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The model of stock market

@ Market vector x = (xq,...,Xy) represents price relatives for
a given trading period: x; = ¢;/cj_1, where ¢; is closing
price and ¢;_ is opening price of the asset .

@ Investor can rebalance his wealth S; = S;_1 - (p-X) in each
round t according to a portfolio vector p = (p1,...,Pn),

N
where p; > 0 for all j, and ¥ b; = 1. In what follows Sy = 1.
j=1

@ p(x4,...,X;_1) — causal portfolio at time moment ¢;
St =TI (Pt(X1,-..,Xt_1)-X;) — wealth (capital) achieved
in T trading periods; Wt = lTIn St — growth rate; constant
rebalanced portfolio p(xy,...,X;_1) = p for all t.



Data model

Assumptions for data model:

@ X4,Xo, .- ~ii.d. (a.s. and in expectation performance
bounds)

@ Xi,Xo,... is a stationary and ergodic process (a.s. and in
expectation performance bounds for portfolio algorithms)

@ X1,X»,... —No stochastic assumptions — black box (worst
case performance bounds)

Probability free algorithm for portfolio selection does not use
any probability distribution on price relatives.

We show that nonstochastic setting is a part of game-theoretic
Prediction with Expert Advice (PEA) approach.



Universal portfolio

Reference classes of portfolios:

@ Class of constant rebalanced portfolios (CRP):
Sr(p) =I11(p-X¢) - capital.

@ Class of switching portfolios E=e;,,...,e;., where e; is a
unit vector: St(E) =TI (ej, - Xt).

@ Class of all causal portfolio strategies p(x}):
Sr(p) =1 (P(X{ ") - xy).

A portfolio strategy p* is called universal with respect to a
reference class <7 of portfolio strategies if

.1 Sr(pY)
Ilpllor!fTIn 57(p)

> 0 (almost surely for stochastic model)

foreach p € «.



Example of a constant rebalanced portfolio

A constant rebalanced portfolio (CRP) is an investment strategy
which keeps the same distribution of wealth among a set of
stocks from day to day.

Consider sequence of market vectors

Xt = (1,%),(1,2),(1,%),(1,2),(1,%),(1,2),...

Buy and Hold strategy earns no profit.
The portfolio strategy p: = p = (3, 5) earns for 2T rounds the
gain

1 11 1 1 9\’
ST_‘].(2.1+2.2).(2.1+2.2>..._(8) — o0

for T — oo.



Example of probability depended portfolio algorithm

Log-optimal constant rebalanced portfolio: i.i.d. case

Xi,Xo, ... be i.i.d random market vectors (with bounded
logarithm)

Let p* be such that E(In(p* - X)) = supp E(In(p - X)).
S7(p*) =1, (p* - X¢) — the wealth of p* after T rounds.

Asymptotic optimality of the log-optimal constant rebalanced
portfolio in i.i.d case:

lIn St(p*) = ExpIn(p* - X) and

I|m|nf—ln Sr(p’)

> 0 almost surely,
Tse0 St(p) — Y

where St(p) = [1_;(P(X1,-.-,Xi_1) - X;) be the wealth after T
rounds using any causal portfolio p(Xy,...,Xj_1).



Example of probability-free portfolio (Cover, Morvai, Udina)

The log-optimal portfolio according to the empirical distribution
of price relatives observed in the past

b(x17 < X— 1)_argmaxpt 1 Zt ] In(p'xf)7

where X1,...,X;_4 are observed market vectors.

Theorem

Let X1,Xo,... be a stationary and ergodic sequence of market
vectors such that E|In X; | < e for all i and t. Then

M7 e FINTIL (B(X1,..., X¢_1) - X¢) = E(In(p* - X)) a.s

where p* is an optimal constant rebalanced portfolio, i.e.,
E(In(p” - X)) = supper, E(In(p - X)).




Machine learning framework

Prediction with Expert Advice )

@ No assumptions on a source of price relatives
@ Game between Market and Trader
@ Worst case performance bounds

@ We consider additive quantities and losses instead of
rewards



Hedge algorithm by Freund and Shapire (1997)

Define initial weights p; = {e, wheree=(1,...,1), n > 0.
FORt=1, .T

Learner presents a prediction p; = HF"att||1 .

Experts reveal their losses Iy = (h ¢,...,In.t).

i __1 N —nl;
Learner suffers the mixloss m; = — InY;; pj e~ .

Learner modifies weights p; ;1 = p,-yte*”"?'.
ENDFOR
LY =y [ l;; — cumulative loss of any expert i, My = ¥.,[_, m;.



Analysis of Hedge

L =¥ ,l—-cumulative loss of the expert i
_ N _ N L
Wi=YZ:pit=Xi_1pi1€ "
1 N —nl; 1 W
m; = —ﬁlnziﬂp}k e it = In W

T W 1 1 vN _nLi
Mr=%;ymi= *Zt 1In=w m :—ﬁln WT:—E):,‘:1PI,19 e

Lemma. Mr = —1InLl, p; e*"L'T.

Performance of Hedge: Mt < min; L’T + % for each i.




Analogy with portfolio theory

Define initial weights p; = 1€, wheree=(1,...,1), n = 1.
FORt=1,...T

Trader presents a prediction p; = H:ﬁ'

Market reveals their losses It = (I ¢,...,In¢) = (= InXq ¢,..., —INXp ).
Trader suffers the mixloss m; = —InL ¥, pf,e it = —In(p; - X;).
Trader modifies weights p; 11 = pir€ 1t = p; X .

ENDFOR

L=yl i=—Y Inx;y = —InTI_, x;; = —InS(e)).
Mr=—X{In(p;-xt) = —InS; = —Iny LN, Sr(e))

Sy =T1{1(p; - Xt) > 4y maxs<j<n Sr(e;) for each i.




Switching portfolio by Y. Singer (1998)

Switching portfolio algorithm (Fixed Share)

Define initial portfolio py = 1,e, wheree = (1,...,1), 0 < a < 1.
FORt=1,...T

Trader predicts a portfolio p;.

Market reveals market vector X; = (X1 ¢,...,Xn ¢)-

Trader modifies portfolio weights p{": pf} = (;:r;;))((i}t)'

Trader defines portfolio for the next step ps1 = ye+ (1 —a)pf’,
wheree = (1,1,...,1).

ENDFOR




Performance of swithing portfolio algorithm

Lete;,...,e; be asequence of portfolios, where e; is a unit
vector, whose jth coordinate is 1 and other ones are 0. (T is a
fixed horizon).

s(ej,...,e;;) = [{s:is_1 # Is}| — complexity of this portfolio
strategy and
Sr(ej,,....e;) = HtT:1 Xt is its cumulative wealth.

5= [17_(p:-X¢) is wealth of the switching portfolio algorithm.

For a suitable variable parameter o = oy, for any T and k and
for any sequence of market vectors given on-line,

St > (TN)~(k+1) MaXs(e, e, )<k ST(€%,-...€j;) — guarantee for
wealth achieved by switching portfolio algorithm.




Method of multiplicative updates by Helmbold et al. 1998

F(pt) = nIn(p: - Xt) — D(pt|[Pt—1) — max

under constaints ||p¢||1 = 1, where D(p||q) is relative entropy.
p* = {p;}, where p; is a maximizer of the first order Taylor
approximation of F(p;) around p;_1.

For a suitable variable parameter n, for any T and for any
sequence of market vectors given on-line,

In St(p*) > maxp In S7(p) — V2N “where x;; > r > 0 for all i

2r
andt.

Also, St(p*) > e~ & maxp S1(p).




Aggregating algorithm AA (Vovk - 1991)

A(w,7) — loss function (A(®,7) = (o — 7)?> — example).
dP;(6) — initial distribution, [dP;(0)=1,0<n < 1.
FORt=1,...T

Expert 6 reveals a forecast &?.

Learner reveals a forecast y; satisfying mixability condition:
Ao, y) < —%Infe‘"““’vgre)dP;‘(e) for all ®, where

9P} (P) = Fh (5

Nature reveals an outcome o; € Q.

Expert 6 € © suffers loss A(w;,&?).

Learner suffers loss A(w;, 11)-

Learner modifies weights dP;, 1(6) = e 1(2:57) dPy(6).
ENDFOR




Performance of AA

L7(8) =Y Ao, EP) — cumulative loss of the expert 6.

Ly =Y A(o, 1) — cumulative loss of AA.

Since A(o,%) < —+ In [ e 1M@:E) gpP; () for all w, this is true
for ® = w;, and we have A(wy,v:) < m; and then Ly < M.
Lemma.

(1) My = —%Infe*"LT(")dH(e) (as for Hedge).

(2) Lt < —FIn[e 1t7(0)dPy(6).

(3) LT <ming L7(6)+ % if there are N experts 6.

In general case we have only (2).



Universal portfolio algorithm by Thomas Cover (1991-1997)

A(x,p) = —In(p-x) — loss function.
dP(0) — initial distribution, n = 1.
FORt=1,...T

Expert p reveals a forecast p = (py,...,pn) — portfolio.

Trader reveals a forecast p; = [pdP;(p), where

" dP,
9P} (P) = Fh (5

Market reveals a market vector X; = (X ¢,..., Xn.¢)-

Expert p multiplies its wealth by (p - X;).

Trader multiplies its wealth by (p; - X¢).

Trader modifies experts weights dP;1(p) = (p - X;)dP:(p).
ENDFOR




Duality: loss = — In(wealth)

Lr(p) =X In(p-x;) and S7(p) = [1,_; (P - X;) are cumulative
loss and wealth of the constant rebalanced portfolio p.

Ly =—Y [ ,In(p;-x;) and Si =TT/, (p:-X;) are cumulative loss
and cumulative wealth of universal portfolio.

Mixability condition holds as equality
A(x,pt) =—In(x- [pdP; ,(p)) = —In[(x-p)dP; ,(p) and then
A(X¢,pt) = my for all ¢, then L% = Mr.

Since L} = My, by Lemma
Ly =—In[e t7(P)dP;(p) and Si = [ S7(p)dPi(p).



Performance of the universal portfolio

The portfolio strategy

_ JPIT5—1(P-Xs)dP1(p)
JTIE—1(p-Xs)dPs (P)

is universal for the class of all constant rebalanced portfolios:

Pt

Sy >cT 'z max Sr(p)

for all T, where X4,X», ... is an arbitrary sequence of market
vectors, P1(p) is the Dirichlet distribution on the simplex.

In Sf(*Tp) > -1 inT+O(+) —in terms of growth rates.

~i—



Details of the proof

Dirichlet distribution with parameters (1/2,...,1/2) in the
simplex of all portfolios:

oo

N
H _1/2dp, where y(a) = /xa‘1e‘xdx.
0

N/2
Recalling that Si = [ S7(p)dP4(p), we should prove that

supp S7(p) SUthT—1 (P-X¢)
/' Sr(p)dPi(p) m, (p- x)3dPr(p)

for all x.

,17-




Stationary markets

X1,Xso,... — stationary and ergodic process.

Log-optimal causal portfolio strategy b*(-):

E (ln(b*(xr1 ) -x,)\xﬁ) — SUPy() E (In(b(Xﬁ” ) .xt)|x§*‘)
Algoet and Cover (1988) proved asymptotic optimality property
of this strategy:

Sr(b )
Sr(b)
)=

liminfr_,.. X1n >0 a.s. and
T

limr_,.. +InS7(b
where W* = E (supb(,) E (ln(b(x:;) -x0)|x:;)) is the

maximal possible growth rate of any investment strategy
(with respect to the process).



Gyorfi and Schafer Kernel (histogram) universal strategy

hk’l(xﬁq) = argmaxper, H (b-x;),

i foygi—1 _yt—1
kglgl.x,_kth_k

where x\~} ~ x!~} means that they are in the same element of
some partition. This portfolio vector is optimal for those past
trading periods whose preceding k trading periods have
identical discretized market vectors to the present one.

Universal portfolio strategy St(B) = Y« gk, 1St(hx.1)-

For each stationary ergodic sequence of market vectors
limr_.. +InS7(B) = W*, where

W* = E (supy(y E (In(b(X1) Xo) X1 ).




Universal well calibrated portfolio by Cover and Gluss

A: ={ay,...,ay} is an e-net in the set of all market vectors.
P(A¢) — set of all probability distributions (vectors) on the set A¢
and ¢ = {s1,..., sy} isan e-netin P(Ag).

We also discretize the set of all histories

o Z1,X_1,2Z0,X0,21,X1,...,Zt, X,

Using the Blackwell approachability theorem a randomized
algorithm can be constructed which with probability one
generates a sequence of probability vectors ¢1,€z,--- € P(Ag)
such that for any i the probability ¢; is close to empirical
distribution of market vectors x; (calibration property).

At any step ¢, using artificial probability ¢;, define

p; = argmax, Ex-c,(In(p- X)), (1)



Performance of randomized portfolio strategy

Theorem

The randomized portfolio strategy p* = {p;} is universal:

.1 Sr(p")
Ilgngln S(p)

>0 ()

for almost all trajectories ¢1,¢o», ..., where

Sr(p*) = I1-1 (P} -Xt) and Sr(p) =17 (p(cr) - X:) is the
wealth achieved by an arbitrary Lipschitz continuous causal
portfolio p(ot), and oy = ...,Z_1,X_1,20,X0,21,X1,...,X¢_1,2¢ IS
the history at any round t.




Rate of convergence

Poor rate of convergence O (11> in the theorem, where
(InT)N+1 Y

v is an arbitrary small positive real number, and N is the
number of assets.
More precise, for any 6 > 0, with probability 1 — 6,

:
1 1 " LR
— jollly S _ R
TInST_TInST <In<lng>>

for all T, where St = [1_;(b(c¢) - X;) is the wealth achieved by
an arbitrary Lipschitz continuous portfolio b(-).



