Probability free methods for universal portfolio selection

Vladimir V'yugin

Institute for Information Transmission Problems Russian Academy of Sciences

Mathematical Economics and Finance 17-18 December 2017, Manchester, UK

A D > 4 目 > 4 目 > 4 目 > 10 の (の)

- Market vector **x** = (x₁,...,x_N) represents price relatives for a given trading period: x_j = c_j/c_{j-1}, where c_j is closing price and c_{j-1} is opening price of the asset j.
- Investor can rebalance his wealth $S_t = S_{t-1} \cdot (\mathbf{p} \cdot \mathbf{x})$ in each round *t* according to a portfolio vector $\mathbf{p} = (p_1, \dots, p_N)$, where $p_j \ge 0$ for all *j*, and $\sum_{i=1}^{N} b_i = 1$. In what follows $S_0 = 1$.
- $\mathbf{p}(\mathbf{x}_1,...,\mathbf{x}_{t-1})$ causal portfolio at time moment t; $S_T = \prod_{t=1}^T (\mathbf{p}_t(\mathbf{x}_1,...,\mathbf{x}_{t-1}) \cdot \mathbf{x}_t)$ – wealth (capital) achieved in T trading periods; $W_T = \frac{1}{T} \ln S_T$ – growth rate; constant rebalanced portfolio $\mathbf{p}(\mathbf{x}_1,...,\mathbf{x}_{t-1}) = \mathbf{p}$ for all t.

Assumptions for data model:

- $X_1, X_2, \dots \sim i.i.d.$ (a.s. and in expectation performance bounds)
- X₁, X₂,... is a stationary and ergodic process (a.s. and in expectation performance bounds for portfolio algorithms)
- x₁, x₂,... no stochastic assumptions black box (worst case performance bounds)

Probability free algorithm for portfolio selection does not use any probability distribution on price relatives.

We show that nonstochastic setting is a part of game-theoretic Prediction with Expert Advice (PEA) approach.

Reference classes of portfolios:

- Class of constant rebalanced portfolios (CRP): $S_T(\mathbf{p}) = \prod_{t=1}^{T} (\mathbf{p} \cdot \mathbf{x}_t)$ - capital.
- Class of switching portfolios **E** = **e**_{i1},..., **e**_{iT}, where **e**_i is a unit vector: S_T(**E**) = Π^T_{j=1}(**e**_{it} · **x**_t).
- Class of all causal portfolio strategies $\mathbf{p}(\mathbf{x}_1^t)$: $S_T(\mathbf{p}) = \prod_{t=1}^{T} (\mathbf{p}(\mathbf{x}_1^{t-1}) \cdot \mathbf{x}_t).$

A portfolio strategy \mathbf{p}^* is called **universal** with respect to a reference class \mathscr{A} of portfolio strategies if

 $\liminf_{\mathcal{T} \to \infty} \frac{1}{\mathcal{T}} \ln \frac{S_{\mathcal{T}}(\mathbf{p}^*)}{S_{\mathcal{T}}(\mathbf{p})} \geq 0 \text{ (almost surely for stochastic model)}$

for each $\mathbf{p} \in \mathscr{A}$.

< ロ > < @ > < 注 > < 注 > 注 の < @ </p>

A constant rebalanced portfolio (CRP) is an investment strategy which keeps the same distribution of wealth among a set of stocks from day to day.

Consider sequence of market vectors

$$\mathbf{x}_t = (1, \frac{1}{2}), (1, 2), (1, \frac{1}{2}), (1, 2), (1, \frac{1}{2}), (1, 2), \dots$$

Buy and Hold strategy earns no profit. The portfolio strategy $\mathbf{p}_t = \mathbf{p} = (\frac{1}{2}, \frac{1}{2})$ earns for 2*T* rounds the gain

$$S_{T} = 1 \cdot \left(\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot \frac{1}{2}\right) \cdot \left(\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 2\right) \cdots = \left(\frac{9}{8}\right)^{T} \to \infty$$

for $T \to \infty$.

Log-optimal constant rebalanced portfolio: i.i.d. case

 $\mathbf{X}_1, \mathbf{X}_2, \dots$ be i.i.d random market vectors (with bounded logarithm)

Let \mathbf{p}^* be such that $E(\ln(\mathbf{p}^* \cdot \mathbf{X})) = \sup_{\mathbf{p}} E(\ln(\mathbf{p} \cdot \mathbf{X}))$.

 $S_T(\mathbf{p}^*) = \prod_{t=1}^T (\mathbf{p}^* \cdot \mathbf{X}_t)$ – the wealth of \mathbf{p}^* after T rounds.

Asymptotic optimality of the log-optimal constant rebalanced portfolio in i.i.d case:

$$\frac{1}{T} \ln S_T(\mathbf{p}^*) \to E_{X \sim \mathbf{P}} \ln(\mathbf{p}^* \cdot \mathbf{X}) \text{ and}$$
$$\liminf_{T \to \infty} \frac{1}{T} \ln \frac{S_T(\mathbf{p}^*)}{S_T(\mathbf{p})} \ge 0 \text{ almost surely,}$$

where $S_T(\mathbf{p}) = \prod_{t=1}^{T} (\mathbf{p}(\mathbf{X}_1, \dots, \mathbf{X}_{i-1}) \cdot \mathbf{X}_i)$ be the wealth after T rounds using any causal portfolio $\mathbf{p}(\mathbf{X}_1, \dots, \mathbf{X}_{i-1})$.

The log-optimal portfolio according to the empirical distribution of price relatives observed in the past

$$\mathbf{b}(\mathbf{x}_1,\ldots,\mathbf{x}_{t-1}) = \operatorname{argmax}_{\mathbf{p}} \frac{1}{t-1} \sum_{i=1}^{t-1} \ln(\mathbf{p} \cdot \mathbf{x}_i),$$

where $\mathbf{x}_1, \ldots, \mathbf{x}_{t-1}$ are observed market vectors.

Theorem

Let $\mathbf{X}_1, \mathbf{X}_2, ...$ be a stationary and ergodic sequence of market vectors such that $E|\ln X_{i,t}| < \infty$ for all *i* and *t*. Then $\lim_{T\to\infty} \frac{1}{T} \ln \prod_{t=1}^{T} (\mathbf{b}(\mathbf{X}_1, ..., \mathbf{X}_{t-1}) \cdot \mathbf{X}_t) = E(\ln(\mathbf{p}^* \cdot \mathbf{X}))$ a.s., where \mathbf{p}^* is an optimal constant rebalanced portfolio, i.e., $E(\ln(\mathbf{p}^* \cdot \mathbf{X})) = \sup_{\mathbf{p} \in \Gamma_N} E(\ln(\mathbf{p} \cdot \mathbf{X}))$.

・ロ・・日・・日・・日・

Prediction with Expert Advice

- No assumptions on a source of price relatives
- Game between Market and Trader
- Worst case performance bounds
- We consider additive quantities and losses instead of rewards

Define initial weights $\mathbf{p}_1 = \frac{1}{N}\mathbf{e}$, where $\mathbf{e} = (1, ..., 1)$, $\eta > 0$. FOR t = 1, ..., T

Learner presents a prediction $\mathbf{p}_t^* = \frac{\mathbf{p}_t}{\|\mathbf{p}_t\|_1}$.

Experts reveal their losses $I_t = (I_{1,t}, \dots, I_{N,t})$.

Learner suffers the mixloss $m_t = -\frac{1}{\eta} \ln \sum_{i=1}^{N} p_{i,t}^* e^{-\eta l_{i,t}}$.

Learner modifies weights $p_{i,t+1} = p_{i,t}e^{-\eta l_{i,t}}$.

ENDFOR

 $L_T^i = \sum_{t=1}^T I_{i,t}$ – cumulative loss of any expert *i*, $M_T = \sum_{t=1}^T m_t$.

· ㅁ › · · @ › · · 돋 · · 돈 · 돈 · 이익()

Analysis of Hedge

$$\begin{split} L_{T}^{i} &= \sum_{t=1}^{T} I_{i,t} - \text{cumulative loss of the expert } i \\ W_{t} &= \sum_{i=1}^{N} p_{i,t} = \sum_{i=1}^{N} p_{i,1} e^{-\eta L_{t}^{i}} \\ m_{t} &= -\frac{1}{\eta} \ln \sum_{i=1}^{N} p_{i,t}^{*} e^{-\eta I_{i,t}} = -\frac{1}{\eta} \ln \frac{W_{t+1}}{W_{t}}. \\ M_{T} &= \sum_{t=1}^{T} m_{t} = -\frac{1}{\eta} \sum_{t=1}^{T} \ln \frac{W_{t+1}}{W_{t}} = -\frac{1}{\eta} \ln W_{T} = -\frac{1}{\eta} \sum_{i=1}^{N} p_{i,1} e^{-\eta L_{T}^{i}}. \\ \text{Lemma. } M_{T} &= -\frac{1}{\eta} \ln \sum_{i=1}^{N} p_{i,1} e^{-\eta L_{T}^{i}}. \end{split}$$

Theorem

Performance of Hedge: $M_T \leq \min_i L_T^i + \frac{\ln N}{\eta}$ for each *i*.

Define initial weights $\mathbf{p}_1 = \frac{1}{N}\mathbf{e}$, where $\mathbf{e} = (1, ..., 1)$, $\eta = 1$. FOR t = 1, ..., T

Trader presents a prediction $\mathbf{p}_t^* = \frac{\mathbf{p}_t}{\|\mathbf{p}_t\|_1}$. Market reveals their losses $\mathbf{I}_t = (I_{1,t}, \dots, I_{N,t}) = (-\ln x_{1,t}, \dots, -\ln x_{N,t})$. Trader suffers the mixloss $m_t = -\ln \sum_{i=1}^N p_{i,t}^* e^{-\eta I_{i,t}} = -\ln (\mathbf{p}_t^* \cdot \mathbf{x}_i)$. Trader modifies weights $p_{i,t+1} = p_{i,t}e^{-\eta I_{i,t}} = p_{i,t}x_{i,t}$. ENDFOR $L_T^i = \sum_{i=1}^T I_t^i = -\sum_{t=1}^T \ln x_{i,t} = -\ln \prod_{t=1}^T x_{i,t} = -\ln S(\mathbf{e}_i)$.

$$M_{T} = -\sum_{t=1}^{I} \ln(\mathbf{p}_{t}^{*} \cdot x_{t}) = -\ln S_{T}^{*} = -\ln \frac{1}{N} \sum_{i=1}^{N} S_{T}(\mathbf{e}_{i})$$

Theorem

$$S_T^* = \prod_{t=1}^T (\mathbf{p}_t^* \cdot \mathbf{x}_t) \ge \frac{1}{N} \max_{1 \le i \le N} S_T(\mathbf{e}_i)$$
 for each *i*.

Switching portfolio algorithm (Fixed Share)

Define initial portfolio $\mathbf{p}_1 = \frac{1}{N}\mathbf{e}$, where $\mathbf{e} = (1, ..., 1)$, $0 < \alpha < 1$. FOR t = 1, ..., T

Trader predicts a portfolio \mathbf{p}_t .

Market reveals market vector $\mathbf{x}_t = (x_{1,t}, \dots, x_{N,t})$.

Trader modifies portfolio weights \mathbf{p}_t^m : $p_{i,t}^m = \frac{p_{i,t}\mathbf{x}_{i,t}}{(\mathbf{p}_t \cdot \mathbf{x}_t)}$.

Trader defines portfolio for the next step $\mathbf{p}_{t+1} = \frac{\alpha}{N} \mathbf{e} + (1-\alpha) \mathbf{p}_t^m$, where $\mathbf{e} = (1, 1, ..., 1)$. ENDFOR

ogo

Let $\mathbf{e}_{i_1}, \ldots, \mathbf{e}_{i_T}$ be a sequence of portfolios, where \mathbf{e}_i is a unit vector, whose *i*th coordinate is 1 and other ones are 0. (*T* is a fixed horizon).

 $s(\mathbf{e}_{i_1},\ldots,\mathbf{e}_{i_T}) = |\{s: i_{s-1} \neq i_s\}|$ – complexity of this portfolio strategy and

 $S_T(\mathbf{e}_{i_1},\ldots,\mathbf{e}_{i_T}) = \prod_{t=1}^T x_{i_t,t}$ is its cumulative wealth.

 $S_T^* = \prod_{t=1}^T (\mathbf{p}_t \cdot \mathbf{x}_t)$ is wealth of the switching portfolio algorithm.

Theorem

For a suitable variable parameter $\alpha = \alpha_t$, for any T and k and for any sequence of market vectors given on-line, $S_T^* \ge (TN)^{-(k+1)} \max_{s(\mathbf{e}_{i_1},...,\mathbf{e}_{i_T}) \le k} S_T(\mathbf{e}_{i_1},...,\mathbf{e}_{i_T}) - guarantee$ for

wealth achieved by switching portfolio algorithm.

 $F(\mathbf{p}_t) = \eta \ln(\mathbf{p}_t \cdot \mathbf{x}_t) - D(\mathbf{p}_t || \mathbf{p}_{t-1}) \rightarrow \max$ under constaints $\|\mathbf{p}_t\|_1 = 1$, where $D(\mathbf{p} || \mathbf{q})$ is relative entropy. $\mathbf{p}^* = \{\mathbf{p}_t^*\}$, where \mathbf{p}_t^* is a maximizer of the first order Taylor approximation of $F(\mathbf{p}_t)$ around \mathbf{p}_{t-1} .

Theorem

For a suitable variable parameter η , for any T and for any sequence of market vectors given on-line,

 $\ln S_T(\mathbf{p}^*) \ge \max_{\mathbf{p}} \ln S_T(\mathbf{p}) - \frac{\sqrt{2T \ln N}}{2r}$, where $x_{i,t} \ge r > 0$ for all *i* and *t*.

Also, $S_T(\mathbf{p}^*) \ge e^{-\frac{\sqrt{2T\ln N}}{2r}} \max_{\mathbf{p}} S_T(\mathbf{p}).$

 $\lambda(\omega, \gamma)$ – loss function ($\lambda(\omega, \gamma) = (\omega - \gamma)^2$ – example). $dP_1(\theta)$ – initial distribution, $\int dP_1(\theta) = 1$, $0 < \eta < 1$. FOR t = 1, ..., T

Expert θ reveals a forecast ξ_t^{θ} .

Learner reveals a forecast γ_t satisfying mixability condition: $\lambda(\omega, \gamma_t) \leq -\frac{1}{\eta} \ln \int e^{-\eta \lambda(\omega, \xi_t^{\epsilon_\theta})} dP_t^*(\theta)$ for all ω , where $dP_t^*(\mathbf{p}) = \frac{dP_t(\mathbf{p})}{\int dP_t(\mathbf{p})}$.

Nature reveals an outcome $\omega_t \in \Omega$.

Expert $\theta \in \Theta$ suffers loss $\lambda(\omega_t, \xi_t^{\theta})$.

Learner suffers loss $\lambda(\omega_t, \gamma_t)$.

Learner modifies weights $dP_{t+1}(\theta) = e^{-\eta \lambda(\omega_t, \xi_t^{\theta})} dP_t(\theta)$. ENDFOR

 $L_{T}(\theta) = \sum_{t=1}^{T} \lambda(\omega_{t}, \xi_{t}^{\theta}) - \text{cumulative loss of the expert } \theta.$ $L_{T} = \sum_{t=1}^{T} \lambda(\omega_{t}, \gamma_{t}) - \text{cumulative loss of AA.}$ Since $\lambda(\omega, \gamma_{t}) \leq -\frac{1}{\eta} \ln \int e^{-\eta \lambda(\omega, \xi_{t}^{\theta})} dP_{t}^{*}(\theta)$ for all ω , this is true for $\omega = \omega_{t}$, and we have $\lambda(\omega_{t}, \gamma_{t}) \leq m_{t}$ and then $L_{T} \leq M_{T}$.

・ロト・日本・モー・ 日・ つへぐ

Lemma.

(1)
$$M_T = -\frac{1}{\eta} \ln \int e^{-\eta L_T(\theta)} dP_1(\theta)$$
 (as for Hedge).
(2) $L_T \leq -\frac{1}{\eta} \ln \int e^{-\eta L_T(\theta)} dP_1(\theta)$.
(3) $L_T \leq \min_{\theta} L_T(\theta) + \frac{\ln N}{\eta}$ if there are *N* experts θ .
In general case we have only (2).

$$\lambda(\mathbf{x}, \mathbf{p}) = -\ln(\mathbf{p} \cdot \mathbf{x}) - \text{loss function.}$$

 $dP_1(\theta) - \text{initial distribution}, \eta = 1.$
FOR $t = 1, \dots T$
Expert **p** reveals a forecast $\mathbf{p} = (p_1, \dots, p_N) - \text{portfolio.}$

Trader reveals a forecast $\mathbf{p}_t^* = \int \mathbf{p} dP_t^*(\mathbf{p})$, where $dP_t^*(\mathbf{p}) = \frac{dP_t(\mathbf{p})}{\int dP_t(\mathbf{p})}$.

Market reveals a market vector $\mathbf{x}_t = (x_{1,t}, \dots, x_{N,t})$.

Expert **p** multiplies its wealth by $(\mathbf{p} \cdot \mathbf{x}_t)$.

Trader multiplies its wealth by $(\mathbf{p}_t^* \cdot \mathbf{x}_t)$.

Trader modifies experts weights $dP_{t+1}(\mathbf{p}) = (\mathbf{p} \cdot \mathbf{x}_t) dP_t(\mathbf{p})$. ENDFOR

 $L_T(\mathbf{p}) = -\sum_{t=1}^T \ln(\mathbf{p} \cdot \mathbf{x}_t)$ and $S_T(\mathbf{p}) = \prod_{t=1}^T (\mathbf{p} \cdot \mathbf{x}_t)$ are cumulative loss and wealth of the constant rebalanced portfolio \mathbf{p} .

 $L_T^* = -\sum_{t=1}^T \ln(\mathbf{p}_t^* \cdot \mathbf{x}_t)$ and $S_T^* = \prod_{t=1}^T (\mathbf{p}_t \cdot \mathbf{x}_t)$ are cumulative loss and cumulative wealth of universal portfolio.

Mixability condition holds as equality $\lambda(\mathbf{x}, \mathbf{p}_t) = -\ln(\mathbf{x} \cdot \int \mathbf{p} dP_{t-1}^*(\mathbf{p})) = -\ln \int (\mathbf{x} \cdot \mathbf{p}) dP_{t-1}^*(\mathbf{p})$ and then $\lambda(\mathbf{x}_t, \mathbf{p}_t) = m_t$ for all *t*, then $L_T^* = M_T$.

Since $L_T^* = M_T$, by Lemma $L_T^* = -\ln \int e^{-L_T(\mathbf{p})} dP_1(\mathbf{p})$ and $S_T^* = \int S_T(\mathbf{p}) dP_1(\mathbf{p})$.

Theorem

The portfolio strategy

$$\mathbf{p}_t^* = \frac{\int \mathbf{p} \prod_{s=1}^t (\mathbf{p} \cdot \mathbf{x}_s) dP_1(\mathbf{p})}{\int \prod_{s=1}^t (\mathbf{p} \cdot \mathbf{x}_s) dP_1(\mathbf{p})}$$

is universal for the class of all constant rebalanced portfolios:

$$S_T^* \ge cT^{-\frac{N-1}{2}} \max_{\mathbf{p}} S_T(\mathbf{p})$$

for all *T*, where $\mathbf{x}_1, \mathbf{x}_2, ...$ is an arbitrary sequence of market vectors, $P_1(\mathbf{p})$ is the Dirichlet distribution on the simplex.

 $\frac{1}{T} \ln \frac{S_T^*}{S_T(\mathbf{p})} \ge -\frac{N-1}{2T} \ln T + O\left(\frac{1}{T}\right)$ – in terms of growth rates.

(日) (日) (日) (日) (日) (日) (日)

٠

Dirichlet distribution with parameters (1/2, ..., 1/2) in the simplex of all portfolios:

$$dP_1(\mathbf{p}) = \frac{\gamma(N/2)}{[\gamma(1/2)]^N} \prod_{j=1}^N p_j^{-1/2} d\mathbf{p}, \text{ where } \gamma(a) = \int_0^\infty x^{a-1} e^{-x} dx.$$

Recalling that $S_T^* = \int S_T(\mathbf{p}) dP_1(\mathbf{p})$, we should prove that

$$\frac{\sup_{\mathbf{p}} S_{T}(\mathbf{p})}{\int S_{T}(\mathbf{p}) dP_{1}(\mathbf{p})} = \frac{\sup_{\mathbf{p}} \prod_{t=1}^{T} (\mathbf{p} \cdot \mathbf{x}_{t})}{\int \prod_{t=1}^{T} (\mathbf{p} \cdot \mathbf{x}_{t}) dP_{1}(\mathbf{p})} \le \varepsilon^{-1} T^{\frac{N-1}{2}}$$

for all **x**.

logo

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\begin{split} & \mathbf{X}_{1}, \mathbf{X}_{2}, \dots - \text{stationary and ergodic process.} \\ & \text{Log-optimal causal portfolio strategy } \mathbf{b}^{*}(\cdot): \\ & E\left(\ln(\mathbf{b}^{*}(\mathbf{X}_{1}^{t-1}) \cdot \mathbf{X}_{t}) | \mathbf{X}_{1}^{t-1}\right) = \sup_{\mathbf{b}(\cdot)} E\left(\ln(\mathbf{b}(\mathbf{X}_{1}^{t-1}) \cdot \mathbf{X}_{t}) | \mathbf{X}_{1}^{t-1}\right). \\ & \text{Algoet and Cover (1988) proved asymptotic optimality property of this strategy:} \\ & \lim\inf_{T \to \infty} \frac{1}{T} \ln \frac{S_{T}(\mathbf{b}^{*})}{S_{T}(\mathbf{b})} \geq 0 \text{ a.s. and} \end{split}$$

 $\lim_{T\to\infty}rac{1}{T}\ln S_T(\mathbf{b}^*)=W^* ext{ a.s.},$

where $W^* = E\left(\sup_{\mathbf{b}(\cdot)} E\left(\ln(\mathbf{b}(\mathbf{X}_{-\infty}^{-1}) \cdot \mathbf{X}_0) | \mathbf{X}_{-\infty}^{-1}\right)\right)$ is the **maximal possible growth rate** of any investment strategy (with respect to the process).

logo

$$\mathbf{h}^{k,l}(\mathbf{x}_1^{t-1}) = \operatorname{argmax}_{\mathbf{b} \in \Gamma_N} \prod_{k \le i \le l: \mathbf{x}_{i-k}^{i-1} \sim \mathbf{x}_{t-k}^{t-1}} (\mathbf{b} \cdot \mathbf{x}_i),$$

where $\mathbf{x}_{i-k}^{i-1} \sim \mathbf{x}_{t-k}^{t-1}$ means that they are in the same element of some partition. This portfolio vector is optimal for those past trading periods whose preceding *k* trading periods have identical discretized market vectors to the present one.

Universal portfolio strategy $S_T(B) = \sum_{k,l} q_{k,l} S_T(h_{k,l})$.

Theorem

For each stationary ergodic sequence of market vectors $\lim_{T\to\infty} \frac{1}{T} \ln S_T(\mathbf{B}) = W^*, \text{ where}$ $W^* = E\left(\sup_{\mathbf{b}(\cdot)} E\left(\ln(\mathbf{b}(\mathbf{X}_{-\infty}^{-1}) \cdot \mathbf{X}_0) | \mathbf{X}_{-\infty}^{-1}\right)\right).$ $A_{\varepsilon} = \{\mathbf{a}_1, \dots, \mathbf{a}_M\}$ is an ε -net in the set of all market vectors. $P(A_{\varepsilon})$ – set of all probability distributions (vectors) on the set A_{ε} and $\mathscr{P}_{\varepsilon} = \{\mathbf{s}_1, \dots, \mathbf{s}_N\}$ is an ε -net in $P(A_{\varepsilon})$.

We also discretize the set of all histories

 $\dots, \mathbf{Z}_{-1}, \mathbf{X}_{-1}, \mathbf{Z}_0, \mathbf{X}_0, \mathbf{Z}_1, \mathbf{X}_1, \dots, \mathbf{Z}_t, \mathbf{X}_t, \dots$

Using the Blackwell approachability theorem a randomized algorithm can be constructed which with probability one generates a sequence of probability vectors $\mathbf{c}_1, \mathbf{c}_2, \dots \in P(A_{\varepsilon})$ such that for any *i* the probability \mathbf{c}_i is close to empirical distribution of market vectors \mathbf{x}_i (calibration property).

At any step *t*, using artificial probability \mathbf{c}_t , define

$$\mathbf{p}_t^* = \operatorname{argmax}_{\mathbf{p}} \mathcal{E}_{\mathbf{X} \sim \mathbf{c}_t}(\ln(\mathbf{p} \cdot \mathbf{X})). \tag{1}$$

・ロ・・日・・ヨ・ ・ ヨ・ うらる

Theorem

The randomized portfolio strategy $\mathbf{p}^* = {\mathbf{p}_t^*}$ is universal:

$$\liminf_{T \to \infty} \frac{1}{T} \ln \frac{S_T(\mathbf{p}^*)}{S(\mathbf{p})} \ge 0$$
(2)

for almost all trajectories $\mathbf{c}_1, \mathbf{c}_2, ..., where$ $S_T(\mathbf{p}^*) = \prod_{t=1}^T (\mathbf{p}_t^* \cdot \mathbf{x}_t)$ and $S_T(\mathbf{p}) = \prod_{t=1}^T (\mathbf{p}(\sigma_t) \cdot \mathbf{x}_t)$ is the wealth achieved by an arbitrary Lipschitz continuous causal portfolio $\mathbf{p}(\sigma_t)$, and $\sigma_t = ..., \mathbf{z}_{-1}, \mathbf{x}_{-1}, \mathbf{z}_0, \mathbf{x}_0, \mathbf{z}_1, \mathbf{x}_1, ..., \mathbf{x}_{t-1}, \mathbf{z}_t$ is the history at any round t.

・ロ・・四・・ヨ・・ヨ・・日・

Poor rate of convergence $O\left(\frac{1}{(\ln T)^{\frac{1}{N+1}-v}}\right)$ in the theorem, where *v* is an arbitrary small positive real number, and *N* is the number of assets.

More precise, for any $\delta > 0$, with probability $1 - \delta$,

$$\frac{1}{T}\ln S_T^* \geq \frac{1}{T}\ln S_T - \left(\ln\left(\frac{T}{\ln\frac{1}{\delta}}\right)\right)^{-\frac{1}{N+1}+\nu}$$

for all *T*, where $S_T = \prod_{t=1}^T (\mathbf{b}(\sigma_t) \cdot \mathbf{x}_t)$ is the wealth achieved by an arbitrary Lipschitz continuous portfolio $\mathbf{b}(\cdot)$.