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The model of stock market

Market vector x = (x1, . . . ,xN) represents price relatives for
a given trading period: xj = cj/cj−1, where cj is closing
price and cj−1 is opening price of the asset j .
Investor can rebalance his wealth St = St−1 · (p ·x) in each
round t according to a portfolio vector p = (p1, . . . ,pN),

where pj ≥ 0 for all j , and
N
∑

j=1
bj = 1. In what follows S0 = 1.

p(x1, . . . ,xt−1) – causal portfolio at time moment t ;
ST = ∏

T
t=1(pt (x1, . . . ,xt−1) ·xt ) – wealth (capital) achieved

in T trading periods; WT = 1
T lnST – growth rate; constant

rebalanced portfolio p(x1, . . . ,xt−1) = p for all t .
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Data model

Assumptions for data model:

X1,X2, · · · ∼ i.i.d. (a.s. and in expectation performance
bounds)
X1,X2, . . . is a stationary and ergodic process (a.s. and in
expectation performance bounds for portfolio algorithms)
x1,x2, . . . – no stochastic assumptions – black box (worst
case performance bounds)

Probability free algorithm for portfolio selection does not use
any probability distribution on price relatives.
We show that nonstochastic setting is a part of game-theoretic
Prediction with Expert Advice (PEA) approach.
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Universal portfolio

Reference classes of portfolios:

Class of constant rebalanced portfolios (CRP):
ST (p) = ∏

T
t=1(p ·xt ) - capital.

Class of switching portfolios E = ei1 , . . . ,eiT , where ei is a
unit vector: ST (E) = ∏

T
j=1(eit ·xt ).

Class of all causal portfolio strategies p(xt
1):

ST (p) = ∏
T
t=1(p(xt−1

1 ) ·xt ).

A portfolio strategy p∗ is called universal with respect to a
reference class A of portfolio strategies if

liminf
T→∞

1
T

ln
ST (p∗)
ST (p)

≥ 0 (almost surely for stochastic model)

for each p ∈A .
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Example of a constant rebalanced portfolio

A constant rebalanced portfolio (CRP) is an investment strategy
which keeps the same distribution of wealth among a set of
stocks from day to day.
Consider sequence of market vectors

xt = (1,
1
2

),(1,2),(1,
1
2

),(1,2),(1,
1
2

),(1,2), . . .

Buy and Hold strategy earns no profit.
The portfolio strategy pt = p = (1

2 ,
1
2) earns for 2T rounds the

gain

ST = 1 ·
(

1
2
·1 +

1
2
· 1
2

)
·
(

1
2
·1 +

1
2
·2
)
· · ·=

(
9
8

)T

→ ∞

for T → ∞.
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Example of probability depended portfolio algorithm

Log-optimal constant rebalanced portfolio: i.i.d. case
X1,X2, . . . be i.i.d random market vectors (with bounded
logarithm)
Let p∗ be such that E(ln(p∗ ·X)) = supp E(ln(p ·X)).

ST (p∗) = ∏
T
t=1(p∗ ·Xt) – the wealth of p∗ after T rounds.

Asymptotic optimality of the log-optimal constant rebalanced
portfolio in i.i.d case:

1
T

lnST (p∗)→ EX∼P ln(p∗ ·X) and

liminf
T→∞

1
T

ln
ST (p∗)
ST (p)

≥ 0 almost surely,

where ST (p) = ∏
T
t=1(p(X1, . . . ,Xi−1) ·Xi) be the wealth after T

rounds using any causal portfolio p(X1, . . . ,Xi−1).
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Example of probability-free portfolio (Cover, Morvai, Udina)

The log-optimal portfolio according to the empirical distribution
of price relatives observed in the past
b(x1, . . . ,xt−1) = argmaxp

1
t−1 ∑

t−1
i=1 ln(p ·xi),

where x1, . . . ,xt−1 are observed market vectors.

Theorem
Let X1,X2, . . . be a stationary and ergodic sequence of market
vectors such that E | lnXi ,t |< ∞ for all i and t. Then

limT→∞
1
T ln∏

T
t=1(b(X1, . . . ,Xt−1) ·Xt ) = E(ln(p∗ ·X)) a.s.,

where p∗ is an optimal constant rebalanced portfolio, i.e.,
E(ln(p∗ ·X)) = supp∈ΓN

E(ln(p ·X)).
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Machine learning framework

Prediction with Expert Advice

No assumptions on a source of price relatives
Game between Market and Trader
Worst case performance bounds
We consider additive quantities and losses instead of
rewards
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Hedge algorithm by Freund and Shapire (1997)

Define initial weights p1 = 1
N e, where e = (1, . . . ,1), η > 0.

FOR t = 1, . . .T
Learner presents a prediction p∗t = pt

‖pt‖1
.

Experts reveal their losses lt = (l1,t , . . . , lN,t ).

Learner suffers the mixloss mt =− 1
η

ln∑
N
i=1 p∗i ,te

−η li ,t .

Learner modifies weights pi ,t+1 = pi ,te−η li ,t .

ENDFOR
Li

T = ∑
T
t=1 li ,t – cumulative loss of any expert i , MT = ∑

T
t=1 mt .
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Analysis of Hedge

Li
T = ∑

T
t=1 li ,t – cumulative loss of the expert i

Wt = ∑
N
i=1 pi ,t = ∑

N
i=1 pi ,1e−ηLi

t

mt =− 1
η

ln∑
N
i=1 p∗i ,te

−η li ,t =− 1
η

ln Wt+1
Wt

.

MT = ∑
T
t=1 mt =− 1

η
∑

T
t=1 ln Wt+1

Wt
=− 1

η
lnWT =− 1

η
∑

N
i=1 pi ,1e−ηLi

T .

Lemma. MT =− 1
η

ln∑
N
i=1 pi ,1e−ηLi

T .

Theorem

Performance of Hedge: MT ≤mini Li
T + lnN

η
for each i.
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Analogy with portfolio theory

Define initial weights p1 = 1
N e, where e = (1, . . . ,1), η = 1.

FOR t = 1, . . .T
Trader presents a prediction p∗t = pt

‖pt‖1
.

Market reveals their losses lt = (l1,t , . . . , lN,t ) = (− lnx1,t , . . . ,− lnxN,t ).

Trader suffers the mixloss mt =− ln∑
N
i=1 p∗i ,te

−η li ,t =− ln(p∗t ·xi ).

Trader modifies weights pi ,t+1 = pi ,te−η li ,t = pi ,txi ,t .

ENDFOR
Li

T = ∑
T
i=1 l it =−∑

T
t=1 lnxi ,t =− ln∏

T
t=1 xi ,t =− lnS(ei).

MT =−∑
T
t=1 ln(p∗t ·xt ) =− lnS∗T =− ln 1

N ∑
N
i=1 ST (ei)

Theorem

S∗T = ∏
T
t=1(p∗t ·xt )≥ 1

N max1≤i≤N ST (ei) for each i.
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Switching portfolio by Y. Singer (1998)

Switching portfolio algorithm (Fixed Share)
Define initial portfolio p1 = 1

N e, where e = (1, . . . ,1), 0 < α < 1.
FOR t = 1, . . .T
Trader predicts a portfolio pt .
Market reveals market vector xt = (x1,t , . . . ,xN,t ).

Trader modifies portfolio weights pm
t : pm

i ,t =
pi ,t xi ,t
(pt ·xt )

.

Trader defines portfolio for the next step pt+1 = α

N e + (1−α)pm
t ,

where e = (1,1, . . . ,1).
ENDFOR
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Performance of swithing portfolio algorithm

Let ei1 , . . . ,eiT be a sequence of portfolios, where ei is a unit
vector, whose i th coordinate is 1 and other ones are 0. (T is a
fixed horizon).
s(ei1 , . . . ,eiT ) = |{s : is−1 6= is}| – complexity of this portfolio
strategy and
ST (ei1 , . . . ,eiT ) = ∏

T
t=1 xit ,t is its cumulative wealth.

S∗T = ∏
T
t=1(pt ·xt ) is wealth of the switching portfolio algorithm.

Theorem
For a suitable variable parameter α = αt , for any T and k and
for any sequence of market vectors given on-line,
S∗T ≥ (TN)−(k+1) maxs(ei1

,...,eiT
)≤k ST (ei1 , . . . ,eiT ) – guarantee for

wealth achieved by switching portfolio algorithm.
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Method of multiplicative updates by Helmbold et al. 1998

F (pt ) = η ln(pt ·xt )−D(pt‖pt−1)→max
under constaints ‖pt‖1 = 1, where D(p‖q) is relative entropy.
p∗ = {p∗t }, where p∗t is a maximizer of the first order Taylor
approximation of F (pt ) around pt−1.

Theorem
For a suitable variable parameter η , for any T and for any
sequence of market vectors given on-line,

lnST (p∗)≥maxp lnST (p)−
√

2T lnN
2r , where xi ,t ≥ r > 0 for all i

and t.

Also, ST (p∗)≥ e−
√

2T lnN
2r maxp ST (p).
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Aggregating algorithm AA (Vovk - 1991)

λ (ω,γ) – loss function (λ (ω,γ) = (ω− γ)2 – example).
dP1(θ) – initial distribution,

∫
dP1(θ) = 1, 0 < η < 1.

FOR t = 1, . . .T
Expert θ reveals a forecast ξ θ

t .
Learner reveals a forecast γt satisfying mixability condition:
λ (ω,γt )≤− 1

η
ln
∫

e−ηλ(ω,ξ θ
t )dP∗t (θ) for all ω, where

dP∗t (p) = dPt (p)∫
dPt (p) .

Nature reveals an outcome ωt ∈ Ω.
Expert θ ∈Θ suffers loss λ (ωt ,ξ

θ
t ).

Learner suffers loss λ (ωt ,γt ).

Learner modifies weights dPt+1(θ) = e−ηλ(ωt ,ξ
θ
t )dPt (θ).

ENDFOR
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Performance of AA

LT (θ) = ∑
T
t=1 λ (ωt ,ξ

θ
t ) – cumulative loss of the expert θ .

LT = ∑
T
t=1 λ (ωt ,γt ) – cumulative loss of AA.

Since λ (ω,γt )≤− 1
η

ln
∫

e−ηλ(ω,ξ θ
t )dP∗t (θ) for all ω, this is true

for ω = ωt , and we have λ (ωt ,γt )≤mt and then LT ≤MT .
Lemma.
(1) MT =− 1

η
ln
∫

e−ηLT (θ)dP1(θ) (as for Hedge).

(2) LT ≤− 1
η

ln
∫

e−ηLT (θ)dP1(θ).

(3) LT ≤minθ LT (θ) + lnN
η

if there are N experts θ .
In general case we have only (2).
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Universal portfolio algorithm by Thomas Cover (1991-1997)

λ (x,p) =− ln(p ·x) – loss function.
dP1(θ) – initial distribution, η = 1.
FOR t = 1, . . .T
Expert p reveals a forecast p = (p1, . . . ,pN) – portfolio.
Trader reveals a forecast p∗t =

∫
pdP∗t (p), where

dP∗t (p) = dPt (p)∫
dPt (p) .

Market reveals a market vector xt = (x1,t , . . . ,xN,t ).
Expert p multiplies its wealth by (p ·xt ).
Trader multiplies its wealth by (p∗t ·xt ).
Trader modifies experts weights dPt+1(p) = (p ·xt )dPt (p).
ENDFOR
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Duality: loss = − ln(wealth)

LT (p) =−∑
T
t=1 ln(p ·xt ) and ST (p) = ∏

T
t=1(p ·xt ) are cumulative

loss and wealth of the constant rebalanced portfolio p.

L∗T =−∑
T
t=1 ln(p∗t ·xt ) and S∗T = ∏

T
t=1(pt ·xt ) are cumulative loss

and cumulative wealth of universal portfolio.

Mixability condition holds as equality
λ (x,pt ) =− ln

(
x ·
∫

pdP∗t−1(p)
)

=− ln
∫

(x ·p)dP∗t−1(p) and then
λ (xt ,pt ) = mt for all t , then L∗T = MT .

Since L∗T = MT , by Lemma
L∗T =− ln

∫
e−LT (p)dP1(p) and S∗T =

∫
ST (p)dP1(p).
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Performance of the universal portfolio

Theorem
The portfolio strategy

p∗t =

∫
p∏

t
s=1(p ·xs)dP1(p)∫

∏
t
s=1(p ·xs)dP1(p)

.

is universal for the class of all constant rebalanced portfolios:

S∗T ≥ cT−
N−1

2 max
p

ST (p)

for all T , where x1,x2, . . . is an arbitrary sequence of market
vectors, P1(p) is the Dirichlet distribution on the simplex.

1
T ln S∗T

ST (p) ≥−
N−1
2T lnT + O

( 1
T

)
– in terms of growth rates.
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Details of the proof

Dirichlet distribution with parameters (1/2, . . . ,1/2) in the
simplex of all portfolios:

dP1(p) =
γ(N/2)

[γ(1/2)]N

N

∏
j=1

p−1/2
j dp, where γ(a) =

∞∫
0

xa−1e−xdx .

Recalling that S∗T =
∫

ST (p)dP1(p), we should prove that

supp ST (p)∫
ST (p)dP1(p)

=

sup
p

∏
T
t=1(p ·xt )∫

∏
T
t=1(p ·xt )dP1(p)

≤ ε
−1T

N−1
2

for all x.
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Stationary markets

X1,X2, . . . – stationary and ergodic process.
Log-optimal causal portfolio strategy b∗(·):

E
(

ln(b∗(Xt−1
1 ) ·Xt )|Xt−1

1

)
= supb(·) E

(
ln(b(Xt−1

1 ) ·Xt )|Xt−1
1

)
.

Algoet and Cover (1988) proved asymptotic optimality property
of this strategy:

liminfT→∞
1
T ln ST (b∗)

ST (b) ≥ 0 a.s. and

limT→∞
1
T lnST (b∗) = W ∗ a.s.,

where W ∗ = E
(

supb(·) E
(

ln(b(X−1
−∞) ·X0)|X−1

−∞

))
is the

maximal possible growth rate of any investment strategy
(with respect to the process).
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Györfi and Schäfer Kernel (histogram) universal strategy

hk ,l(xt−1
1 ) = argmaxb∈ΓN ∏

k≤i≤l:xi−1
i−k∼xt−1

t−k

(b ·xi),

where xi−1
i−k ∼ xt−1

t−k means that they are in the same element of
some partition. This portfolio vector is optimal for those past
trading periods whose preceding k trading periods have
identical discretized market vectors to the present one.
Universal portfolio strategy ST (B) = ∑k ,l qk ,lST (hk ,l).

Theorem
For each stationary ergodic sequence of market vectors
limT→∞

1
T lnST (B) = W ∗, where

W ∗ = E
(

supb(·) E
(

ln(b(X−1
−∞) ·X0)|X−1

−∞

))
.
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Universal well calibrated portfolio by Cover and Gluss

Aε = {a1, . . . ,aM} is an ε-net in the set of all market vectors.
P(Aε ) – set of all probability distributions (vectors) on the set Aε

and Pε = {s1, . . . , sN} is an ε-net in P(Aε ).
We also discretize the set of all histories
. . . ,z−1,x−1,z0,x0,z1,x1, . . . ,zt ,xt , . . . .
Using the Blackwell approachability theorem a randomized
algorithm can be constructed which with probability one
generates a sequence of probability vectors c1,c2, · · · ∈ P(Aε )
such that for any i the probability ci is close to empirical
distribution of market vectors xi (calibration property).
At any step t , using artificial probability ct , define

p∗t = argmaxpEX∼ct (ln(p ·X)). (1)
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Performance of randomized portfolio strategy

Theorem

The randomized portfolio strategy p∗ = {p∗t } is universal:

liminf
T→∞

1
T

ln
ST (p∗)
S(p)

≥ 0 (2)

for almost all trajectories c1,c2, . . . , where
ST (p∗) = ∏

T
t=1(p∗t ·xt ) and ST (p) = ∏

T
t=1(p(σt ) ·xt ) is the

wealth achieved by an arbitrary Lipschitz continuous causal
portfolio p(σt ), and σt = . . . ,z−1,x−1,z0,x0,z1,x1, . . . ,xt−1,zt is
the history at any round t.
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Rate of convergence

Poor rate of convergence O
(

1

(lnT )
1

N+1−ν

)
in the theorem, where

ν is an arbitrary small positive real number, and N is the
number of assets.
More precise, for any δ > 0, with probability 1−δ ,

1
T

lnS∗T ≥
1
T

lnST −

(
ln

(
T

ln 1
δ

))− 1
N+1 +ν

for all T , where ST = ∏
T
t=1(b(σt ) ·xt ) is the wealth achieved by

an arbitrary Lipschitz continuous portfolio b(·).


