (2, q), tL2 (2, q)− 3, 4]q2 quasiperfect MDS codes while the algorithm
FOP is analogous to the leximatrix algorithm of Section 2. Moreover, the value hL(q) is
defined in [2, 3] as hL(q) = tL2 (2, q)/

√
3q ln q. So, see (3.1), the coefficients cLq (4, 3) and

the values hL(q) have the similar nature. It is possible that the oscillations mentioned
have similar reasons too. However, in the present time the enigma of the oscillations
is incomprehensible,

4 Upper bounds on the length functions `q(5, 3)

Proposition 4.1. (i) There exist [n, n−5, 4]q3 codes with n < 3 3
√
q2 ln q for 5 ≤ q < 37.

(ii) There exist [nL
q (5, 3), nL

q (5, 3)− 5, 5]q3 Almost MDS leximatrix codes with nL
q (5, 3) <

3 3
√
q2 ln q for 37 ≤ q ≤ 563.

Proof. (i) The existence of the codes is noted in [9, Tab. 1], [13, Tab. 2], see also the
references therein.

(ii) The needed codes are obtained by computer search, using the leximatrix algorithm.

Proposition 4.1 implies assertions of Theorem 1.4(ii).
Lengths of [nL

q (5, 3), nL
q (5, 3) − 5, 5]q3 leximatrix Almost MDS codes are collected in

Table 2 (see Appendix) and presented in Figure 4 by the bottom solid black curve. The
bound 3 3

√
q2 ln q is shown in Figure 4 by the top dashed-dotted red curve.

We denote by δq(5, 3) the difference between the bound 3 3
√
q2 ln q and length nL

q (5, 3)
of the leximatrix code. So,

δq(5, 3) = 3 3
√
q2 ln q − nL

q (5, 3).
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Figure 4: Lengths nL
q (5, 3) of [nL

q (5, 3), nL
q (5, 3) − 5, 5]q3 leximatrix codes (quasiperfect

Almost MDS codes) (bottom solid black curve) vs bound 3 3
√
q2 ln q (top dashed-dotted red

curve), q ≤ 563
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Figure 5: Difference δq(5, 3) between bound 3 3
√
q2 ln q and length nL

q (5, 3) of
[nL

q (5, 3), nL
q (5, 3)− 5, 5]q3 leximatrix code, q ≤ 563
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Figure 6: Percent difference δ%q (5, 3) =
3 3
√

q2 ln q−nL
q (5,3)

3 3
√

q2 ln q
100% between bound 3 3

√
q2 ln q and

length nL
q (5, 3) of [nL

q (5, 3), nL
q (5, 3)− 5, 5]q3 leximatrix code, q ≤ 563
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The difference δq(5, 3) = 3 3
√
q2 ln q − nL

q (5, 3) and the percent difference δ%q (5, 3) =
3 3
√

q2 ln q−nL
q (5,3)

3 3
√

q2 ln q
100% are presented in Figures 5 and 6, respectively.

By (2.1), we represent length of an [nL
q (5, 3), nL

q (5, 3) − 5, 5]q3 leximatrix code in the
form

nL
q (5, 3) = cLq (5, 3) 3

√
q2 ln q, (4.1)

where cLq (5, 3) is a coefficient entirely given by q. The coefficients cLq (5, 3) =
nL
q (5,3)

3
√

q2 ln q
are

shown in Figure 7.

50 100 150 200 250 300 350 400 450 500 550 600

2.82
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2.96

2.98

3

Figure 7: Coefficients cLq (5, 3) = nL
q (5, 3)/ 3

√
q2 ln q for [nL

q (5, 3), nL
q (5, 3)−5, 5]q3 leximatrix

codes (quasiperfect Almost MDS codes), q ≤ 563

Observation 4.2. (i) The difference δq(5, 3) tends to increase when q grows, see Figures
4 and 5.
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(ii) The percent difference δ%q (5, 3) tends to increase when q grows, see Figure 6.

(iii) Coefficients cLq (5, 3) tend to decrease when q grows, see Figure 7.

Observations 4.2(i) and 4.2(ii) give rise to Conjecture 1.5 for [n, n− 5]q3 codes.
Note that Observations 4.2(ii) and 4.2(iii) directly follow each from other. Really,

δ%q (5, 3) =
3 3
√
q2 ln q − nL

q (5, 3)

3 3
√
q2 ln q

100 =

(
1−

cLq (5, 3)

3

)
100.

5 Conclusion

The length function `q(r, R) is the smallest length of a q-ary linear code of covering radius
R and codimension r. In this work, we consider upper bounds on the length functions
`q(4, 3) and `q(5, 3). For r = 3t and q = (q′)3 upper bounds on `q(r, 3) close to a lower
bound are known in literature.

In this work, by computer search in wide regions of q, we obtained short [n, n− 4, 5]q3
quasiperfect MDS codes and [n, n− 5, 5]q3 quasiperfect Almost MDS codes with covering
radius R = 3. For r 6= 3t and values of q 6= (q′)3, the new codes imply upper bounds of
the form

`q(r, 3) < c 3
√

ln q · q(r−3)/3, c is a universal constant, r = 4, 5.

As far as it is known to the authors, such bounds have not been previously described in
the literature.

In computer search, we use the step-by-step leximatrix algorithm to obtain parity check
matrices of codes. The algorithm is a version of the recursive g-parity check algorithm
for greedy codes.

In future, it would be useful to investigate and understand properties of the leximatrix
algorithm and structure of leximatrices. In particular, the following is of great interest:
• Initial part of the parity check matrices that is the same for all matrices with greater

prime q, see Proposition 3.1 and Example 3.2.
• The working mechanism and its quantitative estimates for the leximatrix algorithm;

see, for instance, the work [1] where the working mechanism of a greedy algorithm for
complete arcs in the projective plane PG(2, q) is studied.
• The oscillation of the coefficients cLq (4, 3) around a horizontal line and its likenesses

with the oscillation of the values hL(q) around a horizontal line in [2, Fig. 12, Observation
3.7], [3, Fig. 5, Observation 3.7], see Figure 3 and Remark 3.5.
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Appendix

Table 1. Lengths nL
q (4, 3) of [nL

q (4, 3), nL
q (4, 3)− 4, 5]q3 leximatrix codes

(quasiperfect MDS codes), 2 ≤ q ≤ 3323 and q = 3511, 3761, 4001

q nL
q (4, 3) q nL

q (4, 3) q nL
q (4, 3) q nL

q (4, 3) q nL
q (4, 3) q nL

q (4, 3)

2 5 3 5 4 5 5 6 7 8 8 7
9 9 11 8 13 9 16 9 17 9 19 10

23 11 25 11 27 12 29 12 31 13 32 12
37 13 41 14 43 14 47 15 49 15 53 16
59 16 61 16 64 17 67 17 71 18 73 18
79 18 81 18 83 19 89 20 97 20 101 21

103 20 107 22 109 22 113 22 121 22 125 23
127 23 128 22 131 23 137 23 139 23 149 24
151 24 157 25 163 24 167 25 169 25 173 25
179 26 181 26 191 26 193 27 197 27 199 26
211 27 223 29 227 28 229 28 233 28 239 29
241 29 243 28 251 30 256 29 257 29 263 30
269 30 271 31 277 30 281 30 283 31 289 31
293 31 307 32 311 32 313 31 317 32 331 34
337 34 343 33 347 34 349 34 353 34 359 34
361 34 367 34 373 34 379 34 383 34 389 35
397 35 401 35 409 35 419 36 421 36 431 36
433 37 439 38 443 38 449 36 457 37 461 37
463 37 467 37 479 38 487 38 491 39 499 39
503 39 509 39 512 39 521 39 523 39 529 39
541 39 547 39 557 39 563 41 569 41 571 39
577 40 587 41 593 41 599 41 601 42 607 42
613 43 617 42 619 42 625 42 631 42 641 43
643 42 647 43 653 44 659 44 661 43 673 43
677 42 683 43 691 44 701 44 709 44 719 44
727 45 729 44 733 45 739 45 743 45 751 45
757 46 761 45 769 46 773 46 787 45 797 46
809 46 811 46 821 46 823 47 827 46 829 46
839 46 841 47 853 47 857 47 859 47 863 47
877 48 881 47 883 47 887 48 907 50 911 49
919 48 929 49 937 49 941 49 947 49 953 49
961 50 967 50 971 50 977 50 983 50 991 50
997 52 1009 51 1013 51 1019 51 1021 50 1024 52

1031 50 1033 51 1039 51 1049 52 1051 51 1061 51
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Table 1. Continue 1

q nL
q (4, 3) q nL

q (4, 3) q nL
q (4, 3) q nL

q (4, 3) q nL
q (4, 3) q nL

q (4, 3)

1063 51 1069 52 1087 52 1091 51 1093 52 1097 52
1103 52 1109 52 1117 52 1123 52 1129 53 1151 53
1153 53 1163 53 1171 53 1217 55 1223 55 1229 54
1231 56 1237 56 1249 55 1259 54 1277 55 1279 56
1283 56 1289 56 1291 55 1297 56 1301 56 1303 56
1307 56 1319 56 1321 56 1327 56 1331 55 1361 57
1367 57 1369 56 1373 56 1381 57 1399 57 1409 57
1423 58 1427 58 1429 58 1433 57 1439 57 1447 57
1451 59 1453 59 1459 57 1471 57 1481 59 1483 59
1487 59 1489 59 1493 58 1499 58 1511 59 1523 58
1531 60 1543 59 1549 59 1553 59 1559 60 1567 60
1571 60 1579 59 1583 59 1597 59 1601 59 1607 60
1609 60 1613 60 1619 60 1621 60 1627 60 1637 60
1657 60 1663 61 1667 61 1669 60 1681 62 1693 61
1697 62 1699 62 1709 61 1721 63 1723 62 1733 63
1741 62 1747 63 1753 62 1759 62 1777 62 1783 63
1787 63 1789 62 1801 62 1811 63 1823 62 1831 62
1847 63 1849 64 1861 63 1867 63 1871 63 1873 64
1877 63 1879 63 1889 63 1901 64 1907 64 1913 64
1931 65 1933 66 1949 64 1951 66 1973 66 1979 65
1987 64 1993 65 1997 66 1999 65 2003 67 2011 66
2017 64 2027 65 2029 66 2039 66 2048 66 2053 66
2063 66 2069 66 2081 65 2083 66 2087 67 2089 67
2099 66 2111 67 2113 66 2129 67 2131 67 2137 68
2141 67 2143 66 2153 67 2161 67 2179 66 2187 68
2197 68 2203 67 2207 68 2209 67 2213 68 2221 69
2237 68 2239 68 2243 69 2251 69 2267 68 2269 69
2273 69 2281 69 2287 69 2293 68 2297 67 2309 69
2311 69 2333 69 2339 71 2341 69 2347 70 2351 69
2357 69 2371 70 2377 69 2381 69 2383 71 2389 69
2393 70 2399 70 2401 70 2411 71 2417 69 2423 71
2437 71 2441 73 2447 71 2459 70 2467 71 2473 72
2477 71 2503 70 2521 70 2531 71 2539 72 2543 72
2549 71 2551 71 2557 71 2579 72 2591 71 2593 72
2609 71 2617 72 2621 72 2633 73 2647 72 2657 73
2659 73 2663 72 2671 72 2677 73 2683 73 2687 72
2689 72 2693 72 2699 72 2707 73 2711 73 2713 72
2719 73 2729 73 2731 74 2741 73 2749 73 2753 74
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Table 1. Continue 2

q nL
q (4, 3) q nL

q (4, 3) q nL
q (4, 3) q nL

q (4, 3) q nL
q (4, 3) q nL

q (4, 3)

2767 73 2777 74 2789 74 2791 74 2797 73 2801 75
2803 74 2809 74 2819 74 2833 74 2837 75 2843 75
2851 75 2857 74 2861 74 2879 74 2887 76 2897 75
2903 74 2909 75 2917 75 2927 75 2939 76 2953 77
2957 76 2963 75 2969 75 2971 76 2999 76 3001 76
3011 75 3019 77 3023 76 3037 76 3041 75 3049 75
3061 76 3067 76 3079 78 3083 77 3089 76 3109 76
3119 77 3121 77 3125 78 3137 77 3163 78 3167 77
3169 77 3181 79 3187 77 3191 78 3203 77 3209 77
3217 78 3221 78 3229 77 3251 79 3253 78 3257 77
3259 78 3271 79 3299 79 3301 78 3307 78 3313 78
3319 79 3323 79 3511 80 3761 82 4001 85

Table 2. Lengths of [nL
q (5, 3), nL

q (5, 3) − 5, 5]q3 leximatrix codes (quasiperfect Almost
MDS codes) 3 ≤ q ≤ 563

q nL
q (5, 3) q nL

q (5, 3) q nL
q (5, 3) q nL

q (5, 3) q nL
q (5, 3) q nL

q (5, 3) q nL
q (5, 3)

3 11 4 10 5 11 7 16 8 17 9 19 11 22
13 24 16 28 17 28 19 31 23 36 25 37 27 40
29 43 31 46 32 46 37 51 41 55 43 56 47 60
49 61 53 66 59 70 61 73 64 77 67 79 71 82
73 84 79 88 81 88 83 90 89 96 97 101 101 104

103 107 107 109 109 111 113 112 121 119 125 123 127 123
128 124 131 127 137 130 139 133 149 142 151 141 157 146
163 149 169 151 167 150 173 156 179 158 181 159 191 166
193 166 197 171 199 172 211 180 223 185 227 186 229 188
233 191 239 195 241 197 243 198 251 203 256 205 257 207
263 208 269 214 271 213 277 215 281 218 283 221 289 226
293 227 307 232 311 234 313 236 317 237 331 245 337 248
343 253 347 257 349 255 353 256 359 260 361 260 367 265
373 266 379 274 383 272 389 275 397 280 401 282 409 284
419 292 421 290 431 297 433 299 439 301 443 304 449 309
457 311 461 311 463 309 467 314 479 320 487 324 491 324
499 328 503 330 509 334 512 334 521 339 523 341 529 344
541 348 547 349 557 353 563 360
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